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Introduction
It is known that global geometric properties of Fuchs—type operators are for-
mulated as follows: Let G=GL(n, C), G and G» be the sheaves of germs of cons-
tant and holomorphic G-valued functions over M, a complex manifold, .# the

sheaf of germs of those matrix valued holomorphic 1-forms ¢ such that dé+6,6=0.
i

v
Then, set »(f)=dff!, the sequence 0—G——Guo——.7»——0 is exact and it der-

ives following exact sequence of cohomology sets

HYM, Go)—HM, o) ——H(M, G)——H'(M, Ga).

6=HY (M, #.) is a global integrable connection on M and d+6 is a Fuchs type
operator. Since there is a bijection y: HY (M, G)——Hom(m (M), G), x(6(0)) (=:(M))
is a subgroup of G. It is the monodromy group of d+44#. If a representation
o m (M)—G is given, it is realized as a monodromy representation of some
Fuchs type operator if and only if *y '(p)=1, the trivial holomorphic bundle.
Same formulation is possible in smooth category to use G, the sheaf of germs of
smooth G-valued functions, and .#4, the sheaf of germs of those matrix valued
smcoth 1-forms 6 such that df-+6,60=0, instead of G» and .#Z. ([1], [12], [13],
[147).

The notion of connection is extended for an arbitraly differential operator D:
C»(M, E,)—C=(M, E;}, M a smooth manifold, E;, i=1, 2, the smooth wvector
bundles, and a smooth vector bundle & over M ([37). The definition is as follows:
Denote H the fibve of &, a collection {0y}, 0y:C>(U, E;QH)—C>(U, E,QH) is
a differential operator, is called a connection of D with respect to &, if ord Oy=ordD
-1 and set Dy={Dy®@1y+0y}, D={Dy}, D, becomes a well defined differential
operator from C=>(M, E,QH) into C~(M, E,QH).

To define the curvature operator of a connection of a differential operator is
possible (cf. Appendix of this paper), and it relates the theory of non-linear coho-
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mology ([97]). But the notion of a flat connection of a differential operator is given
more directly as follows: A connection {8y} of D with respect to a G-bundle & is
called flat if there is a collection {hy} of smooth G-valued function hy on U such
that 6y=pplhy). Here pplhy) is given by

pplhu)e= Dy @ 1u)e— 1k, g Qhv) Dy @1n) (1e, @ ky Vo).

A G-valued function g such that pp(g)=0 is called a ¢(D)-class G-valued function.
It is shown that a G-valued function g is of c¢(D)-class if and only if its matrix
elements are of c(D)-class, and there is a system of differential operators #(D)
determined by D such that a function f is of ¢(D)—class if and only if #»(D)f=0.
Some examples, such as a real elliptic operator acting on scalar functions, have
only constant functions as c¢(D)—class functions. But, some other examples, such
as D=0, have nonconstant c¢(D)-class functions (§1). We denote the sheaf of germs
of ¢(D)—class G-valued functions by Ggpy and set pp(Gy)=Lg, p. Then we have the
exact sepuence of sheaves

i e
0‘—’GC(D)——’Gd—,i>LG, D““’O.

From this sequence, we obtain the following exact sequence of cohomology sets

* ‘s
HYM, G P HOM, Lg,p)"~H'M, Go)~—H'\M, Ga).

If LeH® (M, Lg, p), D®1u—L is a differential operator from C~(M, E;®H) into
C=(M, E,@H). We call this operator to be a D-Fuchs type operator. On the
other hand, an element of H' (M, G.p)) is called a ¢(D)-class G-bundle or a D-flat
G-bundle. Hence §(L) is a differentible trivial c¢(D)-class G-bundle. It is shown
that 6(L) has the minimal structure group as a c(D)-class G-bundle. This group is
called the monodromy group of D®1x—L (§2).

If G=GL(n, C), we can define several characteristic classes related to ¢(D)—class
G-bundles and the elements of H°(M, Lg, p). These classes are connected with the
exact sequence of cohomologies

s *
S HS (M, D) HP M, Comy) 5B B2 (M, C¥ )~

;K
— H2 (M, T)——HP(M, Copy)— .. ,
and the generator of the cohomology ring H*(GLn, C), Z)=H*(Un), Z) (cf. [6],
[71, [11]). For this purpose, we define a product (denoted by *) on EI, H2e-y (M,

C*upy) and show &: D |, H*?"{(M, C*ypy)— 2, H**(M, Z) is a ring homomorphism
(§3, n°8, the product in the right hand side is the cup product). Then our results
are summarlized as follows (§§3, 4):
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(i). Denote c?(&) the p-th Chern class of a complex vector bundle &, i*(cP(€))=0
Jorany p, if & is a c(D)-class bundle.

(i). If & is a c(D)~class bundle, there is a well defined cohomology class bP(€)e
H2P~Y (M, C*.py) such that

b2 (€) =c?(8).

(ili). If L&H"(M, Lg,p) and D satisfies some asswmptions (cf. §4, n°l0), there is
a well defined cohomology class BP(L)cH?*~{(M, Cypy) such that

exp*(BP(L))=(—=1)2"1Fy, p(0'3(L), . .. , 0P (3(L).

Here F,,, (sy,... ,sj,):Z]’Z:lX,-f’, 54 is the g-th elementary symmetric function
of indeterminanits Xi,...,X, and the product is +—product.
(iv). If L=pplf), f is a smooth G-valued function on M, then

BY(L)=1*(f*(c?)).

Here ¢? is the (2°-1)-dimensional generator of H*(GL(n, C), 7).

If M=C*, D=d/dz and L=a/z, (L) is ale), {e)> is the generator of H'(C*, C)
=C. In general, B'(L) is determined by the coefficients of the indicial equation in
classical case. B?(L) is determined by o(L), the principal symbol of L if D is
homogeneous and satisfies the assumption of n®10, If D=d or 9, an element of
H2b=1(M, Cypy) is represented by a closed (2p—1)—form or a d-closed (0, 2p—1)-type
form on M. On the other hand, L is a matrix valued 1-form # on M. In these
cases, we have

(—1)21 —2p—1—

20 5 P S
B(L) o/ 1) tr (@,

We note that (iii) shows the rigidity of g?(L) under the monodromy preserving
deformation of L, because if 6(L)=d(L"), BP(L)—p>(L"Yei*(H* (M, Z)) which is a
discreet subgroup of H*#~1(M, Cypy). Therefore (L) is an invariant of monodromy
preserving deformation (cf. [8], [15], [16]). But in some cases, pP(L), p=2,
vanishes. For example, if L|U=pp(hy) and each hy is a 4(n, C)-valued function on
U, pP(L)=0 if p>2.

The outline of this paper is as follows: In §1, we define and study c¢(D)—class
functions and c¢(D)-class G-valued functions. c¢(D)-class G-bundles and D-Fuchs
type differential operators are defined in §2. The existence of monodromy group is
also shown in §2. §3 is devoted to the definitions of #—product and b?(€). The
proofs of above (i) and (i) are also given in this §. The definition of g?(L) and the
proofs of (iii) and (iv) are given in §4. In appendix, we give the definition of the
curvature operator of a connection of a differential operator.
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In this paper, we do not study the singularities of D-Fuchs type operators.
From the point of view of the above formulation, the theory of singularities of

D-Fuchs type operators seems to be a non-—abelian residue theory.

§1. c¢(D)—class functions and c¢(D)-class G-valued functions

1. Let M be a connected paracompact smooth manifold, D: C~(M, E)—
C>(M, E,) a differential operator on M. Here E;, i=1, 2, and C~(U, E;), i=1, 2,
are the smooth vector bundles over M and the space of its smooth sections on U,
an open set of M. If fis a smooth function on U, f acts on each C=(U, E; by
the scalar multipication. Hence f defines a linear operator f¢,) or f on C=(U, E;).

Definition. A function f on U is called to be a c(D)-class function on U if
JomD=Dfowy. The set of all c¢(D)—class Junctions on U is denoted by ¢(D, U).

Lemma 1. If D=1, A1lx)a!11/0xY, T=(is,...,in), |M=i+... +in, 811/5x1=
il /ax, .. 9x,%, on U, f belongs in c(D, U) if and only if
I oIty

(1)

J+K=1, | J|z1 JIK!

Proof. Since Df:fD‘i-Zleék—l (EJ_’_I(:L mgl(I!/J!K!)Al(x)alJlf/axJ)alKl/axK,
we have the lemma.

Corollary. If VcU and fec(D, U), f belongs in c(D, V). Especially, the germ
fx of [ at x and the set of germs of ¢(D)-class functions ¢(D), at x are dejined.

Definition. The system of differential operators on M given by (1) is denoted by
r(D). v(D) is called maximal if v(D)f=0 implies f is a constant.

Lemma 2. (). ¢(D, U) is a ring by the usual addition and wmultiplication of
Sunctions and contains the ving of constant functions.

(i). ¢(D, U) is closed by &*~topology.

(iii). If fecD, U) and F is a holomorphic function such that @NEF/ox1) (f) is
defined if \1|<k, then F(f) belongs in c¢(D, U).

Proof. Since D(fg)=(Df)g=(fD)g=(fg)D if f, gec(D, U), ¢(D, U) is closed
under the multiplication. Other parts of (i) and (ii) follow from lemma 1.

If F is holomorphic, there is a series of polynomials {F,} such that {F,(f)}
converges to F(f) on some neighborhood U(x) of x, x=U. Since 31G(f)/oxl=
PdG(f),..., @IG/oxY) (), .., fro.., 1K foxX, . ), J, KU, {F,,(f)} converges
to F(f) at least by #*-topology. Hence we have (iii).

Corcllary. c¢(D), is a local ring.

If g; is a linear transformation of the fibre of E; and E; is trivial on U, g
acts as a linear operator on C*(U, E;). This operator is denoted by giy or &,
i=1, 2. Then, since St S =Fm&ion), we have

Lemma 3. If g; is inversible, i=1, 2, then



Flat Connections of Diffenential Openatons 5
¢(Dgi, Uy=c(D, U), (gD, U)=c(D, U).

Example 1. If D= Z_,‘ Aix)a/0x;+ Blx), v(D) is given byZ‘_l Ay (x)a/ox;. I Aix)

=(a;/*(x)), #(D) is the overdetermined system »; a;/*(x)af/0x;=0, 1<j<m,, 1=k
<im,. Here m,, m, are the dimensions of the fibres of E,, E..
Example 2. If D=2, a;;(x)3%/0x;0x;+ > }; bi(x)3/9%;+c(x), aijx)=a;i(x), r(D) is

given by {2>;a;;(#)3/dx;, i=1,..., n, (D—c(x))}. Hence #(D) is maximal on U if
Alx)=(a;;(x)) is a regular matrix on each xU.

Example 8. If D is a scalar valued real elliptic operator, 7(D) is maximal.

Since the problem is local, to show this, first we assume D is a constant
coefficients operator. Then, since D is a real scalar valued operator, k=>2 and by
a linear change of coordinates, we may assume D=03%/dy " + terms with order at
most k—2 in 8/3y,. Hence #(D) contains 8/dy; and f is independent to y, if f&c(D
U). Set D=P@/3ys,...,8/8y,), D'=P0, 8/dy,,...,3/dy,) is elliptic on the plane
$:=0. Therefore (D) is maximal by induction in this case. For general D, set
D=D(x,) +(D—D(x,)), D(xo) is a constant coefficients elliptic operator. If fec(D, U),
set

D(xo) f=fD{xo)+ Ry, Df=fD,+Ry, D;=D—Dl(x,),

the coefficients of D, vanishes at %, and R;=—R;. Hence the coefficients of R,
vanishes at x, and df(x,)=0 if fec(D, U), because r(D{x,)) is maximal. Since x, is
arbitrary, this shows df=0 on U. Therefore f is a constant and »(D) is maximal.
Note. Example 1 shows if D=d or 3, (D) is also d or a.
2. Let H be a separable Hilbert space with the O.N. -basis {ea}. We denote
the inner product &, »<H by (§, ») and the set of all bounded linear operators of
H by < (H). Denote V; the fibre of E;, we set

w®E, p=¢, pv, veV;, v@EeV;®H, i=1, 2

Definition. (i). A <@ (H)-valued function b(x) on U, an open set of M, is called
smooth on U if (bx)ea, €g) is a smooth function on U for any ex, €s< {€a)

(ii). A V:QH-valued function f(x) on U is called smooth on U if {f(x), ea)) is a
smooth function on U for any e.<€ {ea}.

Since 0.N.-basis {e«} and {e«’} of H are changed by a unitary operator,
these definitions do not depend on the choice of {ea}.

If each E; is trivial on U, D induces a differential operator Dy : C=(U, V;)—
C=(U, V). Hence, denote 1y the identity map of H, Dy® 1y : C=(U, V,®H)
C=(U, V,®H) is defined. On the other hand, if b(x) is a smooth <& (H)-valued
function on U, 1y,;&b(x) is a smooth GL(V;}&Q < (H)~valued function on U. Hence
1lv; Qb(x) =1v; Q b(x)(m)y is defined as a linear operator on C=(U, V;®H), i=1, 2

»
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Lemma 4. The followings are equivalent.
) (Iv.®@b(#) Do ®1n=Dy & 1u(ly, ®b(x)).
(i) (blx)ea, ep)Dy=Dyb(x)e«x, ep), for some O.N.-basis {e«} of H.
(i) (bw)ea, ep)Dy=Dyh(x)ex, ep), for all 0.N.-basis {ez} of H.
Proof. By definition, if 5(x) does not depend on x, then

@ (Iv,®8) Dy & 1lu=Dy @ 1ullv, ®5).
Hence (ii) and (iii) are equivalent if (i) and (ii) are equivalent. Since we have

{Dy @ 1(lv, @ b(x))v(x) @ e, es>=Dy((b(x)ex, ep)(x))
:DU(b(X)ea, eﬁ))v(x) »

{1v:®b(x) (Dy®1m)v(x) Dea, epp=(b(x)ex, ep) (Duv(x))
=((0(x)ex, es) Du)v(x),

(i) and (ii) are equivalent and we obtain the lemma.

Corollary. (1v,®b6x)Dy @1y is equal to Dy @1g(lv, ®blx)) if and only if
(b(x)ex, ep)ec(D, U) for any ex, €s< {€a}.

Definition. (). A smooth <# (H)-valued function on U is called a c{D)-class
& (H)-valued function on U if it satisfies either of (i), (i) or (iil) of lemma 4.

(ii). Let G be a subgroup of «#(H). Then a G-valued function on U is called a
c(D)-class G-valued function on U if it is also a c(D)-class < (H)-valued function.

Lemma 5. (i). If b(x) is a c¢(D)-class <# (H)-valued function on U and VCU,
b(x) is a c(D)-class <& (H)-valued function on V.

(). The set of all ¢c(D)-class <& (H)-valued functions on U is a ring and the set
of all G-valued functions on G is a group.

(iii). Denote b*(x) the <z (H)-valued function defined by b*(x)=(b(x))*, the adjoint
operator of b(x), where b(x) is a c(D)-class < (H)-valued function, b*(x) is a c(D)
—class & (W)~valued function if ¢(D, U)=c(D, U)={flfecD, U)), fx)=s&), the
conjugate complex of f(x).

Proof. By the corollary of lemma 3 and lemma 1, we have (i). By the same
reason of lemma 2, (i), we have (ii). Since (d*(x)e«, es)={0(x)es, e«), we have (iii).

Corollary b(x)h(x) is a c(D)-class H-valued function if b(x) is a c¢(D)-class <z (H)
—valued function and h(x) is a c(D)—class H-valued function. Here h(x) is a c¢(D)
—class H—valued function if (h(x), ex)sc(D, U) for any e«< {eq}.

3. For a system of differential operators S, we denote ker(S), the germ of the
elements of ker (S) at a. For r(D), the subsystem consisted by the 1-st order
operators is denoted by (D). We also set #(D),= {D \Bi(a)d'l!/ox1}, »(D)=> ) Bi(x)

2! /351 on U, a neighborhood of a, efc.. Similarly, D(a) means ZAI(a)alll Joxl if
D =>1AUx)311/3x! on U. In this n° we call a=M to be a normal point of 7(D)
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if ker (r(D(@)).2ker{r(D)),.
Lemma 6. If the set of normal points of v(D) coniains an open dense set of M,
we have

(3) ker r(D)=ker r(D), on any open set of M.

Proof. Since the problem is local, we consider the problem in a fixed coordinate
neighborhood of M.

By the definition of #(D), if P{x, 8/0x)e#(D), we have I;(x, 3/0x)Er, (D), where
Plx, E):ZiLi(x, E) &%, &%i=E%in, ., &,%im. Hence we have (3) if D is a constant
coefficients operator.

Let a be a normal point of #(D) such that there exists a neighborhood Ula) of
a consisted by the normal points of #(D) and set D=D(a)+D,. Then, if »(D)f=0,
we have r(D(@)f=0 on Ula). Hence (Df—fD)(a)=0. Therefore fec(D, Ula)) and
we have the lemma by assumption.

Note. By the proof of example 3, n°l, if D is a scalar valued real elliptic
operator, any point of M is a normal point of #(D).

For a smooth «#(H)-valued function f on U, we set

p(f)i=Df—D=DQR1u)(1g. @ ) — (1. @ NHDD1n).
By definition, we have 35(f)= |pyer(yPI(x, 8/0x)0191/0x). We also set

2,013l
dp, = Pyx, =)=
D l(ﬂ PJ;ND) ax) ax_]
Lemma 6'. If D satisfies the assumption of lemma 6, dp(f) is equal to 0if and
only if 8p,1(f)=0.
Corollary. Let G be a subgroup of <#(H) and g is a smooth G-valued function
on U, Then to set

op(8)=0p(8)g ' =DR®1u—(17RDR1u)(1r. g™,
0p,1(8)=0p, (887",

o(8)=0 is equivalent to 0p(g)=0 and if D satisfies the assumption of lemma 6,
0p,1(8) =0 implies pp(g)=0.

Since 0p is a derivation and dp(f)=0 if and only if f is a c¢(D)-class <& (H)-
valued function, we have

(4); op(8)=0, if and only if g is a c(D)-class G-valued function,
Wi oo(8h)=pp(g)-+pp ¥, pph)f=(1p, RgepM)(1s. @&,
(4)1i po(g ) =—pp(g*"

Since dp,; is also a derivation, (4)i and (4)ii are hold for pp,:. (4)i is hold for
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pp,1 if D satisfies the assumption of lemma 6.

Example, If D is a 1-st order operator, #(D) is equal to #(D) and therefore
op{8) =pp,1{8). Moreover, if D is homogeneous, we may regard Dg to be a <z (H)
—-valued 1-form and as a l1-form, we have pp(g)=(Dg)g™!. Especially, we obtain
0@ =dg-g™' and pa(g)zég-g" {cf. Introduction). ‘

On M, we denote & ({H),; and G, the sheaves of germs of smooth < (H) and
G-valued functions over M. The sheaves of germs of c¢(D)-class &« (H) and G
valued functions over M are denoted by <& (H).py or Gypy. pp and dp induce the
maps pp and dp on Gy and & (H)y. We set

00(Ga)=Le¢,p, 0p0(Z H)a)=L 4y, .

By definitions, we have the following exact sequences of sheaves.

7
G2 oL, p—>0,

0—Ge(p)y

i dp
O—*@(H)c(p)—‘“’\@(H)d—*g-@(H), D 0.

Example. For H=C, the complex number field, denote C* the multiplicative
group of complex numbers without 0, we have the following con}mutative diagram

of sheaves with exact lines and columns.

0 0 0
;]
0—C*c(py »C* ¢ i +Lc*, D——0
epr epr k T =
i op
0—Cypy —Cy——F¢, p—0

[4 [4

OA—+Z—*i~—>Z
.
0 0

Here 7 is the constant sheaf of integers, ¢ is the inclusion regarding a constant to

be a constant function, exp and k are given by

exp (fx)=(e2v'=1),, k((Df—fD)s)=pplet='=1/),,

O O —r

where f., etc., mean the germ of f, efc., at x (cf. Introduction).

§2. D-flat G-bundles and D-Fuchs type differential equations

4. Since Gypy and G, are sheaves of groups, the coboundary maps §;=3: Ci, Gy)
WCH(L, Gg) or C'(W1, Gewy)——C*' (1, Gewy), =0, 1, are defined. Here U
is an open covering of M. For Ci{(U, Lg p), i=0, 1, we define oLi=8L:Ci 1, Lg,p)
—C"*(11, Lg,p) by
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(5) 8% pp=ppd.
Explicitly, 6% and 6% are given by
0 (L)y, y=Ly—Ly*Uv, Ly=pplhu), guy=huhy™,
0Ly, v,w=Lu, v+Ly, wEV + Ly, u50W, Ly, v=pp(guv).
Note. 6F may not be defined on C(l, Lg, »). But if {L}&Ci(l, Lg p), there

exists a refinement B of W1 such that §% is defined for t%( {L}) if ® is a refinement

of 8. Here t%:cf(u, Lg, p)—CH®W, L, p) is the map induced by the refinement.
We set Bi(11, Lg, p)=kersti=({L} | {L} €C'(1, Lg, p), 0%:({L})=0}, i=0.1, and
H(l, Lg, p)=B°1, Lg,p). On BY (1, Lg, p), we define an equivalence relation ~ by
{Lu, v} ~{Lv, v'} if Ly, v—Lu, v'=pp(hv) — pp(hy) wEoviv-i,
Ly,v=pplguy), for some {hy}eC'11, Gg).
We denote H'(l, Lg, p) the quotient set of B(1, Lg, p) by this relation. Then, to

set H'(M, Lg,p)=lim{H' (U, Lg, p), t%%], we have the following exact sequence of
cohomology sets.

>

i* pp™* 0
©) 0——H(M, Gepy)—H'(M, Gg)——H(M, L¢,p)

i*

*
— H\(M, Gooy)——Hi(M, G Z25H\M, L, p).

Here 6: H'(M, L, p)—H' (M, Gpy) is given by
ML)={guv}, gov=hy"'hy, LIU=pp(hv).

Definition. (). An element of H' (M, Gy is called a c(D)-class G-bundle.

(). A smooth G-bundle in i*~image is called a D-flat G-bundle.

(iti). A connection {0y} of D with respect to &, a smooth G-bundle, is called a
D-flat connection if there exists {hy} CY U, Gg) such that

HU:pD(hu), Jor any Ue.

Proposition 1. For any e H' (M, Gg), the followings are equivalent.

(@). € is a D-flat G-bundle.

(ii). D allows 0 as a connection with respect to &.

(iii). D has a D-flat connection with respect to &.

Proof. If é={gyy} € H' (M, Gewpy), we have Dy® lulguv, 1 ® guv)=8uv, : & guv
(Dy ®1u), where {guv, ) is the transition function of E;. Hence (ii) follows from
(). If D allows 0 as a connection with respect to & {—pp(hy)} is a connection of
D with respect to {hy~gyvhy} ((3]). Hence (iii) follows from (ii). If (iii) is hold,
we have ‘
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1y, @ hy) Dy @ 1u) (v, @ ko™ gov) =1y, @ guvhv)(Dy @ 1m) 1y, @ kv ™Y).

Hence {hy 'g@uvhy} is a ¢(D)-lcass G-bundle and (i) follows from (iii).

Corollary. A G-bundle & is D-flat if and only if D has a D-flat connection
with rvespect to &.

By proposition 1, (i), if & is a c¢(D)-class G-bundle, D is lifted to a differential
operator C=*(M, E,R&—C>(M, E,®¢& with connection 0. This lift of D is
denoted by D®1le. By definition and proposition 1, D®1¢ is defined if and only
if &€ is a c(D)-class G-bundle.

Example. If »(D) is maximal, D-flat is flat in the usual sence. On the other
hand, if D=2, a G-bundle & is D-flat if and only if G is a complex Lie group and
& is a holomorphic G-bundle.

5. If LeH" (M, Lg p), L:C*(M, E.QH)——C=(M, E;®H) is a differential
operator of order at most £—1. Hence D@ 1g—L:C>M, E;QH)——C=(M, E,& H)

is a differential operator such that

(7) oD@ 1u—L)=0(D) @ 1n.

Here o(D), efc., means the principal symbol of D, efc., On the other hand, since
Le (M, Lg, p), we obtain

8 (D®1a—L)|U=D"=(1y, ® hv)(Dv @ 1n)(ly, ® k™), LIU=pp(hv).

(8) shows the commutativity of the diagram

D®1scy
C=(M, E,®0(L)) ————C>(M, E,®dL))
Loy I o L5y I =
DX1ig—L

C=M, E\QH) ——— C=(M, E,@H).

Here t5¢zy is the map given by the smooth trivialization of 6(L). Explicitly, #su)
is given by

9) tLicy({Uv Qo)) =fu® hoe, 6(L)={hvhv™'},
o is a smooth H-valued function.

Using t5¢z), (8) is rewritten as
(8)' Ly (D@ 1a—L)tsy =D @ Loy

Definition. A differential operator of the form D@ 1lu—L is called a D-Fuchs
type differential operator and 5(L) is called its monodromy bundle.

Lemma 7. d(L)=(L') if and only if there exists a smooth G-valued jfunction f
on M such that

(10) L'=pp(N+LS, LI=(1p Q@ f)L15: Q).
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Proof. By the exactness of (6), set L=pplhy) and L' =pplhy'), we have

hy' = fhycy, cu is a c(D)-class G-valued function on U,
JEH (M, Gy).

This shows (10).

If (D) is maximal, there is a bijection y: H(M, G.p))—Hom (=(M), G).
We call 3(0(L)) the monodromy representation of D®1gz—L and x(6(L)) (@ (M)) the
monodromy group of D@ 1g—L (cf. Introduction). For D=d/dz, H=C", the #un-
dimensional complex vector space, and M is a Riemann surface, these definitions
are same as usual definitions.

Definition. The least structure group of o(L) as a c(D)-class undle is called the
monodromy group of D@ 1y—L.

In the rest of this §, we construct the monodromy group of D@ 1lxy—L under
the assumption that G is a Lie group.

Definition. Denote np : Mr——M the projection of a smooth G-bundle with the
fibre F over M, if D can be lifted on C*(Mp, np*(E))) with connection 0, we
denote wp*(D) Lhis lift of D.

Let F be a smooth right G-manifold with a G-invariant measure dg constructed
by G-invariant vector fields over F. Then, denote U(L¥F)) the group of unitary
operators on L2(F)=L%F, dp), there is a unitary representation &:G——U(L2(F))
given by the G-action on F, and the following diagram is commutative.

ULEF))ecoy—"ULEAF))a
(11) * ] i [
Gc(D) ’Gd.

Lemma 8. Let € be a D-flat G-bundle, 6 a connection of associate F-bundle of
€, k(&) the associate L2(F)-bundle of & defined by 6 (cf. [3]). Then, to denote Mp
the tatal space of the associate F-bundle of &, =p*(D) is defined.

Proof. By the commutativity of (11) and proposition 1, (&) is D-flat. Hence
D can be lifted on C*(Mr, np*(E,) with connection 0 (cf. [3]). Therefore we get
the lemma.

Corollary. (). If D®1y—L is a D-Fuchs type operator and My is the associate
F-bundle of 8(L) which satisfies the above assumptions, then mp*(DQ1u—L) is de-
JSined.

(i). Under the same assumptions, if Mp is the principal bundle, nx*(&) is trivial
as a c{xp*(D))—class bundle.

(i). Under the same assumptions, if =p*O(L)) is a trivial clwp*(D))-bundle
then there is a smooth G-valued function f on My such that

(12) ﬂF*(D®lH—L):7§F*(D)f.
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Proof. Since np*(D) is defined, #z*(Dy) is equal to np*(Dy) on zp"Y(U) Nar"1(V).
Then, since (D® lyu—L)|U=D", np*(D®1g—L) is given by
12y 2p*(D @ lu—L) | 7p = (U) = (mp* (Dy)) ** *ho,
This shows (i). The trivialization of zp*(€) is given by
(13) | (hu(x, &)\hu(x, §=gG, scUcCM).

Hence we have (ii). (iii) follows from (12)".

6. In this n° we use same notations and assumptions as in lemma 8 Since
My is a right G-space, we set f8(u)=rf(ug), ucsMpr, g=G. Here f is a function
on Mp. The set of c(zp*(D))-class G-valued functions on My is denoted by Gecp), arpy

and we set

BI(G, Gc(D), MF) = {X :G >GC(D), Mp IXgh:Xthy Xz(u)

=xg(uh), xe=x(8)}

We call y and y'€BYG, Gy, uy) to be equivalent if 1g =h 1y h# for some
hE€Gep)y, mr and denote HYG, Gy, mp) the quotient set of BHG, Gy, MF) by this
relation.

Since a constant function is a c(np*(D))—élass function invariant under the
action of G, there is a map ¢p: Hom(G, G)—H'Y(G, Gcw); MF). Here Hom (G, G)

means the set of Lie homomorphisms of G. We set
ker ¢p={xler()=cr(l), l,=g for all geG}.

Definition. 7€ H'(G, Gew),uyp) is called to have (smooth) representative function
if there exists a smooth G—valued function f on Mr such that f€=fxq, x<% £<G.
This f is called a representative function subordinate to ¥.

If y~%', and y has a representative function f, set ' =h"'ygzh8, f'=fh is a
representative function subordinate to y'. Hence this definition does not depend on
the choice of a representative of 7.

We set

O(H (M, Lg, p))mp={8(L) |mp*@(L)) is trivial,}

HNG, Gy, mp)r=FEHUG, Guw), up) |7 has a smooth
representative funclion}.

Lemma 9. (). There is a bijection y:35(H°(M, Lg, D))MF——>H1(G, G, MF)f
and if My is the associate F-bundle of d(L), we obtain

(14) L)) sker ¢p.

(). cple) belongs in ker ¢p if and only if there exists feGypy, My Such that
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(15) =y g

Proof. If z.*(D)f comes from an operator on M, set f&=fyq, x={xe} defines
an element of H'G, Gew), mp). If ar*(D)f =zp*(D)F', set fE=/fyg f8=S"xg', x and
z' define same element of HYG, Ggp), MF)' Hence y is 1 to 1 by lemma 7. If
¥E€HYG, Geny,mp)s'> there exists f such that f2=fyg, x€% Then zp*(D)/ comes
from a D-Fuchs type operator on M and y is onto. If Mp is the associate F-bundle
of 6(L), the trivialization of =z*@(L) given by (13) gives ¢p(1). This shows (14). (ii)
follows from the definition of the equivalence in the definition of HYG, Gepy, arp)-

Lemma 10. (). If v=ker ¢r, there exists a smooth G-valued function f on Mp
such that

(16) wp* (D@ la—L)=zp*(D)), fE=Te(g),

and the structure group of 6(L) is reduced to r(G) as a c(D)-class bundle.

(ii). If the structure group of 6(L) is reduced to G, as a c(D)-class G-bundle,
there exists kEker ¢r such that £(G)=G,.

Proof. Since r has a representative function f, we have (16) by (15). (15) also
shows the second assertion of (i). Since a c¢(D)-class reduction of the structure
group of §(L) gives a representative function on Mp, we obtain (ii) by lemma 9,
(ii).

Definition. We call &y s in Hom (G, G) (resp. in ker ¢z), if ws=xxy for some
t=Hom (G, G) (resp. k=Kker ) and ki~ks if £y £y and ks k.

Lemma 1L (). If &, and &, belong in Ker ¢, there composition kx, also belongs
in ker ¢p.

(ii). If kiwe and w, belong in ker cp, &, belongs in ker ¢p.

Proof. If fif=#k, ;"' f18 and fof =k, g~ 'f2g, we have

(£2{f1) f2)8 =ra(r1(8) ae( 1) S

This shows (i). Similarly, if f@=k(x.(g)) ' fg and fof =k, s ' f28, we have (K (f2)"1/)¢
=y, ¢! &{f2)"'fg, which shows (ii).

Corollary. (). If ky and ks ave in ker ¢ and iy in Hom (G, G), ki >k, in
kerep.

(). If gy~nrz, %:(G) is isomorphic fo £:(G).

Proof. (i) follows from lemma 11, (ii). Tf x,~k,, we have g;=xt, and ky=«'r,.
Hence dim &, (G)=dim &, {(G) and there are discreet subgroups N; of &, (G) and N,
of &, (G) such that

£1(G) /N =n2(G), 520G/ Noz=ii(G),

because #(G) and #(G) are Lie groups. Hence there are isomorphisms % : ;/(VG\S——>

N

£:(G), where ;r(GA) and ,(G) are the universal covering groups of & (G) and &; (G),
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and &' :;:(AGA)———»;:(E) such that ¥ maps m; (£(G)) isomorphic into m; (x(G)) and &
maps m; {(k:(G)) isomorphic into =; (¢{G)). Since &, (G) and &, (G) are Lie groups,
this shows &: @ (5(G))=n; (£ (G)) and we have (ii).

Lemma 12. ker ¢y has the least element in the above semiovder.

Proof. Let{xa}be an increasing system in ker ¢z and set #«(G)=Ge« Then there

are Lie epimorphisms /cﬁ, B<a and Lie monomorphisms ¢« such that

xﬁmazmg, mﬁ:Ga—#»Gp, ta: Ga—G, mgea:zp.

Hence lim[Ga: mﬁ] =Gy, £y: G—G, and ¢, : Go——G are defined. Since 2 and ta are
Lie maps, &, is a Lie epimorphism and ¢, is a Lie monomorphism,
By lemma 9, (ii), there exists fa&Gep), mp Such that (fo)8=(ka)s fag for any

a. Then, since (kBf,)%=(kp); " fpg, set
So=aw 6 S},

JoEGew), mpe Because each &2 is a smooth map and fof =(xy), ' foz. Hence by Zorn’s
lemma, there exist minimum elements in ker ¢». But if &, and &, are different
minimum elements in ker ¢z, x5, and xx, are in ker ¢ by lemma 11, (i). Hence
ry >k, and k. >k,. Therefore x,~x, and ker ¢» has the least element.

Definition. T'he least element of Ker ep is called the monodromy homomorphism
(or vepresentation) of D@ 1g—L.

By lemma 10, (ii), lemma 12 and the definition of the monodromy groups of
D-Fuchs type operators, we obtain

Theorem 1. If G is a Lie group, a D-Fuchs type opevator has the wmonodromy
group.

Proof. Since D®1y—L has the monodromy homomorphism and the image of
G by the monodromy homomorphism is the least structure group of §(L) as a ¢(D)
—class bundle, we have the theorem.

§3. Characteristic classes related to c¢(D)-class bundles

7. In this § and next §, we assume H=C" and G=GL{xn, C).
By the commutative diagram in n°3, example, we have the following commu-
tative diagram with exact lines

o, —HM, C*oepy)——r H'(M, C*g) 22 HI(M, Les, p)—r M, Co(py)—>++

k*] =

J
0—————H'(M, Zc, p)—H*M, Cycpy)—0
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Lemma 13 (). e H{(M, Cz*) is in i*~image if and only if d.k* 'pp*(€)=0.
(). Let ch: H'(M, C*;) == H*M, Z) be the isomorphism given by ch(€)=c(£),
the first Chern class of &, and ¢:Z

+Ceocpy the inclusion, then
(17) 8k* "' pp*(€) =c*ch(§), € H' (M, C*y).

Proof. (i) follows from the definition. By the definition of 2, we have
1
Gok*Lpp*(§) = ——— (log guv +log gyw+log gwv), &= {gvv}.
2na/ —1

Since this right hand side represents ch(£), we get (17).

Definition. Let € be a GL(n, C)-bundle over M, denote ch(€) its tatal Chern
class, then we call *(ch()) the (tatal) c(D)~characteristic class of & The component
of *(ch(€)) in H22(M, Cypy) is called p-th c(D)-characteristic class of &.

Example. If #(D) is maximal, c(D)-characteristic class is the (tatal) complex
Chern class. If M is a compact Kaehler manifold and D=3, p-th c¢(D)-characteristic
class is the (0, 2p)-component of p-th complex Chern class.

In the rest, we denote the flag manifold GL(@mn, C)/4im, Cy=Um)/T™ by F=
F(m). The associate Flag bundle of a {(¢(D)-class) GL(m, C)-bundle ¢ is denoted by
Mp={Mp, F, M, =z}.

Lemma 14. Under the above notations, if & is a c(D)—class bundle, np* : H*(M,
Ceny))—H*(Mr, Cozprny) is a monomorphism,

Proof. If zp~'(U)=UXF, (Cyny|U)®Cqu(F) is dense in Copxpylnr™(U), that is
H(U, Cep)) @ H(F, Cq) is dense by the &~-topology in H°(mp"'(U), Cecxpon):
Since C4(F) is a fine sheaf, H*(Mp, Cc(nF*(D))) is calculated by a covering of the

form {zz"'(U)} by Leray’s theorem. Then, taking the invariant measure dp on F

such that Jdezl, we set

[ (8iin) = [ Sinindid,

8io,....ip 18 defined on wp” (Usp)n...nar {(Uip) =nr"(Uien...n Ui ).

By definition, JF defines a homomorphism from H*(Mp, Cenp#oyy) into H*(M, Copy)
and Jan* is the identity. Hence we get the lemma.

Corollary. Under the same assumptions, c(D)-characteristic class of & vanishes
if and only if clzp*(D))~characteristic class of np*(E) vanishes.

Proof. Since =z* in both sides in the following commutative diagram are mo-
nomorphisms, we have the lemma.
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*
H*Mp, T)-—H* (M, Ceenp *0y))

* *

T s« TF

H*M, Z) ~—H*M, Cupy).

Proposition 2. If & is a c¢(D)-class GLin, C)-bundle, its c(D)-characteristic class
vanishes.

Proof. By lemma 13, the proposition is true if m=1. Set m=¢g-+1 and assume
the proposition is true for c¢(D)-class GL{r, C)-bundle if »<g.

On Mp, =z*(§) is an extension bundle of a c¢(zp*(D))-class GL{g, C)-bundle »,
and a ¢(zp*(D))-class complex line bundle % Since Cyrpxpy is a sheaf of rings by
lemma 2, (i), *(ch{p))VUe*(ch(zyq)) is defined and we have

2 (eh(mp* (€)= *(ch{n) Vet (ch(ng)) =0,

by inductive'assumption. Hence we obtain the proposition by corollary of Lemma
14,

Note. For flat bundles and holomorphic bundles, this proposition is known. In
fact, a vector bundle is flat if and only if its curvature form is equal to 0 and
therefore its complex Chern class is equal to 0. On the other hand, a vector bundle
is equivalent to a holomorphic bundle if and only if (0, 2)-type part of its curva-
ture form is equal to 0. Hence (0, 2p)-type part of the Chern class of a holomor-
phic vector bundle is equal to O.

8. For {gi,...,i;) €CP(U, C¥upy) and {hi,...., i} ECIW, C*ypy), we set

1
(g*h)io,..., iprq+1=—EXP [mk)g Bioyuyip (510gh)ip,...,i1>+q+|:|,

g+l )
(510gh)io,...,iq+1: Z} (—1) log hiv,...,ij—l,ij+1,...,z'q+1-

5=0

Here we assume 1 is sufficiently fine and log gi,,...,i, or log hj,...,i; are determined
as 1-valued functions. The choice of the branch of logarithm is arbitraly, and
therefore this definition of (g+h) depend on the choice of the branch of logarithm.

Lemma 16. (i). If {gi,...,ip} and {hi,...,is} are both cocycles, {(g+h)io,...,ip+q1}
is a cocycle and its cohomology class in HP* T+ (M, C*.py) does not depend on the
choice of the branch of logarithm.

(). If either of {gi,...,ipp O {ki,...,ig) @S @ coboundary and the other is a
cocycle, {(8h)i,...,iprq+1} 1S a coboundary.

Proof. Since we have

IOg ity iptr (510gh)ip+1, o iprgts T

—log 8io,iz,e.,iprt (510gh)£p+1,...ip+q‘+z+""l‘
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+H(=1)210g gio,...,ip-1,ip+r OLOGRY;par,... ipeqert
+(=1)?*]og gi,...,ip OlOgA)ip ipes,... iprgeet e+
+H(=1)P**2log gi,...,ip 0108 R)ig,...,iprq0

=(01og 8io,...,iprq+1 BLOBR)ipsr, .. iprgeet
H(=1)?log gi,...,ip {00108R)}ip,...,iprgtes

{(guh)io,...,iprq+1) 18 @ cocycle if {gi,....ip} and {k;,...,i,} are both cocycles. If we
take other branches of logarithm in the definition of (gyh), denote log’ other
branches of log, we get

(@al)so,... iprgrs UMY io, o iprgrn) !
1
:exp[ﬁ {(log gio,...,ip—10g" Gis,...,ip) Ologh)iy,... ipege:t

+log’ Lioy...,ip {<510gh)ip,...,ip+q+x_(5108' h)iﬁ:~-~:fﬁ+q+1}}]-

Since (1/2ra/— 1) (6logh)ip,...,iprq+: is an integer if {k;,...,i,} is a cocycle, we get
by this formula

(g*h) 10,000, iptg+l {(g*h')’ iD,...,iP+q+l} !

. . C. . ceng (1)t .
=g iz)(ntp+1"":11>+q+l_nlf»"1P+2""rlp+q+1+ DI i gy
yeees

where each #;,,...;; is an integer. Then, to define fi, .,ipsq DY

i pyreeri
Sioyounyiptq=8iv,.. ip 27D
we get
(Bf)io,...,ipi»qh

— -2\ g et
:<gi1,...,ip gio,iz,...,ij)ﬂ 1'"gio,...,ipf-1,l'p+1( D ) Prbrriprgal

vk (1) PHAHT

~1yP 1, . . .
i, .. 'p(( K Pipiprar-riprgar’® an""lle)

ceeg(~1)PHIHY )

>

~1)P4,. . ) L ((~yPEL, , , .
=& 'p( N nll’+1:--~111)+q+1glo,---,li)(( neE Ripriproresigeger’ Nipreosiprg
yeees

if {gi,,...,ip} 1S a coboundary. Hence we obtain the second assertion of (i).
If {h,...;g} is a coboundary, we also get
+...+(—1)4+1

%ip,...,,'PJrq)

3

n; Wi g i
(Geh)io,... iprat1=8io,.,ip  PHVTIPRGITIIp Epb s g 4

because {(1/2ms/— 1) (6h),...,ig+) is an integral coboundary in this case. Hence
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{(gxh)i,... ip+q+:) i @ coboundary if {g;,...,i,} i a cocycle. But since
dlog &ie,...,ip108 hip, ... iprg)io,...,iprqm
=010 &)is,...,ips1 108 Aipsr,...,iprgert
+(—=1)? log Gis,...,ip B 10g A)ip,...,ipsqs1>
we may define gk by

(86M)io, ..., i prger
1
:(—l)pﬂ [ﬁ(a IOg g)io,..., ip+1 IOg hip,.,., z'p+q+1]'

Hence {(g4h)is,...,ipsq+1) is @ coboundary if {g;,...,:,} is a coboundary and {k,..., i}
is a cocycle. Therefore we obtain (ii).

Definition. If ¢, HP(M, C¥(py) and c,€ HY(M, C*(p>) are the cohomology classes
of cocycles {g;,...,i,} and {hi, ... i}, we denote cp.c, the cohomology class of {(g«h)
ioy...yiprge) 0 HPYOUM, C*.py) and call the «—product of ¢, and c,.

Lemma 16. (i). >, H?(M,C*yp)) is a ring by the ,~product. That is, we have

C1a(ConCs) = (C1aCa)wa, CrxCe=(—1)""1coc,, c,€HP(M, C¥up)),
C(CaCs) = (CiuCa) (C1x3), cc’ is the usual productin D, H*(M, C*ypy).

(). Let d:2),HP™ (M, C¥py)) —> 2, H?(M,2Z) be the coboundary homomor-

phism, we have

(18) 3(c1x02) = (6¢,) Y0 (cy).
Proof. Since we have

o(log &io,...,ip Olog B)ip, ... iprqes)

=010g g, ..., ipe1 O1O0g Mipsr, ..., iprqees
108 Sio,...,ip 010G B)ipir,... iprqei—
—(=1)2*1 (3108 Gio,...,ip+1) 108 Bipur, ... iprqr

=(=1)2*1 (5 (108 &io,...,ip 108 Rip,... i pra)ivsunr,iprprt)s
alog fio,.. ,ipe1 (108 8M)ipar,..., i pege

=010 fio,...,ipe1 (108 Gipsr,...,ipsqer 108 Bippr, . iprges)s

we obtain (i) by lemma 15.
By the definition of ,—product, we get
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1
m(ﬁ IOg (g*h)>io,...,z’p+q+x

1 1
:ﬁ((s 10g g)in,...,ipum(a IOg h)ip-x-l,..., Iptqtae

Since this right hand side represents 6(c;)Ud(c,), we obtain (ii).
Corollary. 8: D |, H*"\(M, C*.py)— >, H/(M, %) is a ring homomorphism,

where the products are —product and cup-product. Especially, Z]pH””l(M, C*xpy)
is a commutative ring.

Note. We know d: D |, HF"'(M, C*;)=>,H?(M, Z). In this case, we have
cr#ey=08"1(3(c)Yo(co)) by (18).

9. As in »°7, we fix a ¢(D)-class GL(g, C)-bundle & and its associate F{g)-
bundle Mp={Mpr, F(q), M, =r}. Then we have the following commutative diagram
with exact lines.

_ e* _ exp*
H* Y Mp, Z)——H**"*(Mr, Cuarny) sHP" (Mg, C* oz prcpyy)—
nFﬁ . ﬂF*T ) e

*
HP(M, B)- (M, Cogpy)—— o HP M, i)

>

——5—+H217(MF, Z)

7Z'F*

——0—>H21’(M, 7).

In this diagram, each =p* is a monomorphism except mz*:H? {(M, C*,(p))
H2P- Y Mp, C*ompenyy). Hence np* : H22 UM, C* (py)——H?*?"{(Mp, C*.mppy) is also
a monomorphism. On the other hand, if c€H?*? Y (Mp, C*yrpxpy) is in dJ-kernel,
set c=exp*(h), bEH? Y (Mp, Cezrrny), JFb is defined. Since JFz* (a), ac HY? (M,

>

Z), is in (*~image by the definition of JF exp*(JFb)EHZ-”‘l(M, C*¢py) 18 determined

by ¢. Hence we may define JFC by

JFc:exp* (‘(Fb), c=exp*).

On Mp, mp*(€) is an m—fold extension of c(zp*(D))—class C*-bundles »i,...,7,4
as a c(zp*(D))-class bundle. Then, regard each 7; to be an element of H'(Mp,

C*.zrrpy), We have
(19)’ mp*(c?(€) =D 10(ni,) V- Yolni,), p=q.

Here c?{(€) is the p-th integral Chern class of & and Z] Xii ... X;, is the p-th ele-
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mentary symmetric function of indeterminants X,,...,X,.
By lemma 18, Hm‘*. iy EHP Y Mp, C*yrprcpy) is defined and we have
(20) ot pix. .. i) =mp*{cP(£)).

Since ¢? (€) is in d-image by proposition 2, there is an element b?eH?P-1(M,
C*,p>) such that

Orp* (BP)) =31 ni\». . . #i,).

Hence j AT g omig) =m0 s defined. TE a(ep* () =0T pi .. opiy), we get

[ (T i o) = @) = [ (T e opsg) =m0

:JFEF*(b'—b) —'—b.

Because zp* is a monomorphism. Hence bi’JrJF I (i . .omip) — 7p* (BP)y E H2U(M,
C*.(py) does not depend on the choice of bP.

Definition. For a c{D)-class GL{g, C)-bundle &, we define bP(§)eH*P~ (M, C*,(py)
by

(2 D& =08+ [ AL i i) —me*®0)), dlea® ) =0T ... +nig)

We also set b(&)= > b?(&).

b=l
By the definition of 5?(¢) and (20), we obtain
Theorem 2. (). b2(&)=0 if p>q and we have

(19) obP(E))=cP(§), the p-th integral Chern class of &.

(). If My={My, Y, M, =y} is a c(D)—class bundle over M with the smooih
fibre Y, and € is a c(D)—class GL{g, C)-bundle over M, then

zy* (b2 (8)) =bP (my *(€)).
(iii). If € is a c(D)—class extension of c(D)—class bundles », and 7., then
14+0(8) = (1 4+b(71))+ (1 4+b(72)).

(iv). If €=6(L), bP(£) is in exp*~image and if the monodromy group of DR 1c?
—L is contained in GL(g,, C), qo<q, them bP{E)=0, p>q,.

Note. In some cases, for example D=d or 2, C*.py is also defined on Mp and
mp¥ HP7 Y (M, C*ypy)=H2 Y (Mp, C*py)¥, the invariant subgroup of H2? Y(My,
C*.(py) under the action of Weyl group. In these cases, we can pefine b?(€) by

b2(&) =mp* t (L] i . . #yiy).
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§4. Characteristic classes related to D-Fuchs type operators

10. We denote the tangent and cotangent bundles of M by T=T(M) and
T*=T#*(M). Their fibres at x are denoted by 7T, and T*, Set 7¢=T&®C, efc.,
the subspace of TC, spanned by #(D(x)) is denoted by TCP, and set TCP?=
UxenTC P, For TC,2, we assume there is an open covering {U} of M such that
on each U, there is a system of smooth vector fields {XY,,...,XY,} as follows:
). {XUx),...,XY,(x)} spannes TC 2, if xeU. (ii). (XVy®),...,XY,(x)} are linear
independent if x is in some dense open subset of U. Under these assumptions,
there is a constant s such that dim 7C.2,<m and TSP is a vector bundle over
some open dense subset M, of M. To fix an Hermitian structure of 7C, we can
determin the dual space T*C, 2, of TC P2, as the subspace of 7*C, for each x&M.
Set T#C,0 =\ yep, T*CP2,, T*C, 2| M, is the dual bundle of TCP?|M, and contained in
T*C|M,. In the rest, we assume {XY,...,X%,} to be an O.N.-basis of T2, if
xEM,, for the given Hermitian structure. Their dual basis are denoted by {XU",

XU
Definition. For a smooth function f on U, we set

de(x)zﬁl(Xvif) WXUi(x), zeU.

By definition, d” is defined on M and does not depend on the choice of
(XU,,...,XY,}. Set APT#C,D =) ,€,APT*C, D, 4D induces a differential operator
db : Ce(M, APT*C,D)—sCe(M, AP*T*CD) for any p. Therefore, denote the sheaf
of germs of smooth sections of A?T*C,0 by C2P, we have the following exact
sequence of sheaves

) darP db dapb dab
(22) 0—*C¢(D)~Z—*Cd—*C1:Dd ro. —=CP Dy ——

dD

— C" 02— 0.

i D .
d Cc(D) I Ca' —_— Cl:Dd 18

By the definitions of d? and C.P,, the sequence(
exact if and only if (3) is hold for D. dPdP is not equal to O unless the Lie algebra
spanned by {XY,...,X",} is abelian.

Note. If D is homogeneous, #(D) is determined by o(r(D)), the principal symbol
of 7(D). Hence d? is determined by o#(D)).

Assumption. In this §, we assume that theve is an Hermitian structure on TC
such that the sequence (22) is exact.

Under this assumption, denote the kernel sheaf of d? in C22; by B2 2, we
have the isomorphism

(23) HY(M, Cepy)=H(M, BP.Py)/dPH"(M,CP~1P,), p<1.
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Because the sheaves C,;, CL2,,..., are fine.

Example. If » (D) is maximal, D satisfies the assumption and the sequence (22)
is the de Rham complex. Similarly, if #(D)=r(D)=8, D satisfies the assumption
and the sequence (22) is the Dolbeauldt complex.

Lemwa 17. If D satisfies the assumption, My= My, Y, M, =y} is a c(D)-class
bundle over M with the fibve Y, a smooth manifold, then my*(D) also satisfies the
assumption.

Proof. By assumption, denote Ty the fibre of the tangent bundle of ¥V, we
have 7C Y+ =g, *(TCPz ) @Ty. Hence d"Y*M=ny*(dP)® 1y at Cq. There
fore we have the lemma.

By the definition of dP and the assumption on D, dP has same formal proper-
ties as d. For example, d? is linear, dPdP=0 and

dP(p, )=dPp, o+ (—12p, dPp, peC>(U, APT*CD),

11. In the sence of de Rham, the (2p—1)—dimensional generator ? of
H*(GL (n, C), C)=H*(U(n), C) is given by

Ty =trdTT,.... . dTT™Y)

= R Gnte, Llep-niop-illepn, it e dziy jie o AdZisper, jrps>

..., i2p-1,1s. .01 J29-1
T=(z;, ), T'=("7),
(5], [10]). Hence if f: U——GLn, C) is a smooth map, we have
(24) SH@?)=tr(dff ' . .. Y.
We also set
(24)' S (oP)=tr(dPf ! ... dPHFY.

Example. If D=3, f*P(o?) is the type (0, 2p—1)-part of f*(w?).
Lemma 18. If log f is defined, we have

(25) S @?)=tr (dlog fn... dlog f),
(25)' S0 (@) =tr(d? log f..... .dP log f).
Proof. Since dff '=d{fC)) (JC)! and d2ff'=(dP(fC)) (fC)"* for any constant

matrix C, we may assume f—I is inversible and logf is given by the Taylor
series Z}mgl (—1)"t1/m) (f—I)™ on U, an open set of M. Then, since f—I is
inversible by assumption, we get

trl (f—Dk df(f—Dh ... df(f—D)ar=o, df(f—I)kep-17R0]
=tr [df(f—D" ... df(f—1)p-1],
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for any integers kg, ki,...,ksp-1. Therefore we obtain

trd log f..... .dlog f)

= 31 (DA e tldf (D df(f-Dere],

because tr is linear. Since f’1:2,320(~1)k( f—I* under our assumption, this ri-
ght hand side is equal to tr df '.... . dff "). Therefore we obtain (25). (25)' is
obtained by the same way, because dP has same formal properties as d.

Corvollary. f*2(w?) {s dP-closed.

Lemma 19. Let L={op(hy)} be an element of H*(M, L¢ p). Then to set

(26) L¥(@?) | U =hy*? (@?),

L*(w?) is a dP—closed (2p—1)—form on M and does not depend on the choice of {hy}.
Proof. Since pp(hy)=pplhy) on UnV, we get hy*P{w?)=hy*P(w?) on UnV. On
the other hand, if pplhy)=pnlhy'), hy' is written as hyfy, where fy is a c(D)~class
GL(n, C)-valued function. Hence hy*P(0?) is equal to hy'*P(w?). Therefore we have
the lemma.
Lemma 20. Set <L*(wP?)> the cohomology class of L*(w?) in H** 1M, Cipy),
we have

LL*w?)>
= {(_1)p—1tr[10g Lo, i1 (0 log g)ix,iz,ig- ..(0log g)izp—a, i2p-2, izp—x]} »
Gij=hv;"‘hyj, (0log g)ijr=log gjr—log gir+log &ij.

Proof. Since we can take the open covering {U} sufficiently fine, we may

assume log ay is defined for any Ue {U}. Then, by lemma 18, to set

LHQ9 —=dP log ho. . P log hu,
we have
tr L¥(@20-Y)=tr L*(@?), L*(Q9)=(—1)1"dP[L*(Q9") log hy .
Moreover, by the same calculation as in the proof of lemma 18, we get
tr[ L*(29),.dP(log hy™hy)]
=tr[ L*(29), dP log hy—L*(R29),.d" log hy].

Hence the Cech cocycle represents the class of L*(Q?) in HWM, B-2D) is
{tr [L*(2*#7?) log gi;]}. Then, since d{(0log g}, i1, iz, =0, We get

log ki, (0log )i, i, is—10g hiy (0108 )i, iz, is+

+log ki (6 log )i, i1, is—108 his(d 10g 8)i, 4y, i
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=(log hi,—log h;,) d1og 8)iy, iz, i

Hence in H2(M, B2-3,2,) L*(wP) is represented by
{—tr[L*(2%273) log giy, i, (0 10g )iy, 12, is]}. Since (Slog &)i, i, 7, IS & constant matrix,
we can repeat this process. Therefore we have the lemma because (—1)(?-DEP-D—
(—1)2-
Corollary. Denote c? the (2p—1)-dimensional generatorof H*(GL(n, C), Z)=
H¥Un), Z), we have
(—1r-

t*(()ﬁ) :m<wl)>.

Proof. Since (9g);jr=1I, the identity matrix, (0log &);j»=2a"—1 Nijz, where
Nijp is a matrix with integral proper values, for any i, j, £ On the other hand,
log g[jZZﬂN/jINij if hy;=hy; on U;nU; Hence f*(?) is represented by a cocycle
of the form {(—1)?"'(2ra/—1)? nio,.. ,irp-1} in H?P~Y(M, C), where ny,.. . irp- is an
integer for any ({, %1,...,%p-1) and f: M—GL(n, C) is a smooth map. On the
other hand ¢*(c?) is represented by a,w? where a, is a constant, ¢*(f*(c?)) is repre-
sented by {(—1)?'ap(2rn/—1)*n;,... 1.5~} and it is an integral class. Since we can
take f and M arbitrally, (—1)?"'a,(2zs/—1)? should be equal to 1. Therefore we
obtain the corollary.

12. Definition. We define p?(L)ysH*? (M, Cypy) by

ﬁp(L):ﬁV*_l< L*w?)>
(2ma/ —1)* '

Theorem 3. (i). If LeHY M, L¢x p), then
(27) BUL)=38k*"Y(L).
(). Let Fy py (Yi,oo,Yp)=Das,...,ip Yii... Yyis be the polynomial

Fo p(s15...,5p) :Zile/’, where s, is the v—th elementary symmetric function of
indeterminants X,,...,X,, and set

i

I
F(I: j)(bla - ,bp):]] L(bl* ..

ol s I N
b albpae . abp) T T,

byeH (M, C*ipy).
Then we have
(28) exp*(B*(L))=(—1)2"1Fq, p(0'(G(L)), .. ., b* (B(L))).
(iii). If L=pp(f), f is a smooth GL(n, C)-valued function on M, then

(29) B (L) =c*(f*(c?)).
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(iv). If L\ U=pphy), hv is a smooth Alg, C)-valued function on U, for each
Ue (U}, then

B

(30) pr(L)=0, p=2.

V). If My={My, Y, M, =y} is a c(D)-class bundle over M with the smooth
fibre Y, set my*(L)= {pry+py @y*(hu))}, we have

B (my* (L)) =my*(B* (L)

(vi). If D is homogeneous and satisfies the assumption in n°10, p* (L) is deter-
mined by o(L), the principal symbol of L.

Preof. If L= {op(hy)) €Ho(M, Lc+, p), ok* (L) is given by (1/2z+/—1) (log hy—
log hy). Hence we have (i) by lemma 20. (iii) also follows from lemma 20 and (v)
follows from the definitions of p?(L), my*(L) and lemma 17.

To show (ii), first we assume 6(L)={g;;} is a 4(g, C)-bundle. Then L) is a
g-fold extension of c(D)-class C*-bundles #;,...,7n, and the transition function of
each 7, is given by the m-th diagonal element {gij, .} of {gi;}. Since gi; is a
Alg, C)-valued function, log g;; is a 4(g, C)—valued function whose m~th diagonal

element is log g;;, » Hence we have

trEIOg i, il(5 IOg g)il, iz, 13°° '(5 IOg g)izj;—s, fep-2, izp—-l:l

q
= Z log &, i1, m(@log &), ia, 43, m°° -(6log g)izp—a, iap-z, i2p-1, me

=1
Therefore we obtain

a2 ™ P Ty (bt
eXp*(‘BP(L)) :{ Zl Pm*e o . *Um} 1 .

Hence by the definitions of 5”(£) and F, ,, we have (28) by lemma 16.

To show (i) in general, we use the commutative diagram

_ exp* .
H* Y (Mp, Corprepy) — H?*H(Mp, C*uaprnn)

*
TR exp* R

H?=\(M, Copy) ——— HP* UM, C*ypy),

*

where My is the associate F(g)-bundle of 6(L). Since =x*(D) satisfies the assumption
of n°10 by lemma 17, B¥(zp*(L)) is defined and since zr*(3(L)) is a c(D)-class
Alg, C)-bundle, we have

exp*(B? (wp* (L)) = (— 1)1, [0 @@p*(L))),. .., 0P @(p*(L)))].

But since 6{mp*(L))=nz*(@(L)) by the definition of =z*(L), we have by (v) and
theorem 2, (ii)
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mp*(exp* (B (L)) =mp*[(—1)? "1 Fq, p(0* (G(L)), - . . , 6P (GL))],

because by the definition of ,—product, we get mp*(ab) =rmp*{@) s * (). Then, since
each #z* is a monomorphism, we obtain (ii).

If hy is a 4lg, C)-valued function, dPhyhy™! is a Alg, C)-valued 1-form. Hence
to set dPhyhy'=(pi;), we get

a_| 7=
(LA Q) =D Y01, i e -« 01,i=0, 1222,
1=1

This shows (iv).
If D is homogeneous, o(L) is determined by 7,(D). Hence we have (vi).
Corollary. If 6(L)=4(L"), B*(L)—pB*(L’) is in c*~image for all p.
Note 1. By (ii), we have
(28)' b(6(L)) =exp*(8*(L)).
On the other hand, since the diagram
0
H(M, Cp)—HM, Zc, p)——H"M, Cupy)
k*"T: exp*[
H(M, Loy, p)—— H'(M, C*up)
0
HYM, 7),

»0

is commutative, we can define, pY(L) by (i) without any assumption about D and
it satisfies (28).

Note 2. If d?=d or 3, we can define my*(8?(L)) and pP(my*(L)) (resp. my*
@*(&) and b?(zy*(£))) as the elements of H2*~Y(My, C) or H**"'(My, Ca) (resp.
H**"Y(My, C¥ or H2?*"'(My, C*w»)) and for these elements, theorem 3, (v) (resp.
theorem 2, (ii)) hold.

Appendix. Curvature operators of connections of diferential operators

In this appendix, we assume E;=FE,=F, that is D is defined on C*(M, E) and
maps into itself. For a differential operator L:Ce(U, EQH)—C=({U, EH)
with order at most £—1, k=ord D, we set

Op(l)=D @ 1) L+ LD 1u)— L2,

and call the curvature operator of L with respect to D. By definition, if —L=
{—Ly} is a connection of D with respect to £, a G-bundle with the fibre H (3]),
set D;={DQ1u—Ly}:C*(M, EQE—C>M, ERE), we have

D2 U=Dy* @ 1y—0 p(Ly).
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Hence if L is flat, that is L=pp(k), we obtain
6 p(L)=ppe(h).

D Dm
Example 1. Let C~(M, E,) >C°°(M E)—2 «oo ZC% (M, Eyp.,) be a differen-

tial complex, & a G-bundle with the fibre H, —#; is a connection of D; with
respect to &, 1<(i<im. Then, to set E=E @+ DEmst, DD+ D frnu)=
0DDS1D =D DS and 0(fi@D «++ D frn) =0D O, /1D - D0y frn, 0 is a connec-
tion of D with respect to & and O p(0)=—(Ds)% Therefore the series

D 1 D H D m . . .
Co(M, E® & 2L Co(M, Ey®8) 25 oo 70"Coo (M, Epai®6) is a differential

complex if and only if the curvature operator of # with respect to D vanishes. To

vanish the curvature operator of 4, it is sufficient there exist hy=C=(U, Gg) such
that 6;, y=pp; (hv), 1<i<m, for all U.

Example 2. In the above example, if D;=d or @ for each i, @p(f) is equal to
do—0,0 or 90—0,.0.

Lemma 1. We have

(L)i OplcL)=cOp(L)+(c—cAL?, ¢ is a constant G-valued function,
(1)ii @D (L1+L2) :@D(Ll) +@D(L2) - (Lle +L2L1),
(i Op(LE)=[Op(L) 1%+ On(g) L5+ LEOs(g)].

Corollary 1. If Op(L)=0p(L)8+pp2(g), then there exists a differential operator
P such that L+ pp(g)=L,+P, Op(P)=L,P+PL,.
Corollary 2. (i). If L={Ly} is a connection of D with respect to &= {guv}, then

2) Op{Ly) =Op(Ly)8Uv 4 ppi(guv), on UnV.
(iii). If (2) is hold for L={Ly}, then
(3) Op(Ly+Puyy)=0p(Ly) on UnV, Pyy=(Dy—Ly)—(Dy—Ly)2Uv,

Proof. If L={Ly} is a connection of D with respect to & we have (Dy— Ly)?
=(Dy&uv —Ly8uvy2 on UnV. Since (Dy—Ly)?*=Dy®*—6p(Ly) and (Dy8Uv —L,8Uv)2=
Dy*— pp*(guv) —[Op(Ly) 18UV, we get (i). Since (Dy—Ly)*—(Dy8Uv —Ly8Uv)2=0 if (2)
is hold, set Pyy={(Dy—Ly)—(Dy—Ly)8UV, we get (3) by (Dii

Covollary 8. If Op(L)=pp:(h), L is equal to pp(h)-+P, where Opr(P)=0.

Definition. Let L, L' : C>(U, EQH)—C=(U, EQH) be differential operators
of order at most k—1, we call L~L' mod. Op if there exists a smooth G-valued
Junction g on U such that Op(L)=0p(L")8+pp2(g).

By lemma 1, L~L' is an equivalence relation and it induces an equivalence
relation on @IE‘O,}H, the sheaf of germs of differential operators L'C°°(U E®H)
—C>(U, EQH) of order at most 2—1. The quotient sheaf of ak E®H by this
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relation is denoted by @< kgly. The map from = %gy onto By fgly induced by
the relation L~L' is denoted by &p. The kernel sheaf of @5 is denoted by Lg, p.
L, D containes Le¢, p.

Definition For &= {goy) CH!(M, Gg), (Ly) €C=(U, @ tah) and (Lov) SCHU,

Qﬁ;@y,)we set

de (L} yv =Lo—Ly80v, 8¢ {L}yvw=Lyy+LywUY +LyysUw,

Lemma 2. 0:(0: {L}))gyw=0 and if {0¢ Lyuvw} =0 and there is a partition of
unity by smooth functions subordinate to {1}, {Lyy}= {0e(R)yy} for some {Ry}eC*

(U, @k (f. [3].

Proof. 0:(00¢ {L}yyw=0 follows from the definitions. If (¢ L)yyw=0, we have
Lyy=0 and Lyy=—Lyy£Uv. Hence set RU:Z}WDU#,,eWLUW, {ew} is the Partition
of unity subordinate to W1, we have de(R)yy =Lyy.

Denote Ly the section of .,@l}i@lﬁ on U and set 1={U}, an open covering of
M, we set

Hp*(, L, p)= {{Luv} |GeL)uv=pplguv), for some = {guy} EH' (M, Gy),
Ly is a section of fG,D on U}.
HPW, 2%dw=({Lv} |@GcL)vy=pplguv) for some é={guy} €H'(M, Gg)}.
H, Op kg ={{OpLv} 16:(@pL)vv=ppi(guy) for some &
= {guv} €H (M, Gg)}.
We define H,®(M, Lo p), HP(M, 2 kgy) and HY(M, 852 k) as the limits

of these sets. We also set

Blop(Wl, 2 kgu) = {{Ruv} | Ruy = @eL)uy for some & = (guv) EH'(M, Gg)

and Op(Ryv)= pp*(guv) —[{pn(&uv) — Ruv} Ly®uv +Ly3UV {op(guv) — Ruv} 1.
We call {Ryy} and {Ryy'}Blop(ll, .@'ﬁ;@‘H) to be equivalent if
Ryy=00eL)vv, Ryv'=0:L+))vy, Op@u)=LyQu-+QuLy.

The quotient set of Blgp (1, 9’};@511) by this relation is denoted by H'gp (11, .@ﬁ{éH).
Its limit set is denoted by Higp(M, ,@’}}@H). Then by lemma 1 and lemma 2, we

have the following exact sequence of cohomology sets

@D 0

i ~
"Hp'(M, =2 IE&SH)“—*HO(M: @D-@g@lﬂ)*“'

(4) 0——Hp® (M, Lg, p)
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i

—H'op(M, @ %gn) —H'(M, 2 5= 1{0).

Note. By the definition of ¢ (n°4), there is an inclusion map ¢: H'(M, Lg, p)

——H'sp (M, 2%y and we have the commutative diagram

Higp (M, 2 ——H (M, 2k =(0).

op* ‘ "

H'M, Ga)—H"M, Lg, p)

In this diagram, the explicit trivialization of ¢;pp*(§) is the connection of D with
respect to & If the category is not smooth (for example, holomorphic category or
topological category), H'(M, 9’13;551{) may not be equal to {0} and 7,pp*(€) gives
the obstruction class to have a connection in this category (cf. [21, [4)).
Definition. Regard {Ly} e H/? (@’ﬁ;"@;H) to be a connection of D with respect to &,
we call Op({Ly}) to be the curvature operator of {Ly).
Theorem. A c{D)-class G-bundle & has a connection of D with respect to & with

the curvature operator equal to 0. Conversly, if l:; p=Lg, p, a G-bundle & is of c¢(D)
—class 1f D has a connection with respect fo & with a curvature operator equal to 0.
Proof. Since a c(D)-class G-bundle & allows {0} as a connection of D with

respect to £, we have the first assertion. If ITG p=Lg, p, we have pp(guy)=pphv)
—pplhy)e if £={gyy} has a connection of D with respect to & with the curvature
operator is equal to 0. Hence {gyy} is in J-image in the sequence (6) of n°4.
Therefore we obtain the theorem.
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