The strict inclusion relation between the spaces $H_{\wp}(U)$ on the open unit disc U in $\mathbb C$

By Yasuo Matsugu

Department of Mathematics, Faculty of Science Shinshu University (Received 7th Oct., 1982)

1. Introduction

Let $n \ge 1$ be an integer. Let $H(B_n)$ denote the space of all holomorphic functions in the open unit ball B_n of the complex n-dimensional Euclidean space \mathbb{C}^n . Let $\varphi: (-\infty, \infty) \to [0, \infty)$ be a nondecreasing convex function, not identically 0, and let $H_{\varphi}(B_n)$ be the class of all $f \in H(B_n)$ whose growth is restricted by the requirement

$$\sup_{0 < r < 1} \int_{\partial B_n} \varphi(\log |f(rw)|) d\sigma(w) < \infty,$$

where ∂B_n is the boundary of B_n and σ is the Euclidean volume element on the unit sphere ∂B_n in \mathbb{C}^n normalized so that the volume of the sphere is 1. If $\varphi(x) = \max(0,x)$, then $H_{\varphi}(B_n)$ is called to be the *Nevanlinna class* $N(B_n)$. If $\varphi(x) = e^{px}$, $0 , then <math>H_{\varphi}(B_n)$ are called to be the *Hardy classes* $H^p(B_n)$. By $H^{\infty}(B_n)$ we shall denote the space of all bounded holomorphic functions in B_n .

In [4], W. Rudin proved the following theorem:

Theorem A (Rudin [4], p. 58). Fix $n \ge 2$. Assume that φ and ψ are nonconstant, nondecreasing, nonnegative convex functions defined on $(-\infty, \infty)$, and that

$$\lim_{t\to\infty} \phi(t)/\varphi(t) = \infty.$$

Then there exists an $f \in H_{\varphi}(B_n)$ with the following property:

If
$$b \in H^{\infty}(B_n)$$
, $g \in H(B_n)$, $g \not\equiv 0$, and

$$h=(f+b)g$$
,

then some constant multiple of h fails to be in $H_{\phi}(B_n)$.

In the case n=1, this theorem is not valid. Indeed, if $\varphi=e^{px}$, $0< p<\infty$ and $\phi=(2+p^2x^2)e^{px}$, then Theorem A implies that the zero sets of functions in $H^p(B_1)$ differ from the zero sets of functions in $H^q(B_1)$, for any q>p. But this is false when n=1.

The purpose of the present paper is to prove the following analogue of Theorem

A in the case of n=1:

(The open unit disc in C and the unit circle will be denoted by U and T, in place of B_1 and ∂B_1 , respectively.)

Theorem 1. Assume that φ and ψ are as in Theorem A. Then there exists an $f \in H_{\varphi}(U)$ such that $2f \notin H_{\varphi}(U)$.

Applying Theorem A and Theorem 1, in §3 we shall describe the strict inclusion relation between the Hardy classes $H^p(B_n)$, $0 , and the Nevanlinna class <math>N(B_n)$.

2. Proof of Theorem 1

We need the lemma which was used to prove the Rudin's theorem (Theorem A in $\S1$) in $\llbracket4\rrbracket$.

Lemma (Rudin [4], pp. 59-60). Suppose

- (i) μ is a finite positive measure on a set Ω ;
- (ii) v is a real measurable function on Ω , with $0 \le v < 1$ a.e., whose essential supremum is 1;
- (iii) Φ is a continuous nondecreasing real function on $[0, \infty)$, with $\Phi(0) = 0$ and $\Phi(t) \to \infty$ as $t \to \infty$;
 - (iv) $0 < \delta < \infty$.

Then there exist constants $c_k \in (0, \infty)$, for $k = 1, 2, 3, \ldots$, such that

$$\int_{\mathcal{Q}} \Phi(c_k v^k) d\mu = \delta.$$

These c_k also satisfy

$$\lim_{k\to\infty}c_k\alpha^k=0$$

whenever $|\alpha| < 1$.

If $0 < t < \infty$ and if $Y_k = Y_k(t)$ is the set of all $x \in \Omega$ at which $c_k v^k(x) > t$, then

Proof of Theorem 1. Without loss of generality, we can assume that

(1)
$$\varphi(t) = 0 \quad \text{if} \quad t \leq 0.$$

Choose a sequence $\{X_j\}_{j=1,2,...}$ of nonempty connected open subsets of T so that

(2)
$$X_{j} \subset \left\{ e^{i\theta} \in T; \ 0 < \theta < \frac{\pi}{2} \right\}$$

and $X_j \cap X_k = \phi$ if $j \neq k$. For each $j = 1, 2, 3, \ldots$, pick $w_j \in X_j$.

Define

$$S_j(z) = \frac{1}{2} (w_j^{-1} z + 1) \qquad (z \in \mathbb{C})$$

for each j and

$$D = \left\{ z \in C; |z - \frac{1}{2}| = \frac{1}{2} \right\}.$$

Then

$$S_{j}(U) = D, \ S_{j}(w_{j}) = 1,$$

$$\max_{z \in T} |S_{j}(z)| = \max_{z \in \overline{U}} |S_{j}(z)| = 1,$$

and

$$|S_j(z)| < 1 \text{ for } z \in \overline{U}, \ z \neq w_j.$$

Moreover, the following inequalities hold:

(4)
$$\frac{1}{2}(1+r)|S_j(z)| \leq |S_j(rz)| \leq |S_j(z)|$$

for 0 < r < 1, $z \in \bigcup_{i=1}^{\infty} X_i$. In fact, fix $r \in (0, 1)$. Put

(5)
$$V(z) = \frac{S_j(rz)}{S_j(z)} = \frac{w_j^{-1}rz + 1}{w_j^{-1}z + 1}.$$

Then $V(T) = \{ w \in \mathbb{C}; \text{ Re } w = \frac{1+r}{2} \}$. Hence

(6)
$$\min_{z \in T} |V(z)| = \frac{1+r}{2}.$$

Let $z \in \bigcup_{i=1}^{\infty} X_i$. Then, by (2), we can write $z = w_j e^{i\theta_j}$ for some θ_j with $-\frac{\pi}{2} < \theta_j < \frac{\pi}{2}$. A simple calculation shows that

(7)
$$|V(z)|^2 = \frac{1 + r^2 + 2r\cos\theta_j}{2 + 2\cos\theta_j} < 1,$$

since $-\frac{\pi}{2} < \theta_j < \frac{\pi}{2}$ and 0 < r < 1. (5), (6) and (7) give (4).

Since $\lim_{t\to\infty} \phi(t)/\varphi(t) = \infty$, there are numbers $t_j > 3j$ such that

We now apply the lemma, for each positive integer j, with (T, σ) in place of (Ω, μ) , and with

$$v_j(z) = |S_j(z)|,$$

$$\Phi(t) = \varphi(\log(1+t)),$$

$$\delta_j = 2j^{-2},$$

$$\alpha_j = \max_{z \in \mathcal{D}(X)} |S_j(z)|.$$

Then $0 < \alpha_i < 1$.

The lemma shows that there exist positive numbers $a_j = c_{kj}$ (where k_j is a sufficiently large positive integer) such that, setting

(9)
$$F_i(z) = a_i(S_i(z))^{k_i} \qquad (z \in \mathbb{C})$$

we have

(11)
$$|F_j(z)| < 2^{-j} \text{ on } T \setminus X_j \text{ and for } |z| < 1 - j^{-1},$$

(12)
$$\int_{Y_i} \varphi(\log(1+|F_j|)) d\sigma > j^{-2},$$

where $Y_j = \{z \in T; |F_j(z)| > t_j\}$.

By (11), $Y_i \subset X_i$. By (8) and (12),

(13)
$$\int_{Y_j} \psi(\log(1+|F_j|)) d\sigma > j.$$

We now define

(14)
$$f(z) = \sum_{i=1}^{\infty} F_j(z) \qquad (z \in U).$$

The series converges uniformly on compact subsets of U, by (11). Hence $f \in H(U)$. To prove that $f \in H_{\varphi}(U)$, for $N=1, 2, 3, \ldots$, define

(15)
$$M_N(z) = |F_1(z) + \ldots + F_N(z)| \quad (z \in \mathbb{C}),$$

(16)
$$M(z) = \sum_{j=1}^{\infty} |F_j(z)| \qquad (z \in T).$$

Since the sets X_j are disjoint, (11) implies that

$$M(z) \le \begin{cases} 1 & \text{in } T \setminus \bigcup_{j=1}^{\infty} X_j \\ 1 + |F_j(z)| & \text{in } X_j. \end{cases}$$

It follows from (1) that

$$\varphi(\log M(z)) \leq \begin{cases} 0 & \text{in } T \setminus \bigcup_{j=1}^{\infty} X_j \\ \varphi(\log(1+|F_j(z)|)) & \text{in } X_j. \end{cases}$$

Hence (10) implies

(17)
$$\int_{T} \varphi(\log M) d\sigma \leq \sum_{j=1}^{\infty} 2j^{-2} = 3^{-1}\pi^{2} \leq 4.$$

Since $F_1+\ldots+F_N$ is a holomorphic function in \mathbb{C} , log M_N is subharmonic in \mathbb{C} , for each N, and so is $\varphi(\log M_N)$, because φ is convex and nondecreasing. Moreover, $M_N(z) \leq M(z)$ for $z \in T$, by (15) and (16). It follows from (17) that

(18)
$$\int_{T} \varphi(\log M_{N}(rz)) d\sigma(z) \leq \int_{T} \varphi(\log M_{N}) d\sigma < 4$$

for 0 < r < 1. If we fix r and let $N \to \infty$, $M_N(rz) \to |f(rz)|$ uniformly on T. Hence (18) gives

$$\int_{T} \varphi(\log |f(rz)|) d\sigma(z) \leq 4 \quad (0 < r < 1).$$

Thus $f \in H_{\varphi}(U)$.

We turn to proving that $2f \notin H_{\phi}(U)$. Fix $j \in \{1, 2, 3, ...\}$ and choose r_j so that

(19)
$$0 < r_j < 1 \text{ and } \left\{ 1 - \left(\frac{1 + r_j}{2} \right) \right\}^{k_j} ||F_j||_{\infty} < 2^{-j},$$

where $||F_j||_{\infty} = \max_{z \in T} |F_j(z)| = a_j$. For $z \in Y_j$, by (14), (9), (4), (11) and (19),

$$|f(r_{j}z)| = |\sum_{i=1}^{\infty} F_{i}(r_{j}z)|$$

$$\geq |F_{j}(r_{j}z)| - \sum_{i \neq j} |F_{i}(r_{j}z)|$$

$$\geq \left(\frac{1+r_{j}}{2}\right)^{k_{j}} |F_{j}(z)| - \sum_{i \neq j} |F_{i}(z)|$$

$$\geq \left(\frac{1+r_{j}}{2}\right)^{k_{j}} |F_{j}(z)| - (1-2^{-j})$$

$$= |F_{j}(z)| - \left\{1 - \left(\frac{1+r_{j}}{2}\right)^{k_{j}}\right\} |F_{j}(z)| - 1 + 2^{-j}$$

$$\geq |F_{j}(z)| - \left\{1 - \left(\frac{1+r_{j}}{2}\right)^{k_{j}}\right\} ||F_{j}||_{\infty} - 1 + 2^{-j}$$

$$> |F_j(z)| - 1.$$

Since $|F_j(z)| > t_j > 3j \ge 3$ for $z \in Y_j$,

$$|2f(r_{i}z)| > |F_{i}(z)| + 1$$

for $z \in Y_j$. It follows from (13) that

$$\int_{Y_i} \phi(\log|2f(r_jz)|) d\sigma(z) > j.$$

Thus

so that,

$$\sup_{0 \le r \le 1} \int_{T} \psi(\log|2f(rz)|) d\sigma(z) = \infty.$$

This means $2f \notin H_{\phi}(U)$. The proof is complete.

3. The strict inclusion relation between the Hardy classes $H^p(B_n)$ and the Nevanlinna class $N(B_n)$

By Theorem A and Theorem 1, we obtain the following

Theorem 2. Let $n \ge 1$ be an integer. Assume that φ and ψ are nonconstant, nondecreasing, nonnegative convex functions defined on $(-\infty, \infty)$, and that

$$\lim_{t\to\infty} \psi(t)/\varphi(t) = \infty.$$

Then there exists an $f \in H_{\varphi}(B_n)$ such that some constant multiple of f fails to be in $H_{\varphi}(B_n)$.

Remark 1. If ϕ satisfies the growth condition

$$\lim_{t\to\infty}\sup_{\infty}\phi(t+1)/\phi(t)<\infty,$$

then $H_{\phi}(B_n)$ is closed under scalar multiplication. (See Rudin [4], p. 58.) In that case, the conclusion of Theorem 2 is simply

$$H_{\varphi}(B_n) \subseteq H_{\varphi}(B_n)$$
.

Now we apply Theorem 2 to the description of the strict inclusion relation between the classes $H^p(B_n)$, $0 and the class <math>N(B_n)$.

First we note that

$$H^{\infty}(B_n) \subset H^q(B_n) \subset H^p(B_n) \subset N(B_n)$$

if $0 . For each <math>p \in (0, \infty)$, we define

$$H^{p-}(B_n)=\bigcup_{p< q<\infty}H^q(B_n),\ H^{p+}(B_n)=\bigcap_{0< q< p}H^q(B_n).$$

Then

$$H^{p-}(B_n) \subset H^p(B_n) \subset H^{p+}(B_n) \quad (0$$

Theorem 3.

$$H^{p-}(B_n) \subseteq H^p(B_n) \subseteq H^{p+}(B_n) \quad (0$$

Proof (cf. Rudin [4], p. 59, (c)).

(i) Put

$$arphi(t) = e^{eta t} \qquad (-\infty < t < \infty),$$
 $\phi(t) = egin{cases} te^{eta t} & (t \ge 0) \\ 0 & (t < 0). \end{cases}$

Then φ and ψ satisfy the assumptions in Theorem 2. Moreover, ψ satisfies the condition

$$\lim_{t\to\infty} \phi(t+1)/\phi(t) = e^{\phi} < \infty.$$

It follows from Remark 1 that

$$H_{\varphi}(B_n) \subseteq H_{\varphi}(B_n) = H^p(B_n).$$

Since $H^{p-}(B_n) \subset H_{\psi}(B_n)$, this implies

$$H^{p-}(B_n) \subseteq H^p(B_n)$$
.

(ii) Put

$$arphi(t) = egin{cases} t^{-1}e^{pt} & (t \geq p^{-1}) \ pe & (t < p^{-1}), \ \psi(t) = e^{pt} & (-\infty < t < \infty). \end{cases}$$

Then Theorem 2 and Remark 1 imply that

$$H^p(B_n) = H_{\phi}(B_n) \subseteq H_{\varphi}(B_n) \subset H^{p+}(B_n)$$
.

Remark 2. In the case n=1, some outer functions give another proof of Theorem 3. Let f be a positive measurable function on T such that $\log f \in L^1(T)$. Define

$$Q_f(z) = \exp\left\{(2\pi)^{-1}\int_{-\pi}^{\pi} \frac{e^{it} + z}{e^{it} - z} \log f(e^{it}) dt\right\} \quad (z \in U).$$

Then $Q_f(z)$ is called the *outer function* with respect to the function f. We note the following theorem:

Theorem B (See e. g. Rudin [3], Theorem 17.16.). Fix $p \in (0, \infty]$. Let f be a positive measurable function on T such that $\log f \in L^1(T)$. Then $Q_f \in H^p(U)$ if and only if $f \in L^p(T)$.

Now fix $p \in (0, \infty)$. Put

$$f(e^{it}) = \begin{cases} t^{-1/p}(-\log t)^{-2/p} & (0 < t < e^{-1}) \\ 1 & (t \in [-\pi, \pi] \setminus (0, e^{-1})), \end{cases}$$

$$g(e^{it}) = |t|^{-1/p} & (t \in [-\pi, \pi]).$$

Then

$$f \in L^p(T), \ f \in \bigcup_{p < q < \infty} L^q(T),$$

$$g \in L^p(T), \ g \in \bigcap_{0 < q < p} L^q(T),$$

and

$$\log f \in L^1(T)$$
, $\log g \in L^1(T)$.

(See Hardy-Littlewood-Pólya [1], §6. 1.) It follows from Theorem B that

$$Q_f\!\in\!H^{b}(U),\;Q_f\!\in\!\bigcup_{b< q<\infty}H^q(U)\!=\!H^{b^-}(U),$$

$$Q_{\it g} \in H^{\it b}(U), \;\; Q_{\it g} \in \bigcap_{0 < q < \it p} H^{\it q}(U) \! = \! H^{\it b+}(U).$$

Theorem 4.

$$H^{\infty}(B_n) \subseteq \bigcap_{0$$

Proof (cf. [2], §4, Theorem 2). With

$$\varphi(t) = \begin{cases} \exp(t^2) & \text{if } t \ge 0 \\ 1 & \text{if } t < 0, \end{cases}$$

$$\psi(t) = \begin{cases} \exp(t^3) & \text{if } t \ge 0 \\ 1 & \text{if } t < 0, \end{cases}$$

Theorem 2 establishes the existence of an $f \in H_{\varphi}(B_n)$ such that $cf \notin H_{\psi}(B_n)$ for some constant c. Note that

$$H^{\infty}(B_n) \subset H_{\varphi}(B_n) \subset H_{\varphi}(B_n) \subset \bigcap_{0$$

Hence
$$f \in \bigcap_{0 but $f \notin H^\infty(B_n)$.$$

Remark 3. In the case n=1, as well as in Theorem 3, some outer functions give another proof of Theorem 4. Put

$$f(e^{it}) = \begin{cases} -\log t & (0 < t < e^{-1}) \\ 1 & (t \in [-\pi, \pi] \setminus (0, e^{-1})). \end{cases}$$

Then $f \in \bigcap_{0 and <math>\log f \in L^1(T)$. (See [1], §6.1.) It follows from Theorem B that

$$Q_f \in \bigcap_{0$$

Theorem 5.

$$\bigcup_{0$$

Proof (cf. [2], §4, Theorem 3). Put

$$\varphi(t) = \max (0, t) \qquad (-\infty < t < \infty),$$

$$\varphi(t) = \begin{cases} \exp (\sqrt{t}) & (t \ge 1) \\ e & (t < 1). \end{cases}$$

Then φ and ψ satisfy the assumptions in Theorem 2. In addition, ψ satisfies the growth condition

$$\lim_{t\to\infty} \phi(t+1)/\phi(t) = 1 < \infty.$$

Hence

$$\bigcup_{0<\rho<\infty} H^{\rho}(B_n) \subset H_{\phi}(B_n) \subseteq H_{\varphi}(B_n) = N(B_n).$$

Remark 4. In the case n=1, a simple function gives another proof of Theorem 5. Put

$$f(z) = \exp\left(\frac{1+z}{1-z}\right) \qquad (z \in U).$$

Then $f \in N(U)$, $|f^*| = 1$ a. e., and

$$\log |f(0)| = 1 > 0 = (2\pi)^{-1} \int_{-\pi}^{\pi} \log |f^*(e^{it})| dt.$$

Here f^* denotes the radial limits of f. (See Rudin [3], §17.19.) If $f \in \bigcup_{0 ,$

then

$$\log |f(0)| \leq (2\pi)^{-1} \int_{-\pi}^{\pi} \log |f^*(e^{it})| dt.$$

(See [3], Theorem 17.17.) Hence $f \in \bigcup_{0 .$

References

- [1] G. H. Hardy, J. E. Littlewood, and G. Pólya, *Inequalities*, Cambridge University Press, New York, 1934.
- [2] Y. Matsugu, On determining sets for $N(B_n)$ and $H^p(B_n)$, to appear.
- [3] W. Rudin, Real and Complex Analysis, 2nd ed., McGraw-Hill, New York, 1974.
- [4] W. Rudin, Zeros of holomorphic functions in balls, Indag. Math., 38 (1976), 57-65.