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                             M. Introduction

   Let n21 be an integer. Let H(B.) denote the space of all holomorphic func-

tions in the open unit ball B. of the complex n-dimensional Euclidean space C".

Let g:(-oo, oo)-[O, oo) be a nondecreasing convex function, not identically O,

and let Hip(B.) be the class of all fEH(B.) whose growth is restricted by the

requlrement

                      sup f op (Iog lf(rw) Dda(w) < oo ,

                     O<r<1                          OBn

where OB. is the boundary of B. and a is the Euclidean volume element on the

unit sphere OB. in C" normalized so that the volume of the sphere is 1. If g(x)=

max (O,x), then Hip(B.) is called to be the Nevanlinna class N(B.). If op(x)=eP",

O<P<oo, then Hip(B.) are called to be the Hdrdy classes HP(B.). By Hoo(B.) we

shall denote the space of all bounded holomorphic functions in B..

   In [4], W. Rudin proved the following theorem :

   Theorem A (Rudin [4], p. 58). Fix n2})2. Assume that gand ¢are nonconstant,

nondecreasing, nonnegntive convex fttnctions dojined on (-oo, oo), and that

                    lim ¢(t)/g(t) = oo･
                    t--oo

Then there exists an fEHID(B.) with the following PrqPerty :

   IfbEHOO(B.), gGH(B.), g;20, and

                    h =- (f +b) g,

then some constant multiple of h fails to be in Hip(Bn).

   In the case n==1, this theorem is not valid. Indeed, if g=ePX, O<P<oo and

¢= (2+p2x2)ePX, then Theorem A implies that the zero sets of functions in HP(Bi)

differ from the zero sets of functions in･ Hq(Bi), for any q>P. But this is false

when n=1.

   The purpose of the present paper is to prove the following arialogue of Theorem
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A in the case of n=1:

(The open unit disc in C and the unit circle will be denoted by U and T, in place

of Bi and aBi, respectively.)

   Theorern 1. Assume that p and ip are as in Theorem A. Then there exists an

fEiHip(U) such that 2fGHip(U).

   Applying Theorem A and Theorem 1, in g3 we shall describe the strict inclu-

sion relation between the Hardy classes HP(B.), O<P-<.oo, and the Nevanlinna

class N(Bn).

                         2. Proof of Theorern 1

   We need the lemma which was used to prove the Rudin's theorem (Theorem

A in gl) in [4].

   Lemma (Rudin [4], pp. 59-60). SuPPose

   (i) ps is a finite Positive measure on a set 9;

   (iD v is a real measurable ft{nction on 9, with Of{:v<1 a.e., whose essential

smpremum is 1;

   (iii) op is a continuous nondecreasing real fttnction on [O, oo), with ¢(O) =O a7nt

¢(t).oo as t.oo;

   (iv) O<6<oo.
   Then there exist constants cleE(O, oo), for fe== 1,2,3,..., such that

                    S.¢(chvk)dpt=a

These ck also satisj`1),

                 lim chavh==o
                 le-oo

whenever 1crI<1.

   Ilf O<t<oo and if Yk =7- Yk(t) is the set of all xE9 at which clevh(x)>t, then

                     ,11 1pco I K. ¢(c le v le)dpt - fi.

   Preof of Theorern 1. Without Ioss of generality, we can assume that

(1) go(t)=o if t:{go.
   Choose a sequence {X}} i--i,2,... of nonernpty connected open subsets of T so that

                                                           '(2) xjc (eieeT; o<e<g]

and &nXle=ip if y'=kk. For each 1'=1, 2, 3, ..., pick wjEiiXi.
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   Define

                    Sj(z) == -ll- (wiiz+1) (2EC)

for each i and

                    D= (2Ec; 1z--ll'l :==-ll-]･

Then

                    Sj(U)=:D, Sj(wj)=1,

                    max [Sj(z)I= ma-x ISj(2)l=1,
                    zET zEU
and

(3) ISj(2)I<l for zeiU, 2=l=w,･.

   Moreover, the following inequalities hold:

(4) -ll- (1 + r) ISj (z) ls{: ISj (r2)I-< ISj (g)l

              oo
for O<r<1, zEUXi. In fact, fix rE(O, 1). Put
              i--1

                          S]'(rz) wj--izz+1
(5) V(2) == sj(z) == wi`x+1'

ThenV(T):=:(wGC; Re w=:=1IIr]. Hence

                               1+r(6) ,lgtsn lV(2)l= 2･

           oo   Let 2E UXi. Then, by (2), we can write 2=:wjeiei for some 0ti with

          i--l
A simple calculation shows that

                             1+r2 +2r cos 0,'

(7) IV(2)l2=                                          <1,
                               2+2 cos 0i

       ff rcSince --2-<0j<-l; and O<r<1. (5), (6) and (7) give (4).

   Since lim ip(t)/g(t):=oo, there are numbers t,->37' such that
        t-.oo

(8) ¢(log(1+t))>]'3ep(log(1+t)) if t>t,n

rr

2
< 0i<

3

rr

-.2
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   We now apply the lemma, for each positive integer j, with (T, o) inplace of

(9, pt), and with i
                    vj(z) = ]Sti(x) 1 ,

                    di(t)::=g(Iog(1+t)),

                    6j･=27'--2,

                         max ISj(z)1.                    aj=
                         zETXXj

Then O<crj<1.

   The lemma shows that there exist positive numbers aj=clej (where kti is a

sufllciently large positive integer) such that, setting

(9) F,･ (z) =a,･ (S,･ (z))hj (2EC)

we have

(10) l.g(log(1+IFal ))da == 21}l.f:.g (Iog(1+IFj(e'e) 1))de-21'-2,

(11) IFj(z)]<2ff' on TXXi and for l21<1-i',

(12) I.,g(log(1+IFtiD)da>j'2,

where }<i={zffT; IFj(2)1>tj}.

   By (11), YicM. By (8) and (12),

(13) i.,¢(log(1+IF]'1))da>i

   We now define

                          oo
(14) f(z) = }.li]=,Fi(2) (z ci U)･

The series converges uniformly on compact subsets of U, by (11). Hence fall(U).

   To prove that fEHip(U), for N=:1, 2, 3, ..., define

(15) MN(z)=IF,(z)+...+FN(z)l (zGC),
                           oo(16) M(z) =XIFd(z)1 (zET).
                          j'-1

   Since the sets Xi are disjoint, (11) implies that

                                          oo
                   M(z) f{{I [ ,+ l,Fl, (,) I l': ii)i,U.. ,Xi
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It follows from (1) that

                                                   oo                   opaog M(z)),f{;( ' O ln TXjU..,Xj

                               g(log(1+IFj(z)1)) m                                                XJ'･

Hence (10) implies

                            '                                oo(i7) STg(log M)dasg;.il..li2i'-2=3-in2<4-

   Since Fi+...+FN is a holomorphic function in C, log MN is subharmonic in

C, for each N, and so is q(Iog MN), because g is convex and nondecreasing.

Moreover, MN(z)sl;M(2) for zET, by (15) and (16). It follows from (17) that

(18) I.ep(log MN(rz))da(2) f{;ITpa(log MN)da<4

for O<r<1. If we fix r and let N-oo, MN(rz).lf(rz)I tmiformly on T. Hence (18)

gives

                    f.g(loglf(rz)I)da(2)-<4 (o<r<o.

Thus fEHip(U).

   We turn to proving that 2fEEHip(U). Fix 7'E{1, 2, 3,...} and choose rJ' so that

(ig) o<r,･<i and(1-(ISr"' ))h' l]F,･floo<2-i,

where I[FalI..==max IF,'(z)I==ai. For zEi Yi, by (14), (9), (4), (11) and (19),

            zET

                       oo             1f(rjz) 1 == I=Fi(rjz) [

                      i=i
                                     '
                    2}i ] Fj(rjz) I -= 1 Fi(rj2) 1

                              i""i
                                            '                                          '
                    2( i+2rj )fe' 1e(2) f -il,,lllj1Fi (z) I .

                    ;}l ( 1 +2 rj ) kJ E Fj (,) ] rm (1-2-i)

                                             /
                    == I Fj (x) 1 - (1- ( 1 +2 ri ) fe' ] l Fj (z) l -1+2-j

                            tt
                    l}lz l FJ' (2M -(1-( 1+2 r" )k' ] HFal ]..-1+2-i



6

Since IFti(

for 2G YIi･
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             >lFti(2)1-1.

z) I>ti>37'N>3 for zEE }{i,

             ] 2f(2vz) ] > l Fd(z) 1 +1

 It follows from (13) that

f  ¢(log 1 2f(oz) D dff (2) >i
 Yj

Thus

                                       tt                                                         '                     I,,:gb(logl2f(rj2)l)da(2)>i' (i'--l,2,3,...),

                                 tt

                     oeY9, S .sb(log 1 2f(rz) 1 )da(2) - ...'

This means 2feHip(U). The proof is complete,

           3. The strict inclusion relation betweem the Rardy classes

            ilP(B.) and the Ne'vanlinna class N(B.)'

   By Theorem A and Theorem 1, we obtain the following

   Theorem 2. Let n2})1 be an integer. Assume that g and ¢ dre nonconstant,
nondecreasing, nonnegative convex fttnctions de7ined on (-oo, oo), and that

                     lilll{l, gb(t)/g (t) - oo .

                               '                                 '
   Then there exists an feUip(B.) such that some constant multiple of f fails to be

in Hip(Bn)･

   Remark 1. If ¢ satisfies the growth condition

                     lim sup ip(t+1)/ip(t)<oo,
                      t- oo
                                      '
then Hip(B.) is closed tmder scalar multiplication. (See Rudin [4], p. 58.) In that

case, the conclusion of TheQrem2is simply ' '
                     Hip(Bn)$Hip(Bn)･

   Now we apply Theorem 2 to the description of the strict inclusion relation

betWFeiern,tteee C:gieS9tShgtP(Bn), O<Pf{loo and the class N(B.).

                          '                             '                                '
if o<p<q<o.. F., ,.,hH poogB("o),C.H)7(.B,")X,fZi.lgB")cN(Bn)
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             HP'(Bn) = U Hq (Bn), H'P'(Bn) == fi Hq (Bn)･

                     P<q<oe O<a<P
Then

                   HP'(Bn)CHP(Bn)CHP"(Bn) (0<P<co)･

Theerem 3.

                   llP-(Bn)SHrP(Bn)$H'P'(Bn) (O<P<oo).

   Proof (cf. Rudin [4], p. 59, (c)).

   (i) Put

                   op(t) =:: ePt (- oo <t<oo),

                         tePt (t;}ilo)
                   ¢(t)=Io ･ (t<O)･

Then g and ip satisfy the assumptions in Theorem 2. Moreover, ¢ satisfies the
condition

                   lim ip(t+1)/ip(t)-eP<oo.
                   t-oe

It follows from Remark l that ,

                   Hip(Bn) $ Hip(Bn)=:HP(Bn)`

Since HP"(B.)cHLb(B.), this implies

                   HP-(Bn)gHP(Bn)･

   (ii) Put

                         t-iePt (tl}lp-i)                   9(t)= (

                         Pe (t<p-"i),

                   ¢(t) -= eP" (- oo <t<oo).

Then Theorem 2 and Remark 1 imply that

                   HP (Bn) =: Efo (Bn) SHip (Bn) C HP' (Bn) ･

   Remaark 2. In the case n=1, sorne outer .fttnctions give another proof of

Theorem 3. Let f be a positive measurable function on T such that iog fEL'(T).

                (?f(z)=exp[(2ff)m`iza-.eill!: log f(eit) dt] (2EU).

Then Qf(z) is called the oztter .fttnction with respect to the function f: We note

the following theorem:
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   Wheorem B (See e. g. Rudin[3], Theorem 17.16.). FixPG(O, oo]. Let f be

a Positive measurable function on T such that log faLi(T). Then QfffHP(U) if and

only if fciiLP(T).

   Now fixPE(O, oo). Put

                       t-ilP(-Iog t)'2/P (O<t<e-i)
                 f(ei`)=( 1 (tcli[rmT, z]x(o, e"i)),

                 g(eit) -m ]tl-i lP (t cli [- n, n]).

Then

                  fELP(T),fEE U Lq(T),
                             P<a<oo

                  gEE LP (T), gEi n Lq (T),
                             o<a<p

and

                  log fc] Li (T), log gEi Li (T).

(See Hardy-Littlewood-P61ya [1], g6. 1. ) It follows from Theorem B that

               QfEHP(U), Qfe U Hq(u)=HPm(u),
                             P<a<oo

               Qg e flP (U) , Q. E n H4 (U) =HP+(U).
                             o<a<p
   Theorem 4.

                  lloo (Bn) g fi UP (Bn)･
                          o<p<oo
   Proof (cf. [2], g4, Theorem 2). With

                       exp (t2) if t>-O                  9(t) :== ( 1

                                   if t<o,

                      exp (t3) if t}itO                  di(t)=( 1

                                  if t<o,

Theorem 2 establishes the existence of an fEHp(B") such that cfGHip(Bn) for

some constant c. Note that

               HOO (B.) c He (B.) c Hg (Bn) C n HP (Bn)･
                                    O<p<oo

HencefE n HP(B.) but feHoo(B.).
        O<p<oo
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   Remarl{ 3. In the case n=1, as well as in Theorem 3, some outer functions

give another proof of Theorem 4. Put

                  f(,it)={-;Og` i,.O.<[1<.el').]×(,, ,-,)).

Then f(ii fi LP(T)XLOO(T) and IogfEL'(7'). (See [1], g6.1.) It follows from
         O<p<oo

Theorem B that

                      QfE n HP(U)XHoo(U).
                          O<p<oo

   Theorem 5.

                        U HP(Bn)SN(Bn)･
                      O<p<oo

   Proof (cf. [2], g4, Theorem 3). Put

                    g(t)=-max (O, t) (-oo<t<oo),

                          exp (V7) (t21)                    ip (t) =(

                           e (t<1).

Then g and ip satisfy the assumptions in Theorem 2. In addition, ip satisfies the

growth condition

                     lim ¢(t+1)/¢(t)=1<oo.
                     t-'oo

Hence

                    U HP (Bn) C Hip (Bn) S Hip (Bn) =Ai(Bn)･

                  o<p<co

   Remark 4. In the case n==1, a simple fuction gives another proof of Theorem

5. Put

                     f(2) =: exp( li: ) (zEu).

Then fEN(U), lf"1=1 a. e., and

                                      rr                log 1f(O) 1 = 1>O -- (2rr)'"'f-. Iog 1f'(ei`) 1dt.

Here f' denotes the radial limits of f. (See Rudin [3], g17. 19.) If fE U HP(U),

                                                              o<p<oo
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                            '
then

                                   m                    log 1f(O) 1 f{l(2rr)-'J-. Iog1f"(ei`) 1dt.

                   '
(See [3], Theorem 17.17.) Hence fG U HP(U).
                                  O<p<oo
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