The strict inclusion relation between the spaces $H_{p}(\mathbb{U})$ on the open unit disc \mathbb{U} in \mathbb{C}

By Yasuo Matsugu
Department of Mathematics, Faculty of Science
Shinshu University
(Received 7th Oct., 1982)

1. Introduction

Let $n \geq 1$ be an integer. Let $H\left(B_{n}\right)$ denote the space of all holomorphic functions in the open unit ball B_{n} of the complex n dimensional Euclidean space \mathbb{C}^{n}. Let $\varphi:(-\infty, \infty) \rightarrow[0, \infty)$ be a nondecreasing convex function, not identically 0 , and let $H_{\varphi}\left(B_{n}\right)$ be the class of all $f \in H\left(B_{n}\right)$ whose growth is restricted by the requirement

$$
\sup _{0<r<1} \int_{\partial B_{n}} \varphi(\log |f(r w)|) d \sigma(w)<\infty
$$

where ∂B_{n} is the boundary of B_{n} and σ is the Euclidean volume element on the unit sphere ∂B_{n} in \mathbb{C}^{n} normalized so that the volume of the sphere is 1 . If $\varphi(x)=$ $\max (0, x)$, then $H_{\varphi}\left(B_{n}\right)$ is called to be the Nevanlinna class $N\left(B_{n}\right)$. If $\varphi(x)=e^{p x}$, $0<p<\infty$, then $H_{\varphi}\left(B_{n}\right)$ are called to be the Hardy classes $H^{p}\left(B_{n}\right) . \quad$ By $H^{\infty}\left(B_{n}\right)$ we shall denote the space of all bounded holomorphic functions in B_{n}.

In [4], W. Rudin proved the following theorem:
Theorem A (Rudin [4], p. 58). Fix $n \geq 2$. Assume that φ and ϕ are nonconstant, nondecreasing, nonnegative convex functions defined on $(-\infty, \infty)$, and that

$$
\lim _{t \rightarrow \infty} \phi(t) / \varphi(t)=\infty
$$

Then there exists an $f \in H_{\varphi}\left(B_{n}\right)$ with the following property:
If $b \in H^{\infty}\left(B_{n}\right), \quad g \in H\left(B_{n}\right), g \neq 0$, and

$$
h=(f+b) g
$$

then some constant multiple of h fails to be in $H_{\psi}\left(B_{n}\right)$.
In the case $n=1$, this theorem is not valid. Indeed, if $\varphi=e^{p x}, 0<p<\infty$ and $\phi=\left(2+p^{2} x^{2}\right) e^{p x}$, then Theorem A implies that the zero sets of functions in $H^{p}\left(B_{1}\right)$ differ from the zero sets of functions in $H^{q}\left(B_{1}\right)$, for any $q>p$. But this is false when $n=1$.

The purpose of the present paper is to prove the following analogue of Theorem

A in the case of $n=1$:
(The open unit disc in \mathbf{C} and the unit circle will be denoted by U and T, in place of B_{1} and ∂B_{1}, respectively.)

Theorem 1. Assume that φ and ψ are as in Theorem A. Then there exists an $f \in H_{\varphi}(U)$ such that $2 f \oplus H_{\psi}(U)$.

Applying Theorem A and Theorem 1, in $\S 3$ we shall describe the strict inclusion relation between the Hardy classes $H^{p}\left(B_{n}\right), 0<p \leq \infty$, and the Nevanlinna class $N\left(B_{n}\right)$.

2. Proof of Theorem 1

We need the lemma which was used to prove the Rudin's theorem (Theorem A in §1) in [4].

Lemma (Rudin [4], pp. 59-60). Suppose
(i) μ is a finite positive measure on a set Ω;
(ii) v is a real measurable function on Ω, with $0 \leq v<1$ a. e., whose essential supremum is 1 ;
(iii) Φ is a continuous nondecreasing real function on $[0, \infty)$, with $\Phi(0)=0$ and $\Phi(t) \rightarrow \infty$ as $t \rightarrow \infty$;
(iv) $0<\delta<\infty$.

Then there exist constants $c_{k} \in(0, \infty)$, for $k=1,2,3, \ldots$, such that

$$
\int_{\Omega} \Phi\left(c_{k} v^{k}\right) d \mu=\delta
$$

These c_{k} also satisfy

$$
\lim _{k \rightarrow \infty} c_{k} x^{k}=0
$$

whenever $|\alpha|<1$.
If $0<t<\infty$ and if $Y_{k}=Y_{k}(t)$ is the set of all $x \in \Omega$ at which $c_{k} v^{k}(x)>t$, then

$$
\lim _{k \rightarrow \infty} \int_{Y_{k}} \Phi\left(c_{k} v^{k}\right) d \mu=\delta
$$

Proof of Theorem 1. Without loss of generality, we can assume that

$$
\begin{equation*}
\varphi(t)=0 \quad \text { if } \quad t \leq 0 . \tag{1}
\end{equation*}
$$

Choose a sequence $\left\{X_{j}\right\}_{j=1,2, \ldots}$ of nonempty connected open subsets of T so that

$$
\begin{equation*}
X_{j} \subset\left\{e^{i \theta} \in T ; 0<\theta<\frac{\pi}{2}\right\} \tag{2}
\end{equation*}
$$

and $X_{j} \cap X_{k}=\phi$ if $j \neq k$. For each $j=1,2,3, \ldots$, pick $w_{j} \in X_{j}$.

Define

$$
S_{j}(z)=\frac{1}{2}\left(w_{j}^{-1} z+1\right) \quad(z \in \boldsymbol{C})
$$

for each j and

$$
D=\left\{z \in C ;\left|z-\frac{1}{2}\right|=\frac{1}{2}\right\} .
$$

Then

$$
\begin{aligned}
& S_{j}(U)=D, S_{j}\left(w_{j}\right)=1, \\
& \max _{z \in T}\left|S_{j}(z)\right|=\max _{z \in \bar{U}}\left|S_{j}(z)\right|=1,
\end{aligned}
$$

and
(3)

$$
\left|S_{j}(z)\right|<1 \text { for } z \in \bar{U}, z \neq w_{j} .
$$

Moreover, the following inequalities hold:
(4)

$$
\frac{1}{2}(1+r)\left|S_{j}(z)\right| \leq\left|S_{j}(r z)\right| \leq\left|S_{j}(z)\right|
$$

for $0<r<1, z \in \bigcup_{i=1}^{\infty} X_{i}$. In fact, fix $r \in(0,1)$. Put

$$
\begin{equation*}
V(z)=\frac{S_{j}(r z)}{S_{j}(z)}=\frac{w_{j}^{-1} r z+1}{w_{j}^{-1} z+1} . \tag{5}
\end{equation*}
$$

Then $V(T)=\left\{w \in C ; \operatorname{Re} w=\frac{1+r}{2}\right\}$. Hence

$$
\begin{equation*}
\min _{z \in T}|V(z)|=\frac{1+r}{2} . \tag{6}
\end{equation*}
$$

Let $z \in \bigcup_{i=1}^{\infty} X_{i}$. Then, by (2), we can write $z=w_{j} e^{i \theta_{j}}$ for some θ_{j} with $-\frac{\pi}{2}<\theta_{j}<\frac{\pi}{2}$.
A simple calculation shows that

$$
\begin{equation*}
|V(z)|^{2}=\frac{1+r^{2}+2 r \cos \theta_{j}}{2+2 \cos \theta_{j}}<1 \tag{7}
\end{equation*}
$$

since $-\frac{\pi}{2}<\theta_{j}<\frac{\pi}{2}$ and $0<r<1$. (5), (6) and (7) give (4).
Since $\lim _{t \rightarrow \infty} \psi(t) / \varphi(t)=\infty$, there are numbers $t_{j}>3 j$ such that

$$
\begin{equation*}
\psi(\log (1+t))>j^{3} \varphi(\log (1+t)) \text { if } t>t j . \tag{8}
\end{equation*}
$$

We now apply the lemma, for each positive integer j, with (T, σ) in place of (Ω, μ), and with

$$
\begin{aligned}
& v_{j}(z)=\left|S_{j}(z)\right|, \\
& \Phi(t)=\varphi(\log (1+t)), \\
& \delta_{j}=2 j^{-2}, \\
& \alpha_{j}=\max _{z \in T \backslash X}\left|S_{j}(z)\right| .
\end{aligned}
$$

Then $0<\alpha_{j}<1$.
The lemma shows that there exist positive numbers $a_{j}=c_{k_{j}}$ (where k_{j} is a sufficiently large positive integer) such that, setting

$$
\begin{equation*}
F_{j}(z)=a_{j}\left(S_{j}(z)\right)^{k_{j}} \quad(z \in \mathbb{C}) \tag{9}
\end{equation*}
$$

we have

$$
\begin{align*}
& \int_{T} \varphi\left(\log \left(1+\left|F_{j}\right|\right)\right) d \sigma=\frac{1}{2 \pi} \int_{-\pi}^{\pi} \varphi\left(\log \left(1+\left|F_{j}\left(e^{i \theta}\right)\right|\right)\right) d \theta=2 j^{-2}, \tag{10}\\
& \left|F_{j}(z)\right|<2^{-j} \text { on } T \backslash X_{j} \text { and for }|z|<1-j^{-1}, \tag{11}
\end{align*}
$$

$$
\begin{equation*}
\int_{Y_{j}} \varphi\left(\log \left(1+\left|F_{j}\right|\right)\right) d \sigma>j^{-2} \tag{12}
\end{equation*}
$$

where $Y_{j}=\left\{z \in T ;\left|F_{j}(z)\right|>t_{j}\right\}$.
By (11), $Y_{j} \subset X_{j}$. By (8) and (12),
(13)

$$
\int_{Y_{j}} \psi\left(\log \left(1+\left|F_{j}\right|\right)\right) d \sigma>j .
$$

We now define
(14)

$$
f(z)=\sum_{j=1}^{\infty} F_{j}(z) \quad(z \in U) .
$$

The series converges uniformly on compact subsets of U, by (11). Hence $f \in H(U)$.
To prove that $f \in H_{\varphi}(U)$, for $N=1,2,3, \ldots$, define

$$
\begin{align*}
& M_{N}(z)=\left|F_{1}(z)+\ldots+F_{N}(z)\right| \quad(z \in \mathbf{C}), \tag{15}\\
& M(z)=\sum_{j=1}^{\infty}\left|F_{j}(z)\right| \quad(z \in T) . \tag{16}
\end{align*}
$$

Since the sets X_{j} are disjoint, (11) implies that

$$
M(z) \leq\left\{\begin{array}{cl}
1 & \text { in } T \backslash \bigcup_{j=1}^{\infty} X_{j} \\
1+\left|F_{j}(z)\right| & \text { in } X_{j} .
\end{array}\right.
$$

It follows from (1) that

$$
\varphi(\log M(z)) \leq\left\{\begin{array}{cl}
0 & \text { in } T \backslash \bigcup_{j=1}^{\infty} X_{j} \\
\varphi\left(\log \left(1+\left|F_{j}(z)\right|\right)\right) & \text { in } X j .
\end{array}\right.
$$

Hence (10) implies

$$
\begin{equation*}
\int_{T} \varphi(\log M) d \sigma \leq \sum_{j=1}^{\infty} 2 j^{-2}=3^{-1} \pi^{2}<4 \tag{17}
\end{equation*}
$$

Since $F_{1}+\ldots+F_{N}$ is a holomorphic function in $\mathbf{C}, \log M_{N}$ is subharmonic in C, for each N, and so is $\varphi\left(\log M_{N}\right)$, because φ is convex and nondecreasing. Moreover, $M_{N}(z) \leq M(z)$ for $z \in T$, by (15) and (16). It follows from (17) that

$$
\begin{equation*}
\int_{T} \varphi\left(\log M_{N}(r z)\right) d \sigma(z) \leq \int_{T} \varphi\left(\log M_{N}\right) d \sigma<4 \tag{18}
\end{equation*}
$$

for $0<r<1$. If we fix r and let $N \rightarrow \infty, M_{N}(r z) \rightarrow|f(r z)|$ uniformly on T. Hence (18) gives

$$
\int_{T} \varphi(\log |f(r z)|) d \sigma(z) \leq 4 \quad(0<r<1)
$$

Thus $f \in H_{\varphi}(U)$.
We turn to proving that $2 f \ddagger H_{\psi}(U)$. Fix $j \in\{1,2,3, \ldots\}$ and choose r_{j} so that

$$
\begin{equation*}
0<r_{j}<1 \text { and }\left\{1-\left(\frac{1+r_{j}}{2}\right)\right\}^{k_{j}}\left\|F_{j}\right\|_{\infty}<2^{-j} \tag{19}
\end{equation*}
$$

where $\left\|F_{j}\right\|_{\infty}=\max _{z \in T}\left|F_{j}(z)\right|=a_{j}$. For $z \in Y_{j}$, by (14), (9), (4), (11) and (19),

$$
\begin{aligned}
\left|f\left(r_{j} z\right)\right| & =\left|\sum_{i=1}^{\infty} F_{i}\left(r_{j} z\right)\right| \\
& \geq\left|F_{j}\left(r_{j} z\right)\right|-\sum_{i \neq j}\left|F_{i}\left(r_{j} z\right)\right| \\
& \geq\left(\frac{1+r_{j}}{2}\right)^{k_{j}}\left|F_{j}(z)\right|-\sum_{i \neq j}\left|F_{i}(z)\right| \\
& \geq\left(\frac{1+r_{j}}{2}\right)^{k_{j}}\left|F_{j}(z)\right|-\left(1-2^{-j}\right) \\
& =\left|F_{j}(z)\right|-\left\{1-\left(\frac{1+r_{j}}{2}\right)^{k_{j}}\right\}\left|F_{j}(z)\right|-1+2^{-j} \\
& \geq\left|F_{j}(z)\right|-\left\{1-\left(\frac{1+r_{j}}{2}\right)^{k_{j}}\right\}| | F_{j} \|_{\infty}-1+2^{-j}
\end{aligned}
$$

$$
>\left|F_{j}(z)\right|-1 .
$$

Since $\left|F_{j}(z)\right|>t_{j}>3 j \geq 3$ for $z \in Y_{j}$,

$$
\left|2 f\left(r_{j} z\right)\right|>\left|F_{j}(z)\right|+1
$$

for $z \in Y_{j}$. It follows from (13) that

$$
\int_{Y_{j}} \psi\left(\log \left|2 f\left(r_{j} z\right)\right|\right) d \sigma(z)>j .
$$

Thus

$$
\int_{T} \psi\left(\log \left|2 f\left(r_{j} z\right)\right|\right) d \sigma(z)>j \quad(j=1,2,3, \ldots)
$$

so that,

$$
\sup _{0<r<1} \int_{T} \phi(\log |2 f(r z)|) d \sigma(z)=\infty .
$$

This means $2 f \ddagger H_{\psi}(U)$. The proof is complete.

3. The strict inclusion relation between the Hardy classes $H^{p}\left(\boldsymbol{B}_{n}\right)$ and the Nevanlinna class $N\left(\boldsymbol{B}_{n}\right)$

By Theorem A and Theorem 1, we obtain the following
Theorem 2. Let $n \geq 1$ be an integer. Assume that φ and ψ are nonconstant, nondecreasing, nonnegative convex functions defined on $(-\infty, \infty)$, and that

$$
\lim _{t \rightarrow \infty} \psi(t) / \varphi(t)=\infty .
$$

Then there exists an $f \in H_{p}\left(B_{n}\right)$ such that some constant multiple of f fails to be in $H_{\psi}\left(B_{n}\right)$.

Remark 1. If ψ satisfies the growth condition

$$
\lim _{t \rightarrow \infty} \sup \phi(t+1) / \phi(t)<\infty,
$$

then $H_{\psi}\left(B_{n}\right)$ is closed under scalar multiplication. (See Rudin [4], p. 58.) In that case, the conclusion of Theorem 2 is simply

$$
H_{\psi}\left(B_{n}\right) \subsetneq H_{\varphi}\left(B_{n}\right) .
$$

Now we apply Theorem 2 to the description of the strict inclusion relation between the classes $H^{p}\left(B_{n}\right), 0<p \leq \infty$ and the class $N\left(B_{n}\right)$.

First we note that

$$
H^{\infty}\left(B_{n}\right) \subset H^{q}\left(B_{n}\right) \subset H^{p}\left(B_{n}\right) \subset N\left(B_{n}\right)
$$

if $0<p<q<\infty$. For each $p \in(0, \infty)$, we define

$$
H^{p-}\left(B_{n}\right)=\bigcup_{p<a<\infty} H^{q}\left(B_{n}\right), H^{p+}\left(B_{n}\right)=\bigcap_{0<a<p} H^{a}\left(B_{n}\right) .
$$

Then

$$
H^{p-}\left(B_{n}\right) \subset H^{p}\left(B_{n}\right) \subset H^{p \dagger}\left(B_{n}\right) \quad(0<p<\infty)
$$

Theorem 3.

$$
H^{p-}\left(B_{n}\right) \subsetneq H^{p}\left(B_{n}\right) \subsetneq H^{p+}\left(B_{n}\right) \quad(0<p<\infty) .
$$

Proof (cf. Rudin [4], p. 59, (c)).
(i) Put

$$
\begin{array}{ll}
\varphi(t)=e^{p t} & (-\infty<t<\infty), \\
\phi(t) & = \begin{cases}t e^{p t} & (t \geq 0) \\
0 & (t<0) .\end{cases}
\end{array}
$$

Then φ and ψ satisfy the assumptions in Theorem 2. Moreover, ψ satisfies the condition

$$
\lim _{t \rightarrow \infty} \psi(t+1) / \psi(t)=e^{t}<\infty .
$$

It follows from Remark 1 that

$$
H_{\psi}\left(B_{n}\right) \subsetneq H_{\varphi}\left(B_{n}\right)=H^{p}\left(B_{n}\right) .
$$

Since $H^{p-}\left(B_{n}\right) \subset H_{\varphi}\left(B_{n}\right)$, this implies

$$
H^{p-}\left(B_{n}\right) \subseteq H^{p}\left(B_{n}\right) .
$$

(ii) Put

$$
\begin{aligned}
& \varphi(t)= \begin{cases}t^{-1} e^{p t} & \left(t \geq p^{-1}\right) \\
p e & \left(t<p^{-1}\right)\end{cases} \\
& \phi(t)=e^{p t}
\end{aligned}
$$

Then Theorem 2 and Remark 1 imply that

$$
H^{p}\left(B_{n}\right)=H_{\varphi}\left(B_{n}\right) \cong H_{\varphi}\left(B_{n}\right) \subset H^{p+}\left(B_{n}\right) .
$$

Remark 2. In the case $n=1$, some outer functions give another proof of Theorem 3. Let f be a positive measurable function on T such that $\log f \in L^{1}(T)$. Define

$$
Q_{f}(z)=\exp \left\{(2 \pi)^{-1} \int_{-\pi}^{\pi} \frac{e^{i t}+z}{e^{i t}-z} \log f\left(e^{i t}\right) d t\right\} \quad(z \in U)
$$

Then $Q_{f}(z)$ is called the outer function with respect to the function f. We note the following theorem:

Theorem \mathbb{B} (See e. g. Rudin [3], Theorem 17. 16.). Fix $p \in(0, \infty]$. Let f be a positive measurable function on T such that $\log f \in L^{1}(T)$. Then $Q_{f} \in H^{p}(U)$ if and only if $f \in L^{p}(T)$.

Now fix $p \in(0, \infty)$. Put

$$
\begin{array}{ll}
f\left(e^{i t}\right)=\left\{\begin{array}{cl}
t^{-1 / p}(-\log t)^{-2 / p} & \left(0<t<e^{-1}\right) \\
1 & \left(t \in[-\pi, \pi] \backslash\left(0, e^{-1}\right)\right), \\
g\left(e^{i t}\right)=|t|^{-1 / p} & (t \in[-\pi, \pi]) .
\end{array}\right.
\end{array}
$$

Then

$$
\begin{aligned}
& f \in L^{p}(T), f \notin \bigcup_{p<q<\infty} L^{q}(T), \\
& g \notin L^{p}(T), \quad g \in \bigcap_{0<q<p} L^{q}(T),
\end{aligned}
$$

and

$$
\log f \in L^{1}(T), \quad \log g \in L^{1}(T)
$$

(See Hardy-Littlewood-Pólya [1], §6. 1.) It follows from Theorem B that

$$
\begin{aligned}
& Q_{f} \in H^{p}(U), Q_{f} \notin \bigcup_{p<q<\infty} H^{q}(U)=H^{p-}(U), \\
& Q_{g} \notin H^{p}(U), \quad Q_{g} \in \bigcap_{0<a<p} H^{q}(U)=H^{p+}(U) .
\end{aligned}
$$

Theorem 4.

$$
H^{\infty}\left(B_{n}\right) \subsetneq \bigcap_{0<p<\infty} H^{p}\left(B_{n}\right) .
$$

Proof (cf. [2], §4, Theorem 2). With

$$
\begin{aligned}
& \varphi(t)=\left\{\begin{array}{cl}
\exp \left(t^{2}\right) & \text { if } t \geq 0 \\
1 & \text { if } t<0,
\end{array}\right. \\
& \psi(t)=\left\{\begin{array}{cl}
\exp \left(t^{3}\right) & \text { if } t \geq 0 \\
1 & \text { if } t<0,
\end{array}\right.
\end{aligned}
$$

Theorem 2 establishes the existence of an $f \in H_{\varphi}\left(B_{n}\right)$ such that $c f \oplus H_{\phi}\left(B_{n}\right)$ for some constant c. Note that

$$
H^{\infty}\left(B_{n}\right) \subset H_{\psi}\left(B_{n}\right) \subset H_{\varphi}\left(B_{n}\right) \subset \bigcap_{0<p<\infty} H^{p}\left(B_{n}\right)
$$

Hence $f \in \bigcap_{0<p<\infty} H^{p}\left(B_{n}\right)$ but $f \notin H^{\infty}\left(B_{n}\right)$.

Remark 3. In the case $n=1$, as well as in Theorem 3, some outer functions give another proof of Theorem 4. Put

$$
f\left(e^{i t}\right)= \begin{cases}-\log t & \left(0<t<e^{-1}\right) \\ 1 & \left(t \in[-\pi, \pi] \backslash\left(0, e^{-1}\right)\right) .\end{cases}
$$

Then $f \in \bigcap_{0<p<\infty} L^{p}(T) \backslash L^{\infty}(T)$ and $\log f \in L^{1}(T)$. (See [1], §6. 1.) It follows from Theorem B that

$$
Q_{f} \in \bigcap_{0<p<\infty} H^{p}(U) \backslash H^{\infty}(U)
$$

Theorem 5.

$$
\bigcup_{0<b<\infty} H^{p}\left(B_{n}\right) \subsetneq N\left(B_{n}\right)
$$

Proof (cf. [2], §4, Theorem 3). Put

$$
\begin{aligned}
& \varphi(t)=\max (0, t) \\
& \psi(t)= \begin{cases}\exp (\sqrt{t}) & (t \geq 1) \\
e & (t<1)\end{cases}
\end{aligned}
$$

Then φ and ϕ satisfy the assumptions in Theorem 2. In addition, ψ satisfies the growth condition

$$
\lim _{t \rightarrow \infty} \phi(t+1) / \phi(t)=1<\infty
$$

Hence

$$
\bigcup_{0<p<\infty} H^{p}\left(B_{n}\right) \subset H_{\psi}\left(B_{n}\right) \subsetneq H_{\varphi}\left(B_{n}\right)=N\left(B_{n}\right) .
$$

Remark 4. In the case $n=1$, a simple fuction gives another proof of Theorem 5. Put

$$
f(z)=\exp \left(\frac{1+z}{1-z}\right) \quad(z \in U)
$$

Then $f \in N(U),\left|f^{*}\right|=1 \mathrm{a}$. e., and

$$
\log |f(0)|=1>0=(2 \pi)^{-1} \int_{-\pi}^{\pi} \log \left|f^{*}\left(e^{i i}\right)\right| d t
$$

Here f^{*} denotes the radial limits of f. (See Rudin [3], §17. 19.) If $f \in \underset{0<p<\infty}{\bigcup} H^{p}(U)$,
then

$$
\log |f(0)| \leq(2 \pi)^{-1} \int_{-\pi}^{\pi} \log \left|f^{*}\left(e^{i t}\right)\right| d t
$$

(See [3], Theorem 17.17.) Hence $f \notin \underset{0<p<\infty}{\bigcup} H^{p}(U)$.

References

[1] G. H. Hardy, J. E. Littlewood, and G. Pólya, Inequalities, Cambridge University Press, New York, 1934.
[2] Y. Matsugu, On determining sets for $N\left(B_{n}\right)$ and $H^{p}\left(B_{n}\right)$, to appear.
[3] W. Rudin, Real and Complex Analysis, 2nd ed., McGraw-Hill, New York, 1974.
[4] W. Rudin, Zeros of holomorphic functions in balls, Indag. Math., 38 (1976), 57-65.

