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1. Introduction

In the preceding paper [1], we described the characterization of the determining
sets for the Nevanlinna class N(B,) on the open unit ball B, of C”, and showed
the existence of various determining sets and non-determining sets for the Hardy
classes H?(B,), 0<p=co. One of the results in [1] is the following:

Theorem A ([1], Theorem 5 in §5). Let n=3 be an integer. Then there exists

an f€ (| HP(B,) satisfying the following two conditions:
0<p<oo

(@) The zero set of f is not a determining set for H%(B,).

(b) The zero-divisor vy does not equal vy for any g=H™(B,).

The purpose of this paper is to prove that the above theorem is still valid
when n=2. For the proof we shall make use of a result in [2]. (See Theorem D

in §2.)

2. Preliminaries
Let H(B,) denote the space of all holomorphic functions in B,. Let feH(B,).
Suppose f=Z=0. We denote by Z(f) the zero set of f:

Z(f)={(2€B,; fl(z)=0}.

vy stands for the zero-divisor of f. (For the definition, see e. g. [1], §2.)vr is a
nonnegative integer-valued function defined in B, and its support is equal to Z(f).
Let X be a subspace of H(B,). We define

X*:{fEX; JEE0 in B},
v(X*)={vy; fEXH.

A zero set E in B, (i.e. E=Z(g) for some g=H(B,)*) is said to be a determining
set for X if there is no function f in X* such that vy=v, in By,

Next we state some results about the Hardy spaces H?(B,), 0<p<{eo, and the
Bergman spaces A?(B,), 0<p <{oo. Suppose 0<p<lo. For f e H(B,, we define
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the H?-norm by

S llue=sup ([ 1f00)|7do(e) 2
0<r<1

9.8n

and define the A’-norm by

1£llap = (| 1£@)1%datay .
Here 0B, is the boundary of B,, ¢ is the Euclidean volume element on 98B, so
normalized that ¢(@B,)=1, and A is the Lebesgue meaure on C* so normalized that
A(By)=1. Then

HP(By) = {f €H(Bu); || fIlup <o},
AP(By)={f€H(B);|1 f]lap< o0} .

H*”(B,) denotes the space of all bounded holomorphic functions in B,,.
Suppose #=2. Let f and g be functions with domains B, and B,_;, respecti-
vely, and define a restriction operator p and an extension operator E by

(of) &)=F&, 0O) (g'€B,.),
(Eg) (z', z2)=8(') (2=(2', z,)EBy).

The following three theorems will be used to prove the main result in §3:
Theorem B ([3], p.127). Assume n=2, 0<p<oo.

(@) The extension E is a linear isometry of AP(B,.,) into H?(B,).

(b) The restriction p is a linear norm—decreasing map of H?(B,) onto AP(B,_.).
Theorem C ([3], p.128). Suppose n=1, 0<p<oo. If f&HP(B,), then

| f(2) | =272|| fllg#(1—|2])""/? (2€ By).
Theorem D ([27], Theorem 5 in §4). For any integer n=1,

v( (1 AP(BW)Y)R2v(H”(BW)*).
0<p<o0

3. 'The main result

Theorem. Let n=2 be an integer. Then there exists an f€ (| H?(B,)
0< <o
satisfying the following two conditions:

(a) Z(f) is not a determining set for H(B,).
(b)  vreEv(H™(Bn)Y).

Proof. By Theorem D, there is a g& (| A#(B,_.)* such that v & v(H*(B,_,)
0<p<oo



On determining sets for H?(B,) II 29

*). Define f=FEg, where E is the extension operator defined in §2. By Theorem
B, fe [ HBy* If veev(H™(B,)*), then there is an he H®(B,)* with v, =vy.

0<p< o0
It follows that h=fk for some keH(B,) with Z(k)=¢. Put h'=ph and k =pk,

where p is the restriction operator defined in §2. Then
h'=gk' in By.i.

Since Z(k')=¢, vp=vys. In addition, A'€H*(B,.,), because h&H*(B,). Thus v,&
v(H*(B,_1)*. This contradicts the choice of the function g. Hence vresv(H*(B,)*).

We turn to show that the condition (a) holds. Since f& (| H?(B,), it fol-
0<p<oo

lows from Theorem C that

| f@I=2"?|| fllur(1—]z])""  (z€ By, 0 p <o0).

Hence
lgV 2" fllgp(1— 12 )" (2 €Bpoy, 0<<p<oo).
Choose a positive number p with #<p. Define
Flz)=f(2)z," =8 @)z
for z=(2',z,)€B,. Then
| F(&) =22 fllae(1— 12" )"/ | 2, |®
for z=(2',z,)E€B,. Since |z,|2<1— |2 |2<2(1—12']),
(1= |2 [y /<22 | 2y -2,
It follows that
| Fla) | =2 fllap |2a | 2722 22| f]] g2loo

for z=(2',z,) €Bn. Hence FeH”(B,). By the definition of F, vr=vs in B,. There-
fore, Z(f) is not a determining set for H™(B,).
Q.E.D.
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