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1. Intreduction
Let n>1 be an integer. Let H(B,) denote the space of all holomorphic func-
tions in the open unit ball B, of the complex #n-dimensional Euclidean space C”.
Let ¢:(—oc0, o0) = [0, o0) be a nondecreasing convex function, not identically 0,
and let Hy(B,) be the class of all f & H(B,) whose growth is restricted by the
requirement

sup | pllog| £ (rw) do(w) < oo,
0<r<1" 8Ba

where 9B, is the boundary of B, and ¢ is the Euclidean volume element on the
unit sphere 9B, in C” normalized so that the volume of the sphere is 1. If ¢(x)=
max (0,%), then He(B,) is called to be the Nevanlinna class N(B,). If o(x)=ef*,
0<p<oo, then He(B,) are called to be the Hardy classes H?(B,). By H*(B,) we
shall denote the space of all bounded holomorphic functions in B,,.

In [4], W.Rudin proved the following theorem :

Theorem A (Rudin [4], p. 58). Fix n>2. Assume that ¢ and ¢ are nonconstant,

nondecreasing, nonnegative convex functions defined on (—oo, ), and that

lim ¢{0)/p(t) = eo.

Then there exists an f<He(B,) with the following property :
If be H*(B,), g€ H(By), §#0, and

h=(f+b)g,

then some constant wmumltiple of h fails to be in Hy(B,).

In the case #=1, this theorem is not valid. Indeed, if ¢=e?*, 0<p<{oo and
o= (2 + p2x¥eb*, then Theorem A implies that the zero sets of functions in H?(B))
differ from the zero sets of functions in H%(B,), for any ¢>p. DBut this is false
when n=1.

The purpose of the present paper is to prove the following analogue of Theorem
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A in the case of n=1:
(The open unit disc in C and the unit circle will be denoted by U and T, in place
of B, and 9B,, respectively.)

Theorem 1. Assume that ¢ and ¢ are as in Theorem A. Then there exists an
feHe(U) such that 2f Hy(U).

Applying Theorem A and Theorem 1, in §3 we shall describe the strict inclu-
sion relation between the Hardy classes H?(B,), 0<p<(co, and the Nevanlinna
class N(B,).

2.  Proof of Theorem 1

We need the lemma which was used to prove the Rudin’s theorem (Theorem
A in §1) in [4].

Lemma (Rudin [47, pp. 59-60). Suppose

(i) p is a finite positive measure on a set 2;

(i) v is a veal measurable jfunction on 2, with 0<v<{1 a.e., whose essential
supremum is 1;

(iii) @ is a continuous nondecreasing real function on [0, o), with ®0) =0 and
Dt)—oo as t—oo;

(iv) 0<d <oo.
Then there exist constants cp,(0, o), for k= 1,2,3,..., such that

j B(coR)dp=3.
2

These cp also satisfy

lim ¢pa®=0

koo

whenever |a|<1.
If 0<i<co and if Yr=Yr{t) is the set of all x€8Q at which c,v*(x)>t, then

lim j Glervh)dp=0.

koo ) ¥y

Proof of Theorem 1. Without loss of generality, we can assume that
M p)=0 if 0.

Choose a sequence {X;} j=y,s,... of nonempty connected open subsets of T' so that
@ X;c {e”ET; o<a<—;5}

and X;NXp=¢ if j9=k. For each j=1, 2, 3, ..., pick w;EX;.
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Define
1 -
Sj(2) :E(wj z4+1) (z€0)

for each j and

5]
Then

S;U)=D, Sjw;=1,

max 1Si(z)| = max ISiz)| =1,
and
(3) |S;(2) | <1 for z&€U, z+w;

Moreover, the following inequalities hold:

) %(Hf) 1Si(2) | <<1S(r2) | <|Sj(2) |

for 0<r<1, z€ | JX;. In fact, fix r€(0, 1). Put
i=1

Sjlrz)  wi'rz+1

©) Ve =5 = izl

Then V(T):{wec; Re w=17+7} Hence

6) min |Vig)| =7,
zeT 2

°° . T
Let z= (JX;. Then, by (2), we can write z=w;e'%; for some 6; With~~2~< l9j<§.
i=1

A simple calculation shows that

1+472-+2r cos 0;

@) Vil = 2+2 cos 0;

1,

since —i??<ej<§ and 0<7<1. (5), (6) and (7) give (4).
Since }im ¢@)/p(t)=co, there are numbers ¢;>>3j such that

) Pllog(1+2))>7%p(log(1+1)) if i>t;.
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We now apply the lemma, for each positive integer j, with (T, ¢) in place of
(£, p), and with ‘

vi(2)=1S5(2) |,
O(t)=p(log(1+1)),

;=257
aj= max |S;{z)].
zeT\X;

Then 0<la;<1.
The lemma shows that there exist positive numbers a;=cr; (where k; is a
sufficiently large positive integer) such that, setting

©) File)=a(Sia)% (20

we have

(10 [ otog(et I FINdo=55 [ gllogli+ | Fe) do=2,
(11) |Fi(z)| <27 on T\X; and for |z|<{1—j",

(12) [, ollog(1 + | F5)do>i,

where V= {z€T'; |Fjz)|>1;}.
By (11), Y;CX; By (8 and (12),

(19) [, #log(1 1 Fy)da>j.
We now define

(14) F@=SIFe) (el

j=1

The series converges uniformly on compact subsets of U, by (11). Hence feH(U).

To prove that feHy(U), for N=1, 2, 3, ..., define
(15) My@)=|FiZ)+... +Fy(2)] (zC),
(16) M@ ~3JIF@| (D)

Since the sets X; are disjoint, (11) implies that

0

Mig< { 1 in T\]EJIX Fi

14|Fiz)|  in Xj.
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It follows from (1) that

. 0 i X;
ollog M(2)< n T\LJX;

plog(l+[Fiz)]) in X,
Hence (10) implies

(17) jTgo(log M)do<> 12" =3"1n2< 4.
j=1
Since F,+...+Fy is a holomorphic function in C, log My is subharmonic in

C, for each N, and so is ¢(log My), because ¢ is convex and nondecreasing.
Moreover, My(z)<<M(z) for z&€T, by (15) and (16). It follows from (17) that

(18) JTgo(log My(r2)) de(z) g_J Tgo(log My)de<4

for 0<r<1. If we fix # and let N—oo, My(rz)—| f(r2)| uniformly on 7. Hence (18)
gives

[ pliogl £r2) Ndst)<a (0<r<).

Thus feH(U).
We turn to proving that 2f ¢ Hy(U). Fix je({1, 2, 3,...} and choose #; so that

(19 0<r<t andfi—(FE) 1<z,

where ”Fj”oo:mz?.rX |Fi(z) =a;. For ze€Y;, by (14), (9), (4), (11) and (19),
ze

| F(ri2) | = Ii:Fi )|

1=

=>|Fj(r2)]| *glFi(m) |

=(A)" | m) -S|

2 b

() | Bl - (-2
= 171 - 1= (52} Fa 1427
= 1Py~ {1- () N Al 12
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>|Fjz)]—1
Since |Fj(z)| >t;>3j>3 for zeYj,
|2f(#jz) | > Fiz) | +1
for z&Y;. It follows from (13) that

[ gliog |25 do(e) >

i

Thus
[ glogl2r (i) Ndote)>5 (j=1,2,3,...),
so that,
Jsup | gllog|27 ) )dalz)=co.

This means 2f & Hy(UU). The proof is complete.

3. 'The strict inclusion relation between the Hardy classes
H?(B,) and the Nevanlinna class N(B,)
By Theorem A and Theorem 1, we obtain the following
Theorem 2. Let n>1 be an integer. Assume that ¢ and ¢ are nonconstant,
nondecreasing, nonnegative convex functions defined on (—oo, ), and that

lim §(t)/p(t)=co.

Then there exists an f&He(B,,) such that some constant multiple of f fails to be
in Hy(Bn).
Remark 1. If ¢ satisfies the growth condition

lirr_{ sup PE+1)/PlE)< oo,

then Hy(B,) is closed under scalar multiplication. (See Rudin [4], p. 58.) In that
case, the conclusion of Theorem 2 is simply

Hy(B,)sHo(B.,).

Now we apply Theorem 2 to the description of the strict inclusion relation
between the classes H?(B,), 0<p<w and the class N(B,).
First we note that ‘ ‘

H*(B,)cHB,) CH*(B,) CN(B,)
if 0<p <g<loo. For each pé(O, o), we define
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H‘[)—(Bn): U Hq(Bn): H‘b+(Bn): ﬂ Hq(Bn)-

PLg<oo 0<a<p

Then
HP(B,)cHY(B,)CH? (By)  (0<{p<o0).
Theorem 3.
HY(B,)SHY(B,)SH? (B,)  (0<p<oo).
Proof (cf. Rudin [4], p. 59, (c)).

(@) Put
pt)=eb! (— oot 00),
(t) {l‘ef’t #=0)
W=y (t<0).

Then ¢ and ¢ satisfy the assumptions in Theorem 2. Moreover, ¢ satisfies the
condition

}im Pt +1)/ ) =e? oo,
It follows from Remark 1 that ‘

Hsb(Bn) S Ho(By) :HD(BM)'
Since H?~(B,)CHy(B,), this implies

HP™(B,)H?(By).

(i) Put
(t)_ tight (tzp—l)
T e <),
Pt) =e?? (= oo <o),

Then Theorem 2 and Remark 1 imply that
H?(By)=Hy(B,)=Hy(B,)C H* (B.).

Remark 2. In the case n=1, some outer functions give another proof of
Theorem 3. Let f be a positive measurable function on T such that log feL{(T).
Define )

Qrl2) ZeXp{(gﬂ)qJ’r netzt-l- P

S zlog fledt) @eU).

Then Qf(z) is called the oufer function with respect to the function f. We note
the following theorem:
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Theorem B (See e. g. Rudin [3], Theorem 17.16.). Fix p<(0, oo |. Let f be
a positive measurable function on T such that log feLXT). Then Q= HP(U) if and
only if feL?(T).

Now fix p=(0, o). Put

FUH(—log §)~¥P o<t<le™)

Fleh={
1 (te[’*—ﬂ', TC]\(O’ e—l))’
gle't)=|¢|~1® tel—=n, ).
Then
feLx ), f&€ U LUD),
p<a<le
gE LT, g () LUD),
0<q<p
and

log felL{(T), log gel\T).

(See Hardy-Littlewood-Pdlya [17], §6.1.) It follows from Theorem B that

Qre HYU), Qr¢ |J HUU)=H"({U),

p<Lg<Leo

Qs HX(U), Q. () HUU)=H*{U).

0<a<p

Theorem 4.

H® By s [ H!(Ba).
0<p<oo

Proof (cf. [2], §4, Theorem 2). With

- {exp (%) if >0
UL it £<0,
exp (% it >0

o= _
1 if <0,

Theorem 2 establishes the existence of an feHe(B,) such that cf¢ He(B,) for

some constant ¢. Note that

H>*(B,) € Hy(B,) € He(By)c () H?(B,).
0<p<oo

Hence fe [) H?(B,) but fe H*(B,).

0<p<o0
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Remark 3. In the case n=1, as well as in Theorem 3, some outer functions
give another proof of Theorem 4. Put

. —log ¢ 0<t<le™)
riet=|
1 tel—=, =]\O, ¢).

Then fe () LPTNL*T) and logfeL\(T).

0<p< oo
Theorem B that

(See [1], §6.1.) It follows from

Qre [ HPUNH™U).

0<p<oo

Theorem 5.

J H?B,)SN(B,).

0<Dp<e0

Proof (cf. [2], §4, Theorem 3). Put

p(t)=max (0, ?) (— o0 <t o0),
exp (W't) t=>1)
) :{
e (<),

Then ¢ and ¢ satisfy the assumptions in Theorem 2. In addition, ¢ satisfies the
growth condition

}i_r}; PE+1)/Ppt) =1<o0.

Hence
U H?(B,)c H¢(By) & Hy(B,)=N(B,).
0<p<oo
Remark 4. In the case =1, a simple fuction gives another proof of Theorem
5. Put

£@) = exp(12) eU).

Then feNU), |f*|=1a. e., and

log 1701 =130 =@ log |41,

L4

Here f* denotes the radial limits of £. (See Rudin [3], §17.19.) If fe [ H?{U),

0<p<o0
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then

tog | £(0) | <)t log| £k

{(See [3], Theorem 17.17.) Hence fe& | J H?(U).

0<p<o0
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