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   It is known that global geometric properties of Fuchs-type operators are for-

mulated as follows: Let G=GL(n, C), Gt and Gbl be the sheaves of germs of cons-

tant and holomorphic G-valued functions over M, a complex manifold, a the

sheaf of germs of those matrix valued holomorphic 1-forms 0 such that de+0AO==O.

                                      i                                           rThen, set r(f)::::dflle", the sequence O-Gt ,Gto----..di'to-O is exact and it der-

ives following exact sequence of cohomology sets

                                              i"                     r*                                   ti
            HO(M, G.)-HO(M, th)-Hi(M, Gt)-fli(M, G.).

0GHO(M, fto) is a global integrable connection on M and d+0 is a Fuchs type

operator. Since there is a bijection x: H'(M, Gt)-Hom(Ti(M), G), x(6(e)) (Ti(M))

isasubgroup of G. It is the monodromy group of d+e. If a representation

p: rci (M)-G is given, it is realized as a monodromy representation of some

Fuchs type operator if and only if i*x-i(p)=1, the trivial holomorphic bundle.

Same formulation is possible in smooth category to use Gd, the sheaf of germs of

smooth G-valued functions, and "d, the sheaf of germs of those matrix valued

smcoth 1-forms e such that de+0AO=O, instead of Gto and aw ([1], [12], [13],

[14]).

   The notion of connection is extended for an arbitraly differential operator D:

Coo(M, Ei)-Coo(M, E2), Ma smooth manifold, Ei, i--1, 2, the smooth vector

bundles, and a smooth vector bundle e over M ([3]). The definition is as follows:

Denote IE[ the fibre ofe, a collection {0u}, 0u:Cco(U, Ei(g)H)-Coo(U, E2(g)H) is

a diLfferential oPerator, is called a connection ofD with resPect to g, iford 0u;$IordD

-1 and set Da={Du(g)IH+eu}, D={Du}, De becomes a well de7ined dz:tferential

oPerator from Coo(M, Ei(E9H) into Coe(M, E2opH).

   To define the curvature operator of a connection of a differential operator is

possible (cf. Appendix of this paper), and it reiates the theory of non-linear coho-
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mology ([9]). But the notion of a flat connection of a differential operator is given

more directly as follows: A connection {eu} of D with resPect to a G-bundle 6 is

called flat if there is a collection {hu} of smooth G-valued function hu on U such

that 0u=pD(hu). Here pD(hu) is given by

            pD(hu)g:=(Du(Ebli{)g-(IE,,E,(E9hu) (Du(g)IH) ((IE,(E9hu-')g).

A G-valued function g such that pD(g)=O is called a c(D)-class G-valued function.

It is shown that a G-valued function g is of c(D)-class if and only if its matrix

elements are of c(D)--class, and there is a system of differential operators r(D)

determined by D such that a function f is of c(D)-class if and only if r(D)f=O.

Some examples, such as a real elliptic operator acting on scalar functions, have

only constant functions as c(D)-class functions. But, some other examples, such

as ,D=a, have nonconstant c(D)-class functions (gl). We denote the sheaf of germs

of c(D)-class G-valued functions by G,(D) and set pD(Gd)==Lc,D. Then we have the

exact sepuence of sheaves

            o.G,(D)LGdL' LG,D-o･

From this sequence, we obtain the following exact sequence of cohomology sets

            Ho(M, Gd)-!92':l,*Ho(M, Lc,D)iHi(M, G,(D))L' Hi(M, Gd).

If LEHO (M, La D), D(2i)IH-L is a differential operator from Coo(M, Ei(E9H) into

CoQ(M, E2opH). We call this operator to be a D-Fuchs type operator. On the

other hand, an element of H'(M, G.(D)) is called a c(D)-class G-bundle or a D-flat

G-bundle. Hence b(L) is a differentible trivial c(D)-class G-bundle. It is shown

that 6(L) has the minimal structure group as a c(D)-class G-bundle. This group is

called the monodromy group of D(291H-L (g2).

   If G=GL(n, C), we can define several characteristic classes related to c(D)-class

G-bundles and the elements of AO(M, LG, D). These classes are connected with the

exact sequence of cohomologies

     ...-H2p-i(M, z)L' H2p-i(M, c,(.)) 9ItS?;P*H2p-i(M, c*,(.))A

                                 i"
                    -H2P(M, Z)-H2P(M, C,(D))-･･- ,
             '
and the generator of the cohomoiogy ring H"(CL(n, C), Z):=H"(U(n), Z) (cf. [6],

[7], [11]). For this purpose, we define a product (denoted by *) on XpH2Pri(M,

C"c(D)) and show 6: =pH2P-`(M, C*,(D))-XbH2P(M, Z) is a ring homomorphism

(g3, n08, the product in the right hand side is the cup product). Then our results

are summarlized as follows (gss3, 4):
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  (i). Denote cP(E) the t}-th Chern class of a comPgex vector bundle g, i*(cP(e))=o

     forany P, if e is a c(D)-class bundle.

  (ii). if 6 is a c(D)-class bundle, there is a well dofned cohomology class bP(e)E

     H2P'i(M, C*,(D)) such that

            6bP(6)=cP(6).

  (iii). ILIC LffHO(M, Lc,D) and D satishes some assumPtions (cf. g4, nOIO), there is

     a well dq]7ned cohomology class PP(L)esH2P-`(M, Cc(D)) such that

            exp* (PP(L)) "(un 1)P-'Fn,p(bi(6 (L) ,... ,bP (6 (L)).

                                 '
     Here Fn,p(si,... ,sp)==:=iXiP, sq is the q-th elementary symmetric .flb{nction

     of indeterminants Xi,...,X. and the Product is *=Product.

  (iv). Ilf L==pD(f), f is a smooth G-valued function on M, then

            pP(L) = i* (f}g (,p)).

     Here cP is the (2P-1)-dimensional generator of H*(GL(n, C), Z).

   If M=:C', D =d/dz and L=a/z, Pi(L) is a<e>, <e> is the generator of H'(C', C)

=C. In general, P'(L) is determined by the coefficients of the indicial equation in

classical case. PP(L) is determined by a(L), the principal symbol of L if D is

homogeneous and satisfies the assumption of nOIO. If D=d or O, an element of

H2P'i(M, C,(D)) is represented by a closed (2P-1)-form or a O-closed (O, 2P-1)-type

form on M: On the other hand, L is a matrix valued 1-form 0 on ML In these

cases, we have

            PP(L)-(2(.-vil;'l-ii),tr(5T..2.P.T.ir.[o).

   We note that (iii) shows the rigidity of PP(L) under the monodromy preserving

deformation of L, because if 6(L)==a(L'), PP(L)-PP(L')Ei'(H2PHi(M, Z)) which is a

discreet subgroup of II2P-i(M, C,(D)). Therefore PP(L) is an invariant of monodromy

preserving deformation (cf. [8], [15], [16]). But in some cases, PP(L), P}il2,

vanishes. For example, if LIU==pD(hu) and each hu is a `d(n, C)-valued function on

U, PP(L)=O if P}ll2.

   The outline of this paper is as follows: In gl, we define and study c(D)-class

functions and c(D)-class G-valued functions. c(D)-class G-bundles and D-Fuchs

type differential operators are defined in g2. The existence of monodromy group is

also shown in g2. g3 is devoted to the definitions of *-product and bP(e). The

proofs of above (i) and (ii) are also given in this g. The definition of PP(L) and the

proofs of (iii) and (iv) are given in S4. In appendix, we give the definition of the

curvature operator of a connection of a differential operator.



   In this paper, we do not study the singu!arities of D-Fuchs type operators.

From the point of view of the above formulation, the theory of singularities of

D-Fuchs type operators seems to be a non-abelian residue theory.

          gl. c(D)-class functions aRd c(D)-class (iL-valued functions

   1. Let Mbe a connected paracompact smooth manifold, D: Coo(M, Ei)-

Coo(M, E2) a differential operator on ML Here Ei, i=1, 2, and Coo(U, Ei), i=1, 2,

are the smooth vector bundles over M and the space of its smooth sections on U,

an open set of Ml If fis a smooth function on U, facts on each Coo(U, Ei) by

the scalar multipication. Hence f defines a linear operator rt.) or f on Coo(U, Ei).

   Definition. A function fon U is called to be a c(D)-class fttnction on U if

ft.)D=:Dft.). The set of all c(D)-class .functions on U is denoted by c(D, U).

   Lemma 1. Ilf' D==1i+4kAi(x)Oli1/Oxi, E=:=(ii,...,i.), li1=ii+...+i., Oii1/Oxi=

alii/ax,ii...0x.tn, on U, fbelongs in c(D, U) if and only if

                                             tt                                                  '                                OIJIf                        I!(1) J+i<tt/JlliJ!K! Ai(X) a.J =O, IKI;:llleml.

   Proof･ Since Df==.1[D+=iK;4le-i (=J+K..i, iJ1ii(I!/J!K!)Ai(x)O1J].LIOxJ)O]Ki/OxK,

we have the lemma.

   Corollary. if VcU and fEc(D, U), fbelonge in c(D, V). EsPecially, the germ

fbe of f al x and the set of germs of c(D)-class functions c(D). at x are dofned.

   Definitien. The system of dtLtferential oPerators on M given by (1) is denoted by

r(D). r(D) is called maximal if r(D)f==O imPlies f is a constant.

   Lemma 2. (i), c(D, U) is a ring by the usual addition and multiPlication of

functions and contains the ring of constant functions.

   (ii). c(D, U) is clbsed bN {7k-toPology.

   (iii). if fEc(D, U) and F is a holomorphic function such that (OiilF/Oxi) (f) is

dojned if Igl:unf{gk, then F(f) belongs in c(D, U).

   Proof. SinceD(fg)=(Dng=(.1[D)g=(flg)D if f, gEc(D, U), c(D, U) is closed

under the multiplication. Other parts of (i) and (ii) follow from lemma 1.

   If F is holomorphic, there is a series of polynomials {I7.] such that {F.(f)}

converges to F(f) on some neighborhood U(x) of x, xGU. Since Oii[G(f)/axi:=

Pi(G(f),..., (a1JlG/OxJ)(f),...,f,..., O]K1]70xK,...), J, K-KE, {F.(.f)} converges

to F(f) at least by yh-topology. Hence we have (iii).

   Corcllary. c(D). is a local ring

   If gi isalinear transformation of the fibre of Ei and Ei is trivial on U, gi

acts as a Iinear operator on Cco(U, Ei). This operator is denoted by gi(,n) or gi,

i=l, 2. Then, since gv(ne)ftm)=.fknt)gv(ne), we have

   Lernma 3. ILJf gi is inversible, i--1, 2, then
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            c(Dgi, U)=-c(D, U), c(ghD, U)=c(D, U).

   Example N. If D::=II:)i Ai(x)a/axi+B(x), r(D) is glven by =i Ai(x)0/Oxi. If Ai(x)

[=
(ai"le(x)), r(D) is the overdetermined system :iiI]iai"le(x)OfllOxi=O, 1;rS:1':,{1.-mi, 15le

;Slm2. Here mi, m2 are the dimensions of the fibres of Ei, E2.

   Exarnple2. IfD::=:Ii:]i,ai,･(x)02/axiOxi･+=ibi(x)O/axi+c(x), aij･(x)=aji(x), r(D) is

given by {2=,-ai,･(x)O/Oxi, i-ra1,..., n, (D-c(x))}. Hence r(D) is maximal on U if

A(x)=(aiXx)) is a regular matrix on each xEU.

   Example 3. If D is a scalar valued real elliptic operator, r(D) is maximal.

   Since the problem is Iocal, to show this, first we assume D is a constant

coefficients operator. Then, since D is a real scalar valued operator, le}ll;2 and by

a linear change of coordinates, we may assume D:=6le/0yile +terms with onter at

most le-2 in O/Oyi. Hence r(D) contains O/Oyt and f is independent to yi if fEc(D,

U). Set D=:P(a/Oyi,...,a/ay.), D'=P(O, a/Oy2,...,e/Oy.) is elliptic on the plane

yi=O. Therefore r(D) is maximal by induction in this case. For general D, set

D=D(xo)+(D-D(xo)), D(xo) is a constant coethcients elliptic operator. If fEc(D, U),

      ' . D(xe)f==fD(xo)+Ro, Dif==]IDi+Ri, Di=D-D(Xo),

the coefllcients of Di vanishes at xo and Ro[=-Ri. Hence the coethcients of Ro

vanishes at xo and df(xo):=O if fEc(D, U), because r(D(xo)) is rnaximaL Since xo is

arbitrary, this shows df==O on tL Therefore f is a constant and r(D) is maximal.

   Note. Example 1 shows if D=d or O, r(D) is also d or a.
   2. Let H beaseparable Hilbert space with the o.N. -basis {eai. We denote

the inner product g, rpEH by (6, rp) and the set of all bounded linear operators of

H by ta(H). Denote Vi the fibre of Eri, we set

            <v(296, rp>==(g, rp)v, vEiiVi, vopeEViXH, i=1, 2.

 ･ Pefinition. (i). A ta(H)-valued fttnction b(x) on U, an oPen set of M, is called

smooth on U if (b(x)ea, eB) is a smooth function on U for any ecr, eBEi {ecr}

   (ii). A Vi(g)H-valued function f(x) on U is called smooth on U if <f(x), ea)> is a

smooth fanction on U for any ecrE {ecr}.

   Since o.N.-basis {ecr} and {ecr'} of H are changed by a unitary operator,

these definitions do not depend on the choice of {ecr}.

   If each Ei is trivial on U, D induces a differential operator Du : Cco(U, Vi)-

Coo(U,'V2). Hence, denote IH the identity map of H, Du(g)IH:Cco(U, ViXH) .

Coo(U, V2opH) is defined. On the other hand, if b(x) is a smooth ue(H)-valued

function on (7, lvi(g)b(x) is a smooth GL(Vi)(E9 ss'(H)-va{ued function on U. Hence

lvi op b(x) = lvi (E9 b (x) (tn) is defined as a linear operator on Cco (U, Vi Ci9 H) , i -- 1, 2.



   Lernmaa 4. The followings are equivalent.

(i) (1v, ([i9 b(x))Du (Eb 1H=Du (2g) 1H(1v, (2b b(x))･

(ii) (b(x)ecr, ep)Du=Du(b(x)ecr, ep), for some o.N.-basis {ea} of H.

(iii) (b(x)ecr, ep)Du=Du(b(x)ecr, ep), forall o.N.-basis {ea} of H.

   Proof. By definition, if b(x) does not depend on x, then

(2) (lv, (g) b) D. (g) 1. == D. (2b l.(1., (g) b).

Hence (ii) and (iii) are equivalent if (i) and (ii) are equivalent. Since we have

            <Du (g) 1H(1v, (E9 b(x))v(x) op eev, ep>=Du((b(x)ecr, ep)v(x))

                                         ==Du(b(x)ecr, ep))v(x),

            <(lv,(g)b(x)) (DuopIH)v(x)(g)ecr, ep>=(b(x)eat, ep) (Duv(x))

                                           ==((b(x)ecr, ep) Du)v(x),

(i) and (ii) are equivalent and we obtain the lemma.

   Corollary. (lv,(29b(x))Du(g)1}i is equal to Du(g)IH(lv,Xb(x)) if and only if

(b(x)ecr, ep)Ec(D, U) for any ecr, epE{ea}.

   Defi"iticm. (i). A smooth va(H)-val"ed jCILtnction on U is called a c(D)-class

ca(H)-valued fatnction on U if it satisfies either of (i), (ii) or (iii) of lemma 4.

    (ii). Let G be a subgrouP of ta(H). Then a G-valued fttnction on U is called a

c(D)-class G-valued function on U if it is also a c(D)-class ta(H)-vained fttnction.

   Lemma 5. (i). ifb(x) is ac(D)-class ta(H)-valued fttnction on Uand VcU,

b(x) is a c(D)-class ta(H)-valued function on V.

    (ii). The set of all c(D)-class ta(H)-valued fttnctions on U is a ring and the set

of all G-valued functions on G is a gromp.

    (iii). Denote b*(x) the ue(H)-valued function dojned by b"(x)=(b(x))*, the adjoint

oPerator ofb(x), where b(x) is ac(D)-class ta(H)-valued function, b"(x) is a c(D)

-class ta(H)-valz{ed .function ifc(D, U):=c(D, U)={f)fEc(D, U)}, f(x)=f(x), the

conjugate comPlex of f(x).

   Proof. By the corollary of lemma 3 and lemma 1, we have (i). By the same

reason of lemma 2, (i), we have (ii). Since (b"(x)ea, ep)=(b(x)ep, eev), we have (iii).

   Corollary b(x)h(x) is a c(D)-class H-valued fanction if b(x) is a c(D)-class ta(H)

-valued .function and h(x) is a c(D)-class H-valaed function. Higre h(x) is a c(D)

-class H-valued fttnction if (h(x), ecr)Ec(D, U) for anN eaE{ecr}.

   3. For a system of differential operators S, we denote ker(S). the germ of the

elements of ker (S) at a. For r(D), the subsystem consisted by the 1-st order

operators is denoted by ri(D). We also set r(D).= {=iBi(a)OIii/Oxi} , r(D)==:XiBi(x)

alil/Oxi on U, a neighborhood of a, etc.. Similarly, D(a) means =Az(a)OIil/Oxi if

D=ZAi(x)OIiVOxi on U. In this nO, we call aEiMto be a normal point of r(D)
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if ker (ri(D(a))).Dker(ri(D))a･

   Lemma 6. ILIC the set of normal Points of r(D) contains an oPen dense set of M,

(3) ker ri(D)==ker r(D), on any oPen set ofM

   Proof. Since the problem is local, we consider the problem in a fixed coordinate

neighborhood of M

   By the definition of r(D), if P(x, O/Ox)E!r(D), we have Ii(x, O/Ox)Eri(D), where

P(x, e)===iLi(x, 6)e"i, gcri--8i"i,i...gncri,n. Hence we have (3) if D is a constant

coeMcients operator.

   Let a be a normal point of r(D) such that there exists a neighborhood U(a) of

a consisted by the normal points of r(D) and set D=D(a)+Di. Then, if ri(D)f:=O,

we have ri(D(a))f==O on U(a). Hence (Df-fZJ))(a)=O. Therefore fGc(D, U(a)) and

we have the lemma by assumption.

   Note. By the proof of example 3, nOl, if D is a scalar valued real elliptic

operator, any point of M is a normal point of r(D).

    For a smooth ue(H)-valued function f on U, we set

            6. (.f) = Df- fl[], :- (D (E9 1.) (1. , (29 f) - (1., (E9 )C) (D op 1.).

By definition, we have 6D(f)==pJ.,(D)PJ(x, O/Ox)OIJI/Ox3. We also set

            6D''(h=pJ.:Z,:,(D) PJ (x, 8t) aoxi JJi.

    Lemma 6'. ILIC D satis.i7es the assumPtion of lemma 6, fiD(f) is equal to O if and

only if 6D,i(f)==O.

   Corollary. Let G be a subgrouP of ta(H) and g is a smooth G-valued .function

on U. Then to set '
             pD (,g) == 6D (g) g- i == DQ 1H- (1E, X gi (D (2) 1H) (1E, (29 g" ') ,

             PD,i(gi == SD,i(gi g-i,

pD(g):=:O is equivalent to SD(g)=O and if D satis.lies the assumPtion of lemma 6,

pD,i(g) ==O imPlies pD(g) ==O.

    Since 6D is a derivation and 6D(f)=O if and only if f is a c(D)-class ta(H)-

valued function we have
              '

(4)i pD(g)=O, if and only if g is a c(D)-class G-valued frtnction,

(4)ii pD(gJz)=pD(g)+pD(h)g, tclp(h)g= (IE,(2bg)pD(h)(IE,(g)g-i),

(4)iii pD(g-')=:-pD(g)g-'.

    Since 6D,i is also a derivation, (4)ii and (4)iii are hold for pD,i. (4)i is hold for



pD,i ifDsatisfies the assumption of Iemma 6. .
   Exawaple. If D is a 1-st order operator, r(D) is equal to ri(D) and therefore

pD(g)==pD,i(g). Moreover, if D is homogeneous, we may regard Dg to be a va(H)

-valued 1-form and as a-1-form, we have pD(g):=(Dg)g-i. Especially, we obtain

pd(gi==dg･g-t and p'a(gi=:Og･g-! (cf. Introduction).

   On M, we denote ta(H)d and Gd the sheaves of germs of smooth ue(H) and

G-valued functions over M The sheaves of germs of c(D>-class ca(H) and G

valued functions over M are denoted by ta(H)c(D) or G,(D). pD and fiD induce the

maps pD and aD on Gd' and ne(H)d. We set

            p.(Gd)=L.,D, 6D(va(H)d)=Yta(.), ..

   By definitions, we have the following exact sequences of sheaves.

            o----G,(D) i ,Gd-!2{tl.･LG,D-o,

                         i6. ･            o-----+ ta (H),(D)- ta (H)d-mE? ta(H), .-O･

   Example. For H=C, the complex number field, denote C' the multiplicative

group of complex numbers without O, we have the following corpmutative diagram

of sheaves with exact lines and columns.

                 o oo
            o-ci*,(.) i ,c*1, pD ,Llc*, DL'o

            .expT r.xpiS1 =
            O-Cc(D) -Cd-+YC,D-'--+O
            . ,1                         el                                i

            o-z                      --Z                              ,o
                 i =1 1

                 o oo
Here Z is the constant sheaf of integers, c is the inclusion regardiRg a constant to

be a constant function, exp and k are given by

            exp (.Lt):=:(e2it/ :[f)x, k((Df-fl]})x)=pD(e2rr/=TDx,

where .Lv, etc. , mean the germ of f, etc. , at x (cf. Introduction).

         g2. D-flat (]Lbundles aend D-Fuchs type differenttial equatiorts

   4. Since G,(D) afid Gd are sheaves of groups, the coboundary maps 6i==6 : Ct(U,Gd)

   Ct'i(U, Gd) or Ct(U, G,(D)) +C`"(U, Gc(D)), i-rmO, 1, are defined. Here U

is an open covering of M For Ct<U, Lc,D), i=O, 1, we define 6Li=6L:C'(11, Lc,D)

-Ct+i(11, LG,D) bY
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(5) 6`pD =' pD6.

Explicitly, 6Li and 6L2 are given by

            tiLi(L)u, v:=Lu-LvgUv, Lu:=pD(hu), guv==huhv-i,

            tiL2(L)u,v,vv::=Lu, v+Lv,wgUV+Lpv,ugUW, Lu, v=pD(gtlv).

   Note. bL may not be defined on Ci(1;t, LG,D). But if {L}GCi(11, Lc,D), there

exists a refinement ng of tt such that 6L is defined for tKi({L}) if ms is a refinement

of S8. Here tlllg:Ci(U, LG,D)-Ci(M, La,D) is the map induced by the refinement.

   We set Bt(U, LG,D)=ker6`i={{L} KL} E!C`(11, LG,D), 5Li({L})==O}, i=O.1, and

HO(U, LG, D)=BO(U, Lc,D). On Bi(U, LG,D), we define an equivalence relation -v by

            {Lu, v} -- {Lu, v'} if Lu, v-Lu, v'--pD(hu)-pD(hv)huguvhv-i,

                   Lu,v=pD(gtJv), for some {hu}ECO(u, Gd).

We denote H`(U, Lc,D) the quotient set of Bi(U, LG,D) by this relation. Then, to
set Hi(M, LaD)=lim[H`(n, LG,D), tlllk], we have the following exact sequence of

cohomology sets.

                                                        '
(6) o-Iilo(M, G,(.))L' Ho(M, G,)-e{'llglt"Iilo(M, L.,.) 6,

                   -Hi(M, G,(.)) i" .H,(M, Gd)-!g{'l;"lli(M, L.,.).

Here b:HO(M, LG,D).Hi(M, G,(D)) js given by

                              tt            6(L)={gtrv}, gtfv[=hv7･ihv, LlU=pD(hu). '/･

                              t tt   Definition. (i). An element of Hi(M, G,(D)) is called a c(D)-class G-bundle.

   (ii). A smooth G-bundle in i"-image is called a D-y7at G-bundle.

   (iii). A connection {0u} of D with resPect to e, a smooth G-bundle, is called a

D-;flat connection if there exists {hu} ffCO(U, Gd) such that

                   0u=pD(hu), for any Ueill.

   Propositiom 1. For any eEfl'(M, Gd), the followings are equivalent.

    (i). e is a D-:f7at G-bundle.

   (ii). D allows O as a connection with resPect to e.

    (iii). D has a D-flat connection with resPect to e.

   Proof. If e :=: {gtiv} ff Hi (M, G,(D )) , we have Du (2b IH (gtrv, i (g) gtrv) == gtrv, 2 (g) gtfv

(DvQIH), where {gtrv, i} is the transition function of Ei. Hence (ii) follows from

(i). If D allows O as a connection with respect to 6, {-pD(hu)} is' a'connection of

D with respect to {hu"igtrvhv} ([3]). Hence (iii) follows from (ii). If (iii) is hold,

                                                     tt



       (lv, op hu) (Du (29 IH) (lv, (29 hu-igtrv)= (lv, op gbvhv) (Dv op IH) (lv, (g) hv-i).

Hence {hu"gtrvhv} is a c(D)-lcass G-bundle and (i) follows from (iii).

   Corollary. A G-bundle e is D-v7at if and only if D has a D-flat connection

with resPect to 6.

   By proposition 1, (ii), if 8 is a c(D)-class G-bundle, D is lifted to a differential

operator Coo(M, Ei(2i)6)-Coo(M, E2(E96) with connection O. This lift of D is

denoted by D(g)le. By definition and proposition 1, D(291e is defined if and only

if e is a c(D)-class G-bundle.

   Example. If r(D) is maximal, D-flat is flat in the usual sence. On the other

hand, if D=O, a G-bundle 6 is D-flat if and only if G is a complex Lie group and

e is a holomorphic G-bundle.

   5. If LE HO (M, LG, D), L:Coo (M, Ei (E9 H) Coo (M, E2 (g) H) is a differential

operator of order at most k-1. Hence D(EblH-L: Coo(M, Ei(g)H)-Coo(M, E2(g)H)

is a differential operator such that

(7) a(D (E9 1H-L) -a(D)QIH.

Here a(D), etc., means the principal symbol of D, etc., On the other hand, since

LEHe(M, LG,D), we obtain

(8) (D (g) IH-L) 1U==Dhtt=(lv, (29 hu) (Du op IH)(lv, (E9 hu-i), Ll U=pD (hu).

   (8) shows the commutativity of the diagram

                        D (Eli) 16(.)
           Coo (M, E, (E9 e(L)) -                               Coo (M, E, op 6(L))

             t6(L) i= t6(L) ix
                       DXIH-L
           Coo(M, E,(g)H) -Coo(M, E,(g)H).

Here to(L) is the map given by the smooth trivialization of 5(L). Explicitly, t6(L)

is given by

(9) tfi(L)({fb (29 go}) :- fu (g) hugo, 6(Lj- {huhv'i},

                        g is a smooth H-valued function.

Using tfi(L), (8) is rewritten as

(8)' t6(.)(DXIH-L)tti(.)-i == D(2g) 16(L).

   Definitiom. A dz;171erential oPerator of the form D(g)IH-L is called a D-Fuchs

tmpe dzlfflrrential oPerator and 6(L) is called its monodromy bundle.

   Lemma 7. 5(L)=ti(L') if and only if there exists a smooth G-valued fttnction f

on M such that

(10) Lt =p. (f) +Lf, Lf == (1., (29 f)L(IE, op f' i).
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   Proof. By the exactness of (6), set L=pD(hu) and L'=::pD(hu'), we have

            hu'==]Zhucu, cu is a c(D)-class G-valzaed function on U,

                       fEHb(M, Gd).

This shows (10).

   Ifr(D) is maximal, there is a bijection x:Ui(M, G,(D))-Hom(ri(M), G).

We call x(6(L)) the monodromy representation of D(E91H-L and x(5(L))(ni(M)) the

monodromy group of D(2)IH-L (cf. Introduction). For D=d/dz, H=C", the n-

dimensional complex vector space, and M is a Riemann surface, these definitions

are same as usual definitions.

   Definitien. The least structure grouP of 6(L) as a c(D)-class undle is called the

monodromy grouP of DQIH-L.

   In the rest of this g, we construct the monodromy group of D(E91H-L under

the assumption that G is a Lie group.

   Pefinition. Denote rcF : MF-M the Prodection of a smooth G-bundle with the

fibre Fover M, if D can be lifted on Cco(MF, rrF'(Ei)) with connection O, we

denote rtF"(D) this lift of D.

    Let F be a smooth right G-manifold with a G-invariant measure dp constructed

by G-invariant vector fields over E Then, denote U(L2(F)) the group of unitary

operators on L2(I7)==L2(F, dpt), there is a unitary representation rc:G-U(L2(F))

given by the G-action on F, and the following diagram is commutative.

             U(L2(17))c(D) 'U(L2(F))d

ai) rc'1 rc"i
             Gc(D) 'Gd･
                                           '
    Lexnma 8. Let 6 be a D-:17at G-bundle, 0 a connection of associate F-bundle of

e, rc(e) the associate L2(F)-bundle ofedojined by 0 (cf. [3]). Then, to denote MF

the tatal sPace of the associate .FLbundle of 6, rrF"(D) is de.lined.

    Preof. By the commutativity of (11) and proposition 1, rc(e) is D-flat. Hence

D can be lifted on Coo(MF, TF"(Ei)) with connection O (cf. [3]). Therefore we get

the lernma.

    Corollary. (i). if D(g)IH-L is a D-I7uchs tNPe oPerator and MF is theassociate

F-bundle of a(L) which satisfies the above assumPtions, then xF"(D(g)IH-L) is de-

fined. .'
    (ii). Uitder the same assumPtions, if MF is the PrinciPal bundle, xF"(6) is trivial

asac(xF"(D))-class bundle. ,
    (iii). Under the same assumPtions, if rcF"(ti(L)) is a trivial c(rtF"(D))-bundle

then there is a smooth G-valued function f on MF such that

 (12) rrF'(DQIH-L) = xF*(D)f.



1'2, AKIRA AsADA
   Proof: Since TF'(D) is defined, TF*(Du) is equal to rcF"(Dv) on xF-'(U)AxF-i(V).

Then, since (D(g)IH-L)]U::=Dhu, zF'(D(291H-L) is given by

(12)' ncF*(D op IH-L) ITF'i(U) =: (rrF*(Du))nP *(hu).

This shows (i). The trivialization of TF'(e) is given by

     '
(13) {hu(x, g)lhu(x, g)=:gGG, xEUcM}.

Hence we have (ii). (iii) follows from (12)'.

   6. In this nO, we use same notations and assumptions as in Iemma 8. Since

MF is a right G-space, we set .1[g(za)=:f(ug), uEMF, gEG. Here f is a function

on MF. The set of c(TF"(D))-class G-valued functions on MF is denoted by Gc(D), MF

and we set

            Bi(G, Gc(D),M.)={x:G Gc(D),MFlxgh=xhx2, x2(u)

                                           =::xg(Uh), xg=x(gi}'

We call x and x'EB'(G, Gc(D), MF) to be equivalent if xg'==h-ixghg for some

hEG,(D), MF and denote Hi(G, Gc(D), MF) the quotient set of B'(G, G,(D), MF) by this

                           '

                                        '   Since a constant function is a c(zF"(D))-class function invariant under the

action of G, there is a map eF:Hom(G, G)-H`(G, G,(D), M.). Here Hom (G, G)

means the set of Lie homomorphisms of G. We set '

            ker eF={rcIcF(rc)=eF(1), 1.=:g for all gEG}.

   Pefinition. -xEHi(G, Gc(D),MF) is called to have (smooth) rePresentative function

if there exists a smooth G-valued function f on MF such that fg=:hfg, xel, gEG.

This f is called a rePresentative ftenction subordinate to Mx.

   If x-vx', and x has a representative function L set xg'=h-ixghg, f'==th is a

representative function subordinate to x'. Hence this definition does not depend on

the choice of a representative of nf.

   We set

            5(HO(M, Lc, D))M.={6(L)1rcF"(b(L)) is trivial,}

            Hi (G, G,(D ), M.)f= {hx Ei Hi (G, G,(D ), M.) 1 I has a smooth

                                           rePresentative ftenction}.

                      '   '
   Lemma 9. (i). There is a bi7'ection x:6(HO(M, Lc,D))M.-H'(G, Gc(D), M.)f

and if MF is the associate F-bundle of 6(L), we obtain

(14) x(O(L))Eiiker cF.

   (ii). eF(rc) belongs in ker eF if and only if there exists fEG,(D), MF such that
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(15) .fig := rc.-i.ig

   Proof. If rcF*(D)f comes from an operator on M, set .fg=hcg, x={xg} defines

an element of H'(G, G,(D), M.). If rtF'(D)f=rrF*(D)f', set .fg=.ltxg, f'g=f'xg', x and

x' define same element of ll'(G, G,(D), MF). Hence x is 1 to 1 by lemma 7. If

IEH'(G, G,(D),M.)f,, there exists fsuch that fg=f>cg, x(!I. Then TF*(D)f comes

from a DIuchs type operator on M and x is onto. If MF is the associate ]FLbundle

of b(L), the trivialization of xF'(6(L) given by (13) gives eF(1). This shows (14). (ii)

follows from the definition of the equivalence in the definition of Hi(G, Gc(D), M.).

   Lerama ZO. (i). ILf rcEil<er eF, there exists a smooth G-valered function fon MF

such that

(16) rrF"(D(E91H-L)=TF"(D)f, fig=fk(g),

and the structure grouP of 6(L) is reduced to rc(G) as a c(D)-class bundle. '

    (ii). if the stracture gyozip of 6(L) is reduced to Go as a c(D)-class G-bundle,

there exists rcEl<er cF such that rc(G) =Go.

   Proof. Since rc has a representative function L we have (!6) by (15). (15) also

shows the second assertion of (i). Since a c(D)-class reduction of the structure

group of S(L) gives a reptesentative function on MF, we obtain (ii) by lemma 9,

(ii)' '

...1] lfi:g'le",', Z,E,;.ailgi,g; ZIZ,".O.: i9/(..9),,(rsiP.', E'n,'"s,r :,f)･ if rc2=rcrci for some

   Lemrrta IX (i). Ilf rci and rc2 belong in ker ep, there comPosition rci.c2 also belongs

in ker eF.

   (ii). ILf rcirc2 and rc2 belong in ker cF,rci belongs in ker eF.

   Proof. If Ag==rci,g-iAg and kg=rc2,g-'fleg, we have

                    (rc2(A)A)g==rc,(rc,(gl)-irc,(A)flegt

                                                                tt
This shows (i). Similarly, if fZ'=rci(rc2(gi)-ifs and f>g==re2,.-iAg, we have (Ki(h)-'f)g

=rci,g-i rci(A)-'fig", which shows (ii).

   Corollary. (i). ILIr rci and rc2 are in ker eF and rcirc2 in Hom (G, G), Ki>rc2 in

l<ercF.

   Si)6.fif. :il-'"frco2ilo:]'gGi,gSmiSiO,M.O.rpahZiCi,tO(ili(G){f .,.v.,, we have rc,=rcrc, and rc2="'rci･

Hence dim rci (G)=dim m2 (G) and there are discreet subgroups Ni of rci (G) and M

of rc2 (G) such that

                   rc,(G)/N,.rt.-.rc,(G), rc,(G)/N,EIilrc,(G),

because rci(G) and rc2(G) are Lie groups. Hence th6re are isomorphisms 2: rcrwi(G)-

ma VSPVL wtrc2(G), where rci(G) and rc2(G) are the uRiversal covering groups of rci (G) and rc2 (G),



      W VVVNand 2':rci(G)-rci(G) such that 2 maps rri (xi(G)) isomorphic into xi (M2(G)) and rc"'

maps rri (rc2(G)) isomorphic into ni (rci(G)). Since rci (G) and rc2 (G) are Lie groups,

this shows k:zi (rci(G))-t-wTi (rc2(G)) and we have (ii).

   Memma 12. ker tF has the least element in the above semiorder.

   Proof. Let{ha}be an increasing system in ker tF and set rccr(G)=Gcr. Then there

are Lie epimorphisms rc£, P<cr and Lie monomorphisms ccr such that

             rc2 ha == rcS, rc£ : Ga-Gp, ea : Ga-G, rc2ecr =tp.

Hence lim[Gex : rc£]=Go, rco : G-Go and to : Go-G are defined. Since rc£ and tcr are

Lie maps, rco is a Lie epimorphism and to is a Lie monomorphism.

   By lemma 9, (ii), there exists .rtveG,(D), M. such that (fh)g=(rc.),"fL,g for any

a. Then, since (rc£fl,)g==(rcp).-"i.laeg, set

                    .lcb = to {(rcpcr]`lx) } ,

fbGGc(D),MF. Because each rcPa isa smooth map and .1fog;=(rco).'iAg. Hence by Zorn's

lemma, there exist minimum elements in 1<er eF. But if hli and rc2 are different

minimum elements in ker eF, mirc2 and rc2rci are in ker tF by lerr}rna 11, (i). Hence

rci>rc2 and rc2>rci. Therefore rci"vrc2 and ker cF has the least element.

    Definition. The least element of ker tF is called the monodromy homomozPhism

(or representation) of D(29 IH-L･

    By lemma 10, (ii), Iemma 12 and the definition of the monodrorny groups of

D-Fuchs type operators, we obtain

    Theorem 1. ILf G is a Lie grtouP, a D-Fuchs tjyPe oPerator has the monodrompt

gromp･

    Proof. Since D(2)IH-L has the monodromy homomorphism and the irnage of

G by the monodromy homomorphism is the least structure group of 6(L) as a c(D)

-class bundle, we have the theorem.

             g3. Characteristic classes related to c(D)-class bundles

    7. In this g and next g, we assume H=C" and G=GL(n, C).

    By the commutative diagram in n03, example, we have the following commu-

tative diagram with exact lines

      ee. -Hi(M, C",(D))2"L-'Hi(M, C*d)-El2'll[,'* Hi(M, Lc', D)rk' H?(M, C*c(D))-''

                             1 k*1-=                                                          i

                                                     62
                             o -Hi(M, gc, D)-H2(M, Cc(D))-O
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   LemTrta E3 (i). EGHi(M, Cd") is in i'-imagk? if and only if 62fe*-`pD"(6)=O.

                        -   (ii). Let ch:Hi(M, C"d) {l! H2(M, Z) be the isomomphism given by ch(e)==ci(e),

the lirst Chern class of e, and e:Z +C,(D) the inclusion, then

(17) 6,le*-ipD*(6)=c*ch(g), gEHi(M, C*d).

   Proef. (i) follows from the definition. By the definition of h, we have

                           1            62fe"-ipD*(e)=2.v-i (loggtrv+loggvrv+loggvvu), g=={gtiv}.

Since this right hand side represents ch(6), we get (17).

   Definition. Let e be a GL(n, C)-bundle over M, denote ch(g) its tatal Chern

class, then we call e"(ch(g)) the (tatal) c(D)-characteristic class of e. The comPonent

of e"(ch(e)) in H2P(M, C,(D)) is called P-th c(D)-characteristic class of g.

   Exarnple. If r(D) is maximal, c(D)-characteristic class is the (tatal) complex

Chern class. If M is a compact Kaehler manifold and D==a, P-th c(D)-characteristic

class is the (O, 2P)-component of P-th complex Chern cJass.

   In the rest, we denote the flag manifold GL(m, C)/A(m, C)=U(m)/TM by F=

F(m). The associate Flag bundle of a (c(D)-class) GL(nz, C)-bundle g is denoted by

M.=={M., F, M, rr.}.

   Lemma 14. Uitder the above notations, if e is a c(D)-class bundle, TF': H*(M,

Cc(D))-H*(MF, Cc(rtF*(D))) is a monomorphism

   Proof. If nF'i(U)= U×F, (C,(D)1U)(E9Cd(F) is dense inC,(T.*(D)inF"(U), that is

HO(U, C,(D))(E9HO(F, Cd) is dense by the {II'eo-topology in HO(nF-`(U), C,(zF*(D)))･

Since Cd(F) is a fine sheaf, H'(MF, Cc(nF*(D))) is calculated by a covering of the

form {rcF"'(U)} by Leray's theorem. Then, taking the invariant measure dpt on F

such that fFdpt =1, we set

            SF{gio,..･,ip} =: {fFgi,,...,ipdpt} ,

            &',,...,ip is deLlined on rcF-i(Ui,)fi...fizF-i(Uip)=TF-'(Ui,n...nUip).

By definition, fF defines a homomorphism from ll"(MF, Cc(nF *(D)>) into H"(M, Cc(D))

and fFrrF* is the identity. Hence we get the lemma.

   CoroIIury. Uhader the same assumPtions, c(D)-chartzcteristic class of g vanishes

if and onl), if c(TF'(D))-characteristic class of TF*(6) vanishes.

   Preof. Since rrF' in both sides in the fol!owing commutative diagram are mo-

nomorphisms, we have the lemma.



                     e*
            ff"*(YF' Z)7. (i(.".(4i("･ Cc(nF'(D)))

                    im-H"(M, Cc(D))･                  z)            H* (M,

   Propasitien 2. ILf E is a c(D)-class GL(m, C)-bundle, its c(D)-characteristic class

vanishes.

   Proof. By lemma 13, the proposition is true if m=1. Set m:=q+1 and assume

the proposition is true for c(D)-class GL(r, C)-bundle if rSlq.

   On MF, ffF"(e) is an extension bundle of a c(TF"(D))-class GL(q, C)-bundle n,

and a c(xF*(D))-class complex Iine bundle rpi. Since C,(rtF*(D)) is a sheaf of rings by

lemma 2, (i), trk(ch(vi))Uc"(ch(rpq)) is defined aRd we have

            t"(ch(nF*(g)))==e*(ch(rpi))Ue"(ch(v,))==O,

by inductive assumption. Hence we obtain the proposition by corollary of Lemma

   Note. For flat bundles and holomorphic bundles, this proposition is 1<nown. In

fact, a vector bundle is flat if and only if its curvature form is equal to O and

therefore its complex Chern class is equal to O. On the other hand, a vector bundle

is equivalent to a holomorphic bundle if and only if (O, 2)-type part of its curva-

ture form is equal to O. Hence (O, 2P)-type part of the Chern class of a holomor-

phic vector bundle is equal to O.

   8. For {gl,,...,ip} EiCP(U, C"c(D)) and {hi,,....,i,}ECg(11, C"c(D)), we set

                                                            '     '' (g*h)i,,...,ip+q+,=exp[2.viHi log gi,,...,ip (61ogh)ip,...,ip+g+,],

                       a+1
         (61ogh)i,,..., iq+i= = (-1)i' 10g hiD,...,iJ'-i,ij'+i,..., ig+i･

                       g==O

Here we assume U is sufllciently fine and log gi,,...,ip or log hi,,...,ia are determined

as 1-valued functions. The choice of the branch of logarithm is arbitraly, and

therefore this definition of (g*h) depend on the choice of the branch of logarithm.

   Lemma 15. (i). ILIC {s,,...,ip} and {hi,,...,i,} are both cocycles,{(g*h)io,...,ip+,+i}

is a cocycle and its cohomology class in HP'q"'(M, C',(D)) does not dopend on the

choice of the branch of logtirithm.

    (ii). Ille either of {gi,,...,ip} or {hi,,...,i,} is a coboundary and the other is a

cocycle, {(g*h)i,,...,ip+,+,} is a coboundary.

   Proof. Since we have

            log gv,,...,ip+i (6logh)ip+,, ..,ip+q+i-

            -log gt,,i2,...,ip+, (61ogh)ip+b,..ip+g+2+''--t-
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            +(-1)Plog gio,...,ip-r,ip+i (tilogh)ip+i,...,ip+g+2+

            +(-1)P"ilog gi,,...,ip (tilogh)ip,ip+2,...,ip+g+2+''"+

            +(-1)P+q+21og g?,,...,ip (61ogh)ip,...,ip÷q+i

            =(Slog gii,,...,ip+g+i (SIOgh>ip+i,...,ip+g+2+

             +(-1)Plog gi,,...,ip {b(5logh)}ip,...,ip+q+2,

{(g"th)ie,...,ip+,+i} is a cocycle if {g,,...,ip} and {hi,,...,i,} are both cocycles. If we

take other branches of logarithm in the definition of (gigh), denote Iog' other

branches of Iog, we get

             (g*h)io,...,ip+q+i {(g*h)'io,...,ip+g+i}-i

                     1                           {(log gi,,...,ip-log'gio,...,ip) (6logh)ip,...,ip+g+i+             =exp[
                  2ffV- 1

             ÷log' gi,,...,ip {(eiogh)ip,...,ip+,+im(6log'h)ip,...,ip+q+i}}]･

Since (1/2rrAv!-1) (6Iogh)ip,...,ip+,+, is an integer if {hi,,...,ip} is a cocycle, we get

by this formula

     (g*h) io,...,ip+g+i {(g*h)' ie,...,ip+a+i}-'

            (nip+i"--,ip+a+i-nip,ip+2..,,ip+g+i+'''+('i)q+inip,--,ip+g),
    =: gi o,..., ip

where each ni,,...ig is an integer. Then, to define fl,, .,ip+q by

     fio,...,ip+g=gi,,...,ipniP"",iP+g,

we get

     (tif)io,...,ip+g+i

    = (gi i,..., ip gi ,, i,,..., ip.,'1･･･gi ,, ..., ip .. ,, ip+,(-1)P) nip+ "-"ip+q+i

      .gt,,...,ip((H')P+inipip+2"･-,ip+e+i+'''+('i)P+g+inip.",tp+q)

    =gl,,...,ip("')Pnip+i"･"ip+g+igio,...,ip((Mi)P+intp,ip+z...ig+g+,+'''+(fii)P+g+'nip,".ip+g),

if {gio,...,ip} is a coboundary. Hence we obtain the second assertion of (i).

    If {hi,,...i,} is a coboundary, we also get

    (tg"h)io,...,ip+q+,==7gi,,...,ip(niP+i,""ip+qg"nip,ip+2"-)ip+g+i+'''+(-i)q+inip,.",ip+g),

because {(1/2TV-1) (6h)i,,...,i,+,} is an integral coboundary in this case. Hence



{(g3kh)io,...,ip+a+T} is a coboundary if {gri,,...,ip} is a cocycle. But since

                   6(log gio,...,iploghip,...,ip+q)io,...,ip+q+i

                 ::= (S log g)io,...,ip+i log hip+i,..., ip+q+i+

                 +(-1)Piog gi,,...,ip (6 log h)ip,...,ip.g+i,

we may define ,glvh by

            (g*h)io,...,ip+g+i

                       1           == (-1)P+i [                          (6 log g) i,,..., ip+i log hip, ..., ip+q÷i]･                   2Ttvl - 1

Hence {(g*h)i,,...,ip.g.,} is a coboundary if {gi,,...,ip} is a coboundary and {hi,,...,i,}

is a cocyc!e. Therefore we obtain (ii).

   Definitiome. ILf cpEHP(M, C",(D)) and cqE"q(M, C',(D)) are the cohomology classes

of cocycles {gi,,...,ip} and {hi,,...,i,}, we denote cp*c, the cohomology class of {(g*h)

i,,...,ip,g.,} in HP'q'i(M, C*,(D)) and call the *-Product of cb and c4.

   Lemyna 16. (i). =pllP(M,C*,(D)) is a ring by the *-Product. That is, we have

            Cl*(C2*c3)=(Cl*c2)*3, cl*c2=:(-1)P+lc2*ci, clEHP(M, C*,(D)),

            ci*(c2c3)=(ci*c2) (ci*c3), cc' is the usual product in :}il]pHP(M, C*,(D)).

   (ii). Let 6:=pHP'i (M, C",(D))-=pHP(M,Z) be the coboundary homomor-

Phism, we have

(18) 6(c,.c,) == (6c,) U6(c,).

   Proof. Since we have

            6(log gi,,...,ip (6 log h)ip,...,ip+g+i)

          =a log gi,,..., ip+, (fi log h)ip+i,..., ip+g+2,

            log gi,,...,ip (5 log h)ip+i,...,ip+q+i-

            -(-1)P+i (S log gi,,...,ip+,) log hip+i,...,ip+q+i

          =(-1)P"i (6 Gog gi,,..., ip 10g hip,...,ip+q)io,..., ip+p+r),

            6log fi,,.. ,ip+i (log gJz)ip+i,...,ip+g+i

           ==6log A,,...,ip+i (log gip+r,...,ip+q+i+10g hip+i,...,ip+a+i),

we obtain (i) by iemma 15.

   By the definition of *-product, we get
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            2Tvim i (6 iog (g*h))to,...,ip+,+i

           =2rc,v/i- i (a iog g)io,...,ip,,2.vi- i (6 iog h)ip.,,..., ip.g.,･

Since this right hand side represents 5(ci)Ub(c2), we obtain (ii).

   Corollary. 6::i:QHP-i(M, C",(D)) ,XpHP(M, Z) is a ring homomo2tPhism,

where the Products are *-ProductandcptP-TProdt{ct. EsPecially, Zpll2P'i(M, C*c(D))

is a commutative ringt

   Note. We I<now 6:ZplilP"(M, C*d)=ZpHP(M, Z). In this case, we have

c,*c,=6Mi(6(c,)U6(c,)) by (18).

   9. As in n07, we fix a c(D)-class GL(q, C)-bundle g and its associate F(q)-

bundle MF:=: {MF, F(q), M, TF}. Then we have the following commutative diagram

with exact lines.

     H2P-i(MF, Z) C* ,H2P-1(MF, C,(.F*(D))) eXP*.H2P-1(MF,C*,(.F*(D)))----+

     HZ,Fp"ml,(M, z)rrei'L.HT2"p"-.1i(M, c,(.)) exp" ,Hrr2Fp*-i,(M, c*,(D)) ,

      S     -H2P(MF, Z)
      , ..*1

     -H2P(M, Z).

In this diagram, each rrF* is a monomorphism except rrF":H2P-i(M, C',(D)) ,

H2P-i(MF, C",(ffF*(D))). Hence rcF* : H2P-i(M, C",(D))-H2PLi(MF, C*,(TF*(D))) is aiso

a monomorphism. On the other hand, if cGU2P-i(MF, C*,(nF*(D))) is in a-kernei,
set c==exp'(b), bEH2P"i(MF, Cc(rrF*(D))), fFb is defined. Since IFc" (a), aEH2P-i(M)i,

Z), is in c*-image by the definition of JE exp*(fFb)EH2P-i(M, C",(D)) is determined

by c. Hence we may define IFc by

                   IFc==exp" (IFb), c=exp*(b).

   On MF, zF"(e) is an m-fold extension of c(ffF"(D))-class C"-bundles rpi,...,v,

as a c(nF"(D))-class bundle. Then, regard each rpi to be an element of H'(MF,

C*c(nF*(D))), we have

(19)' TF"(cP(6))=::=ti(vi,)U･--U5(vip), P;!I{lq･

Here cP(6) is theP-th integral Chern ciass of g andX Xi, ... Xip is the P-th ele-



mentary syrnmetric function of indeterminants Xi,...,Xa.

    By lemma 16, ll rpi,*...*rpipEH2P-i(MF, C*,(nF*(D))) is defined and we have

(20) 6<ll rpi,*. .. *pip) =- itp*(cP(e)).

    Since cP (e) is in a-image by proposition 2, there is an element bPEH2P-i(M,

C"c(D)) such that

                   6(rc.*(bP))=6(ll rpi,*. . . *oip)･

Hence fF(ll rpi,*. . . *vip)-rtF"(bP) is defined. If 5(rrF'(b'))=6(ll rpi,*. . . *rpip), we get

            l. {(IIZr rpi,*. . . *rpip) - rcF"(b)} -f. {(ll vii*･ ･ ･ *vip)-rrF"(b')}

           =::IFrrF*(bi-b)=b,rb.

Because TF" is a monomorphism. Hence bP+IF {ll (Ti,*. . . *vip) - ncF"(bP)} EiiH2P-i(M,

C"c(D)) does not depend on the choice of bP.

   Definitgon. For a c(D)-class GL(q, C)-bztndle g, we dqiine bP(6)EH2P-i(M, C",(D))

by

(21) bP(6) =bP+I. {(ll rpi,*. . . *rpip) -TF*(bP)} , ti(rrF*(bP))=a(ll rpi,*. . . *rpip)･

We also set b(g) :=: = bP(6).

                Pll
    By the definition of bP(e) and (20), we obtain

    'TheDrem 2. (i). bP(e)=O if P>q and we have

(19) 6(bP(g))=cP(e), the P-th integral Chern class of 8.

    (ii). .ILIC My={My, Y, M, Ty} is ac(D)-class bundle over M with the smooth

fibre Y, and g is a c(D)-class GL(q, C)-bundle over M, then

                   rry'k(bP(s))=bP(ny*(e)).

    (iii). if g is a c(D)-class extension of c(D)-class bundles vi and v2, then

                   1+b(e)-(1+b(rpi))*(1+b(v2))･

           '
    (iv). Ilf 6=6(L), bP(e) is in exp"-ima,ge and if the monodroney gromp of D(g)lcq

-L is contained in GL(qo, C), qo<q, then bP(g)==O, P>qo.

    Note. In some cases, for example D=d or O, C*,(D) is also defined on MF and

TF*:H2P-i(M, C",(D))2iEH2P-'(MF, C",(D))W, the invariant subgroup of H2P-i(MF,

C*,(D)) under the action of Weyl group. In these cases, we can pefine bP(6) by

                   bP(6) =TF*-i (U rpi,*･ ･ ･ *rpip)･
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           g4. Characteristic classes related te D-Fuchs type operators

   IO. We denote the tangent and cotangent bundles of M by T=T(M) and

T'=T*(M). Their fibres at xare denoted by T. and T"x. Set TC==TopC, etc.,

the subspace of TCx spanned by ri(D(x)) is denoted by TC,D. and set TC,D==

UxEMTC,Dx. For TC,D, we assume there is an open covering {U} of Msuch that

on each U, there is a system of smooth vector fields {XUi,...,XU.} as follows:

(i). {XUi(x),...,XU,.(x)} spannes TC,D. if xEiU. (ii). {XUi(x),...,XU.(x)} are linear

indePendent ifx is in some dense oPen subset of U. Under these assumptions,

there is a constant m such that dim TC,Dx$m and TC,D is a vector bundle over

some open dense subset Mb of M. To fix an Hermitian structure of TC, we can

determin the dual space T"C,Dx of TC,Dx as the subspace of T"Cx for each xEML

Set T*C,D=:: UxEMT"C,Dx, T"C,DIM6 is the dual bundle of TC,DIMb and contained in

T"CIM6. In the rest, we assume {XUi,...,XU.} to be an o.N.-basis of TC,D. if

xEMb, for the given Hermitian structure. Their dua! basis are denoted by {XU'i,

...

   Definition. For a smooth function f on U, we set

                           m                    dDf(x):==X(XUif) (x)XU'i(x), xEU.

                           i=1

   By definition, dD is defined on M and does not depend on the choice of

{XUi,...,XUm}. Set APT"C,D:=UxEMAPT*C,Dx, dD induces a differential operator

dD :Coo(M, APT*C,D)-Cco(M, AP"iT*C,D) for any P. Therefore, denote the sheaf

of germs of smooth sections of APT"C,D by CP,Dd, we have the following exact

sequence of sheaves

                            i dD dD dD                                                           dD
                                             ,... - CP, Dd -...    (22) O-C,(.)-Cd-                                     Ci,Dd

                 dD
                - Cn, Dd- O.

                                                          idD
   By the definitions of dD and Ci,Dd, the sequenceO ,C,(D)-Cd-Ci,Dd is

exact if and only if (3) is hold for D. dDdD is not equal to O unless the Lie a}gebra

spanned by {XUi,...,XU,n} is abelian.

   Note. If D is homogeneous, ri(D) is determined by a(r(D)), the principal symbol

of r(D). Hence dD is determined by a(r(D)).

   Assurwiption. in this g, we assume that there is an H17rmitian structure on TC

such that the sequence (22) is exact,

   Under thls asstunption, denote the kernel sheaf of dD in CP,Dd by BP,Dd, we

have the isomorphism

(23) HP(M, C,(D))2:HO(M, BP,Dd)/dDHo(M,CP-i,Dd), p;gl.



Because the sheaves Cd, Ci)Dd,..., are fine.

   Exazmple. If ri(D) is maximal, D satisfies the assumption and the sequence (22)

is the de Rham complex. Similarly, if r(D)=ri(D) =O, D satisfies the assumption

and the sequence (22) is the Dolbeauldt complex.

   Lemmaa g7. if D satiskes the assumPtion, My==: {My, Y, M, rcy} is a c(D)-cgass

bundle overMwith thefibre Y, a smooth manifold, then zy*(D) also satishes the

assumPtton.

   Proof. By assumption, denote Ty the fibre of the tangent bundle of Y, we

have TC, zY*(D)=:rry"(TC,Dffy(.))(E9Tv. Hence dZY"(D)=rry"(dD)Qly at Cd. There

fore we have the lemma.

   By the definitioii of dD and the assumption on D, dD has saMe formal proper-

ties as d. For example, dD is linear, dDdD=O and

            dD(g.sb)==dDg.gbl-(-1)Pg.dDgb, gECoo(U, APT*C,D).

   Zg. In the sence of de Rham, the (2P-1)-dimensional generator otP of

H*(GL (n, C), C)=H"(U(n), C) is given by

            teP(T)=tr(dTT'i.. . . .dTT-i)

           ,., i2:;] Cl'i, i2. .. agi2p-2,i2P-iCl'2P-i, iitdZi,, j-,.... AdZi,p-i, 1'2p-i,

            i1,.,.,i2p-1,1'1,.,.,1'2p-1

                   T== (zi, j), T'i,.. ((t, ,),

([5], [10]). Hence if f: U-GL(n, C) is a smooth map, we have

(24) f" (toP) =tr (c(ff- i.. .. .opMi).

We also set

(24)' f"D (tuP) == tr (dLLff-'.. .. .dilff' i).

    Example. If D==O, f"D(toP) is the type (O, 2P-1)-part of f"(toP).

    Lemiwa 18. I17C iogf is deYined, we have

(25) f"(caP) -=tr (d log .fk....d log f),

(25)' f"D ((DP) =tr (dD Iog L.. .. .dD log f).

    Proof. Since cijT'`=(d(rc)) (fC)'i and ditzf-i=(dD(.fC)) (fC)-i for any constant

matrix C, we may assume f-I is inversible and iogf is given by the Taylor

series :I :].zi (-1)M'i(1/m) (f-I)M on U, an open set of ML Then, since f-I is

inversible by assumption, we get

            tr[(f-I) leo df(f- J) ki.. . . .df(f- I) k2p-2.df(f- I)k2p-i-feo]

           -tr [df(f-I)hi.. , . .df(f-I) le2p-i],
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for any integers ko, ki,...,fe2p..i. Therefore we obtain

            tr (d log fk. .. .d log f)

           = = (-1)ki"'''"k2p-i tr[df(f-I)kiA....df(f-I)k2p-i],
            hl,.,.,le2p-1

because tr is linear. Since f'i=::Nfe)o(-1)h(f-I)k under our assumption, this ri-

ght hand side is equal to tr (dff-i.....dff'-i). Therefore we obtain (25). (25)' is

obtained by the same way, because dD has same formal properties as d.

   CDroliary. f'D((DP) is dD-closed.

   Memmaa 19. Let L:= {pD(hu)} be an element of HO(M, LG,D). Then to set

(26) L*(tuP)iU=hu*D((vP),

L"(toP) is a dD-closed (2p-1)-form on M and does not dopend on the choice of {hu}.

   Proo£ Since pD(hu)==pD(hv) on UnV, we get hu"D((DP):=hv"D(a)P) on URV. On
the other hand, if pD(hu)=pD(hu'), hu' is written as hufo, where fu is a c(D)-class

GL(n, C)-valued function. Hence hu"D(toP) is equal to hu'*D(toP). Thereforewehave

the lemma.

   Iemrifka 20. Set <L"(toP)> the cohomologly class of L"(tuP) in H2P-`(M, C,(D)),

we have

            <L*(.P)>

           = {(-1)P'itr[log gi,,i, (6 1og g)i,,i,,i,. . . (6 1og g)i2p-3, i2p-2, i2p-i]} ,

            gi]･==hui-ihuj, (ti log giii-h=log glile-log gik+log gii･

   Pyoo£ Since we can take the open covering {U} suthciently fine, we may
assume loglau is defined for any UE{U}. Then, by lemma 18, to set

                    1ql            L"(S?q)=dD log hu.....dD log hu,

we have

            tr L*(92P'i):=tr L*(toP), L*(9q):=(-1)qmidD[L*(S2q-i) loghu].

Moreover, by the same calculation as in the proof of iemma 18, we get

            tr[L" (S2 q) .dD (log hu-ihv)]

           =:tr[L"(S?q).dD log hv-L"(S2q).dD Iog hu].

          vHence the Cech cocycle represents the class of L"(9P) in H'(M, B2P-2･Dd) is

{tr [L*<92P'-2)loggi,1}. Then, since b{(6log g}i,,i,,i2,i3=O, We get

            log hi, (5 log gii,, i,, i,-log hi, (6 log g)ie, i2, i3+

           +log hi,(ti log g)io, ii, i3-log hie(6 log giio, ii, i2



          =(log hi,-iog hi,) 6log g)ii, i2, i3･

Hence in H2(M, B2P-3,Dd), L'(toP) is represented by

{-tr[L*(92P-3) log gi,, i, (6 log gii,, i,, i,]}. Since (6 Iog g)i,, i,, i, is a constant matrix,

we can repeat this process. Therefore we have the lemma because (-1)(P-i)(2P'i)=:

(-1)P-i.

   Corollary. Denote cP the (2P-1)-dtmensional generatorof H*(GL(n, C), Z)==

H'(U(n), Z), we have

                           (-1)P-i
                    e'(cP)=:                                  <.p>.
                          (2rrV-1 )P

   Proof. Since (6giii'k=I, the identity matrix, (61og giide=::2rctvi-IAri,･fe, where

Nii'le is a matrix with integral proper values, for any i, j, le. On the other hand,

iog giti=2TV-1Nii- if hui--huj on UiftUi. Hence f'(toP) is represented by acocycle

of the form {(-1)P-'(2TV-1)P nio,.. ,i,pH.,} in H2P-i(M, C), where nio,...,i2p-, is an

integer for any (io, ii,...,i2p.i) and f:M----+GL(n, C) is a smooth map. On the

other hand e"(cP) is represented by aptoP where ap is a constaRt, e"(f"(cP)) is repre-

sented by {(-1)P-iap(2TV-1)Pni,,...,i,p-,} and it is an integral class. Since we can

take f and M arbitrally, (-1)P-'ap(2nV-1)P should be equal to 1. Therefore we

obtain the corollary.

   12. Definition. VVe dofne PP(L)EH2P-`(M, C,(D)) by

                           (-1)P--i
                    PP(L) := (2.v-1)p<L*(tuP)>･

   Theorem 3. (i). IlfLGHO(M, Lc*,D), then

(27) Pi(L):-6le*-i(L).

    (ii). Let Fq, p, (Yi,..., Yb)==ai,,...,ip Yii!... Yt,ip be the Polynomial

Fq,p(si,...,sp)==i=iXiP, where sr is the r-th elementary symmetric .fatnction of

indeterminants Xi,...,Xq, and set

            Fq, p(bi,･..,bp) :- ll [(bJ.. .Zl .7tl) .. ...(b-,,.Z?.It))]ai,･･･ ･i,,

                          b,EH2r'1(M, C"c(D))･

Then we have

(28) exp"(PP(L))=("1)P-'F,,p(b'(6(L)),...,b'(6(L))).

    (iii). ILf L==pD(f), f is a smooth GL(n, C)-valpted function on M, then

(29) P'(L)=e"(f'(c')).
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    (iv). ifLIU=pD(hu), hu isa smooth id(q, C)-valued function on U, for each

UG {U}, then
                    e
(30) PP(L)=O, P}ll.l2.

    (v). if My==:{My, Y, M, rry} is ac(D)-class bttndle over M with the smooth

.libre Y, set rty'(L)== {pn.*(D) (zy*(hu))}, zve have

               PP(zy*(L))==T.*(pP(L)).

    (vi). Ilf D is homogeneous and satisfies the assztmPtion in nOIO, PP (L) is deter-

mined by a(L), the PrinciPal symbol of L.

    Proof. If L={pD(hu)}eHb(M, Lc*,D), 6k"-'(L) is given by (1/2fltV-1) (log hu-

loghv). Hence we have (i) by lemma 20. (iii) also follows from lemma 20 and (v)

follows from the definitions of PP(L), rcy"(L) and lemrna 17.

    To show (ii), first we assume fi(L):=:{gij} is a id(q, C)-bundle. Then 6(L) is a

q-fold extension of c(D)-class C'-bundles vi,...,rpq and the transition function of

each rp. is given by the m-th diagonal element {giti,m} of {gii'}. Since gii is a

id(q, C)-valued function, loggii' is a A(q, C)-valued function whose m-th diagonal

element is log giiJ, .. Hence we have

             tr[log gi,, i,(6 log g)i,, i,, i,..o(6 Iog g)i2p-,, i2p-2, i2p-i]

              a           = :! i] log gi,, i,, m(a log gii,, i,, i3, m.o.(6 log gti,p-,, i,p..,, i2p-i, m-

             fn=1

Therefore we obtain

                    exp" (p' (L)) - ( ,;l.], hllll,*. ?. ,15I,L}(-i)'-i.

Hence by the definitions of bP(e) and F,,p, we have (28) by lemma 16.

    To show (ii) in general, we use the commutative diagram

                               exp*
                               -H2P-1(MF, C",(ffF*(D)))             H2P'i(MF, Cc(nF'(D)))
              ..*1                               exp* TF*1

             H2P-i(M, C,(D)) ----,b fl2PHi(M, C*,(D)),

where MF is the associate F(q)-bundle of 6(L). Since TF'(D) satisfies the assumption

of nOIO by lemma 17, PP(rrF*(L)) is defined and since TF"(6(L)) is a c(D)-class

id(q, C)-bundle, we have

             exp"(P'(rtF'(L))) = (r1)"iF,, p[bi (6(rcF"(L))), . . . , b' (6(rrF*(L)))].

But since 6(TF"(L))=TF"(6(L)) by the definition of xF"(L), we have by (v) and

theorem 2, (ii)



            iqF " (exp' (P' (L))) = rp"[(- 1)P-iF,,p(bi (6 (L)), . . . , bP (6 (L)))],

because by the definition of *-product, we get zF"(a*b):=TF"(a)*Tfi"(b). Then, since

each rrF" is a monomorphism, we obtain (ii).

   If hu is a id(q, C)-valued function, aDhuhu-i is a ta(q, C)-valued 1-form. Hence

to set dDhuhu-i;(goii･), we get

                                11                              al r 1                   tr(L*(9r))=Xgi,i.. . . .gi,i--O, r}llL2･

                             i-l

   If D is homogeneous, a(L) is determined by ri(D). Hence we have (vi).

   Coroilary. IL7C 6(L) ==6(L'), PP(L)-PP(L') is in c*-image for all P.

   Nete 1. By (ii), we have

(28)' bi (6 (L)) -exp* (P' (L)).

   On the other hand, since the diagram

            HO(M, Cd)-->HO(M, yc,D)i' Hi(M, C,(.)) +O

                        fe*-il= 6,                                      exp*1

                        He(M,                                ,.)-Hi(M, C*,(.))                              Lc*
                                         til

                                       H2(M, Z),

is commutative, we can define, Pi(L) by (i) without any assumption about D and

it satisfies (28)'.

   Note 2. I)C dD==d or O, we can define rtv"(PP(L)) and PP<ffy'(L)) (resp. rcy"

(bP(e)) and bP(Ty*(6))) as the elements of H2P-i(My, C) or H2Ppi(My, Co) (resp.

H2Pmi(My, C") or H2P-i(My, C*to)) and for these elements, theorem 3, (v) (resp･

theorem 2, (ii)) hold.

     Appemdix. Curvature operators of connectioRs of diferential operators

   In this appendix, we assume Ei=E2=E, that is D is defined on Coo(M, E) and

maps into itself. For a differential operator L:Coo(U, E(E9H)-Coo(U, E(21i)H)

with order at most k-1, le=ordD, we set

                   e.(L) - (D (D IH)L+L(D (E9 IH) -L2,

and call the cLirvature operator of L with respect to D. By definition, if -L=

{-Lu} is a connection of D with respect to 6, a G-bundle with the fibre }I ([3]),

set DL == {D (E9 IH-Lv} : Cco (M, E (g> g) -Coo (M, E (g) e) , we have

                   D.2lU==Du2op1H-e.(Lu).
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Hence if L is fiat, that is L=pD(h), we obtain

                   e.(L)=pD2(h).

                                      D2 Dm                          D,
   Example 1. Let Coo(M, Ei) ,Cee(M, E2)-eo.-Coo (M, E.,.i) beadifferen-

tial complex, eaG-bundle with the fibre H, -ei i's a connection of Di with

respect to e, 1$i.fglm. Then, to set E=EiOeeeOEm+i, D(flLee･eOfhi+i)=

OODiflO."oeDmLn and 0(flO･eeeAn+i)=Oe0iAeoe･e0.fbu, e is a connec-
tlon of D with respect to e and eD(e)=-(De)2. Therefore the series

            Di, ei                            D2, o2 Dm, em
                                         Coo(M, E.,,(g)e) is a differentialCoo (M, Ei (29 e) -Cco (M, E2Q e) - e"e -

complex if and only if the curvature operator of 0 with respect to D vanishes. To

vanish the curvature operator of e, it is sufficient there exist huECco(U, Gd) such

that ei,u==pDi (hu), 1;s{is-lm, for all U.

   Exarwgple 2, In the above example, if Di=d or O for each i, eD(0) is equal to

dO-eAO or OO-0AO.

   Lemorana g. We have

(1)i eD(cL)=ceD(L)+(c-c2)L2, c is a constant G-valued function,

(1)ii e.(L,-i-L,)=e.(L,)+e.(L,)-(L,L,+L,L,),

(1)iii e.(Lg)=[e.(L,)]g+[e.(g)Lg+Lge.(g)].

   Corollary a. if eD(Li)=eD(L)g+pD2(g), then there exists a dzlffizrential operator

P such that Lg+pD(g)=Li+P, eD(P)=:LiP+PLi.

   Coyollary 2. (i). If L= {Lu} is a connection of D with respect to e={gtrv}, then

(2) eD(Lu)::=eD(Lv)gUV+pD2(gtrv), on UnV.

   (iii). ILIC (2) is hold for L= {Lu}, then

(3) eD(Lv+Puv)=OD(Lu) on UnV,Puy=(Du-Lv)-(Dv-Lv)guv.

   Proof. If L== {Lu} is a connection of D with respect to 8, we have (Du-Lu)2

=(Dvguv-LvgUv)2 on UnV. Since (Du-Lu)2=Du2-eD(Lu) and (Dvguv-Lvguv)2=

Du2-pD2(gbv)-[eD(Lv)]gUV, we get (i). Since (Du-Lu)2-(Dvguv-Lvguv)2=o if (2)

is hold, set Puv=(Du-Lu)-(Dv-Lv)gUV, we get (3) by (1)ii.

   Corollary 3. if OD(L)=eD2(h), L is equal to pD(h)+P, where eDh(P)==O,

   Defimitiom: Let L, L':Coo(U, E(29H)-Coo(U, E(g)H) be dztfi`lerential QPerators

of order at most k-1, we call LnvL' mod. eD if there exists a smooth G-valued

fatnction g on U such that (PD(L)=@D(L')g+pD2(g). .

   By lemma 1, L-JL' is an equivalence relation and it induces an equivalence

relation on @Z-esH, the sheaf of germs of differential operators L:Cou(U, E(29H)

-Coo(U, E(g)H) of order at most k-1. The quotient sheaf of gSbo'H by this



relation is denoted by 'eW pgkgt.. The map from gS-op'. onto NeDgS-opiH induced by

the relation L--L' is denoted by e'WD. The kernel sheaf of NeD is denoted by iJc, D.

iG,D containes LG, D.

   Definition For 6={gtrv}alli(M, Gd), {Lu}GCoo(U, gSde'.) and {Luv}ECi(U,

gkE-i'SH,) tve set

            6e {L} uv =Lu-Lvguv, 6g {L}uvvv=Luv+Lvwguv-i-Lpvuguw.

   LemiTta 2. 6e(66{L})uvw==O and if {(6e L)uvw}=O and there is a Partition of

unity by smooth functions subontinate to {U}, {Luv} == {6e(R)uv} for some {I?u} ECoo

(Vt, srk-op'.) (cf. [3]).

   Proof. Og(6e{L}uvw==O follows from the definitions. If (ag L)uvw=O, we have

Luu=O and Luv:=-LvugUV. Hence set Ru=Xurnu!sbewLuur, {ew} is the Partition

of unity subordinate to n, we have 6e(R)uv=Luv.

   Denote Lu the section of gS'op'H on U and set n={U}, an open covering of

M, we set

     HD O(n , LA'c, D) = { {Lu} l (6gL) uv == pD (gtrv) , for some 8 = {gtJv} E H' (M, Gd) ,

                                Lu is a section of Lc,D on U}.

     HbD (U, g S-xiH) = { {Lu} 1 (6gL) uv == pD (gtJv) for some g [= {gtiv} eHi (M, Gd)} .

     HO (u , NeD g S-&i.) = { {eD Lu} ] 6g (eDL) uv = pD2 (gtrv) for some e

                                 ==: {gtrv} EHi(M, Gd)}.

   We define HbD(M, L"-G,D), HbD(M,gS-opiH) and HO(M, NeDgZ"opiH) as the limits

of these sets. We also set

     B`oD(U, gk-dn) == { {Ruv} ]Ruv == (66L)uv .for some 6} == {gtrv} EH'(M, Gd)

     and eD (Ruv) = pD2(gtrv) - [ {pD (gtfv) -Ruv} Lvguv +LvgUV {pD (guv) -Ruv} ].

We call {Ruv} and {Ruvr} (i!BioD(n, gig"paiH) to be equivalent if

            Ruv=:(6eL)uv, Ruv,=(6e(L+Q))uv, eD(Qu)==LuQu+(?uLu.

The quotient set of B'oD (U, gZ-opi,i) by this relation is denotecl by HieD (n, gk"oo'.).

Its limit set is denoted by H'eD(M, gkE'dH). Then by lemma1and lemma 2, we

have the following exact sequence of cohomology sets

(4) O fl.O (M, LNG,D)i,HDO(M, gZ-opi.)g'HO(M, 'eV.gX-opi.)!?-
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         -HieD(M, gg-&"i.) Z.Hi(M, s)'S-opi.):=:{O}.

   Nbte. By the definition of 6` (n04), there is an inclusion map t:ff`(M, LG,D)

-H'oD (M, g'X-op'H) and we have the commutative diagram

                Hi(M, .,)pll?.D,i.Yj /.,`le.-SH)-i.7i Ui (A(･ :7z-el.)..{,}.

Iti this diagram, the explicit trivialization of i2pD"(e) is the connectiofi of D with

respect to & If the category is not smooth (for example, holomorphic category or

topological category), H'(M, :zTigrm&iH) may not be equal to {O} and i2pD"(g) gives

the obstruction class to have a connection in this category (cL [2], [4]).

   Definition. Regard {Lu} ciiHoD(sS'op`H) to be a connection of D with resPect to g,

zve call eD({Lu}) to be the curvature operator of {Lu}.

   Theorem. A c(D)-class G-bundle e has a connection of D with respect to 8 with

the curvature oPerator equal to O. Conversly, if fiG,D=::LG,D, a G-bundle 8 is ofc(D)

-class if D has a connection with resPect to e with a curvature operator equal to O,

   Proof. Sinceac(D)-class G-bundle 6 allows {O} as a connection of D with

respect to e, we have the first assertion. If LA"c,D==LG,D, we have pD(gtrv)==pD(hu)

-pD(hv)gt{v if e= {gtiv} has a connection of D with respect to 8 with the curvature

operator is equal to O. Hence {gtrv} is in 6-image in the sequence (6) of n04.

Therefore we obtain the theorem.
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