Flat Connections of Differential Operators and Odd Dimensional Characteristic Classes ${ }^{1)}$

By Akira Asada
Department of Mathematics, Faculty of Science
Shinshu University
(Received 7th May, 1981)

Introduction

It is known that global geometric properties of Fuchs-type operators are formulated as follows: Let $G=G L(n, \mathbb{C}), \mathrm{G}_{t}$ and G_{ω} be the sheaves of germs of constant and holomorphic G-valued functions over M, a complex manifold, \mathscr{M} the sheaf of germs of those matrix valued holomorphic 1-forms θ such that $d \theta+\theta_{\wedge} \theta=0$. Then, set $r(f)=d f f^{-1}$, the sequence $0 \longrightarrow \mathrm{G}_{i} \xrightarrow{i} \mathrm{G}_{\omega} \xrightarrow{r} \mathscr{A}_{\omega} \longrightarrow 0$ is exact and it der. ives following exact sequence of cohomology sets

$$
H^{0}\left(M, \mathrm{G}_{\omega}\right) \xrightarrow{r^{*}} H^{0}(M, \mathscr{M} \omega) \xrightarrow{\delta} H^{1}\left(M, \mathrm{G}_{t}\right) \xrightarrow{i^{*}} H^{1}\left(M, \mathrm{G}_{\omega}\right) .
$$

$\theta \in \mathrm{H}^{0}\left(M, \mathscr{A}_{\omega}\right)$ is a global integrable connection on M and $d+\theta$ is a Fuchs type operator. Since there is a bijection $\chi: H^{1}\left(M, \mathrm{G}_{t}\right) \longrightarrow \operatorname{Hom}\left(\pi_{1}(M), G\right), \chi(\delta(\theta)) \quad\left(\pi_{1}(M)\right)$ is a subgroup of G. It is the monodromy group of $d+\theta$. If a representation $\rho: \pi_{1}(M) \longrightarrow G$ is given, it is realized as a monodromy representation of some Fuchs type operator if and only if $i^{*} \chi^{-1}(\rho)=1$, the trivial holomorphic bundle. Same formulation is possible in smooth category to use G_{d}, the sheaf of germs of smooth G-valued functions, and \mathscr{M}_{d}, the sheaf of germs of those matrix valued smcoth 1-forms θ such that $d \theta+\theta_{\wedge} \theta=0$, instead of G_{ω} and \mathscr{M}_{ω} ([1], [12], [13], [14]).

The notion of connection is extended for an arbitraly differential operator D : $C^{\infty}\left(M, E_{1}\right) \longrightarrow C^{\infty}\left(M, \mathrm{E}_{2}\right), M$ a smooth manifold, $E_{i}, i=1,2$, the smooth vector bundles, and a smooth vector bundle ξ over M ([3]). The definition is as follows: Denote H the fibre of ξ, a collection $\left\{\theta_{U}\right\}, \theta_{U}: C^{\infty}\left(U, E_{1} \otimes \mathrm{H}\right) \longrightarrow C^{\infty}\left(U, E_{2} \otimes \mathrm{H}\right)$ is a differential operator, is called a connection of D with respect to ξ, if ord $\theta_{U} \leqq \operatorname{ord} D$ -1 and set $D_{0}=\left\{D_{U} \otimes 1_{H}+\theta_{U}\right\}, D=\left\{D_{U}\right\}, D_{0}$ becomes a well defined differential operator from $C^{\infty}\left(M, E_{1} \otimes \mathrm{H}\right)$ into $\mathrm{C}^{\infty}\left(M, E_{2} \otimes \mathrm{H}\right)$.

To define the curvature operator of a connection of a differential operator is possible (cf. Appendix of this paper), and it relates the theory of non-linear coho-

1) Supported by Grant in-Aid for Scientific Research from the Ministry of Education, Science and Culture (564009.)
mology ([9]). But the notion of a flat connection of a differential operator is given more directly as follows: A connection $\left\{\theta_{U}\right\}$ of D with respect to a G-bundle ξ is called fat if there is a collection $\left\{h_{U}\right\}$ of smooth G-valued function h_{U} on U such that $\theta_{U}=\rho_{D}\left(h_{U}\right)$. Here $\rho_{D}\left(h_{U}\right)$ is given by

$$
\rho_{D}\left(h_{U}\right) \varphi=\left(D_{U} \otimes 1_{\mathrm{H}}\right) \varphi-\left(1_{E_{1}, E_{2}} \otimes h_{U}\right)\left(D_{U} \otimes 1_{\mathrm{H}}\right)\left(\left(1_{E_{1}} \otimes h_{U}^{-1}\right) \varphi\right) .
$$

A G-valued function g such that $\rho_{D}(g)=0$ is called a $c(D)$-class G-valued function. It is shown that a G-valued function g is of $c(D)$-class if and only if its matrix elements are of $c(D)$-class, and there is a system of differential operators $r(D)$ determined by D such that a function f is of $c(D)$-class if and only if $r(D) f=0$. Some examples, such as a real elliptic operator acting on scalar functions, have only constant functions as $c(D)$-class functions. But, some other examples, such as $D=\bar{\partial}$, have nonconstant $c(D)$-class functions ($\$ 1$). We denote the sheaf of germs of $c(D)$-class G-valued functions by $\mathrm{G}_{c(D)}$ and set $\rho_{D}\left(\mathrm{G}_{d}\right)=\mathrm{L}_{G, D}$. Then we have the exact sepuence of sheaves

$$
0 \longrightarrow \mathrm{G}_{c(D)} \xrightarrow{i} \mathrm{G}_{d} \xrightarrow{\rho_{D}} \mathrm{~L}_{G, D} \longrightarrow 0 .
$$

From this sequence, we obtain the following exact sequence of cohomology sets

$$
H^{0}\left(M, \mathrm{G}_{d}\right) \xrightarrow{\rho_{D}{ }^{*}} H^{0}\left(M, \mathrm{~L}_{G, D}\right) \xrightarrow{\delta} H^{1}\left(M, \mathrm{G}_{c(D)}\right) \xrightarrow{i^{*}} H^{1}\left(M, \mathrm{G}_{d}\right) .
$$

If $L \in H^{0}\left(M, \mathrm{~L}_{G, D}\right), D \otimes 1_{\mathrm{H}}-L$ is a differential operator from $C^{\infty}\left(M, E_{1} \otimes \mathrm{H}\right)$ into $C^{\infty}\left(M, E_{2} \otimes \mathrm{H}\right)$. We call this operator to be a D-Fuchs type operator. On the other hand, an element of $H^{1}\left(M, \mathrm{G}_{c(D)}\right)$ is called a $c(D)$-class G-bundle or a D-flat G-bundle. Hence $\delta(L)$ is a differentible trivial $c(D)$-class G-bundle. It is shown that $\delta(L)$ has the minimal structure group as a $c(D)$-class G-bundle. This group is called the monodromy group of $D \otimes 1_{\mathrm{H}}-L(\S 2)$.

If $G=G L(n, \mathrm{C})$, we can define several characteristic classes related to $c(D)$-class G-bundles and the elements of $H^{\circ}\left(M, L_{G, D}\right)$. These classes are connected with the exact sequence of cohomologies

$$
\begin{aligned}
& \cdots \longrightarrow H^{2 p-1}(M, \mathbf{Z}) \xrightarrow{i^{*}} H^{2 p-1}\left(M, \mathbf{C}_{c(D)}\right) \xrightarrow{\exp ^{*}} H^{2 p-1}\left(M, \mathbf{C}^{*}{ }_{c(D)}\right) \xrightarrow{\delta} \\
& \longrightarrow H^{2 p}(M, \mathbb{Z}) \xrightarrow{i^{*}} H^{2 p}\left(M, \mathbf{C}_{c(D)}\right) \longrightarrow \ldots,
\end{aligned}
$$

and the generator of the cohomology ring $H^{*}(G L(n, \mathbb{C}), \mathbb{Z})=H^{*}(U(n), \mathbb{Z})$ (cf. [6], [7], [11]). For this purpose, we define a product (denoted by *) on $\sum_{D} H^{2 p-1}(M$, $\left.\mathbf{C}^{*}{ }_{c(D)}\right)$ and show $\delta: \sum_{b} H^{2 p-1}\left(M, \mathbf{C}^{*}{ }_{c(D)}\right) \longrightarrow \sum_{b} H^{2 p}(M, \mathbb{Z})$ is a ring homomorphism ($\delta 3, \mathrm{n}^{0} 8$, the product in the right hand side is the cup product). Then our results are summarlized as follows ($8 \S 3,4)$:
(i). Denote $c^{p}(\xi)$ the p-th Chern class of a complex vector bundle $\xi, \quad i^{*}\left(c^{p}(\xi)\right)=0$ forany p, if ξ is a $c(D)$-class bundle.
(ii). If ξ is a $c(D)$-class bundle, there is a well defined cohomology class $b^{p}(\xi) \in$ $H^{2 p-1}\left(M, \mathbb{C}_{c(D)}^{*}\right)$ such that

$$
\delta b^{p}(\xi)=c^{p}(\xi)
$$

(iii). If $L \in H^{0}\left(M, \mathrm{~L}_{G, D}\right)$ and D satisfies some assumptions (cf. §4, $\mathrm{n}^{0} 10$), there is a well defined cohomology class $\beta^{p}(L) \in H^{2 p-1}\left(M, \mathbf{C}_{c(D)}\right)$ such that

$$
\exp ^{*}\left(\beta^{p}(L)\right)=(-1)^{p-1} F_{n, p}\left(b ^ { 1 } \left(\delta(L), \ldots, b^{p}(\delta(L))\right.\right.
$$

Here $F_{n, p}\left(s_{1}, \ldots, s_{p}\right)=\sum_{i=1}^{n} X_{i}{ }^{p}, s_{q}$ is the q-th elementary symmetric function of indeterminants X_{1}, \ldots, X_{n} and the product is *-product.
(iv). If $L=\rho_{D}(f), f$ is a smooth G valued function on M, then

$$
\beta^{p}(L)=i^{*}\left(f^{*}\left(c^{p}\right)\right)
$$

Here c^{p} is the $\left(2^{p}-1\right)$-dimensional generator of $H^{*}(G L(n, \mathbb{C}), \mathbb{Z})$.
If $M=\mathbf{C}^{*}, D=d / d z$ and $L=\alpha / z, \beta^{1}(L)$ is $\alpha\langle\mathrm{e}\rangle,\langle\mathrm{e}\rangle$ is the generator of $H^{1}\left(\mathbf{C}^{*}, \mathbb{C}\right)$ $=C$. In general, $\beta^{1}(L)$ is determined by the coefficients of the indicial equation in classical case. $\beta^{p}(L)$ is determined by $\sigma(L)$, the principal symbol of L if D is homogeneous and satisfies the assumption of $n^{0} 10$. If $D=d$ or $\bar{\partial}$, an element of $H^{2 p-1}\left(M, \mathbf{C}_{c(D)}\right)$ is represented by a closed $(2 p-1)$-form or a $\vec{\partial}$-closed $(0,2 p-1)$-type form on M. On the other hand, L is a matrix valued 1 -form θ on M. In these cases, we have

$$
\beta^{p}(L)=\frac{(-1)^{p-1}}{(2 \pi \cdot \sqrt{-1})^{p}} \operatorname{tr}\left(\theta_{\wedge}^{2} \cdots \cdots, \cdots\right)
$$

We note that (iii) shows the rigidity of $\beta^{p}(L)$ under the monodromy preserving deformation of L, because if $\delta(L)=\delta\left(L^{\prime}\right), \beta^{p}(L)-\beta^{p}\left(L^{\prime}\right) \in i^{*}\left(H^{2 p-1}(M, \mathbb{Z})\right)$ which is a discreet subgroup of $H^{2 p-1}\left(M, \mathbb{C}_{c(D)}\right)$. Therefore $\beta^{p}(L)$ is an invariant of monodromy preserving deformation (cf. [8], [15], [16]). But in some cases, $\beta^{p}(L), p \geq 2$, vanishes. For example, if $L \mid U=\rho_{D}\left(h_{U}\right)$ and each h_{U} is a $\Delta(n, \mathrm{C})$-valued function on $U, \beta^{p}(L)=0$ if $p \geq 2$.

The outline of this paper is as follows: In $\S 1$, we define and study $c(D)$-class functions and $c(D)$-class G-valued functions. $c(D)$-class G-bundles and D-Fuchs type differential operators are defined in $\$ 2$. The existence of monodromy group is also shown in $\S 2$. $\S 3$ is devoted to the definitions of $*$-product and $b^{p}(\xi)$. The proofs of above (i) and (ii) are also given in this §. The definition of $\beta^{p}(L)$ and the proofs of (iii) and (iv) are given in §4. In appendix, we give the definition of the curvature operator of a connection of a differential operator.

In this paper, we do not study the singularities of D-Fuchs type operators. From the point of view of the above formulation, the theory of singularities of D-Fuchs type operators seems to be a non-abelian residue theory.

§1. $c(D)$-class functions and $c(D)$-class G-valued functions

1. Let M be a connected paracompact smooth manifold, $D: C^{\infty}\left(M, E_{1}\right) \longrightarrow$ $C^{\infty}\left(M, \mathrm{E}_{2}\right)$ a differential operator on M. Here $E_{i}, i=1,2$, and $C^{\infty}\left(U, \mathrm{E}_{i}\right), i=1,2$, are the smooth vector bundles over M and the space of its smooth sections on U, an open set of M. If f is a smooth function on U, f acts on each $C^{\infty}\left(U, E_{i}\right)$ by the scalar multipication. Hence f defines a linear operator $f_{(m)}$ or f on $C^{\infty}\left(U, E_{i}\right)$.

Definition. A function f on U is called to be a $c(D)$-class function on U if $f_{(m)} D=D f_{(m)}$. The set of all $c(D)$-class functions on U is denoted by $c(D, U)$.

Lemma 1. If $D=\sum_{||\mathrm{I}| \leq k} A_{\mathbf{I}}(x) \partial|\mathrm{I}| / \partial x^{\mathbf{1}}, \mathbb{I}=\left(i_{1}, \ldots, i_{n}\right),|\mathbb{I}|=i_{1}+\ldots+i_{n}, \partial|\mathrm{I}| / \partial x^{\mathrm{I}}=$ $\partial[1] / \partial x_{1}{ }^{i_{1}} \ldots \partial x_{n}{ }^{i_{n}}$, on U, f belongs in $c(D, U)$ if and only if

$$
\begin{equation*}
\sum_{\mathbf{J}+\mathbf{K}=1,|\mathrm{~J}| \geqq 1} \frac{\mathbf{I}!}{\mathbf{J}!\mathbf{K}!} A_{\mathbf{I}}(x) \frac{\partial^{|\mathrm{J}| f}}{\partial x^{\mathbf{J}}}=0, \quad|\mathbf{K}| \leqq k-1 . \tag{1}
\end{equation*}
$$

Proof. Since $D f=f D+\sum_{|\mathbf{K}| \leq k-1}\left(\sum_{\mathbf{J}+\mathbf{K}=\mathbf{I},|\mathbf{J}| \geqq 1}(\mathbb{I}!/ \mathrm{J}!\mathbf{K}!) A_{\mathbf{I}}(x) \partial|\mathrm{J}| f / \partial x^{\mathbf{J}}\right) \partial|\mathbf{K}| / \partial x^{\mathbf{K}}$, we have the lemma.

Corollary. If $V \subset U$ and $f \in c(D, U)$, f belongs in $c(D, V)$. Especially, the germ f_{x} of f at x and the set of germs of $c(D)$-class functions $c(D)_{x}$ at x are defined.

Definition. The system of differential operators on M given by (1) is denoted by $r(D) . r(D)$ is called maximal if $r(D) f=0$ implies f is a constant.

Lemma 2. (i). $c(D, U)$ is a ring by the usual addition and multiplication of functions and contains the ring of constant functions.
(ii). $c(D, U)$ is closed by \mathscr{C}^{k}-topology.
(iii). If $f \in c(D, U)$ and F is a holomorphic function such that $\left(\partial^{I I} \mid F / \partial x^{\mathrm{I}}\right)(f)$ is defined if $|\mathbf{I}| \leq k$, then $F(f)$ belongs in $c(D, U)$.

Proof. Since $D(f g)=(D f) g=(f D) g=(f g) D$ if $f, g \in c(D, U), c(D, U)$ is closed under the multiplication. Other parts of (i) and (ii) follow from lemma 1.

If F is holomorphic, there is a series of polynomials $\left\{F_{m}\right\}$ such that $\left\{F_{m}(f)\right\}$ converges to $F(f)$ on some neighborhood $U(x)$ of $x, x \in U$. Since $\partial \mid \mathrm{II} G(f) / \partial x^{\mathrm{I}}=$ $P_{\mathbf{I}}\left(G(f), \ldots,\left(\partial^{|J|} G / \partial x^{\mathrm{J}}\right)(f), \ldots, f, \ldots, \partial^{|\mathbb{K}|} f / \partial x^{\mathbb{K}}, \ldots\right), \mathbf{J}, \mathbf{K} \leq \mathbb{I},\left\{F_{m}(f)\right\}$ converges to $F(f)$ at least by \mathscr{C}^{k}-topology. Hence we have (iii).

Corcllary. $c(D)_{x}$ is a local ring.
If g_{i} is a linear transformation of the fibre of E_{i} and E_{i} is trivial on U, g_{i} acts as a linear operator on $C^{\infty}\left(U, E_{i}\right)$. This operator is denoted by $g_{i(m)}$ or g_{i}, $i=1$, 2. Then, since $g_{i(m)} f_{(m)}=f_{(m)} g_{i(m)}$, we have

Lemma 3. If g_{i} is inversible, $i=1,2$, then

$$
c\left(D g_{1}, U\right)=c(D, U), c\left(g_{2} D, U\right)=c(D, U) .
$$

Example 1. If $D=\sum_{i} A_{i}(x) \partial / \partial x_{i}+B(x), r(D)$ is given by $\sum_{i} A_{i}(x) \partial / \partial x_{i}$. If $A_{i}(x)$ $=\left(a_{i}{ }^{j k}(x)\right), r(D)$ is the overdetermined system $\sum_{i} a_{i}{ }^{j k}(x) \partial f / \partial x_{i}=0, \quad 1 \leqq j \leqq m_{1}, \quad 1 \leqq k$ $\leqq m_{2}$. Here m_{1}, m_{2} are the dimensions of the fibres of E_{1}, E_{2}.

Example 2. If $D=\sum_{i j} a_{i j}(x) \partial^{2} / \partial x_{i} \partial x_{j}+\sum_{i} b_{i}(x) \partial / \partial x_{i}+c(x), a_{i j}(x)=a_{j i}(x), r(D)$ is given by $\left\{2 \sum_{j} a_{i j}(x) \partial / \partial x_{j}, i=1, \ldots, n,(D-c(x))\right\}$. Hence $r(D)$ is maximal on U if $A(x)=\left(a_{i j}(x)\right)$ is a regular matrix on each $x \in U$.

Example 3. If D is a scalar valued real elliptic operator, $r(D)$ is maximal.
Since the problem is local, to show this, first we assume D is a constant coefficients operator. Then, since D is a real scalar valued operator, $k \geqq 2$ and by a linear change of coordinates, we may assume $D=\partial^{k} / \partial y_{1}{ }^{k}+$ terms with order at most $k-2$ in $\partial / \partial y_{1}$. Hence $r(D)$ contains $\partial / \partial y_{1}$ and f is independent to y_{1} if $f \in c(D$, $U)$. Set $D=P\left(\partial / \partial y_{1}, \ldots, \partial / \partial y_{n}\right), \quad D^{\prime}=P\left(0, \partial / \partial y_{2}, \ldots, \partial / \partial y_{n}\right)$ is elliptic on the plane $y_{1}=0$. Therefore $r(D)$ is maximal by induction in this case. For general D, set $D=D\left(x_{0}\right)+\left(D-D\left(x_{0}\right)\right), D\left(\mathrm{x}_{0}\right)$ is a constant coefficients elliptic operator. If $f \in c(D, U)$, set

$$
D\left(x_{0}\right) f=f D\left(x_{0}\right)+R_{0}, \quad D_{1} f=f D_{1}+R_{1}, \quad D_{1}=D-D\left(x_{0}\right),
$$

the coefficients of D_{1} vanishes at x_{0} and $R_{0}=-R_{1}$. Hence the coefficients of R_{0} vanishes at x_{0} and $d f\left(x_{0}\right)=0$ if $f \in c(D, U)$, because $r\left(D\left(x_{0}\right)\right)$ is maximal. Since x_{0} is arbitrary, this shows $d f=0$ on U. Therefore f is a constant and $r(D)$ is maximal.

Note. Example 1 shows if $D=d$ or $\bar{\partial}, r(D)$ is also d or $\bar{\partial}$.
2. Let H be a separable Hilbert space with the o . N . -basis $\left\{\mathrm{e}_{\alpha}\right\}$. We denote the inner product $\xi, \eta \in \mathrm{H}$ by (ξ, η) and the set of all bounded linear operators of H by $\mathscr{\mathscr { B }}(\mathrm{H})$. Denote V_{i} the fibre of E_{i}, we set

$$
\langle v \otimes \xi, \eta\rangle=(\xi, \eta) v, v \in \mathrm{~V}_{i}, \quad v \otimes \xi \in \mathrm{~V}_{i} \otimes \mathrm{H}, \quad i=1,2 .
$$

Definition. (i). $A \mathscr{G}(\mathrm{H})$-valued function $b(x)$ on U, an open set of M, is called smooth on U if $\left\langle b(x) \mathrm{e}_{\alpha}, \mathrm{e}_{\beta}\right\rangle$ is a smooth function on U for any $\mathrm{e}_{\alpha}, \mathrm{e}_{\beta} \in\left\{\mathrm{e}_{\alpha}\right\}$
(ii). A $\mathrm{V}_{i} \otimes \mathrm{H}$-valued function $f(x)$ on U is called smooth on U if $\left\langle f(x), \mathrm{e}_{\alpha}\right\rangle$ is a smooth function on U for any $\mathrm{e}_{\alpha} \in\left\{\mathrm{e}_{\alpha}\right\}$.

Since $\mathrm{O} . \mathrm{N} .-$ basis $\left\{\mathrm{e}_{\alpha}\right\}$ and $\left\{\mathrm{e}_{\alpha^{\prime}}\right\}$ of H are changed by a unitary operator, these definitions do not depend on the choice of $\left\{\mathrm{e}_{\alpha}\right\}$.

If each E_{i} is trivial on U, D induces a differential operator $D_{v}: C^{\infty}\left(U, \mathrm{~V}_{1}\right) \longrightarrow$ $C^{\infty}\left(U, \mathrm{~V}_{2}\right)$. Hence, denote 1_{H} the identity map of $\mathrm{H}, D_{U} \otimes 1_{\mathrm{H}}: C^{\infty}\left(U, \mathrm{~V}_{1} \otimes \mathrm{H}\right) \longrightarrow$ $C^{\infty}\left(U, \mathrm{~V}_{2} \otimes \mathrm{H}\right)$ is defined. On the other hand, if $b(x)$ is a smooth $\mathscr{G}(\mathrm{H})$-valued function on $U, 1_{\mathrm{V}_{i}} \otimes b(x)$ is a smooth $G L\left(\mathrm{~V}_{i}\right) \otimes \mathscr{B ^ { \prime }}(\mathrm{H})$-valued function on U. Hence $1_{\mathrm{V}_{i}} \otimes b(x)=1_{\mathrm{V}_{i}} \otimes b(x)_{(m)}$ is defined as a linear operator on $C^{\infty}\left(U, \mathrm{~V}_{i} \otimes \mathrm{H}\right), i=1,2$.

Lemma 4. The followings are equivalent.
(i) $\quad\left(1_{\mathrm{V}_{2}} \otimes b(x)\right) D_{U} \otimes 1_{\mathrm{H}}=D_{U} \otimes 1_{\mathrm{H}}\left(1_{\mathrm{V}_{1}} \otimes b(x)\right)$.
(ii) $\left\langle b(x) \mathrm{e}_{\alpha}, \mathrm{e}_{\beta}\right) D_{U}=D_{U}\left(b(x) \mathrm{e}_{\alpha}, \mathrm{e}_{\beta}\right)$, for some $\mathrm{O} . \mathrm{N} .-b a s i s\left\{\mathrm{e}_{\alpha}\right\}$ of H .
(iii) $\left(b(x) \mathrm{e}_{\alpha}, \mathrm{e}_{\beta}\right) D_{U}=D_{U}\left(\mathrm{~b}(x) \mathrm{e}_{\alpha}, \mathrm{e}_{\beta}\right)$, for all $\mathrm{O} . \mathrm{N} .-$ basis $\left\{\mathrm{e}_{\alpha}\right\}$ of H .

Proof. By definition, if $b(x)$ does not depend on x, then

$$
\begin{equation*}
\left(1_{\mathrm{V}_{2}} \otimes b\right) D_{U} \otimes 1_{\mathrm{H}}=D_{U} \otimes 1_{\mathrm{H}}\left(1_{\mathrm{V}_{1}} \otimes b\right) . \tag{2}
\end{equation*}
$$

Hence (ii) and (iii) are equivalent if (i) and (ii) are equivalent. Since we have

$$
\begin{aligned}
\left\langle D_{U} \otimes 1_{\mathrm{H}}\left(1_{\mathrm{V}_{2}} \otimes b(x)\right) v(x) \otimes \mathrm{e}_{\alpha}, \mathrm{e}_{\beta}\right\rangle & =D_{U}\left(\left(b(x) \mathrm{e}_{\alpha}, \mathrm{e}_{\beta}\right) v(x)\right) \\
& \left.=D_{U}\left(b(\mathrm{x}) \mathrm{e}_{\alpha}, \mathrm{e}_{\beta}\right)\right) v(x), \\
\left\langle\left(1_{\mathrm{V}_{2}} \otimes b(x)\right)\left(D_{U} \otimes 1_{\mathrm{H}}\right) v(x) \otimes \mathrm{e}_{\alpha}, \mathrm{e}_{\beta}\right\rangle & =\left(b(x) \mathrm{e}_{\alpha}, \mathrm{e}_{\beta}\right)\left(D_{U} v(x)\right) \\
& =\left(\left(b(x) \mathrm{e}_{\alpha}, \mathrm{e}_{\beta}\right) D_{U}\right) v(x),
\end{aligned}
$$

(i) and (ii) are equivalent and we obtain the lemma.

Corollary. $\left(1_{\mathrm{V}_{2}} \otimes b(x)\right) D_{U} \otimes 1_{\mathrm{H}}$ is equal to $D_{U} \otimes 1_{\mathrm{H}}\left(1_{\mathrm{V}_{1}} \otimes b(x)\right)$ if and only if $\left(b(x) \mathrm{e}_{\alpha}, \mathrm{e}_{\beta}\right) \in c(D, U)$ for any $\mathrm{e}_{\alpha}, \mathrm{e}_{\beta} \in\left\{\mathrm{e}_{\alpha}\right\}$.

Definition. (i). A smooth $\mathscr{G}(\mathrm{H})$-valued function on U is called a $c(D)$-class $\mathscr{O}(\mathrm{H})$-valued function on U if it satisfies either of (i), (ii) or (iii) of lemma 4.
(ii). Let G be a subgroup of $\mathscr{\mathscr { B }}(\mathrm{H})$. Then a G-valued function on U is called a $c(D)$-class G-valued function on U if it is also a $c(D)$-class $\mathscr{B}(\mathrm{H})$-valued function.

Lemma 5. (i). If $b(x)$ is a $c(D)$-class $\mathscr{F}(\mathrm{H})$-valued function on U and $V \subset U$, $b(x)$ is a $c(D)$-class $\mathscr{\sigma}(\mathrm{H})$-valued function on V.
(ii). The set of all $c(D)$-class $\mathscr{B}(\mathrm{H})$-valued functions on U is a ring and the set of all G-valued functions on G is a group.
(iii). Denote $b^{*}(x)$ the $\mathscr{B}(\mathrm{H})$-valued function defined by $b^{*}(x)=(b(x))^{*}$, the adjoint operator of $b(x)$, where $b(x)$ is a $c(D)$-class $\mathscr{F}(\mathrm{H})$-valued function, $b^{*}(x)$ is a $c(D)$ -class $\mathscr{B}(\mathrm{H})$-valued function if $c(D, U)=\overline{c(D, U)}=\{\bar{f} \mid f \in c(D, U)\}, \bar{f}(x)=\overline{f(x)}$, the conjugate complex of $f(x)$.

Proof. By the corollary of lemma 3 and lemma 1, we have (i). By the same reason of lemma 2, (i), we have (ii). Since $\left(b^{*}(x) \mathrm{e}_{\alpha}, \mathrm{e}_{\beta}\right)=\overline{\left(b(x) \mathrm{e}_{\beta}, \mathrm{e}_{\alpha}\right)}$, we have (iii).

Corollary $b(x) h(x)$ is a $c(D)$-class H -valued function if $b(x)$ is a $c(D)$-class $\mathscr{B}(\mathrm{H})$ -valued function and $h(x)$ is a $c(D)$-class H-valued function. Here $h(x)$ is a $c(D)$ -class H -valued function if $\left(h(x), \mathrm{e}_{\alpha}\right) \in c(D, U)$ for any $\mathrm{e}_{\alpha} \in\left\{\mathrm{e}_{\alpha}\right\}$.
3. For a system of differential operators S, we denote $\operatorname{ker}(S)_{a}$ the germ of the elements of ker (S) at a. For $r(D)$, the subsystem consisted by the 1 -st order operators is denoted by $r_{1}(D)$. We also set $r(D)_{a}=\left\{\sum_{\mathbf{1}} B_{\mathbf{I}}(a) \partial|\mathbf{I}| / \partial x \mathbf{I}\right\}, r(D)=\sum_{\mathbf{I}} B_{\mathbf{I}}(x)$ $\partial^{|\mathbf{I I}|} / \partial x^{\mathrm{I}}$ on U, a neighborhood of a, etc. . Similarly, $D(a)$ means $\sum A_{\mathbf{I}}(a) \partial|\mathbf{I}| / \partial x^{\mathrm{I}}$ if $D=\sum A^{\mathrm{I}}(x) \partial|\mathrm{I}| / \partial x^{\mathrm{I}}$ on U. In this n^{0}, we call $a \in M$ to be a normal point of $r(D)$
if $\operatorname{ker}\left(r_{1}(D(a))\right)_{a} \supset \operatorname{ker}\left(r_{1}(D)\right)_{a}$.
Lemma 6. If the set of normal points of $r(D)$ contains an open dense set of M, we have

$$
\begin{equation*}
\text { ker } r_{1}(D)=\operatorname{ker} r(D) \text {, on any open set of } M \text {. } \tag{3}
\end{equation*}
$$

Proof. Since the problem is local, we consider the problem in a fixed coordinate neighborhood of M.

By the definition of $r(D)$, if $P(x, \partial / \partial x) \in r(D)$, we have $I_{i}(x, \partial / \partial x) \in r_{1}(D)$, where $P(x, \xi)=\sum_{i} L_{i}(x, \xi) \xi^{\alpha}{ }_{i}, \xi^{\alpha}=\xi_{1}{ }_{i}, \ldots \ldots \xi_{n}{ }_{i}{ }_{i}, n$. Hence we have (3) if D is a constant coefficients operator.

Let a be a normal point of $r(D)$ such that there exists a neighborhood $U(a)$ of a consisted by the normal points of $r(D)$ and set $D=D(a)+D_{1}$. Then, if $r_{1}(D) f=0$, we have $r_{1}(D(a)) f=0$ on $U(a)$. Hence $(D f-f D)(a)=0$. Therefore $f \in c(D, U(a))$ and we have the lemma by assumption.

Note. By the proof of example 3, $n^{0} 1$, if D is a scalar valued real elliptic operator, any point of M is a normal point of $r(D)$.

For a smooth $\mathscr{G}(\mathrm{H})$-valued function f on U, we set

$$
\delta_{D}(f)=D f-f D=\left(D \otimes 1_{H}\right)\left(1_{E 1} \otimes f\right)-\left(1_{E_{2}} \otimes f\right)\left(D \otimes 1_{\mathrm{H}}\right)
$$

By definition, we have $\delta_{D}(f)=\sum_{P \mathrm{~J} \in r(D)} P_{\mathrm{J}}(x, \partial / \partial x) \partial|\mathrm{J}| / \partial x^{\mathrm{J}}$. We also set

$$
\delta_{D}, 1_{1}(f)=\sum_{P \mathrm{~J} \in r_{1}(D)} P_{\mathrm{J}}\left(x, \frac{\partial}{\partial x}\right) \frac{\partial|\mathrm{J}|}{\partial x^{\mathrm{J}}} .
$$

Lemma 6 . If D satisfies the assumption of lemma $6, \delta_{D}(f)$ is equal to 0 if and only if $\delta_{D, 1}(f)=0$.

Corollary. Let G be a subgroup of $\mathscr{B}(\mathrm{H})$ and g is a smooth G-valued function on U. Then to set

$$
\begin{aligned}
& \rho_{D}(g)=\delta_{D}(g) g^{-1}=D \otimes 1_{\mathrm{H}^{-}}\left(1_{E_{2}} \otimes g\right)\left(D \otimes 1_{\mathrm{H}}\right)\left(1_{E_{1}} \otimes g^{-1}\right), \\
& \rho_{D, 1}(g)=\delta_{D, 1}(g) g^{-1},
\end{aligned}
$$

$\rho_{D}(g)=0$ is equivalent to $\delta_{D}(g)=0$ and if D satisfies the assumption of lemma 6 , $\rho_{D, 1}(g)=0$ implies $\rho_{D}(g)=0$.

Since δ_{D} is a derivation and $\delta_{D}(f)=0$ if and only if f is a $c(D)$-class $\mathscr{G}(\mathrm{H})-$ valued function, we have

$$
\begin{equation*}
\rho_{D}(g)=0, \text { if and only if } g \text { is a } c(D) \text {-class } G \text {-valued function, } \tag{4}
\end{equation*}
$$

(4) ii

$$
\rho_{D}(g h)=\rho_{D}(g)+\rho_{D}(h)^{g}, \quad \rho_{D}(h)^{g}=\left(1_{E_{2}} \otimes g\right) \rho_{D}(h)\left(1_{E 1} \otimes g^{-1}\right)
$$

(4) $\mathrm{iii} \quad \rho_{D}\left(g^{-1}\right)=-\rho_{D}(g) g^{-1}$.

Since $\delta_{D, 1}$ is also a derivation, (4) $)_{\mathrm{ii}}$ and (4) iiii are hold for $\rho_{D, 1 .}$. (4) $)_{\mathrm{i}}$ is hold for
$\rho_{D, 1}$ if D satisfies the assumption of lemma 6.
Example, If D is a 1 -st order operator, $r(D)$ is equal to $r_{1}(D)$ and therefore $\rho_{D}(g)=\rho_{D, 1}(g)$. Moreover, if D is homogeneous, we may regard $D g$ to be a $\mathscr{G}(\mathrm{H})$ -valued 1-form and as a 1-form, we have $\rho_{D}(g)=(D g) g^{-1}$. Especially, we obtain $\rho_{d}(g)=d g \cdot g^{-1}$ and $\rho_{\bar{o}}^{-}(g)=\bar{\partial} g \cdot g^{-1}$ (cf. Introduction).

On M, we denote $\mathscr{\mathscr { O }}(\mathrm{H})_{d}$ and G_{d} the sheaves of germs of smooth $\mathscr{\mathscr { F }}(\mathrm{H})$ and G-valued functions over M. The sheaves of germs of $c(D)$-class $\mathscr{G}(\mathrm{H})$ and G valued functions over M are denoted by $\mathscr{\mathscr { B }}(\mathrm{H})_{c(D)}$ or $\mathrm{G}_{c(D)} . \rho_{D}$ and δ_{D} induce the maps ρ_{D} and δ_{D} on G_{d} and $\mathscr{B}(\mathrm{H})_{d}$. We set

$$
\rho_{D}\left(\mathrm{G}_{d}\right)=\mathrm{L}_{G, D}, \quad \delta_{D}\left(\mathscr{G}(\mathrm{H})_{d}\right)=\mathscr{L}_{\mathscr{B}}^{(\mathrm{H})},{ }_{D} .
$$

By definitions, we have the following exact sequences of sheaves.

$$
\begin{aligned}
& 0 \longrightarrow \mathrm{G}_{c(D)} \xrightarrow{i} \mathrm{G}_{d} \xrightarrow{\rho_{D}} \mathrm{~L}_{G, D} \longrightarrow 0, \\
& 0 \longrightarrow \mathscr{B}(\mathrm{H})_{c(D)} \xrightarrow{i} \mathscr{\mathscr { F }}(\mathrm{H})_{d} \xrightarrow{\delta_{D}} \mathscr{L}_{\mathscr{G}}^{(\mathrm{H}), D} \\
& \longrightarrow
\end{aligned}
$$

Example. For $\mathrm{H}=\mathbf{C}$, the complex number field, denote \mathbf{C}^{*} the multiplicative group of complex numbers without 0 , we have the following commutative diagram of sheaves with exact lines and columns.

Here \mathbb{Z} is the constant sheaf of integers, c is the inclusion regarding a constant to be a constant function, exp and k are given by

$$
\exp \left(f_{x}\right)=\left(\mathrm{e}^{2 \pi /} / \overline{-1} f\right)_{x}, \mathrm{k}\left((D f-f D)_{x}\right)=\rho_{D}\left(\mathrm{e}^{2 \pi /} / \overline{-1} f\right)_{x},
$$

where f_{x}, etc., mean the germ of f, etc., at x (cf. Introduction).

§2. D-flat G-bundles and D-Fuchs type differential equations

4. Since $\mathrm{G}_{c(D)}$ and G_{d} are sheaves of groups, the coboundary maps $\delta_{i}=\delta: C^{i}\left(\mathfrak{M}, \mathrm{G}_{d}\right)$ $\longrightarrow C^{i+1}\left(\mathfrak{U}, \mathrm{G}_{d}\right)$ or $C^{i}\left(\mathfrak{U}, \mathrm{G}_{c(D)}\right) \longrightarrow C^{i+1}\left(\mathfrak{U}, \mathrm{G}_{c(D)}\right), i=0,1$, are defined. Here \mathfrak{u} is an open covering of M. For $C^{i}\left(\mathfrak{l}, \mathrm{~L}_{G, D}\right), i=0,1$, we define $\delta^{L_{i}=\delta^{L}: C^{i}\left(\mathfrak{u}, \mathrm{~L}_{G, D}\right)}$ $\longrightarrow C^{i+1}\left(\mathfrak{u}, L_{G, D}\right)$ by

$$
\begin{equation*}
\delta^{L} \rho_{D}=\rho_{D} \delta . \tag{5}
\end{equation*}
$$

Explicitly, $\delta^{L_{1}}$ and $\delta^{L_{2}}$ are given by

$$
\begin{aligned}
& \delta^{L_{1}}(L)_{U, V}=L_{U}-L_{V}{ }^{g U V}, \quad L_{U}=\rho_{D}\left(h_{U}\right), \quad \mathrm{g}_{U V}=h_{U} h_{V}^{-1}, \\
& \delta^{L_{2}}(L)_{U, V, W}=L_{U, V}+L_{V, W^{G U V}}+L_{W, U^{g}{ }^{g W}}, \quad L_{U, V}=\rho_{D}\left(g_{U V}\right) .
\end{aligned}
$$

Note. δ^{L} may not be defined on $C^{i}\left(\mathfrak{u}, \mathrm{~L}_{G}, \nu\right)$. But if $\{L\} \in C^{i}\left(\mathfrak{u}, \mathrm{~L}_{G, D}\right)$, there exists a refinement \mathfrak{B} of \mathfrak{U} such that δ^{L} is defined for $t_{\mathfrak{B}}^{\mathfrak{H}}(\{L\})$ if \mathfrak{B} is a refinement of $\mathfrak{B . ~ H e r e ~} t_{\mathfrak{F}}^{\mathfrak{Z}}: C^{i}\left(\mathfrak{H}, \mathrm{~L}_{G, D}\right) \longrightarrow C^{i}\left(\mathfrak{K}, \mathrm{~L}_{G}, D\right)$ is the map induced by the refinement.

We set $B^{i}\left(\mathfrak{u}, \mathrm{~L}_{G, D}\right)=\operatorname{ker}^{\delta^{L} i}=\left\{\{L\} \mid\{L\} \in C^{i}\left(\mathfrak{u}, \mathrm{~L}_{G}, D\right), \delta^{L_{i}}(\{L\})=0\right\}, i=0.1$, and $H^{0}\left(\mathfrak{u}, \mathrm{~L}_{G, D}\right)=B^{\circ}\left(\mathfrak{u}, \mathrm{L}_{G, D}\right)$. On $B^{\prime}\left(\mathfrak{u}, \mathrm{L}_{G}, D\right)$, we define an equivalence relation \sim by

$$
\begin{gathered}
\left\{L_{U, V}\right\} \sim\left\{L_{U, V^{\prime}}\right\} \text { if } L_{U, V}-L_{U, V^{\prime}}=\rho_{D}\left(h_{U}\right)-\rho_{D}\left(h_{V}\right\rangle^{h_{U} g_{U V} h_{V}{ }^{-1}}, \\
L_{U, V}=\rho_{D}\left(g_{U V}\right), \text { for some }\left\{h_{U}\right\} \in C^{0}\left(\mathfrak{u}, \mathrm{G}_{d}\right) .
\end{gathered}
$$

We denote $H^{1}\left(\mathfrak{u}, \mathrm{~L}_{G, D}\right)$ the quotient set of $B^{1}\left(\mathfrak{u}, \mathrm{~L}_{G}, p\right)$ by this relation. Then, to set $H^{1}\left(M, \mathrm{~L}_{G, D}\right)=\lim \left[H^{1}\left(\mathfrak{U}, \mathrm{~L}_{G, D}\right), t_{\mathfrak{W}}^{\mathfrak{H}}\right]$, we have the following exact sequence of cohomology sets.

$$
\begin{align*}
0 \longrightarrow & H^{0}\left(M, \mathrm{G}_{c(D)}\right) \xrightarrow{i^{*}} H^{0}\left(M, \mathrm{G}_{d} \xrightarrow{\rho_{D}^{*}} \xrightarrow{\longrightarrow} H^{0}\left(M, \mathrm{~L}_{G, D}\right) \xrightarrow{\delta}\right. \tag{6}\\
& \longrightarrow H^{1}\left(M, \mathrm{G}_{c(D)}\right) \xrightarrow{i^{*}} H_{\mathrm{I}}\left(M, \mathrm{G}_{d}\right) \xrightarrow{\rho_{D}^{*}} H^{1}\left(M, \mathrm{~L}_{G}, D\right) .
\end{align*}
$$

Here $\delta: H^{0}\left(M, \mathrm{~L}_{G, D}\right) \longrightarrow H^{1}\left(M, \mathrm{G}_{c(D)}\right)$ is given by

$$
\delta(L)=\left\{g_{U V}\right\}, \quad g_{U_{V}}=h_{V}^{-1} h_{V}, \quad L \mid U=\rho_{D}\left(h_{U}\right) .
$$

Definition. (i). An element of $H^{1}\left(M, \mathrm{G}_{c(D)}\right)$ is called a $c(D)$-class G-bundle.
(ii). A smooth G-bundle in i^{*}-image is called a D-fat G-bundle.
(iii). A connection $\left\{\theta_{U}\right\}$ of D with respect to ξ, a smooth G-bundle, is called a D-flat connection if there exists $\left\{h_{U}\right\} \in C^{0}\left(U, \mathrm{G}_{d}\right)$ such that

$$
\theta_{U}=\rho_{D}\left(h_{U}\right), \text { for any } U \in \mathfrak{U} .
$$

Proposition 1. For any $\xi \in H^{\perp}\left(M, \mathrm{G}_{d}\right)$, the followings are equivalent.
(i). ξ is a D-flat G-bundle.
(ii). D allows 0 as a connection with respect to ξ.
(iii). D has a D-flat connection with respect to ξ.

Proof. If $\xi=\left\{g_{U V}\right\} \in H^{1}\left(M, \mathrm{G}_{c(D)}\right)$, we have $D_{U} \otimes 1_{\mathrm{H}}\left(g_{U V, 1} \otimes g_{U V}\right)=g_{U V, 2} \otimes g_{U V}$ $\left(D_{V} \otimes 1_{\mathrm{H}}\right)$, where $\left\{g_{U V}, i\right\}$ is the transition function of E_{i}. Hence (ii) follows from (i). If D allows 0 as a connection with respect to $\xi,\left\{-\rho_{D}\left(h_{U}\right)\right\}$ is a connection of D with respect to $\left\{h_{U}^{-1} g_{U V} h_{V}\right\}$ ([3]). Hence (iii) follows from (ii). If (iii) is hold, we have

$$
\left(1_{V_{2}} \otimes h_{U}\right)\left(D_{U} \otimes 1_{H}\right)\left(1_{V_{1}} \otimes h_{U}^{-1} g_{U V}\right)=\left(1_{V_{2}} \otimes g_{U V} h_{V}\right)\left(D_{V} \otimes 1_{H}\right)\left(1_{V 1} \otimes h_{V}^{-1}\right) .
$$

Hence $\left\{h_{U}{ }^{-1} g_{U V} h_{V}\right\}$ is a $c(D)$-lcass G-bundle and (i) follows from (iii).
Corollary. A G-bundle ξ is D-flat if and only if D has a D-flat connection with respect to ξ.

By proposition 1, (ii), if ξ is a $c(D)$-class G-bundle, D is lifted to a differential operator $C^{\infty}\left(M, E_{1} \otimes \xi\right) \longrightarrow C^{\infty}\left(M, E_{2} \otimes \xi\right)$ with connection 0 . This lift of D is denoted by $D \otimes 1_{\xi}$. By definition and proposition $1, D \otimes 1_{\xi}$ is defined if and only if ξ is a $c(D)$-class G-bundle.

Example. If $r(D)$ is maximal, D-flat is flat in the usual sence. On the other hand, if $D=\bar{\partial}$, a G-bundle ξ is D-flat if and only if G is a complex Lie group and ξ is a holomorphic G-bundle.
5. If $L \in H^{0}\left(M, \mathrm{~L}_{G, D}\right), L: C^{\infty}\left(M, \mathrm{E}_{1} \otimes \mathrm{H}\right) \longrightarrow C^{\infty}\left(M, E_{2} \otimes \mathrm{H}\right)$ is a differential operator of order at most $k-1$. Hence $D \otimes 1_{\mathrm{HI}}-L: C^{\infty}\left(M, \mathrm{E}_{1} \otimes \mathrm{H}\right) \longrightarrow C^{\infty}\left(M, \mathrm{E}_{2} \otimes \mathrm{H}\right)$ is a differential operator such that

$$
\begin{equation*}
\sigma\left(D \otimes 1_{\mathrm{H}}-L\right)=\sigma(D) \otimes 1_{\mathrm{H}} \tag{7}
\end{equation*}
$$

Here $\sigma(D)$, etc., means the principal symbol of D, etc., On the other hand, since $L \in H^{0}\left(M, \mathrm{~L}_{G, D}\right)$, we obtain

$$
\begin{equation*}
\left(D \otimes 1_{\mathrm{H}}-L\right) \mid U=D^{h_{u}=\left(1_{V_{2}} \otimes h_{U}\right)\left(D_{U} \otimes 1_{\mathrm{H}}\right)\left(1_{V_{1}} \otimes h_{U}{ }^{-1}\right), \quad L \mid U=\rho_{D}\left(h_{U}\right) . . . ~ . ~} \tag{8}
\end{equation*}
$$

(8) shows the commutativity of the diagram

$$
\begin{gathered}
C^{\infty}\left(M, \mathrm{E}_{1} \otimes \delta(L)\right) \xrightarrow{D \otimes 1_{\delta(L)}} C^{\infty}\left(M, E_{2} \otimes \delta(L)\right) \\
t_{\delta(L)} \mid \cong \\
t_{\delta(L)} \uparrow \cong \\
C^{\infty}\left(M, E_{1} \otimes \mathrm{H}\right) \xrightarrow{D \otimes 1_{\mathrm{H}}-L} C^{\infty}\left(M, E_{2} \otimes \mathrm{H}\right) .
\end{gathered}
$$

Here $t_{\delta(L)}$ is the map given by the smooth trivialization of $\delta(L)$. Explicitly, $t_{\delta(L)}$ is given by

$$
\begin{align*}
t_{\delta(L)}\left(\left\{f_{U} \otimes \varphi\right\}\right)= & f_{U} \otimes h_{U} \varphi, \delta(L)=\left\{h_{U} h_{V}^{-1}\right\} \tag{9}\\
& \varphi \text { is a smooth H-valued function. }
\end{align*}
$$

Using $t_{\delta(L)},(8)$ is rewritten as

$$
\begin{equation*}
t_{\delta(L)}\left(D \otimes 1_{\mathrm{H}}-L\right) t_{\delta(L)}{ }^{-1}=D \otimes 1_{\delta(L)} \tag{8}
\end{equation*}
$$

Definition. A differential operator of the form $D \otimes 1_{\mathrm{H}}-L$ is called a D-Fuchs type differential operator and $\delta(L)$ is called its monodromy bundle.

Lemma 7. $\delta(L)=\delta\left(L^{\prime}\right)$ if and only if there exists a smooth G-valued function f on M such that

$$
\begin{equation*}
L^{\prime}=\rho_{D}(f)+L^{f}, \quad L^{f}=\left(1_{E_{2}} \otimes f\right) L\left(1_{E_{1}} \otimes f^{-1}\right) \tag{10}
\end{equation*}
$$

Proof. By the exactness of (6), set $L=\rho_{D}\left(h_{U}\right)$ and $L^{\prime}=\rho_{D}\left(h_{U}{ }^{\prime}\right)$, we have

$$
\begin{gathered}
h_{U}^{\prime}=f h_{U} c_{U}, c_{U} \text { is a } c(D) \text {-class } G \text {-valued function on } U, \\
f \in H^{0}\left(M, \mathrm{G}_{d}\right) .
\end{gathered}
$$

This shows (10).
If $r(D)$ is maximal, there is a bijection $\chi: H^{1}\left(M, \mathrm{G}_{c(D)}\right) \longrightarrow \operatorname{Hom}\left(\pi_{1}(M), G\right)$. We call $\chi(\delta(L))$ the monodromy representation of $D \otimes 1_{\mathrm{H}}-L$ and $\chi(\delta(L))\left(\pi_{\mathrm{I}}(M)\right)$ the monodromy group of $D \otimes 1_{\mathrm{H}}-L$ (cf. Introduction). For $D=d / d z, \mathrm{H}=\mathrm{C}^{n}$, the $n-$ dimensional complex vector space, and M is a Riemann surface, these definitions are same as usual definitions.

Definition. The least structure group of $\delta(L)$ as a $c(D)$-class undle is called the monodromy group of $D \otimes 1_{\mathrm{H}}-L$.

In the rest of this \S, we construct the monodromy group of $D \otimes 1_{\mathrm{H}}-L$ under the assumption that G is a Lie group.

Definition. Denote $\pi_{F}: M_{F} \longrightarrow M$ the projection of a smooth G-bundle with the fibre F over M, if D can be lifted on $C^{\infty}\left(M_{F}, \pi_{F}{ }^{*}\left(E_{1}\right)\right)$ with connection 0 , we denote $\pi_{F}{ }^{*}(D)$ this lift of D.

Let F be a smooth right G-manifold with a G-invariant measure $d \mu$ constructed by G-invariant vector fields over F. Then, denote $U\left(\mathrm{~L}^{2}(F)\right)$ the group of unitary operators on $\mathrm{L}^{2}(F)=\mathrm{L}^{2}(F, d \mu)$, there is a unitary representation $\kappa: G \longrightarrow U\left(\mathrm{~L}^{2}(F)\right)$ given by the G action on F, and the following diagram is commutative.

Lemma 8. Let ξ be a D-flat G-bundle, θ a connection of associate F-bundle of $\xi, n(\xi)$ the associate $\mathrm{L}^{2}(F)$-bundle of ξ defined by θ (cf. [3]). Then, to denote M_{F} the tatal space of the associate F-bundle of $\xi, \pi_{F}{ }^{*}(D)$ is defined.

Proof. By the commutativity of (11) and proposition 1, $\kappa(\xi)$ is D-flat. Hence D can be lifted on $C^{\infty}\left(M_{F}, \pi_{F}{ }^{*}\left(E_{1}\right)\right)$ with connection 0 (cf. [3]). Therefore we get the lemma.

Corollary. (i). If $D \otimes 1_{\mathrm{H}}-L$ is a $D-F u c h s$ type operator and M_{F} is the associate F-bundle of $\delta(L)$ which satisfies the above assumptions, then $\pi_{F}{ }^{*}\left(D \otimes 1_{\mathrm{H}}-L\right)$ is defined.
(ii). Under the same assumptions, if M_{F} is the principal bundle, $\pi_{F}{ }^{*}(\xi)$ is trivial as a $c\left(\pi_{F}{ }^{*}(D)\right)$-class bundle.
(iii). Under the same assumptions, if $\pi_{F^{*}}(\delta(L))$ is a trivial $c\left(\pi_{F}{ }^{*}(D)\right)$-bundle then there is a smooth G-valued function f on M_{F} such that

$$
\begin{equation*}
\pi_{F}^{*}\left(D \otimes 1_{\mathrm{H}}-L\right)=\pi_{F}^{*}(D)^{f} . \tag{12}
\end{equation*}
$$

Proof. Since $\pi_{F}{ }^{*}(D)$ is defined, $\pi_{F}{ }^{*}\left(D_{U}\right)$ is equal to $\pi_{F}{ }^{*}\left(D_{V}\right)$ on $\pi_{F}{ }^{-1}(U) \cap \pi_{F}{ }^{-1}(V)$. Then, since $\left(D \otimes 1_{\mathrm{H}}-L\right) \mid U=D^{h} U, \pi_{F}^{*}\left(D \otimes 1_{\mathrm{H}}-L\right)$ is given by

$$
\begin{equation*}
\pi_{F}^{*}\left(D \otimes 1_{\mathrm{I}}-L\right) \mid \pi_{F}{ }^{-1}(U)=\left(\pi_{F}{ }^{*}\left(D_{U}\right)\right)^{\pi^{F} *\left(h_{U}\right)} . \tag{12}
\end{equation*}
$$

This shows (i). The trivialization of $\pi_{F}{ }^{*}(\xi)$ is given by

$$
\begin{equation*}
\left\{h_{U}(x, g) \mid h_{U}(x, g)=g \in G, x \in U \subset M\right\} . \tag{13}
\end{equation*}
$$

Hence we have (ii). (iii) follows from (12)'.
6. In this n^{0}, we use same notations and assumptions as in lemma 8. Since M_{F} is a right G-space, we set $f^{g}(u)=f(u g), u \in M_{F}, g \in G$. Here f is a function on M_{F}. The set of $c\left(\pi_{F}{ }^{*}(D)\right)$-class G-valued functions on M_{F} is denoted by $\mathrm{G}_{c(D), M_{F}}$ and we set

$$
\begin{aligned}
B^{1}\left(G, \mathrm{G}_{c(D), M_{F}}\right)=\left\{\chi: G \longrightarrow G_{c(D), M_{F}}\right. & \chi_{g h}=\chi_{h} \chi_{g}^{h}, \quad \chi_{g}^{h}(u) \\
& \left.=\chi_{g}(u h), \chi_{g}=\chi(g)\right\} .
\end{aligned}
$$

We call χ and $\chi^{\prime} \in B^{1}\left(G, \mathrm{G}_{c(D)}, M_{F}\right)$ to be equivalent if $\chi_{g}{ }^{\prime}=h^{-1} \chi_{g} h^{g}$ for some $h \in \mathrm{G}_{c(D), M F}$ and denote $H^{1}\left(G, \mathrm{G}_{c(D), M_{F}}\right)$ the quotient set of $B^{1}\left(G, \mathrm{G}_{c(D), M_{F}}\right)$ by this relation.

Since a constant function is a $c\left(\pi_{F}{ }^{*}(D)\right)$-class function invariant under the action of G, there is a map $\iota_{F}: \operatorname{Hom}(G, G) \longrightarrow H^{1}\left(G, \mathrm{G}_{c(D)}, M_{F}\right)$. Here Hom (G, G) means the set of Lie homomorphisms of G. We set

$$
\operatorname{ker} \iota_{F}=\left\{\kappa \mid \iota_{F}(\kappa)=\iota_{F}(1), 1_{g}=g \text { for all } g \in G\right\} .
$$

Definition. $\bar{\chi} \in H^{1}\left(G, \mathrm{G}_{c(D), M_{F}}\right)$ is called to have (smooth) representative function if there exists a smooth G-valued function f on M_{F} such that $f^{g}=f_{\chi g}, \chi \in \bar{\chi}, g \in G$. This f is called a representative function subordinate to $\bar{\chi}$.

If $\chi \sim \chi^{\prime}$, and χ has a representative function f, set $\chi_{g}{ }^{\prime}=h^{-1} \chi_{g} h^{g}, f^{\prime}=f h$ is a representative function subordinate to χ^{\prime}. Hence this definition does not depend on the choice of a representative of $\bar{\chi}$.

We set

$$
\begin{aligned}
& \delta\left(H^{0}\left(M, \mathrm{~L}_{G, D}\right)\right)_{M_{F}}=\left\{\delta(L) \mid \pi_{F}^{*}(\delta(L)) \text { is trivial, }\right\} \\
& H^{1}\left(G, G_{c(D)}, M_{F}\right)_{f}=\left\{\bar{\chi} \in H^{1}\left(G, \mathrm{G}_{c(D), M_{F}}\right) \mid \bar{\chi}\right. \text { has a smooth } \\
& \text { representative function }\} .
\end{aligned}
$$

Lemma 9. (i). There is a bijection $\chi: \delta\left(H^{0}\left(M, \mathrm{~L}_{G, D}\right)\right\rangle_{M_{F}} \longrightarrow H^{1}\left(G, \mathrm{G}_{c(D)}, M_{F}\right)_{f}$ and if M_{F} is the associate F-bundle of $\delta(L)$, we obtain

$$
\begin{equation*}
\chi(\delta(L)) \in \operatorname{ker} \iota_{F} . \tag{14}
\end{equation*}
$$

(ii). $\iota_{F}(k)$ belongs in $\mathrm{ker} \iota_{F}$ if and only if there exists $f \in \mathrm{G}_{c(D), M_{F}}$ such that

$$
\begin{equation*}
f^{g}=\kappa_{g}^{-1} f g \tag{15}
\end{equation*}
$$

Proof. If $\pi_{F}{ }^{*}(D)^{f}$ comes from an operator on M, set $f^{g}=f \chi_{g}, \chi=\left\{\chi_{g}\right\}$ defines an element of $H^{1}\left(G, \mathrm{G}_{c(D)}, M_{F}\right)$. If $\pi_{F}{ }^{*}(D)^{f}=\pi_{F}{ }^{*}(D)^{f^{\prime}}$, set $f^{g}=f_{\chi_{g}}, f^{\prime g}=f^{\prime} \chi_{g}{ }^{\prime}, \chi$ and χ^{\prime} define same element of $H^{1}\left(G, \mathrm{G}_{c(D), M_{F}}\right)$. Hence χ is 1 to 1 by lemma 7. If $\bar{\chi} \in H^{1}\left(G, \mathrm{G}_{c(D), M_{F}}\right)_{f^{\prime}}$, there exists f such that $f^{g}=f_{\chi g}, \chi \in \bar{\chi}$. Then $\pi_{F}^{*}(D)^{f}$ comes from a D-Fuchs type operator on M and χ is onto. If M_{F} is the associate F-bundle of $\delta(L)$, the trivialization of $\pi_{F}{ }^{*}\left(\delta(L)\right.$ given by (13) gives $\iota_{F}(1)$. This shows (14). (ii) follows from the definition of the equivalence in the definition of $H^{1}\left(G, \mathrm{G}_{c(D), M_{F}}\right)$.

Lemma 10. (i). If $x \in$ ker ι_{F}, there exists a smooth G-valued function f on M_{F} such that

$$
\begin{equation*}
\pi_{F}^{*}\left(D \otimes 1_{\mathrm{H}}-L\right)=\pi_{F} *(D)^{f}, \quad f^{g}=f_{n}(g) \tag{16}
\end{equation*}
$$

and the structure group of $\delta(L)$ is reduced to $\kappa(G)$ as a $c(D)$-class bundle.
(ii). If the structure group of $\delta(L)$ is reduced to G_{0} as a $c(D)$-class G-bundle, there exists $\kappa \in$ ker ι_{F} such that $\kappa(G)=G_{0}$.

Proof. Since κ has a representative function f, we have (16) by (15). (15) also shows the second assertion of (i). Since a $c(D)$-class reduction of the structure group of $\delta(L)$ gives a representative function on M_{F}, we obtain (ii) by lemma 9 , (ii).

Definition. We call $\kappa_{1} \kappa_{2}$ in Hom (G, G) (resp. in ker $\left.\iota_{F}\right)$, if $\kappa_{2}=\kappa \kappa_{1}$ for some $\kappa \in \operatorname{Hom}(G, G)\left(\right.$ resp. $\left.\kappa \in \operatorname{ker} \iota_{F}\right)$ and $\kappa_{1} \sim \kappa_{2}$ if $\kappa_{1} \kappa_{2}$ and $\kappa_{2} \kappa_{1}$.

Lemma 11. (i). If κ_{1} and κ_{2} belong in ker ι_{F}, there composition $\kappa_{1} \iota_{2}$ also belongs in ker ι_{F}.
(ii). If $\kappa_{1} \kappa_{2}$ and κ_{2} belong in ker ι_{F}, κ_{1} belongs in ker ι_{F}.

Proof. If $f_{1}^{g}=\kappa_{1, g}{ }^{-1} f_{1} g$ and $f_{2}{ }^{g}=\kappa_{2, g}{ }^{-1} f_{2} g$, we have

$$
\left(\kappa_{2}\left(f_{1}\right) f_{2}\right)^{g}=\kappa_{2}\left(\kappa_{1}(g)\right)^{-1} \kappa_{2}\left(f_{1}\right) f_{2} g .
$$

This shows (i). Similarly, if $f^{g}=\kappa_{1}\left(\kappa_{2}(g)\right)^{-1} f g$ and $f_{2}^{g}=\kappa_{2, g} g^{-1} f_{2} g$, we have $\left(K_{1}\left(f_{2}\right)^{-1} f\right)^{g}$ $=\kappa_{1,} g^{-1} \kappa_{1}\left(f_{2}\right)^{-1} f g$, which shows (ii).

Corollary. (i). If κ_{1} and κ_{2} are in ker ι_{F} and $\kappa_{1} \kappa_{2}$ in Hom $(G, G), \kappa_{1}>\kappa_{2}$ in $\operatorname{ker}^{\prime}{ }_{F}$.
(ii). If $\kappa_{1} \sim \kappa_{2}, \kappa_{1}(G)$ is isomorphic to $\kappa_{2}(G)$.

Proof. (i) follows from lemma 11, (ii). If $\kappa_{1} \sim \kappa_{2}$, we have $\kappa_{1}=\kappa \kappa_{2}$ and $\kappa_{2}=\kappa^{\prime} \kappa_{1}$. Hence $\operatorname{dim} \kappa_{1}(G)=\operatorname{dim} \kappa_{2}(G)$ and there are discreet subgroups N_{1} of $\kappa_{1}(G)$ and N_{2} of $\kappa_{2}(G)$ such that

$$
\kappa_{1}(G) / N_{1} \cong \kappa_{2}(G), \quad \kappa_{2}(G) / N_{2} \cong \kappa_{1}(G)
$$

because $\kappa_{1}(G)$ and $\kappa_{2}(G)$ are Lie groups. Hence there are isomorphisms $\widehat{\kappa}: \widetilde{\kappa_{1}(G)} \longrightarrow$ $\widetilde{\kappa_{2}(G)}$, where $\widetilde{\kappa_{1}(G)}$ and $\widetilde{\kappa_{2}(G)}$ are the universal covering groups of $\kappa_{1}(G)$ and $\kappa_{2}(G)$,
and $\widehat{\kappa}^{\prime}: \widetilde{\kappa_{1}(G) \longrightarrow} \sim \kappa_{1}(G)$ such that $\widehat{\kappa}$ maps $\pi_{1}\left(\kappa_{1}(G)\right)$ isomorphic into $\pi_{1}\left(\kappa_{2}(G)\right)$ and $\widehat{\kappa}^{\prime}$ maps $\pi_{1}\left(\kappa_{2}(G)\right)$ isomorphic into $\pi_{1}\left(\kappa_{1}(G)\right\rangle$. Since $\kappa_{1}(G)$ and $\kappa_{2}(G)$ are Lie groups, this shows $\hat{\kappa}: \pi_{1}\left(\kappa_{1}(G)\right) \cong \pi_{1}\left(\kappa_{2}(G)\right)$ and we have (ii).

Lemma 12. ker ι_{F} has the least element in the above semiorder.
Proof. Let $\{\kappa \alpha\}$ be an increasing system in ker ι_{F} and set $\kappa \alpha(G)=G_{\alpha}$. Then there are Lie epimorphisms $\kappa_{\alpha}^{\beta}, \beta<\alpha$ and Lie monomorphisms $\iota \alpha$ such that

$$
\kappa_{\alpha}^{\beta} \kappa_{\alpha}=\kappa_{\beta}^{\beta}, \kappa_{\alpha}^{\beta}: G_{\alpha} \longrightarrow G_{\beta}, \quad \iota \alpha: G_{\alpha} \longrightarrow G, \quad \kappa_{\alpha}^{\beta} \iota \alpha=\iota \beta .
$$

Hence $\lim \left[G_{\alpha}: \kappa_{\alpha}^{\beta}\right]=G_{0}, \kappa_{0}: G \longrightarrow G_{0}$ and $\iota_{0}: G_{0} \longrightarrow G$ are defined. Since κ_{α}^{β} and ι_{α} are Lie maps, κ_{0} is a Lie epimorphism and ι_{0} is a Lie monomorphism.

By lemma 9, (ii), there exists $f_{\alpha} \in \mathrm{G}_{c(D), M_{F}}$ such that $\left(f_{\alpha}\right)^{g}=\left(\kappa_{\alpha}\right)_{g}{ }^{-1} f_{\alpha g}$ for any α. Then, since $\left(\kappa_{\alpha}^{\beta} f_{\alpha}\right)^{g}=(\kappa \beta) g_{g}{ }^{-1} f_{\beta} g$, set

$$
f_{0}=\ell_{0}\left\{\left\langle\kappa \beta^{\alpha} f_{\alpha}\right\}\right\}
$$

$f_{0} \in \mathrm{G}_{c(D)}, M_{F}$. Because each κ_{α}^{β} is a smooth map and $f_{0}{ }^{g}=\left(\kappa_{0}\right)_{g}{ }^{-1} f_{0} g$. Hence by Zorn's lemma, there exist minimum elements in ker ι_{F}. But if κ_{1} and κ_{2} are different minimum elements in ker $\iota_{F}, \kappa_{1} \kappa_{2}$ and $\kappa_{2} \kappa_{1}$ are in ker ι_{F} by lemma 11, (i). Hence $\kappa_{1}>\kappa_{2}$ and $\kappa_{2}>\kappa_{1}$. Therefore $\kappa_{1} \sim \kappa_{2}$ and ker ι_{F} has the least element.

Definition. The least element of $\mathrm{ker} \iota_{F}$ is called the monodromy homomorphism (or representation) of $D \otimes 1_{\mathrm{H}}-L$.

By lemma 10, (ii), lemma 12 and the definition of the monodromy groups of D-Fuchs type operators, we obtain

Theorem 1. If G is a Lie group, a D-Fuchs type operator has the monodromy group.

Proof. Since $D \otimes 1_{\mathrm{H}}-L$ has the monodromy homomorphism and the image of G by the monodromy homomorphism is the least structure group of $\delta(L)$ as a $c(D)$ -class bundle, we have the theorem.

§3. Characteristic classes related to $c(D)$-class bundles

7. In this § and next §, we assume $\mathrm{H}=\mathrm{C}^{n}$ and $G=G L(n, \mathrm{C})$.

By the commutative diagram in $n^{\circ} 3$, example, we have the following commutative diagram with exact lines

Lemma 13 (i). $\xi \in H^{1}\left(M, \mathbf{C}_{d}{ }^{*}\right)$ is in i^{*}-image if and only if $\delta_{2} k^{*-1} \rho_{D}{ }^{*}(\xi)=0$.
(ii). Let ch: $H^{1}\left(M, \mathrm{C}^{*}{ }_{d}\right) \cong H^{2}(M, \mathbb{Z})$ be the isomorphism given by $\operatorname{ch}(\xi)=c^{1}(\xi)$, the first Chern class of ξ, and $\iota: \mathbb{Z} \longrightarrow \mathrm{C}_{c(D)}$ the inclusion, then

$$
\begin{equation*}
\delta_{2} k^{*-1} \rho_{D}{ }^{*}(\xi)=\iota^{*} c h(\xi), \quad \xi \in H^{1}\left(M, \quad \mathbf{C}^{*}{ }_{d}\right) \tag{17}
\end{equation*}
$$

Proof. (i) follows from the definition. By the definition of k, we have

$$
\delta_{2} k^{*-1} \rho_{D}^{*}(\xi)=\frac{1}{2 \pi \sqrt{-1}}\left(\log g_{U V}+\log g_{V W}+\log g_{W U}\right), \xi=\left\{g_{U V}\right\}
$$

Since this right hand side represents $\operatorname{ch}(\xi)$, we get (17).
Definition. Let ξ be a GL(n, C)-bundle over M, denote ch(ξ) its tatal Chern class, then we call $\iota^{*}(c h(\xi))$ the (tatal) $c(D)$-characteristic class of ξ. The component of $\iota^{*}(c h(\xi))$ in $H^{2 p}\left(M, \mathbf{C}_{c(D)}\right)$ is called $p-t h c(D)$-characteristic class of ξ.

Example. If $r(D)$ is maximal, $c(D)$-characteristic class is the (tatal) complex Chern class. If M is a compact Kaehler manifold and $D=\overline{\bar{\partial}}, p$-th $c(D)$-characteristic class is the ($0,2 p$)-component of p-th complex Chern class.

In the rest, we denote the flag manifold $G L(m, \mathbf{C}) / \Delta(m, \mathbf{C})=\mathrm{U}(m) / T^{m}$ by $F=$ $F(m)$. The associate Flag bundle of a $(c(D)$-class) $G L(m, \mathbf{C})$-bundle ξ is denoted by $M_{F}=\left\{M_{F}, F, M, \pi_{F}\right\}$.

Lemma 14. Under the above notations, if ξ is a $c(D)$-class bundle, $\pi_{F}{ }^{*}: H^{*}(M$, $\left.\mathrm{C}_{c(D)}\right) \longrightarrow H^{*}\left(M_{F}, \mathbf{C}_{\left.c\left(\tilde{T}_{F}{ }^{*}(D)\right)\right)}\right.$ is a monomorphism.

Proof. If $\pi_{F}{ }^{-1}(U)=U \times F,\left(\mathrm{C}_{c(D)} \mid U\right) \otimes \mathrm{C}_{d}(F)$ is dense in $\mathrm{C}_{c\left(\pi_{F}{ }^{*}(D)\right.} \mid \pi_{F}{ }^{-1}(U)$, that is $H^{0}\left(U, \mathrm{C}_{c(D)}\right) \otimes H^{0}\left(\mathrm{~F}, \mathrm{C}_{d}\right)$ is dense by the \mathscr{C}^{∞}-topology in $\left.H^{0}\left(\pi_{F^{-1}}(U), \mathrm{C}_{c\left(\pi_{F}\right.}{ }^{*}(D)\right)\right)$. Since $\mathrm{C}_{d}(F)$ is a fine sheaf, $H^{*}\left(M_{F}, \mathrm{C}_{C\left(\pi_{F}{ }^{*}(D)\right)}\right)$ is calculated by a covering of the form $\left\{\pi_{F}{ }^{-1}(U)\right\}$ by Leray's theorem. Then, taking the invariant measure $d \mu$ on F such that $\int_{F} d \mu=1$, we set

$$
\int_{F}\left\{g_{i o, \ldots, i_{p}}\right\}=\left\{\int_{F} g_{i 0, \ldots, i p} d \mu\right\}
$$

$$
g_{i_{0}, \ldots, i_{p}} \text { is defined on } \pi_{F}^{-1}\left(U_{i_{0}}\right) \cap \ldots \cap \pi_{F}{ }^{-1}\left(U_{i_{p}}\right)=\pi_{F}^{-1}\left(U_{i o n} \ldots \cap U_{i_{p}}\right) .
$$

By definition, \int_{F} defines a homomorphism from $H^{*}\left(M_{F}, \mathrm{C}_{\left.c\left(\pi_{F}{ }^{*}(D)\right)\right)}\right.$ into $H^{*}\left(M, \mathrm{C}_{c(D)}\right)$ and $\int_{F} \pi_{F}{ }^{*}$ is the identity. Hence we get the lemma.

Corollary. Under the same assumptions, $c(D)$-characteristic class of ξ vanishes if and only if $c\left(\pi_{F}^{*}(D)\right)$-characteristic class of $\pi_{F}{ }^{*}(\xi)$ vanishes.

Proof. Since $\pi_{F}{ }^{*}$ in both sides in the following commutative diagram are monomorphisms, we have the lemma.

$$
\begin{aligned}
& H^{*}\left(M_{F}, \mathbb{Z}\right) \xrightarrow{\iota^{*}} H^{*}\left(M_{F}, \mathrm{C}_{\left.c\left(\pi_{F}{ }^{*}(D)\right)\right)}^{\pi_{F^{*}} \dagger}\right. \\
& H_{F^{*}}(M, Z) \xrightarrow{\pi^{*} \mid} H^{*}\left(M, \mathrm{C}_{c(D)}\right) .
\end{aligned}
$$

Proposition 2. If ξ is a $c(D)$-class $G L(m, \mathbf{C})$-bundle, its $c(D)$-characteristic class vanishes.

Proof. By lemma 13, the proposition is true if $m=1$. Set $m=q+1$ and assume the proposition is true for $c(D)$-class $G L(r, \mathrm{C})$-bundle if $r \leqq q$.

On $M_{F}, \pi_{F}{ }^{*}(\xi)$ is an extension bundle of a $c\left(\pi_{F}{ }^{*}(D)\right)$-class $G L(q, \mathrm{C})$-bundle η_{q} and a $c\left(\pi_{F^{*}}(D)\right)$-class complex line bundle η_{1}. Since $\mathrm{C}_{c\left(\pi_{F}{ }^{*}(D)\right)}$ is a sheaf of rings by lemma 2, (i), $\iota^{*}\left(\operatorname{ch}\left(\eta_{1}\right)\right)_{\iota^{*}}{ }^{*}(c h(\eta q))$ is defined and we have

$$
\iota^{*}\left(\operatorname{ch}\left(\pi_{F}^{*}(\xi)\right\rangle\right)=\iota^{*}\left(\operatorname{ch}\left(\eta_{1}\right)\right) \cup_{l}^{*}\left(\operatorname{ch}\left(\eta_{q}\right)\right)=0,
$$

by inductive assumption. Hence we obtain the proposition by corollary of Lemma 14.

Note. For flat bundles and holomorphic bundles, this proposition is known. In fact, a vector bundle is flat if and only if its curvature form is equal to 0 and therefore its complex Chern class is equal to 0 . On the other hand, a vector bundle is equivalent to a holomorphic bundle if and only if (0,2)-type part of its curvature form is equal to 0 . Hence ($0,2 p$)-type part of the Chern class of a holomorphic vector bundle is equal to 0 .
8. For $\left\{g_{i o}, \ldots, i_{p}\right\} \in C^{p}\left(\mathfrak{u}, \mathbb{C}^{*}{ }_{c(D)}\right)$ and $\left\{h_{i o,}, \ldots, i_{q}\right\} \in C^{q}\left(\mathfrak{u}, \mathbf{C}^{*}{ }_{c(D)}\right)$, we set

$$
\begin{aligned}
& (g * h)_{i_{0}, \ldots, i_{p+q+1}}=\exp \left[\frac{1}{2 \pi \sqrt{ }-1} \log g_{i o, \ldots, i_{p}}(\delta \log h)_{i p, \ldots, i_{p+q+1}}\right], \\
& (\delta \log h)_{i_{0}, \ldots, i_{q+1}}=\sum_{j=0}^{q+1}(-1)^{j} \log h_{i 0_{0}, \ldots, i_{j-1}, i_{j+1}, \ldots, i_{q+1} .}
\end{aligned}
$$

Here we assume \mathfrak{U} is sufficiently fine and $\log g_{i 0^{\prime}, \ldots, i_{p}}$ or $\log h_{i 0}, \ldots, i_{q}$ are determined as 1-valued functions. The choice of the branch of logarithm is arbitraly, and therefore this definition of $(g * h)$ depend on the choice of the branch of logarithm.

Lemma 15. (i). If $\left\{g_{i 0}, \ldots, i_{p}\right\}$ and $\left\{h_{i_{0}, \ldots, i_{q}}\right\}$ are both cocycles, $\left\{\left(g^{*} h_{i_{0}}, \ldots, i_{p+q+1}\right\}\right.$ is a cocycle and its cohomology class in $H^{p+q+1}\left(M, \mathbb{C}^{*}{ }_{c(D)}\right)$ does not depend on the choice of the branch of logarithm.
(ii). If either of $\left\{g_{\left.i_{0}, \ldots, i_{p}\right\}}\right\}$ or $\left\{h_{\left.i_{0}, \ldots, i_{q}\right\}}\right.$ is a coboundary and the other is a cocycle, $\left\{\left(g_{*}\right)_{\left.i_{0}, \ldots, i_{p+q+1}\right\}}\right\}$ is a coboundary.

Proof. Since we have

$$
\begin{aligned}
& \log g_{i_{1}, \ldots, i_{p+1}}(\delta \log h)_{i_{p+1}, \ldots, i_{p+q+2}}- \\
& -\log g_{i 0, i_{2}, \ldots, i_{p+1}}(\delta \log h)_{i_{p+1}, \ldots i_{p+q+2}}+\cdots+
\end{aligned}
$$

$$
\begin{aligned}
& +(-1)^{p} \log g_{i 0, \ldots, i_{p-1}, i_{p+1}}(\delta \log h)_{i_{p+1}, \ldots, i_{p+q+2}}+ \\
& +(-1)^{p+1} \log g_{i_{0}, \ldots, i_{p}}(\delta \delta \log h)_{i_{p, i}, i_{p+2}, \ldots, i_{p+q+2}}+\cdots+ \\
& +(-1)^{p+q+2} \log g_{i_{0}, \ldots, i_{p}}(\delta \log h)_{i_{p}, \ldots, i_{p+q+1}} \\
& =(\delta \log g)_{i_{0}, \ldots, i_{p+q+1}}(\delta \delta \log h)_{i_{p+1}, \ldots, i_{p+q+2}}+ \\
& +(-1)^{p} \log g_{i_{0}, \ldots, i_{p}}\{\delta(\delta \log h)\}_{i_{p}, \ldots, i_{p+q+2}},
\end{aligned}
$$

$\left\{\left(g_{*} h\right)_{i_{0}, \ldots, i_{p^{+q+1}}}\right\}$ is a cocycle if $\left\{g_{i_{0}, \ldots, i_{p}}\right\}$ and $\left\{h_{i_{0}, \ldots, i_{q}}\right\}$ are both cocycles. If we take other branches of logarithm in the definition of $\left(g_{*} h\right)$, denote $\log ^{\prime}$ other branches of log, we get

$$
\begin{aligned}
& \left(g_{*} h\right)_{i_{0}, \ldots, i_{p+q+1}}\left\{\left(g_{*} h\right)^{\prime} i_{i 0}, \ldots, i_{p+q+1}\right\}^{-1} \\
& =\exp \left[\frac { 1 } { 2 \pi \sqrt { } - 1 } \left\{\left(\log g_{i o, \ldots, i_{p}-\log ^{\prime} g_{i o}, \ldots, i_{p}}\right)\langle\delta \log h\rangle_{i_{p}, \ldots, i_{p+q+1}}+\right.\right. \\
& \left.+\log ^{\prime} g_{i_{0}, \ldots, i_{p}}\left\{(\delta \log h\rangle_{i_{p}, \ldots, i_{p+q+1}}-\left(\delta \log ^{\prime} h\right)_{i_{p}, \ldots, i_{p+q+1}}\right\}\right\} .
\end{aligned}
$$

Since $(1 / 2 \pi \sqrt{-1})(\delta \log h)_{i p, \ldots, i_{p+q+1}}$ is an integer if $\left\{h_{i_{0}, \ldots, i_{p}}\right\}$ is a cocycle, we get by this formula

$$
\begin{aligned}
& \left(g_{*} h\right)_{i_{0}, \ldots, i_{p+q+1}}\left\{\left(g_{*} h\right)^{\prime} i_{0,}, \ldots, i_{p+q+1}\right\}^{-1} \\
= & g_{i_{0}, \ldots, i_{p}} n_{i_{p+1}, \ldots, i_{p+q+1}-n_{i_{p},}, i_{p+2}, \ldots, i_{p+q+1}+\cdots+(-1)^{q+1}} n_{i_{p}, \cdots, i_{p+q}},
\end{aligned}
$$

where each $n_{i o, \ldots i_{q}}$ is an integer. Then, to define $f_{i 0, ., i_{p+q}}$ by

$$
f_{i 0, \ldots, i_{p+q}}=g_{i o, \ldots, i_{p}} n_{i p, \cdots, i_{p+q}},
$$

we get

$$
\begin{aligned}
& (\delta f)_{i 0, \ldots, i_{p+q+1}} \\
& =\left(g_{i 1}, \ldots, i_{p} g_{i 0, i_{2}, \ldots, i_{p+1}}{ }^{-1} \cdots g_{i 0, \ldots, i_{p-1}, i_{p+1}}(-1)^{p}\right)^{n_{i_{p+1}, \ldots, i_{p+q+1}}} \\
& \text { - } \left.g_{i 0, \ldots, i_{p}}{ }^{\left((-1)^{p+1}\right.} n_{i p i p+2}, \ldots, i_{p+q+1}+\cdots+(-1)^{p+q+1} n_{i p}, \ldots, i_{p+q}\right) \\
& =g_{i 0, \ldots, i_{p}}{ }^{(-1)^{p}} n_{i p+1}, \ldots, i_{p+q+1} g_{i 0}, \ldots, i_{p}\left((-1)^{p+1} n_{i p, i_{p+2}, \ldots, i_{+q+1}+\cdots+(-1)^{p+q+1}} n_{\left.i p p, \ldots, i_{p+q}\right)},\right.
\end{aligned}
$$

if $\left\{g_{i_{0}, \ldots, i_{p}}\right\}$ is a coboundary. Hence we obtain the second assertion of (i).
If $\left\{h_{i 0}, \ldots i_{q}\right\}$ is a coboundary, we also get

$$
\left.\left(g_{*} h\right)_{i_{0}, \ldots, i_{p+q+1}}=g_{i_{0}, \ldots, i_{p}}{ }^{\left(n_{i+1}, \ldots, i_{p+q+1}-n_{i p}, i_{p+2}, \ldots, i_{p+q+1}+\cdots+(-1)^{q+1}\right.} n_{i_{p}, \cdots, i_{p+q}}\right),
$$

because $\left\{(1 / 2 \pi \sqrt{-1})(\delta h)_{i_{0}, \ldots, i_{q+1}}\right\}$ is an integral coboundary in this case. Hence
$\left\{\left(g_{*} h\right)_{i_{0}, \ldots, i_{p+q+1}}\right\}$ is a coboundary if $\left\{g_{i, \ldots, i_{p}}\right\}$ is a cocycle. But since

$$
\begin{aligned}
& \delta\left(\log g_{i o,}, \ldots, i_{p} \log h_{i_{p}, \ldots, i_{p+q}}\right)_{i o, \ldots, i_{p+q+1}} \\
= & (\delta \log g)_{i_{0}, \ldots, i_{p+1}} \log h_{i_{p+1}, \ldots, i_{p+q+1}}+ \\
+ & (-1)^{p} \log g_{i_{0}, \ldots, i_{p}}(\delta \log h)_{i_{p}, \ldots, i_{p+q+1}},
\end{aligned}
$$

we may define $g_{*} h$ by

$$
\begin{aligned}
& \left(g_{*} h\right)_{i_{0}, \ldots, i_{p+q+1}} \\
= & (-1)^{p+1}\left[\frac{1}{2 \pi \sqrt{ }-1}(\delta \log g)_{i_{0}, \ldots, i_{p+1}} \log h_{i_{p}, \ldots, i_{p+q+1}}\right] .
\end{aligned}
$$

Hence $\left\{\left(g_{*} h\right)_{i_{0}, \ldots, i_{p+q+1}}\right\}$ is a coboundary if $\left\{g_{i_{0}, \ldots, i_{p}}\right\}$ is a coboundary and $\left\{h_{i_{0}, \ldots, i_{q}}\right\}$ is a cocycle. Therefore we obtain (ii).

Definition. If $c_{p} \in H^{p}\left(M, \mathrm{C}^{*}{ }_{c(D)}\right)$ and $c_{q} \in H^{q}\left(M, \mathrm{C}^{*}{ }_{c(D)}\right)$ are the cohomology classes of cocycles $\left\{g_{i_{0}, \ldots, i_{p}}\right\}$ and $\left\{h_{i_{0}, \ldots, i_{q}}\right\}$, we denote $c_{p *} c_{q}$ the cohomology class of $\left\{\left(g_{*} h\right)\right.$ $\left.i_{0}, \ldots, i_{p+q+1}\right\}$ in $H^{p+q+1}\left(M, \mathbb{C}_{c(D)}^{*}\right)$ and call the ${ }^{*-p r o d u c t ~ o f ~} c_{p}$ and c_{q}.

Lemma 16. (i). $\sum_{1 p} H^{p}\left(M, \mathbb{C}^{*}{ }_{c(D)}\right)$ is a ring by the $*^{- \text {-product. That is, we have }}$

$$
\begin{aligned}
& c_{1 *}\left(c_{2 *} c_{3}\right)=\left(c_{1 *} c_{2}\right)_{* 3}, c_{1 *} c_{2}=(-1)^{p+1} c_{2 *} c_{1}, c_{1} \in H^{p}\left(M, \mathbb{C}_{c(D)}^{*}\right), \\
& c_{1 *}\left(c_{2} c_{3}\right)=\left(c_{1 *} c_{2}\right) \quad\left(c_{1 *} c_{3}\right), c c^{\prime} \text { is the usual product in } \sum_{p} H^{p}\left(M, \mathbf{C}^{*}{ }_{c(D)}\right) .
\end{aligned}
$$

(ii). Let $\delta: \sum_{b} H^{p-1}\left(M, \mathbb{C}_{c(D)}^{*}\right) \longrightarrow \sum_{D} H^{p}(M, \mathbb{Z})$ be the coboundary homomorphism, we have

$$
\begin{equation*}
\delta\left(c_{1 *} * c_{2}\right)=\left(\delta c_{1}\right) \cup \delta\left(c_{2}\right) . \tag{18}
\end{equation*}
$$

Proof. Since we have

$$
\begin{aligned}
& \delta\left(\log g_{i_{0}, \ldots, i_{p}}(\delta \log h)_{i_{p}, \ldots, i_{p+q+1}}\right) \\
= & \delta \log g_{i_{0}, \ldots, i_{p+1}}(\delta \log h)_{i_{p+1}, \ldots, i_{p+q+2}}, \\
& \log g_{i_{0}, \ldots, i_{p}}(\delta \log h)_{i_{p+1}, \ldots, i_{p+q+1}}- \\
& -(-1)^{p+1}\left(\delta \log g_{i_{0}, \ldots, i_{p+1}}\right) \log h_{i_{p+1}, \ldots, i_{p+q+1}} \\
= & (-1)^{p+1}\left(\delta\left(\log g_{i_{0}, \ldots, i_{p}} \log h_{i_{p}, \ldots, i_{p+q}}\right)_{i_{0}, \ldots, i_{p+p+1}}\right), \\
& \delta \log f_{i_{0}, \ldots, i_{p+1}}(\log g h)_{i_{p+1}, \ldots, i_{p+q+1}} \\
= & \delta \log f_{i_{0}, \ldots, i_{p+1}}\left(\log g_{i_{p+1}, \ldots, i_{p+q+1}}+\log h_{i_{p+1}, \ldots, i_{p+q+1}}\right),
\end{aligned}
$$

we obtain (i) by lemma 15 .
By the definition of $*$-product, we get

$$
\begin{aligned}
& \frac{1}{2 \pi \sqrt{-1}}\left(\delta \log \left(g_{*} h\right)\right\rangle_{i_{0}, \ldots, i_{p+q+1}} \\
= & \frac{1}{2 \pi \sqrt{-1}}(\delta \log g)_{i_{0}, \ldots, i_{p+1}} \frac{1}{2 \pi \sqrt{-1}}(\delta \log h)_{i_{p+1}, \ldots, i_{p+q+2}} .
\end{aligned}
$$

Since this right hand side represents $\delta\left(c_{1}\right) \cup \delta\left(c_{3}\right)$, we obtain (ii).
Corollary. $\delta: \sum_{p} H^{p-1}\left(M, \mathbb{C}_{c(D)}^{*}\right) \longrightarrow \sum_{p} H^{p}(M, Z \mathbb{Z})$ is a ring homomorphism, where the products are *-product and cup-product. Especially, $\sum H^{2 p-1}\left(M, \mathbb{C}_{c(D)}^{*}\right)$ is a commutative ring.

Note. We know $\delta: \sum_{j p} H^{p-1}\left(M, \mathbb{C}_{d}^{*}\right) \cong \sum_{p} H^{p}(M, \mathbb{Z})$. In this case, we have $c_{1}{ }^{*} c_{2}=\delta^{-1}\left(\delta\left(c_{1}\right) \cup \delta\left(c_{2}\right)\right)$ by (18).
9. As in $n^{\circ} 7$, we fix a $c(D)$-class $G L(q, \mathbb{C})$-bundle ξ and its associate $F(q)-$ bundle $M_{F}=\left\{M_{F}, F(q), M, \pi_{F}\right\}$. Then we have the following commutative diagram with exact lines.

$$
\begin{aligned}
& H^{2 p-1}\left(M_{F}, \mathbb{Z}\right) \xrightarrow{\ell^{*}} H^{2 p-1}\left(M_{F}, \mathbb{C}_{c\left(\pi F^{*}(D)\right)}\right) \xrightarrow{\exp ^{*}} H^{2 p-1}\left(M_{F}, \mathbb{C}_{c\left(\pi F^{*}(D)\right)}\right) \longrightarrow
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{c}
\xrightarrow{\delta} H^{2 p}\left(M_{F}, \mathbb{Z}\right) \\
\xrightarrow{\delta} H_{F}^{*} H^{2 p}(M, \mathbb{Z}) .
\end{array}
\end{aligned}
$$

In this diagram, each π_{F}^{*} is a monomorphism except $\pi_{F}{ }^{*}: H^{2 p-1}\left(M, \mathbb{C}^{*}{ }_{c(D)}\right) \longrightarrow$ $H^{2 p-1}\left(M_{F}, \mathbb{C}_{c}^{*}{ }_{c} \pi_{\left.F^{*}(D)\right)}\right)$. Hence $\pi_{F}{ }^{*}: H^{2 p-1}\left(M, \mathbb{C}^{*} c(D)\right) \longrightarrow H^{2 p-1}\left(M_{F}, \mathbb{C}^{*}{ }_{c}\left(\pi_{F^{*}(D)}\right)\right)$ is also a monomorphism. On the other hand, if $c \in H^{2 p-1}\left(M_{F}, \mathbb{C}^{*} c\left(\pi F^{*}(D)\right)\right)$ is in δ-kernel, set $c=\exp ^{*}(b), b \in H^{2 p-1}\left(M_{F}, \mathbb{C}_{c\left(\pi_{F}^{*}(D)\right)}\right), \int_{F} b$ is defined. Since $\int_{F^{e^{*}}}(a), a \in H^{2 p-1}\left(M_{F}\right.$, $\mathbb{Z})$, is in ι^{*}-image by the definition of $\int_{F,} \exp ^{*}\left(\int_{F} b\right) \in H^{2 p-1}\left(M, \mathrm{C}_{c(D)}^{*}\right)$ is determined by c. Hence we may define $\int_{F} c$ by

$$
\int_{F} c=\exp ^{*}\left(\int_{F} b\right), c=\exp ^{*}(b)
$$

On $M_{F}, \pi_{F}{ }^{*}(\xi)$ is an m-fold extension of $c\left(\pi_{F}{ }^{*}(D)\right)$-class \mathbb{C}^{*}-bundles $\eta_{1}, \ldots, \eta_{q}$ as a $c\left(\pi_{F}^{*}(D)\right)$-class bundle. Then, regard each η_{i} to be an element of $H^{1}\left(M_{F}\right.$, $\left.\mathbb{C}^{*} c^{*}\left(\pi F^{*}(D)\right)\right\rangle$, we have

$$
\begin{equation*}
\pi_{F}^{*}\left(c^{p}(\xi)\right)=\sum \delta\left(\eta_{i_{1}}\right) \cup \ldots \cup_{\delta}\left(\eta_{i_{p}}\right), \quad p \leqq q \tag{19}
\end{equation*}
$$

Here $c^{p}(\xi)$ is the p-th integral Chern class of ξ and $\sum X_{i_{1}} \ldots X_{i_{p}}$ is the p-th ele-
mentary symmetric function of indeterminants X_{1}, \ldots, X_{q}.

$$
\begin{equation*}
\delta\left(\Pi \eta_{i_{1} * \ldots} \ldots * \eta_{i_{p}}\right)=\pi_{F^{*}}{ }^{*}\left(c^{p}(\xi)\right) \tag{20}
\end{equation*}
$$

Since $c^{p}(\xi)$ is in δ-image by proposition 2, there is an element $b^{p} \in H^{2 p-1}(M$, $\left.\mathrm{C}^{*}{ }_{c(D)}\right)$ such that

$$
\delta\left(\pi_{F}{ }^{*}\left(b^{p}\right)\right)=\delta\left(\Pi \eta_{i_{1}{ }^{*} \ldots * \eta_{i_{p}}}\right) .
$$

Hence $\int_{F}\left(\Pi \eta_{i 1^{*}} \ldots * \eta_{i_{p}}\right)-\pi_{F}{ }^{*}\left(b^{b}\right)$ is defined. If $\delta\left(\pi_{F}^{*}\left(b^{\prime}\right)\right)=\delta\left(\Pi \eta_{i_{1}{ }^{*}} \ldots * \eta_{i_{p}}\right)$, we get

$$
\begin{aligned}
& \int_{F}\left\{\left(\Pi \eta_{i 1^{*} *} \ldots * \eta_{i_{p}}\right)-\pi_{F}^{*}(b)\right\}-\int_{F}\left\{\left(\Pi \eta_{\left.\left.i_{1}{ }^{*} \ldots * \eta_{i_{p}}\right)-\pi_{F}{ }^{*}\left(b^{\prime}\right)\right\}}^{=}\right.\right. \\
= & \int_{F} \pi_{F}^{*}\left(b^{\prime}-b\right)=b^{\prime}-b .
\end{aligned}
$$

 $\left.\mathbf{C}^{*}{ }_{c(D)}\right)$ does not depend on the choice of b^{p}.

Definition. For a $c(D)$-class $G L(q, \mathrm{C})$-bundle ξ, we define $b^{p}(\xi) \in H^{2 p-1}\left(M, \mathrm{C}^{*}{ }_{c(D)}\right)$ by

$$
\begin{equation*}
b^{p}(\xi)=b^{p}+\int_{F}\left\{\left(\Pi \eta_{i_{1}{ }^{*} \ldots * \eta_{i p}}\right)-\pi_{F}{ }^{*}\left(b^{p}\right)\right\}, \delta\left(\pi_{F}^{*}\left(b^{p}\right)\right)=\delta\left(\Pi \eta_{i_{1}{ }^{*}} \ldots * \eta_{i_{p}}\right) . \tag{21}
\end{equation*}
$$

We also set $b(\xi)=\sum_{p \geq 1} b^{p}(\xi)$.
By the definition of $b^{p}(\xi)$ and (20), we obtain
Theorem 2. (i). $b^{p}(\xi)=0$ if $p>q$ and we have

$$
\begin{equation*}
\delta\left(b^{p}(\xi)\right)=c^{p}(\xi) \text {, the } p \text {-th integral Chern class of } \xi \text {. } \tag{19}
\end{equation*}
$$

(ii). If $M_{Y}=\left\{M_{Y}, Y, M, \pi_{Y}\right\}$ is a $c(D)$-class bundle over M with the smooth fibre Y, and ξ is a $c(D)$-class $G L(q, \mathrm{C})$-bundle over M, then

$$
\pi_{Y}^{*}\left(b^{p}(\xi)\right)=b^{p}\left(\pi_{Y} *(\xi)\right)
$$

(iii). If ξ is a $c(D)$-class extension of $c(D)$-class bundles η_{1} and η_{2}, then

$$
1+b(\xi)=\left(1+b\left(\eta_{1}\right)\right) *\left(1+b\left(\eta_{2}\right)\right)
$$

(iv). If $\xi=\delta(L), b^{p}(\xi)$ is in $\exp ^{*-\text { image and if the monodromy group of } D \otimes 1 \mathrm{C}^{q} .}$ $-L$ is contained in $G L\left(q_{0}, \mathrm{C}\right), q_{0}<q$, then $b^{p}(\xi)=0, p>q_{0}$.

Note. In some cases, for example $D=d$ or $\bar{\partial}, \mathrm{C}^{*}{ }_{c(D)}$ is also defined on M_{F} and $\pi_{F}{ }^{*}: H^{2 p-1}\left(M, \mathrm{C}^{*}{ }_{c(D)}\right) \cong H^{2 p-1}\left(M_{F}, \mathrm{C}^{*}{ }_{c(D)}\right)^{W}$, the invariant subgroup of $H^{2 p-1}\left(M_{F}\right.$, $\left.\mathrm{C}^{*}{ }_{c(D)}\right)$ under the action of Weyl group. In these cases, we can pefine $b^{p}(\xi)$ by

$$
b^{p}(\xi)=\pi_{F}{ }^{*-1}\left(\Pi_{\eta_{1}{ }^{*} \ldots * \eta_{i p}}\right) .
$$

§4. Characteristic classes related to D-Fuchs type operators

10. We denote the tangent and cotangent bundles of M by $T=T(M)$ and $T^{*}=\mathrm{T}^{*}(M)$. Their fibres at x are denoted by T_{x} and $T^{*} x$. Set $T^{\mathrm{C}}=T \otimes \mathbf{C}$, etc., the subspace of $T^{\mathrm{C}} x$ spanned by $r_{1}(D(x))$ is denoted by $T^{\mathrm{C}, D_{x}}$ and set $T^{\mathrm{C}, D}=$ $U_{x \in{ }_{M}} T^{\mathrm{C}, D}{ }_{x}$. For $T^{\mathrm{C}, D}$, we assume there is an open covering $\{U\}$ of M such that on each U, there is a system of smooth vector fields $\left\{X^{U_{1}}, \ldots, X^{U_{m}}\right\}$ as follows: (i). $\left\{X^{U_{1}}(x), \ldots, X^{U}{ }_{m}(x)\right\}$ spannes $T^{\mathrm{C}, D_{x}}$ if $x \in U$. (ii). $\left\{X^{U}{ }_{1}(x), \ldots, X^{U}{ }_{m}(x)\right\}$ are linear independent if x is in some dense open subset of U. Under these assumptions, there is a constant m such that $\operatorname{dim} T^{C, D} D_{x} \leqq m$ and $T^{C, D}$ is a vector bundle over some open dense subset M_{0} of M. To fix an Hermitian structure of T^{c}, we can determin the dual space $T^{* C} D_{x}$ of $T^{\mathrm{C}, D_{x}}$ as the subspace of $T^{* \mathrm{C}_{x}}$ for each $x \in M$. Set $T^{* \mathrm{C}, D}=\mathrm{U}_{x \in M} T^{* \mathrm{C}, D}{ }_{x}, T^{* \mathrm{C}, D} \mid M_{0}$ is the dual bundle of $T^{\mathrm{C}, D} \mid M_{0}$ and contained in $T^{* C} \mid M_{0}$. In the rest, we assume $\left\{X^{U_{1}}, \ldots, X^{U}{ }_{m}\right\}$ to be an $0 . \mathrm{N}$. -basis of $T^{\mathrm{C}, D_{x}}$ if $x \in M_{0}$, for the given Hermitian structure. Their dual basis are denoted by $\left\{X^{U^{*}}{ }_{1}\right.$, $\left.\ldots, X^{U^{*}}{ }_{m}\right\}$.

Definition. For a smooth function f on U, we set

$$
d^{D} f(x)=\sum_{i=1}^{m}\left(X_{i}{ }_{i} f\right) \quad(x) X_{i}^{U^{*}}(x), \quad x \in U .
$$

By definition, d^{D} is defined on M and does not depend on the choice of $\left\{X^{U_{1}}, \ldots, X^{U}{ }_{m}\right\}$. Set $A^{p} T^{* C}, D=\cup_{x} \in_{M} A^{p} T^{* C}, D_{x}, d^{D}$ induces a differential operator $d^{D}: C^{\infty}\left(M, A^{p} T^{* C, D}\right) \longrightarrow C^{\infty}\left(M, A^{p+1} T^{* C}, D\right)$ for any p. Therefore, denote the sheaf of germs of smooth sections of $\Lambda^{p} T^{* C, D}$ by $\mathrm{C}^{p, D}{ }_{d}$, we have the following exact sequence of sheaves

$$
\begin{align*}
& 0 \longrightarrow \mathrm{C}_{c(D)} \xrightarrow{i} \mathrm{C}_{d} \xrightarrow{d^{D}} \mathrm{C}^{1, D}, \stackrel{d^{D}}{\longrightarrow} \ldots \xrightarrow{d^{D}} \mathrm{C}^{p, D}{ }_{d} \xrightarrow{d^{D}} \ldots \tag{22}\\
& \xrightarrow{d^{D}} \mathrm{C}^{n, D}{ }_{d} \longrightarrow .
\end{align*}
$$

By the definitions of d^{D} and $\mathrm{C}^{1, D} d$, the sequence $0 \longrightarrow \mathrm{C}_{c(D)} \xrightarrow{i} \mathbf{C}_{d} \xrightarrow{d^{D}} \mathrm{C}^{1, D}{ }_{d}$ is exact if and only if (3) is hold for $D . d^{D} d^{D}$ is not equal to 0 unless the Lie algebra spanned by $\left\{X^{U_{1}}, \ldots, X^{U}{ }_{m}\right\}$ is abelian.

Note. If D is homogeneous, $r_{1}(D)$ is determined by $\sigma(r(D)\rangle$, the principal symbol of $r(D)$. Hence d^{D} is determined by $\sigma(r(D))$.

Assumption. In this §, we assume that there is an Hermitian structure on T^{C} such that the sequence (22) is exact.

Under this assumption, denote the kernel sheaf of d^{D} in $C^{p, D_{d}}$ by $B^{p, D_{d}}$, we have the isomorphism

$$
\begin{equation*}
H^{p}\left(M, \mathrm{C}_{c(D)}\right) \cong H^{0}\left(M, \quad \mathrm{~B}^{p, D_{d}}\right) / d^{D} H^{0}\left(M, \mathrm{C}^{p-1, D} d\right), p \leqq 1 . \tag{23}
\end{equation*}
$$

Because the sheaves $\mathbb{C}_{d}, \mathrm{C}^{1, D} d, \ldots$, are fine.
Example. If $r_{1}(D)$ is maximal, D satisfies the assumption and the sequence (22) is the de Rham complex. Similarly, if $r(D)=r_{1}(D)=\bar{\partial}, D$ satisfies the assumption and the sequence (22) is the Dolbeauldt complex.

Lenma 17. If D satisfies the assumption, $M_{Y}=\left\{M_{Y}, Y, M, \pi_{Y}\right\}$ is a $c(D)$-class bundle over M with the fibre Y, a smooth manifold, then $\pi_{Y}{ }^{*}(D)$ also satisfies the assumption.

Proof. By assumption, denote T_{Y} the fibre of the tangent bundle of Y, we
 fore we have the lemma.

By the definition of d^{D} and the assumption on D, d^{D} has same formal properties as d. For example, d^{D} is linear, $d^{D} d^{D}=0$ and

$$
d^{D}\left(\varphi_{\wedge} \psi\right)=d^{D} \varphi_{\wedge} \psi+(-1)^{p} \varphi_{\wedge} d^{D} \psi, \varphi \in C^{\infty}\left(U, \Lambda^{p} T^{* C}, D\right) .
$$

11. In the sence of de Rham, the ($2 p-1$)-dimensional generator ω^{p} of $H^{*}(G L(n, \mathbb{C}), \mathbb{C})=H^{*}(U(n), \mathbb{C})$ is given by

$$
\begin{aligned}
& \omega^{p}(T)=\operatorname{tr}\left(d T T^{-1} \wedge \ldots \wedge d T T^{-1}\right) \\
& =\sum_{i_{1}, \ldots, i_{2 p-1}, j_{1}, \ldots, j_{2 p-1}} \zeta^{j_{1}, i_{2} \ldots \zeta^{j_{2} p-2,}, i_{2 p-1} \zeta^{j_{2 p-1}}, i_{1}} \cdot d z_{i_{1}, j_{1} \wedge \ldots \wedge} d z_{i_{2 p-1}, j_{2 p-1}}, \\
& \quad T=\left(z_{i, j}\right), T^{-1}=\left(\zeta^{i}, j\right),
\end{aligned}
$$

([5], [10]). Hence if $f: U \longrightarrow G L(n, C)$ is a smooth map, we have

$$
\begin{equation*}
f^{*}\left(\omega^{p}\right)=\operatorname{tr}\left(d f f^{-1} \wedge \cdots, d f f^{-1}\right) . \tag{24}
\end{equation*}
$$

We also set

$$
\begin{equation*}
f^{* D}\left(\omega^{p}\right)=\operatorname{tr}\left(d^{D} f f^{-1} \wedge \ldots \wedge^{D} f f^{-1}\right) . \tag{24}
\end{equation*}
$$

Example. If $D=\bar{\partial}, f^{* D}\left(\omega^{p}\right)$ is the type $(0,2 p-1)$-part of $f^{*}\left(\omega^{D}\right)$.
Lemma 18. If $\log f$ is defined, we have

$$
\begin{equation*}
f^{*}\left(\omega^{t}\right)=\operatorname{tr}\left(d \log f_{\wedge \ldots, d} d \log f\right), \tag{25}
\end{equation*}
$$

$$
\begin{equation*}
f^{* D}\left(\omega^{D}\right)=\operatorname{tr}\left(d^{D} \log f_{\wedge} \ldots d^{D} \log f\right) \tag{25}
\end{equation*}
$$

Proof. Since $d f f^{-1}=(d(f C))(f C)^{-1}$ and $d^{D} f f^{-1}=\left(d^{D}(f C)\right)(f C)^{-1}$ for any constant matrix C, we may assume $f-I$ is inversible and $\log f$ is given by the Taylor series $\sum_{m \geqq 1}(-1)^{m-1}(1 / m)(f-I)^{m}$ on U, an open set of M. Then, since $f-I$ is inversible by assumption, we get

$$
\begin{aligned}
& \operatorname{tr}\left[(f-I)^{k_{0}} d f(f-I)^{k_{1}} \wedge \cdots, d f(f-I)^{k_{2 p-2}} \wedge d f(f-I)^{k_{2 p-1}-k_{0}}\right] \\
= & \operatorname{tr}\left[d f(f-I)^{k_{1}} \leadsto \cdots \wedge d f(f-I)^{k_{2 p-1}}\right],
\end{aligned}
$$

for any integers $k_{0}, k_{1}, \ldots, k_{2 p-1}$. Therefore we obtain

$$
\begin{aligned}
& \operatorname{tr}\left(d \log f_{\wedge \ldots \wedge} d \log f\right) \\
= & \sum_{k_{1}, \ldots, k_{2 p-1}}(-1)^{k_{1}+\cdots+k_{2 p-1}} \operatorname{tr}\left[d f(f-I)^{k_{1}} \ldots \ldots \wedge f(f-I)^{k_{2 p-1}}\right],
\end{aligned}
$$

because tr is linear. Since $f^{-1}=\sum_{k \geqq 0}(-1)^{k}(f-I)^{k}$ under our assumption, this right hand side is equal to $\operatorname{tr}\left(d f f^{-1}, \ldots, d f f^{-1}\right)$. Therefore we obtain (25). (25)' is obtained by the same way, because d^{D} has same formal properties as d.

Corollary. $f^{* D}\left(\omega^{t}\right)$ is d^{D}-closed.
Lemma 19. Let $L=\left\{\rho_{D}\left(h_{U}\right)\right\}$ be an element of $H^{0}\left(M, \mathrm{~L}_{G, D}\right)$. Then to set

$$
\begin{equation*}
L^{*}\left(\omega^{p}\right) \mid U=h_{U^{* D}}{ }^{* D}\left(\omega^{p}\right), \tag{26}
\end{equation*}
$$

$L^{*}\left(\omega^{\phi}\right)$ is a d^{D}-closed $(2 p-1)$-form on M and does not depend on the choice of $\left\{h_{U}\right\}$.
Proof. Since $\rho_{D}\left(h_{U}\right)=\rho_{D}\left(h_{V}\right)$ on $U_{\cap} V$, we get $h_{U^{* D}}\left(\omega^{p}\right)=h_{V}{ }^{* D}\left(\omega^{p}\right)$ on $U_{\cap} V$. On the other hand, if $\rho_{D}\left(h_{U}\right)=\rho_{D}\left(h_{U}{ }^{\prime}\right), h_{U}{ }^{\prime}$ is written as $h_{U} f_{U}$, where f_{U} is a $c(D)$-class $G L(n, \mathbb{C})$-valued function. Hence $h_{U}{ }^{* D}\left(\omega^{p}\right)$ is equal to $h_{U}{ }^{\prime * D}\left(\omega^{p}\right)$. Therefore we have the lemma.

Lemma 20. Set $\left\langle L^{*}\left(\omega^{p}\right)\right\rangle$ the cohomology class of $L^{*}\left(\omega^{p}\right)$ in $H^{2 p-1}\left(M, \mathrm{C}_{c(D)}\right)$, we have

$$
\begin{aligned}
& <L^{*}\left(\omega^{p}\right)> \\
= & \left\{(-1)^{p-1} \operatorname{tr}\left[\log g_{i o, i_{1}}(\delta \log g)_{i_{1}, i_{2}, i_{3}} \ldots(\delta \log g)_{i_{2 p-3}, i_{2 p-2, i_{2}}-1}\right]\right\}, \\
& g_{i j}=h_{U i}{ }^{-1} h_{U j}, \quad(\delta \log g)_{i j k}=\log g_{j_{k}}-\log g_{i k}+\log g_{i j} .
\end{aligned}
$$

Proof. Since we can take the open covering $\{U\}$ sufficiently fine, we may assume $\log h_{U}$ is defined for any $U \in\{U\}$. Then, by lemma 18 , to set

$$
L^{*}\left(\Omega^{q}\right)=d^{D} \log h_{U \wedge \cdots \wedge_{\wedge}} d^{D} \log h_{U},
$$

we have

$$
\operatorname{tr} L^{*}\left(\Omega^{2 p-1}\right)=\operatorname{tr} L^{*}\left(\omega^{p}\right), L^{*}\left(\Omega^{q}\right)=(-1)^{q-1} d^{D}\left[L^{*}\left(\Omega^{q-1}\right) \log h_{U}\right] .
$$

Moreover, by the same calculation as in the proof of lemma 18, we get

$$
\begin{aligned}
& \operatorname{tr}\left[L^{*}\left(\Omega^{q}\right)_{\wedge} d^{D}\left(\log h_{U}^{-1} h_{V}\right)\right] \\
= & \operatorname{tr}\left[L^{*}\left(\Omega^{q}\right)_{\wedge} d^{D} \log h_{V}-L^{*}\left(\Omega^{q}\right)_{\wedge} d^{D} \log h_{U}\right] .
\end{aligned}
$$

Hence the Čech cocycle represents the class of $L^{*}\left(\Omega^{p}\right)$ in $H^{1}\left(M, B^{2 p-2 . D}{ }_{d}\right)$ is $\left\{\operatorname{tr}\left[L^{*}\left(\Omega^{2 p-2}\right) \log g_{i j}\right]\right\}$. Then, since $\delta\left\{(\delta \log g\}_{i 0, i_{1}, i_{2}, i_{3}}=0\right.$, we get

$$
\begin{aligned}
& \log h_{i_{1}}(\delta \log g)_{i_{1}, i_{2,}, i_{3}}-\log h_{i_{0}}(\delta \log g)_{i_{0,}, i_{2}, i_{3}}+ \\
+ & \log h_{i_{0}}(\delta \log g)_{i_{0}, i_{1}, i_{3}}-\log h_{i_{0}}(\delta \log g)_{i_{0}, i_{1}, i_{2}}
\end{aligned}
$$

$$
\left.=\left(\log h_{i_{1}}-\log h_{i_{0}}\right) \delta \log g\right)_{i_{1}, i_{2}, i_{3}}
$$

Hence in $H^{2}\left(M, \mathrm{~B}^{2 p-3, D}{ }_{d}\right), L^{*}\left(\omega^{p}\right)$ is represented by
$\left\{-\operatorname{tr}\left[L^{*}\left(\Omega^{2 p-3}\right) \log g_{i_{0}, i_{1}}(\delta \log g)_{\left.i_{1}, i_{2}, i_{3}\right]}\right]\right\}$. Since $(\delta \log g)_{i_{1}, i_{2}, i_{3}}$ is a constant matrix, we can repeat this process. Therefore we have the lemma because $(-1)^{(p-1)(2 p-1)}=$ $(-1)^{p-1}$.

Corollary. Denote c^{p} the $(2 p-1)$-dimensional generatorof $H^{*}(G L(n, \mathbb{C}), \mathbb{Z})=$ $H^{*}(U(n), \mathbb{Z})$, we have

$$
\iota^{*}\left(c^{p}\right)=\frac{(-1)^{p-1}}{(2 \pi \sqrt{-1})^{p}}<\omega^{p}>
$$

Proof. Since $(\delta g)_{i j k}=I$, the identity matrix, $(\delta \log g)_{i j k}=2 \pi \sqrt{-1} N_{i j k}$, where $N_{i j k}$ is a matrix with integral proper values, for any i, j, k. On the other hand, $\log g_{i j}=2 \pi \sqrt{-1} N_{i j}$ if $h_{U_{i}}=h_{U j}$ on $U_{i \cap} U_{j}$. Hence $f^{*}\left(\omega^{p}\right)$ is represented by a cocycle of the form $\left\{(-1)^{p-1}(2 \pi \sqrt{-1})^{p} n_{i 0, \ldots, i_{2 p-1}}\right\}$ in $H^{2 p-1}(M, \mathrm{C})$, where $n_{i_{0}, \ldots, i_{2 p-1}}$ is an integer for any $\left(i_{0}, i_{1}, \ldots, i_{2 p-1}\right)$ and $f: M \longrightarrow G L(n, \mathbb{C})$ is a smooth map. On the other hand $\iota^{*}\left(c^{p}\right)$ is represented by $a_{p} \omega^{p}$ where a_{p} is a constant, $\iota^{*}\left(f^{*}\left(c^{p}\right)\right)$ is represented by $\left\{(-1)^{p-1} a_{p}(2 \pi \sqrt{-1})^{p} n_{i_{0}, \ldots, i_{2 p-1}}\right\}$ and it is an integral class. Since we can take f and M arbitrally, $(-1)^{p-1} a_{p}(2 \pi \sqrt{-1})^{p}$ should be equal to 1 . Therefore we obtain the corollary.
12. Definition. We define $\beta^{p}(L) \in H^{2 p-1}\left(M, \mathrm{C}_{c(D)}\right)$ by

$$
\beta^{p}(L)=\frac{(-1)^{p-1}}{(2 \pi \sqrt{-1})^{p}}<L^{*}\left(\omega^{p}\right)>
$$

Theorem 3. (i). If $L \in H^{0}\left(M, L_{C^{*}, D}\right)$, then
(27) $\beta^{1}(L)=\delta k^{*-1}(L)$.
(ii). Let $F_{q, p_{q}}\left(Y_{1}, \ldots, Y_{p}\right)=\sum a_{i_{1}, \ldots, i_{p}} Y_{1} i_{1} \ldots Y_{p}{ }^{i_{p}}$ be the polynomial $F_{q, p}\left(s_{1}, \ldots, s_{p}\right)=\sum_{i=1} X_{i}^{p}$, where s_{r} is the r-th elementary symmetric function of indeterminants X_{1}, \ldots, X_{q}, and set

$$
\begin{aligned}
F_{q, p}\left(b_{1}, \ldots, b_{p}\right)= & \Pi\left[\left(b_{\left.1 * \cdots * b_{1}\right)_{*} \ldots *\left(b_{\left.p * \cdots * b_{p}\right)}\right]^{a_{1}, \ldots, i_{p}}},\right.\right. \\
& b_{r} \in H^{2 r-1}\left(M, \mathrm{C}^{*}{ }_{c(D)}\right)
\end{aligned}
$$

Then we have

$$
\begin{equation*}
\exp ^{*}\left(\beta^{p}(L)\right)=(-1)^{p-1} F_{q, p}\left(b^{1}(\delta(L)), \ldots, b^{p}(\delta(L))\right) \tag{28}
\end{equation*}
$$

(iii). If $L=\rho_{D}(f), f$ is a smooth $G L(n, \mathbb{C})$-valued function on M, then

$$
\begin{equation*}
\beta^{p}(L)=\iota^{*}\left(f^{*}\left(c^{p}\right)\right) \tag{29}
\end{equation*}
$$

(iv). If $L \mid U=\rho_{D}\left(h_{U}\right), h_{U}$ is a smooth $\Delta(q, \mathbb{C})$-valued function on U, for each $U \in\{U\}$, then

$$
\begin{equation*}
\beta^{p}(L)=0, \quad p \geqq 2 . \tag{30}
\end{equation*}
$$

(v). If $M_{Y}=\left\{M_{Y}, Y, M, \pi_{Y}\right\}$ is a $c(D)$-class bundle over M with the smooth fibre Y, set $\pi_{Y}{ }^{*}(L)=\left\{\rho_{\pi_{Y}{ }^{*}(D)}\left(\pi_{Y}{ }^{*}\left(h_{U}\right)\right)\right\}$, we have

$$
\beta^{p}\left(\pi_{Y}^{*}(L)\right)=\pi_{Y}^{*}\left(\beta^{p}(L)\right)
$$

(vi). If D is homogeneous and satisfies the assumption in $n^{\circ} 10, \beta^{p}(L)$ is determined by $\sigma(L)$, the principal symbol of L.

Proof. If $L=\left\{\rho_{D}\left(h_{U}\right)\right\} \in H_{0}\left(M, \mathrm{~L}_{C^{*}}, D\right), \delta h^{*-1}(L)$ is given by $(1 / 2 \pi \sqrt{ }-1)\left(\log h_{U}-\right.$ $\log h_{V}$). Hence we have (i) by lemma 20. (iii) also follows from lemma 20 and (v) follows from the definitions of $\beta^{p}(L), \pi_{Y}{ }^{*}(L)$ and lemma 17 .

To show (ii), first we assume $\delta(L)=\left\{g_{i j}\right\}$ is a $\Delta(q, \mathbf{C})$-bundle. Then $\delta(L)$ is a q-fold extension of $c(D)$-class \mathbf{C}^{*}-bundles $\eta_{1}, \ldots, \eta_{q}$ and the transition function of each η_{m} is given by the m-th diagonal element $\left\{g_{i j}, m\right\}$ of $\left\{g_{i j}\right\}$. Since $g_{i j}$ is a $\Delta(q, \mathbf{C})$-valued function, $\log g_{i j}$ is a $\Delta(q, \mathbf{C})$-valued function whose m-th diagonal element is $\log g_{i j, m}$. Hence we have

$$
\begin{aligned}
& \operatorname{tr}\left[\log g_{i_{0}, i_{1}}(\delta \log g)_{i_{1}, i_{2}, i_{3}} \cdots(\delta \log g)_{i_{2 p-3}, i_{2 p-2}, i_{2 p-1}}\right] \\
= & \sum_{m=1}^{q} \log g_{i_{0}, i_{1}, m}(\delta \log g)_{i_{1}, i_{2}, i_{3}, m} \cdots(\delta \log g)_{i_{2 p-3}, i_{2 p-2}, i_{2 p-1}, m} .
\end{aligned}
$$

Therefore we obtain

$$
\exp ^{*}\left(\beta^{p}(L)\right)=\left\{\sum_{m=1}^{q} \eta_{m^{*}} \quad p-\eta_{m}\right\}^{\langle-1)^{p-1}}
$$

Hence by the definitions of $b^{p}(\xi)$ and $F_{q, p}$, we have (28) by lemma 16.
To show (ii) in general, we use the commutative diagram

$$
\begin{aligned}
& H^{2 p-1}\left(M_{F}, \mathbf{C}_{c\left(\pi_{F}^{*}(D)\right)}\right) \xrightarrow{\exp ^{*}} H^{2 p-1}\left(M_{F}, \mathbf{C}^{*}{ }_{c\left(\pi_{F}{ }^{*}(D)\right)}\right) \\
& \pi_{F}^{*}{ }^{*} \\
& H^{2 p-1}\left(M, \mathbf{C}_{c(D)}\right) \xrightarrow{\exp ^{*} \pi_{F^{*}}{ }^{*} \mid} H^{2 p-1}\left(M, \mathbf{C}_{c(D)}^{*}\right),
\end{aligned}
$$

where M_{F} is the associate $F(q)$-bundle of $\delta(L)$. Since $\pi_{F^{*}}{ }^{*}(D)$ satisfies the assumption of $n^{\circ} 10$ by lemma $17, \beta^{p}\left(\pi_{F}{ }^{*}(L)\right)$ is defined and since $\pi_{F}^{*}(\hat{o}(L))$ is a $c(D)$-class $\Delta(q, \mathrm{C})$-bundle, we have

$$
\exp ^{*}\left(\beta^{p}\left(\pi_{F}^{*}(L)\right)\right)=(-1)^{p-1} F_{q, p}\left[b^{1}\left(\delta\left(\pi_{F}^{*}(L)\right)\right), \ldots, b^{p}\left(\delta\left(\pi_{F}^{*}(L)\right)\right)\right] .
$$

But since $\delta\left(\pi_{F}{ }^{*}(L)\right)=\pi_{F}^{*}(\delta(L))$ by the definition of $\pi_{F^{*}}{ }^{*}(L)$, we have by (v) and theorem 2, (ii)

$$
\pi_{F}^{*}\left(\exp ^{*}\left(\beta^{p}(L)\right)\right)=\pi_{F}^{*}\left[(-1)^{p-1} F_{q, p}\left(b^{1}(\delta(L)), \ldots, b^{p}(\delta(L)\rangle\right)\right],
$$

because by the definition of $*$-product, we get $\pi_{F} *\left(a_{*} b\right)=\pi_{F} *(a)_{*} \pi_{F} *(b)$. Then, since each $\pi_{F}{ }^{*}$ is a monomorphism, we obtain (ii).

If h_{U} is a $\Delta(q, \mathbb{C})$-valued function, $d^{D} h_{U} h_{U}^{-1}$ is a $\Delta(q, \mathbb{C})$-valued 1 -form. Hence to set $d^{D} h_{U} h_{U}^{-1}=\left(\varphi_{i j}\right)$, we get

$$
\operatorname{tr}\left(L^{*}\left(\Omega^{r}\right)\right)=\sum_{i=1}^{a} \varphi_{i, i}, \cdots, \varphi_{i, i}=0, r \geq 2
$$

This shows (iv).
If D is homogeneous, $\sigma(L)$ is determined by $r_{1}(D)$. Hence we have (vi).
Corollary. If $\delta(L)=\delta\left(L^{\prime}\right), \beta^{p}(L)-\beta^{p}\left(L^{\prime}\right)$ is in c^{*}-image for all p.
Note 1. By (ii), we have

$$
\begin{equation*}
b^{1}(\delta(L))=\exp ^{*}\left(\beta^{1}(L)\right) \tag{28}
\end{equation*}
$$

On the other hand, since the diagram

is commutative, we can define, $\beta^{1}(L)$ by (i) without any assumption about D and it satisfies (28)'.

Note 2. If $d^{D}=d$ or $\bar{\partial}$, we can define $\pi_{Y}^{*}\left(\beta^{p}(L)\right)$ and $\beta^{p}\left(\pi_{Y}{ }^{*}(L)\right)$ (resp. π_{Y}^{*} $\left(b^{p}(\xi)\right)$ and $\left.b^{p}\left(\pi_{Y}^{*}(\xi)\right\rangle\right)$ as the elements of $H^{2 p-1}\left(M_{Y}, \mathbb{C}\right)$ or $\mathrm{H}^{2 p-1}\left(M_{Y}, \mathrm{C} \omega\right.$) (resp. $H^{2 p-1}\left(M_{Y}, \mathbb{C}^{*}\right)$ or $H^{2 p-1}\left(M_{Y}, \mathbb{C}^{*} \omega\right)$) and for these elements, theorem 3, (v) (resp. theorem 2, (ii)) hold.

Appendix. Curvature operators of comections of diferential operators

In this appendix, we assume $E_{1}=E_{2}=E$, that is D is defined on $C^{\infty}(M, E)$ and maps into itself. For a differential operator $L: C^{\infty}(U, E \otimes H) \longrightarrow C^{\infty}(U, E \otimes \mathrm{H})$ with order at most $k-1, k=\operatorname{ord} D$, we set

$$
\Theta_{D}(L)=\left(D \otimes 1_{\mathrm{H}}\right) L+L\left(D \otimes 1_{\mathrm{H}}\right)-L^{2}
$$

and call the curvature operator of L with respect to D. By definition, if $-L=$ $\left\{-L_{U}\right\}$ is a connection of D with respect to ξ, a G-bundle with the fibre H ([3]), set $D_{L}=\left\{D \otimes 1_{\mathrm{II}}-L_{v}\right\}: C^{\infty}(M, E \otimes \xi) \longrightarrow C^{\infty}(M, E \otimes \xi)$, we have

$$
D_{L}{ }^{2} \mid U=D_{U}^{2} \otimes 1_{\mathrm{H}}-\Theta_{D}\left(L_{U}\right)
$$

Hence if L is flat, that is $L=\rho_{D}(h)$, we obtain

$$
\Theta_{D}(L)=\rho_{D^{2}}(h)
$$

Example 1. Let $C^{\infty}\left(M, E_{1}\right) \xrightarrow{D_{1}} C^{\infty}\left(M, E_{2}\right) \xrightarrow{D_{2}} \ldots \xrightarrow{D_{m}} C^{\infty}\left(M, E_{m+1}\right)$ be a differential complex, ξ a G-bundle with the fibre $\mathrm{H},-\theta_{i}$ is a connection of D_{i} with respect to $\xi, 1 \leqq i \leqq m$. Then, to set $E=E_{1} \oplus \cdots \oplus E_{m+1}, \quad D\left(f_{1} \oplus \cdots \oplus f_{m+1}\right)=$ $0 \oplus D_{1} f_{1} \oplus \cdots \oplus D_{m} f_{m}$ and $\theta\left(f_{1} \oplus \cdots \oplus f_{m+1}\right)=0 \oplus \theta_{1} f_{1} \oplus \cdots \oplus \theta_{m} f_{m}, \quad \theta$ is a connection of D with respect to ξ and $\Theta_{D}(\theta)=-\left(D_{\theta}\right)^{2}$. Therefore the series $C^{\infty}\left(M, E_{1} \otimes \xi\right) \xrightarrow{D_{1,}, \theta_{1}} C^{\infty}\left(M, \mathrm{E}_{2} \otimes \xi\right) \xrightarrow{D_{2,} \theta_{2}} \ldots \xrightarrow{D_{m, \theta_{m}}} C^{\infty}\left(M, E_{m+1} \otimes \xi\right)$ is a differential complex if and only if the curvature operator of θ with respect to D vanishes. To vanish the curvature operator of θ, it is sufficient there exist $h_{U} \in C^{\infty}\left(U, \mathrm{G}_{d}\right)$ such that $\theta_{i, U}=\rho_{D i}\left(h_{U}\right), 1 \leqq i \leqq m$, for all U.

Example 2. In the above example, if $D_{i}=d$ or $\bar{\partial}$ for each $i, \Theta_{D}(\theta)$ is equal to $d \theta-\theta_{\wedge} \theta$ or $\bar{\partial} \theta-\theta_{\wedge} \theta$.

Lemma 1. We have

$$
\begin{equation*}
\Theta_{D}(c L)=c \Theta_{D}(L)+\left(c-c^{2}\right) L^{2}, c \text { is a constant } G \text {-valued function, } \tag{1}
\end{equation*}
$$

(1) ii

$$
\Theta_{D}\left(L_{1}+L_{2}\right)=\Theta_{D}\left(L_{1}\right)+\Theta_{D}\left(L_{2}\right)-\left(L_{1} L_{2}+L_{2} L_{1}\right)
$$

(1) $\mathrm{iii} \quad \Theta_{D}\left(L^{g}\right)=\left[\Theta_{D}\left(L_{1}\right)\right]^{g}+\left[\Theta_{D}(g) L^{g}+L^{g} \Theta_{D}(g)\right]$.

Corollary 1. If $\Theta_{D}\left(L_{1}\right)=\Theta_{D}(L)^{g}+\rho_{D^{2}}(g)$, then there exists a differential operator P such that $L^{g}+\rho_{D}(g)=L_{1}+P, \Theta_{D}(P)=L_{1} P+P L_{1}$.

Corollary 2. (i). If $L=\left\{L_{U}\right\}$ is a connection of D with respect to $\xi=\left\{g_{U V}\right\}$, then

$$
\begin{equation*}
\Theta_{D}\left(L_{U}\right)=\Theta_{D}\left(L_{V}\right)^{g U V}+\rho_{D^{2}}\left(g_{U V}\right), \text { on } U_{\cap} V \tag{2}
\end{equation*}
$$

(iii). If (2) is hold for $L=\left\{L_{U}\right\}$, then

$$
\begin{equation*}
\Theta_{D}\left(L_{U}+P_{U V}\right)=\Theta_{D}\left(L_{U}\right) \text { on } U_{\cap} V, P_{U V}=\left(D_{U}-L_{U}\right)-\left\langle D_{V}-L_{V}\right)^{g_{U V}} . \tag{3}
\end{equation*}
$$

Proof. If $L=\left\{L_{U}\right\}$ is a connection of D with respect to ξ, we have $\left(D_{U}-L_{U}\right)^{2}$ $=\left(D_{V}{ }^{g_{U V}}-L_{V} g_{U V}\right)^{2}$ on $U_{\cap} V$. Since $\left(D_{U}-L_{U}\right)^{2}=D_{U}{ }^{2}-\Theta_{D}\left(L_{U}\right)$ and $\left(D_{V}{ }^{g_{U V}}-L_{V} g_{U V}\right)^{2}=$ $D_{U^{2}-} \rho_{D^{2}}\left(g_{U V}\right)-\left[\Theta_{D}\left(L_{V}\right)\right]^{g_{U V}}$, we get (i). Since $\left(D_{U}-L_{U}\right)^{2}-\left(D_{V}{ }^{g}{ }_{U V}-L_{V} g_{U V}\right)^{2}=0$ if (2) is hold, set $P_{U V}=\left(D_{U}-L_{U}\right)-\left(D_{V}-L_{V}\right)^{g_{U V}}$, we get (3) by (1) ii.

Corollary 3. If $\Theta_{D}(L)=\rho_{D^{2}}(h), L$ is equal to $\rho_{D}(h)+P$, where $\Theta_{D^{h}}(P)=0$.
Definition. Let $L, L^{\prime}: C^{\infty}(U, E \otimes \mathrm{H}) \longrightarrow C^{\infty}(U, E \otimes \mathrm{H})$ be differential operators of order at most $k-1$, we call $L \sim L^{\prime}$ mod. Θ_{D} if there exists a smooth G-valued function g on U such that $\Theta_{D}(L)=\Theta_{D}\left(L^{\prime}\right)^{g}+\rho_{D^{2}}(g)$.

By lemma 1, $L \sim L^{\prime}$ is an equivalence relation and it induces an equivalence relation on $\mathscr{D}_{E \otimes \mathrm{H}}^{k-1}$, the sheaf of germs of differential operators $L: C^{\infty}(U, E \otimes \mathrm{H})$ $\longrightarrow C^{\infty}(U, E \otimes \mathrm{H})$ of order at most $k-1$. The quotient sheaf of $\mathscr{D}_{E \otimes \mathrm{H}}^{k-1}$ by this
relation is denoted by $\widetilde{\Theta}_{D} \mathscr{D}_{E \otimes ⿴ 囗}^{k-1}$. The map from $\mathscr{D}_{E \otimes \otimes \mathrm{H}}^{k-1}$ onto $\widetilde{\Theta}_{D} \mathscr{D}_{E \otimes \mathrm{H}}^{k-1}$ induced by the relation $L \sim L^{\prime}$ is denoted by $\widetilde{\Theta}_{D}$. The kernel sheaf of $\widetilde{\Theta}_{D}$ is denoted by $\widetilde{\mathrm{L}}_{G, D}$. $\widetilde{\mathrm{L}}_{G}, D$ containes $\mathrm{L}_{G, D}$.

Definition For $\xi=\left\{g_{U V}\right\} \in H^{1}\left(M, \mathrm{G}_{d}\right), \quad\left\{L_{U}\right\} \in C^{\infty}\left(U, \mathscr{D}_{E \otimes \mathrm{H}}^{k-1}\right) \quad$ and $\quad\left\{L_{U V}\right\} \in C^{1}(U$, $\mathscr{D}_{E \otimes(1)}^{k-1}$,) we set

$$
\delta_{\xi}\left\{L_{U V}=\mathrm{L}_{U}-\mathrm{L}_{V} g_{U V}, \delta_{\xi}\left\{L_{U V W}=L_{U V}+L_{V W}{ }^{g_{U V}}+L_{W U} g_{U W} .\right.\right.
$$

Lemma 2. $\delta_{\xi}\left(\delta_{\xi}\{L\}\right)_{U V W}=0$ and if $\left\{\left(\delta_{\xi} L\right)_{U V W}\right\}=0$ and there is a partition of unity by smooth functions subordinate to $\{\mathfrak{H}\},\left\{L_{U V}\right\}=\left\{\delta_{\xi}(R)_{U V}\right\}$ for some $\left\{R_{U}\right\} \in C^{\infty}$ $\left(\mathfrak{u}, \mathscr{O}_{E \otimes \mathrm{Q}}{ }^{k-1}\right)$ (cf. [3]).

Proof. $\delta_{\xi}\left(\delta_{\xi}\{L\}_{U V W}=0\right.$ follows from the definitions. If $\left(\delta_{\xi} L\right)_{U V W}=0$, we have $L_{U U U}=0$ and $L_{U V}=-L_{V U}{ }^{g_{U V}}$. Hence set $R_{U}=\sum_{W \cap U \neq p} e_{W} L_{U W},\left\{e_{W}\right\}$ is the Partition of unity subordinate to \mathfrak{U}, we have $\delta_{\xi}(R)_{U V}=L_{U V}$.

Denote L_{U} the section of $\mathscr{D}_{E \in \mathbb{\otimes}}^{k-1}$ on U and set $\mathfrak{l}=\{U\}$, an open covering of M, we set

$$
\begin{aligned}
& H_{D}{ }^{0}\left(\mathfrak{l}, \widetilde{\mathrm{~L}}_{G, p}\right)=\left\{\left\{L_{U}\right\} \mid\left(\delta_{\xi} L\right)_{U V}=\rho_{D}\left(g_{U V}\right) \text {, for some } \xi=\left\{g_{U V}\right\} \in H^{1}\left(M, \mathrm{G}_{d}\right),\right. \\
& \left.L_{U} \text { is a section of } \widetilde{\mathrm{L}}_{G, D} \text { on } U\right\} . \\
& H_{0}{ }^{D}\left(\mathfrak{U l}, \mathscr{D}_{E \otimes \mathrm{H}}^{k-1}\right)=\left\{\left\{L_{U}\right\} \mid\left(\delta_{\xi} L\right)_{U V}=\rho_{D}\left(g_{U V}\right) \text { for some } \xi=\left\{g_{U V}\right\} \in H^{1}\left(M, \mathrm{G}_{d}\right)\right\} \text {. } \\
& H^{\circ}\left(\mathfrak{U}, \widetilde{\Theta}_{D} \mathscr{\mathscr { O }}_{E \otimes(\mathrm{H}}^{k-1}\right)=\left\{\left\{\Theta_{D} L_{U}\right\} \mid \delta_{\xi}\left(\Theta_{D} L\right)_{U V}=\rho_{D^{2}}\left(g_{U V}\right) \text { for some } \xi\right. \\
& \left.=\left\{g_{U V}\right\} \in H^{1}\left(M, \mathrm{G}_{d}\right)\right\} .
\end{aligned}
$$

We define $H_{0}{ }^{D}\left(M, \tilde{\mathrm{~L}}_{G}, D\right), \quad H_{0}{ }^{D}\left(M, \mathscr{D}_{E \otimes(\mathrm{H}}^{k-1}\right)$ and $H^{0}\left(M, \widetilde{\Theta}_{D} \mathscr{D}_{E \otimes \mathrm{H}}^{k-1}\right)$ as the limits of these sets. We also set

$$
\left.\left.\begin{array}{l}
B^{1}{ }_{\theta D}\left(\mathfrak{u}, \mathscr{D}_{E \otimes \mathcal{E} \mathrm{H}}^{k-1}\right)=\left\{\left\{R_{U V}\right\} \mid R_{U V}=\left(\delta_{\xi} L\right)_{U V} \text { for some } \xi\right\}=\left\{g_{U V}\right\} \in H^{1}\left(M, G_{d}\right) \\
\text { and } \Theta_{D}\left(R_{U V}\right)=\rho_{D^{2}}\left(g_{U V}\right)-\left[\left\{\rho_{D}\left(g_{U V}\right)-R_{U V}\right\} L_{V}{ }^{g} g_{U V}+L_{V}{ }^{g}{ }^{g} V\right.
\end{array} \rho_{D}\left(g_{U V}\right)-R_{U V}\right\}\right] . ~ . ~
$$

We call $\left\{R_{U V}\right\}$ and $\left\{R_{U V^{\prime}}\right\} \in B^{1}{ }_{\theta D}\left(\mathfrak{u}, \mathscr{D}_{E \otimes 1 \mathrm{H}}^{k-1}\right)$ to be equivalent if

$$
R_{U V}=\left(\delta_{\xi} L\right)_{U V}, \quad R_{U V^{\prime}}=\left(\delta_{\xi}(L+Q)\right)_{U V}, \quad \Theta_{D}\left(Q_{U}\right)=L_{U} Q_{U}+Q_{U} L_{U} .
$$

The quotient set of $B^{1}{ }_{\theta D}\left(\mathfrak{u}, \mathscr{D}_{E \otimes \mathrm{H}}^{k-1}\right)$ by this relation is denoted by $H^{1}{ }_{\ominus D}\left(\mathfrak{u}, \mathscr{D}_{E \otimes \mathrm{H}}^{k-1}\right)$. Its limit set is denoted by $H^{1}{ }_{\theta D}\left(M, \mathscr{D}_{E \otimes H}^{k-1}\right)$. Then by lemma 1 and lemma 2, we have the following exact sequence of cohomology sets

$$
\begin{equation*}
0 \longrightarrow H_{D^{0}}\left(M, \widetilde{L}_{G, D}\right) \xrightarrow{i} H_{D}{ }^{0}\left(M, \quad \mathscr{\mathscr { D }}_{E \otimes \mathscr{H}}^{k-1}\right) \xrightarrow{\widetilde{\Theta}_{D}} H^{0}\left(M, \widetilde{\Theta}_{D} \mathscr{\mathscr { O }}_{E \otimes(\mathrm{H}}^{k-1}\right) \stackrel{\delta}{\longrightarrow} \tag{4}
\end{equation*}
$$

$$
\longrightarrow H^{1}{ }_{\ominus D}\left(M, \mathscr{D}_{E \otimes, \mathrm{H}}^{k-1}\right) \xrightarrow{i} H^{1}\left(M, \mathscr{D}_{E \otimes \otimes \mathrm{H}}^{k-1}\right)=\{0\} .
$$

Note. By the definition of $\delta^{L}\left(\mathrm{n}^{\circ} 4\right)$, there is an inclusion map $\imath: H^{1}\left(M, \mathrm{~L}_{G}, D\right)$ $\longrightarrow H^{1}{ }_{\partial D}\left(M, \mathscr{D}_{E \otimes \boldsymbol{H}}^{k-1}\right)$ and we have the commutative diagram

$$
\begin{array}{r}
H^{H_{\odot D}}\left(\stackrel{M}{c}, \mathscr{V}_{E \otimes \mathrm{H}}^{k-1}\right) \xrightarrow{i_{1}} H^{1}\left(M, \mathscr{D}_{E \otimes \mathrm{H}}^{k-1}\right)=\{0\} . \\
H^{1}\left(M, \mathrm{G}_{d}\right) \xrightarrow{\rho_{D}^{*}} \stackrel{c}{ } H^{1}\left(M, \mathrm{~L}_{G, D}\right)
\end{array}
$$

In this diagram, the explicit trivialization of $i_{2} \rho_{D}{ }^{*}(\xi)$ is the connection of D with respect to ξ. If the category is not smooth (for example, holomorphic category or topological category), $H^{1}\left(M, \mathscr{D}_{E \otimes \otimes \mathrm{H}}^{k-1}\right)$ may not be equal to $\{0\}$ and $i_{2} \rho_{D}{ }^{*}(\xi)$ gives the obstruction class to have a connection in this category (cf. [2], [4]).

Definition. Regard $\left\{L_{U}\right\} \in H_{0}^{D}\left(\mathscr{D}_{E \otimes \mathrm{H}}^{k-1}\right)$ to be a connection of D with respect to ξ, we call $\widetilde{\Theta}_{D}\left(\left\{L_{U}\right\}\right)$ to be the curvature operator of $\left\{L_{U}\right\}$.

Theorem. A $c(D)$-class G-bundle ξ has a connection of D with respect to ξ with the curvature operator equal to 0 . Conversly, if $\widetilde{L_{G}, D}=\mathrm{L}_{G, D}, a \operatorname{G}$-bundle ξ is of $c(D)$ -class if D has a connection with respect to ξ with a curvature operator equal to 0 .

Proof. Since a $c(D)$-class G-bundle ξ allows $\{0\}$ as a connection of D with respect to ξ, we have the first assertion. If $\widetilde{L}_{G, D}=L_{G, D}$, we have $\rho_{D}\left(g_{U V}\right)=\rho_{D}\left(h_{U}\right)$ $-\rho_{D}\left(h_{V}\right)^{\xi u v}$ if $\xi=\left\{g_{U V}\right\}$ has a connection of D with respect to ξ with the curvature operator is equal to 0 . Hence $\left\{g_{U V}\right\}$ is in δ-image in the sequence (6) of $\mathrm{n}^{\circ} 4$. Therefore we obtain the theorem.

References

[1] Asada, A. : Connection of flat vector bundles, J. Fac. Sci. Shinshu Univ., 2 (1967), 109-116.
[2] : Connection of topological manifolds, J. Fac. Sci. Shinshu Univ., 5 (1970), 1-23.
[3] : Connection of differential operators, J. Fac. Sci. Shinshu Univ., 13 (1978), 87-102.
[4] Atiyaf, M. F. : Complex analytic connection in fibre bundles, Trans. Amer. Math. Soc., 85 (1957), 181-207.
[5] Brauer, R. : Sur les invarıants intégraux des variétés représentatives des groupes de Lie simples clos, C. R. Sci. Paris, 202 (1935), 419-421. Collected Papers, Vol. III, 443-445.
[6] Chern, S. S. Simons, J. : Characteristic forms and geometric invariants, Ann. of Math., 99 (1974), 48-69.
[7] Dupont, J. L. : Curvature and Characteristic Classes, Lecture Notes in Math., Nr. 640. Berlin, 1978.
[8] Flaschka, H.-Newell, A.C. : Monodromy-and Spectrum-Preserving Defor-mations, I, Commun. math. Phys., 76 (1980), 65-116.
[9] Goldschmidt, H. Spencer, D. C. : On the non-linear cohomology of Lie equations, I, II, Acta Math., 136 (1976), 103-239.
[10] Hodge, W. V. D. : The Theory and Applications of Harmonic Integrals, Cambridge, 1952.
[11] Kanber, F. W. -Tondeur, P. : Foliated Bundles and Characteristic Classes, Lecture Notes in Math., Nr. 493. Berlin 1975.
[12] Manin, Ju. I. : Moduli fuchsiani, Ann, della Sc. Nor. Sup. di Pisa, 19(1965), 113 -126.
[13] Pham, F. : Singularilés des Systèmes Différentiels de Gauss-Manin, Boston, 1979.
[14] Rohrl, H. : Das Riemann-Hilbertsche Ploblem der Theorie der Linearen Differentialgleichungen, Math. Ann., 133 (1957), 1-25.
[15] Sato, M. (ed.). : Classical theory and quantum theory of completely integrable non linear systems (in Japanese), Kyoto, 1980.
[16] Ueno, K. : Monodromy preserving deformation of linear differential equations with irregular singular points, Pro. Jap. Acad., 56 (1980), Ser. A, 97-102.

