# Flat Connections of Differential Operators and Odd Dimensional Characteristic Classes<sup>1)</sup>

By Akira Asada

Department of Mathematics, Faculty of Science Shinshu University (Received 7th May, 1981)

#### Introduction

It is known that global geometric properties of Fuchs-type operators are formulated as follows: Let  $G=GL(n, \mathbb{C})$ ,  $G_t$  and  $G_{\omega}$  be the sheaves of germs of constant and holomorphic G-valued functions over M, a complex manifold,  $\mathscr{M}$  the sheaf of germs of those matrix valued holomorphic 1-forms  $\theta$  such that  $d\theta + \theta_{\wedge} \theta = 0$ . Then, set  $r(f)=dff^{-1}$ , the sequence  $0 \longrightarrow G_t \xrightarrow{i} G_{\omega} \xrightarrow{r} \mathscr{M}_{\omega} \longrightarrow 0$  is exact and it derives following exact sequence of cohomology sets

$$H^{0}(M, G_{\omega}) \xrightarrow{r^{*}} H^{0}(M, \mathscr{M}_{\omega}) \xrightarrow{\delta} H^{1}(M, G_{t}) \xrightarrow{i^{*}} H^{1}(M, G_{\omega}).$$

 $\theta \in \mathrm{H}^{0}(M, \mathscr{M}_{\omega})$  is a global integrable connection on M and  $d+\theta$  is a Fuchs type operator. Since there is a bijection  $\chi$ :  $H^{1}(M, G_{\ell}) \longrightarrow \mathrm{Hom}(\pi_{1}(M), G), \chi(\delta(\theta))(\pi_{1}(M))$ is a subgroup of G. It is the monodromy group of  $d+\theta$ . If a representation  $\rho$ :  $\pi_{1}(M) \longrightarrow G$  is given, it is realized as a monodromy representation of some Fuchs type operator if and only if  $i^{*}\chi^{-1}(\rho)=1$ , the trivial holomorphic bundle. Same formulation is possible in smooth category to use  $G_{d}$ , the sheaf of germs of smooth G-valued functions, and  $\mathscr{M}_{d}$ , the sheaf of germs of those matrix valued smcoth 1-forms  $\theta$  such that  $d\theta + \theta_{\wedge} \theta = 0$ , instead of  $G_{\omega}$  and  $\mathscr{M}_{\omega}$  ([1], [12], [13], [14]).

The notion of connection is extended for an arbitraly differential operator D:  $C^{\infty}(M, E_1) \longrightarrow C^{\infty}(M, E_2)$ , M a smooth manifold,  $E_i$ , i=1, 2, the smooth vector bundles, and a smooth vector bundle  $\xi$  over M ([3]). The definition is as follows: Denote H the fibre of  $\xi$ , a collection  $\{\theta_U\}$ ,  $\theta_U : C^{\infty}(U, E_1 \otimes H) \longrightarrow C^{\infty}(U, E_2 \otimes H)$  is a differential operator, is called a connection of D with respect to  $\xi$ , if ord  $\theta_U \leq \operatorname{ord} D$  -1 and set  $D_{\theta} = \{D_U \otimes 1_H + \theta_U\}$ ,  $D = \{D_U\}$ ,  $D_{\theta}$  becomes a well defined differential operator from  $C^{\infty}(M, E_1 \otimes H)$  into  $C^{\infty}(M, E_2 \otimes H)$ .

To define the curvature operator of a connection of a differential operator is possible (cf. Appendix of this paper), and it relates the theory of non-linear coho-

Supported by Grant in-Aid for Scientific Research from the Ministry of Education, Science and Culture (564009.)

#### Akira Asada

mology ([9]). But the notion of a flat connection of a differential operator is given more directly as follows: A connection  $\{\theta_U\}$  of D with respect to a G-bundle  $\xi$  is called flat if there is a collection  $\{h_U\}$  of smooth G-valued function  $h_U$  on U such that  $\theta_U = \rho_D(h_U)$ . Here  $\rho_D(h_U)$  is given by

$$\rho_D(h_U)\varphi = (D_U \otimes 1_H)\varphi - (1_{E_1}, E_2 \otimes h_U) \ (D_U \otimes 1_H) \ ((1_{E_1} \otimes h_U^{-1})\varphi).$$

A *G*-valued function *g* such that  $\rho_D(g)=0$  is called a c(D)-class *G*-valued function. It is shown that a *G*-valued function *g* is of c(D)-class if and only if its matrix elements are of c(D)-class, and there is a system of differential operators r(D) determined by *D* such that a function *f* is of c(D)-class if and only if r(D)f=0. Some examples, such as a real elliptic operator acting on scalar functions, have only constant functions as c(D)-class functions. But, some other examples, such as  $D=\overline{\partial}$ , have nonconstant c(D)-class functions (§1). We denote the sheaf of germs of c(D)-class *G*-valued functions by  $G_{c(D)}$  and set  $\rho_D(G_d)=L_{G,D}$ . Then we have the exact sepuence of sheaves

$$0 \longrightarrow G_{c(D)} \xrightarrow{i} G_d \xrightarrow{\rho_D} L_{G, D} \longrightarrow 0.$$

From this sequence, we obtain the following exact sequence of cohomology sets

$$H^{0}(M, G_{d}) \xrightarrow{\rho_{D}^{*}} H^{0}(M, L_{G, D}) \xrightarrow{\delta} H^{1}(M, G_{c(D)}) \xrightarrow{i^{*}} H^{1}(M, G_{d}).$$

If  $L \in H^0$   $(M, L_{G, D})$ ,  $D \otimes 1_H - L$  is a differential operator from  $C^{\infty}(M, E_1 \otimes H)$  into  $C^{\infty}(M, E_2 \otimes H)$ . We call this operator to be a *D*-Fuchs type operator. On the other hand, an element of  $H^1(M, G_{c(D)})$  is called a c(D)-class *G*-bundle or a *D*-flat *G*-bundle. Hence  $\delta(L)$  is a differentiable trivial c(D)-class *G*-bundle. It is shown that  $\delta(L)$  has the minimal structure group as a c(D)-class *G*-bundle. This group is called the monodromy group of  $D \otimes 1_H - L$  (§2).

If  $G=GL(n, \mathbb{C})$ , we can define several characteristic classes related to c(D)-class G-bundles and the elements of  $H^0(M, L_{G, D})$ . These classes are connected with the exact sequence of cohomologies

$$\dots \longrightarrow H^{2p-1}(M, \mathbb{Z}) \xrightarrow{i^*} H^{2p-1}(M, \mathbb{C}_{c(D)}) \xrightarrow{\exp^*} H^{2p-1}(M, \mathbb{C}^*_{c(D)}) \xrightarrow{\delta} H^{2p}(M, \mathbb{Z}) \xrightarrow{i^*} H^{2p}(M, \mathbb{C}_{c(D)}) \longrightarrow \dots ,$$

and the generator of the cohomology ring  $H^*(GL(n, \mathbb{C}), \mathbb{Z}) = H^*(U(n), \mathbb{Z})$  (cf. [6], [7], [11]). For this purpose, we define a product (denoted by \*) on  $\sum_{p} H^{2p-1}(M, \mathbb{C}^*_{c(D)})$  and show  $\delta: \sum_{p} H^{2p-1}(M, \mathbb{C}^*_{c(D)}) \longrightarrow \sum_{p} H^{2p}(M, \mathbb{Z})$  is a ring homomorphism (§3, n°8, the product in the right hand side is the cup product). Then our results are summarlized as follows (§§3, 4):

- (i). Denote  $c^{p}(\xi)$  the p-th Chern class of a complex vector bundle  $\xi$ ,  $i^{*}(c^{p}(\xi))=0$  for any p, if  $\xi$  is a c(D)-class bundle.
- (ii). If  $\xi$  is a c(D)-class bundle, there is a well defined cohomology class  $b^{p}(\xi) \in H^{2p-1}(M, \mathbb{C}^{*}_{c(D)})$  such that

 $\delta b^p(\xi) = c^p(\xi).$ 

(iii). If  $L \in H^0(M, L_{G,D})$  and D satisfies some assumptions (cf. §4, n°10), there is a well defined cohomology class  $\beta^p(L) \in H^{2p-1}(M, \mathbb{C}_{c(D)})$  such that

$$\exp^*(\beta^p(L)) = (-1)^{p-1} F_{n,p}(b^1(\delta(L),\ldots,b^p(\delta(L)).$$

Here  $F_{n, p}(s_1, \ldots, s_p) = \sum_{i=1}^n X_i^p$ ,  $s_q$  is the q-th elementary symmetric function of indeterminants  $X_1, \ldots, X_n$  and the product is \*-product.

(iv). If  $L = \rho_D(f)$ , f is a smooth G-valued function on M, then

$$\beta^p(L) = i^*(f^*(c^p)).$$

Here  $c^{p}$  is the  $(2^{p}-1)$ -dimensional generator of  $H^{*}(GL(n, \mathbb{C}), \mathbb{Z})$ .

If  $M=\mathbb{C}^*$ , D=d/dz and  $L=\alpha/z$ ,  $\beta^1(L)$  is  $\alpha \langle e \rangle$ ,  $\langle e \rangle$  is the generator of  $H^1(\mathbb{C}^*, \mathbb{C})$ =C. In general,  $\beta^1(L)$  is determined by the coefficients of the indicial equation in classical case.  $\beta^p(L)$  is determined by  $\sigma(L)$ , the principal symbol of L if D is homogeneous and satisfies the assumption of  $n^{\circ}10$ . If D=d or  $\overline{\partial}$ , an element of  $H^{2p-1}(M, \mathbb{C}_{c(D)})$  is represented by a closed (2p-1)-form or a  $\overline{\partial}$ -closed (0, 2p-1)-type form on M. On the other hand, L is a matrix valued 1-form  $\theta$  on M. In these cases, we have

$$\beta^{p}(L) = \frac{(-1)^{p-1}}{(2\pi\sqrt{-1})^{p}} \operatorname{tr}(\theta_{\wedge}, \dots, \theta).$$

We note that (iii) shows the rigidity of  $\beta^{p}(L)$  under the monodromy preserving deformation of L, because if  $\delta(L) = \delta(L')$ ,  $\beta^{p}(L) - \beta^{p}(L') \in i^{*}(H^{2p-1}(M, \mathbb{Z}))$  which is a discreet subgroup of  $H^{2p-1}(M, \mathbb{C}_{c(D)})$ . Therefore  $\beta^{p}(L)$  is an invariant of monodromy preserving deformation (cf. [8], [15], [16]). But in some cases,  $\beta^{p}(L)$ ,  $p \geq 2$ , vanishes. For example, if  $L | U = \rho_{D}(h_{U})$  and each  $h_{U}$  is a  $\Delta(n, \mathbb{C})$ -valued function on U,  $\beta^{p}(L) = 0$  if  $p \geq 2$ .

The outline of this paper is as follows: In §1, we define and study c(D)-class functions and c(D)-class G-valued functions. c(D)-class G-bundles and D-Fuchs type differential operators are defined in §2. The existence of monodromy group is also shown in §2. §3 is devoted to the definitions of \*-product and  $b^{p}(\xi)$ . The proofs of above (i) and (ii) are also given in this §. The definition of  $\beta^{p}(L)$  and the proofs of (iii) and (iv) are given in §4. In appendix, we give the definition of the curvature operator of a connection of a differential operator.

#### Akira Asada

In this paper, we do not study the singularities of D-Fuchs type operators. From the point of view of the above formulation, the theory of singularities of D-Fuchs type operators seems to be a non-abelian residue theory.

# §1. c(D)-class functions and c(D)-class G-valued functions

**1.** Let M be a connected paracompact smooth manifold,  $D: C^{\infty}(M, E_1) \longrightarrow C^{\infty}(M, E_2)$  a differential operator on M. Here  $E_i$ , i=1, 2, and  $C^{\infty}(U, E_i)$ , i=1, 2, are the smooth vector bundles over M and the space of its smooth sections on U, an open set of M. If f is a smooth function on U, f acts on each  $C^{\infty}(U, E_i)$  by the scalar multiplication. Hence f defines a linear operator  $f_{(m)}$  or f on  $C^{\infty}(U, E_i)$ .

**Definition.** A function f on U is called to be a c(D)-class function on U if  $f_{(m)}D=Df_{(m)}$ . The set of all c(D)-class functions on U is denoted by c(D, U).

**Lemma 1.** If  $D = \sum_{|\mathbf{I}| \leq k} A_{\mathbf{I}}(x) \partial^{|\mathbf{I}|} / \partial x^{\mathbf{I}}$ ,  $\mathbf{I} = (i_1, \ldots, i_n)$ ,  $|\mathbf{I}| = i_1 + \ldots + i_n$ ,  $\partial^{|\mathbf{I}|} / \partial x^{\mathbf{I}} = \partial^{|\mathbf{I}|} / \partial x_1^{i_1} \ldots \partial x_n^{i_n}$ , on U, f belongs in c(D, U) if and only if

(1) 
$$\sum_{\mathbf{J}+\mathbf{K}=\mathbf{I}, |\mathbf{J}|\geq 1} \frac{\mathbf{I}!}{\mathbf{J}!\mathbf{K}!} A_{\mathbf{I}}(x) \frac{\partial^{|\mathbf{J}|f}}{\partial x^{\mathbf{J}}} = 0, \qquad |\mathbf{K}| \leq k-1.$$

**Proof.** Since  $Df = fD + \sum_{|\mathbf{K}| \leq k-1} (\sum_{\mathbf{J}+\mathbf{K}=\mathbf{I}, |\mathbf{J}| \geq 1} (\mathbf{I}!/\mathbf{J}!\mathbf{K}!)A_{\mathbf{I}}(x)\partial_{|\mathbf{J}|}f/\partial_{x}\mathbf{J})\partial_{|\mathbf{K}|}/\partial_{x}\mathbf{K}$ , we have the lemma.

**Corollary.** If  $V \subset U$  and  $f \in c(D, U)$ , f belongs in c(D, V). Especially, the germ  $f_x$  of f at x and the set of germs of c(D)-class functions  $c(D)_x$  at x are defined.

**Definition.** The system of differential operators on M given by (1) is denoted by r(D). r(D) is called maximal if r(D)f=0 implies f is a constant.

**Lemma 2.** (i). c(D, U) is a ring by the usual addition and multiplication of functions and contains the ring of constant functions.

(ii). c(D, U) is closed by  $\mathcal{C}^k$ -topology.

(iii). If  $f \in c(D, U)$  and F is a holomorphic function such that  $(\partial^{|\mathbf{I}|} F/\partial x^{\mathbf{I}})$  (f) is defined if  $|\mathbf{I}| \leq k$ , then F(f) belongs in c(D, U).

**Proof.** Since D(fg) = (Df)g = (fD)g = (fg)D if  $f, g \in c(D, U)$ , c(D, U) is closed under the multiplication. Other parts of (i) and (ii) follow from lemma 1.

If F is holomorphic, there is a series of polynomials  $\{F_m\}$  such that  $\{F_m(f)\}$  converges to F(f) on some neighborhood U(x) of x,  $x \in U$ . Since  $\partial^{|\mathbf{I}|}G(f)/\partial x^{\mathbf{I}} = P_{\mathbf{I}}(G(f), \ldots, (\partial^{|\mathbf{J}|}G/\partial x^{\mathbf{J}})(f), \ldots, f, \ldots, \partial^{|\mathbf{K}|}f/\partial x^{\mathbf{K}}, \ldots)$ ,  $\mathbf{J}, \mathbf{K} \leq \mathbf{I}, \{F_m(f)\}$  converges to F(f) at least by  $\mathcal{C}^k$ -topology. Hence we have (iii).

**Corcllary.**  $c(D)_x$  is a local ring.

If  $g_i$  is a linear transformation of the fibre of  $E_i$  and  $E_i$  is trivial on U,  $g_i$  acts as a linear operator on  $C^{\infty}(U, E_i)$ . This operator is denoted by  $g_{i(m)}$  or  $g_i$ , i=1, 2. Then, since  $g_{i(m)}f_{(m)}=f_{(m)}g_{i(m)}$ , we have

**Lemma 3.** If  $g_i$  is inversible, i=1, 2, then

$$c(Dg_1, U) = c(D, U), c(g_2D, U) = c(D, U).$$

**Example 1.** If  $D = \sum_i A_i(x)\partial/\partial x_i + B(x)$ , r(D) is given by  $\sum_i A_i(x)\partial/\partial x_i$ . If  $A_i(x) = (a_i^{jk}(x))$ , r(D) is the overdetermined system  $\sum_i a_i^{jk}(x)\partial f/\partial x_i = 0$ ,  $1 \le j \le m_1$ ,  $1 \le k \le m_2$ . Here  $m_1$ ,  $m_2$  are the dimensions of the fibres of  $E_1$ ,  $E_2$ .

**Example 2.** If  $D = \sum_{i,j} a_{ij}(x) \partial^2 / \partial x_i \partial x_j + \sum_i b_i(x) \partial / \partial x_i + c(x)$ ,  $a_{ij}(x) = a_{ji}(x)$ , r(D) is given by  $\{2\sum_j a_{ij}(x)\partial / \partial x_j, i=1,\ldots, n, (D-c(x))\}$ . Hence r(D) is maximal on U if  $A(x) = (a_{ij}(x))$  is a regular matrix on each  $x \in U$ .

**Example 3.** If D is a scalar valued real elliptic operator, r(D) is maximal.

Since the problem is local, to show this, first we assume D is a constant coefficients operator. Then, since D is a real scalar valued operator,  $k \ge 2$  and by a linear change of coordinates, we may assume  $D = \partial^k / \partial y_1^k + terms$  with order at most k-2 in  $\partial/\partial y_1$ . Hence r(D) contains  $\partial/\partial y_1$  and f is independent to  $y_1$  if  $f \in c(D, U)$ . Set  $D = P(\partial/\partial y_1, \ldots, \partial/\partial y_n)$ ,  $D' = P(0, \partial/\partial y_2, \ldots, \partial/\partial y_n)$  is elliptic on the plane  $y_1=0$ . Therefore r(D) is maximal by induction in this case. For general D, set  $D = D(x_0) + (D - D(x_0))$ ,  $D(x_0)$  is a constant coefficients elliptic operator. If  $f \in c(D, U)$ , set

$$D(x_0)f = fD(x_0) + R_0, \quad D_1f = fD_1 + R_1, \quad D_1 = D - D(x_0),$$

the coefficients of  $D_1$  vanishes at  $x_0$  and  $R_0 = -R_1$ . Hence the coefficients of  $R_0$  vanishes at  $x_0$  and  $df(x_0) = 0$  if  $f \in c(D, U)$ , because  $r(D(x_0))$  is maximal. Since  $x_0$  is arbitrary, this shows df = 0 on U. Therefore f is a constant and r(D) is maximal.

Note. Example 1 shows if D=d or  $\overline{\partial}$ , r(D) is also d or  $\overline{\partial}$ .

2. Let H be a separable Hilbert space with the O.N. -basis  $\{e_{\alpha}\}$ . We denote the inner product  $\xi$ ,  $\eta \in H$  by  $(\xi, \eta)$  and the set of all bounded linear operators of H by  $\mathscr{M}(H)$ . Denote  $V_i$  the fibre of  $E_i$ , we set

$$\langle v \otimes \xi, \eta \rangle = \langle \xi, \eta \rangle v, v \in V_i, v \otimes \xi \in V_i \otimes H, i=1, 2.$$

**Definition.** (i). A  $\mathscr{B}(H)$ -valued function b(x) on U, an open set of M, is called smooth on U if  $(b(x)e_{\alpha}, e_{\beta})$  is a smooth function on U for any  $e_{\alpha}, e_{\beta} \in \{e_{\alpha}\}$ 

(ii). A  $V_i \otimes H$ -valued function f(x) on U is called smooth on U if  $\langle f(x), e_{\alpha} \rangle \rangle$  is a smooth function on U for any  $e_{\alpha} \in \{e_{\alpha}\}$ .

Since O. N. -basis  $\{e_{\alpha}\}$  and  $\{e_{\alpha}'\}$  of H are changed by a unitary operator, these definitions do not depend on the choice of  $\{e_{\alpha}\}$ .

If each  $E_i$  is trivial on U, D induces a differential operator  $D_U: C^{\infty}(U, V_i) \longrightarrow C^{\infty}(U, V_2)$ . Hence, denote  $1_{\rm H}$  the identity map of H,  $D_U \otimes 1_{\rm H}: C^{\infty}(U, V_1 \otimes {\rm H}) \longrightarrow C^{\infty}(U, V_2 \otimes {\rm H})$  is defined. On the other hand, if b(x) is a smooth  $\mathscr{B}({\rm H})$ -valued function on U,  $1_{V_i} \otimes b(x)$  is a smooth  $GL(V_i) \otimes \mathscr{B}({\rm H})$ -valued function on U. Hence  $1_{V_i} \otimes b(x) = 1_{V_i} \otimes b(x)_{(m)}$  is defined as a linear operator on  $C^{\infty}(U, V_i \otimes {\rm H})$ , i=1, 2.

Lemma 4. The followings are equivalent.

(i)  $(1_{\mathbf{V}_2} \otimes b(\mathbf{x})) D_U \otimes 1_{\mathbf{H}} = D_U \otimes 1_{\mathbf{H}} (1_{\mathbf{V}_1} \otimes b(\mathbf{x})).$ 

(ii)  $(b(x)e_{\alpha}, e_{\beta})D_U = D_U(b(x)e_{\alpha}, e_{\beta})$ , for some O. N. –basis  $\{e_{\alpha}\}$  of H.

(iii)  $(b(x)e_{\alpha}, e_{\beta})D_U = D_U(b(x)e_{\alpha}, e_{\beta})$ , for all O. N. -basis  $\{e_{\alpha}\}$  of H.

**Proof.** By definition, if b(x) does not depend on x, then

(2) 
$$(1_{\mathbf{V}_2} \otimes b) D_U \otimes 1_{\mathbf{H}} = D_U \otimes 1_{\mathbf{H}} (1_{\mathbf{V}_1} \otimes b).$$

Hence (ii) and (iii) are equivalent if (i) and (ii) are equivalent. Since we have

$$\langle D_U \otimes 1_{\mathrm{H}} (1_{\mathrm{V}_2} \otimes b(x)) v(x) \otimes e_{\alpha}, \ e_{\beta} \rangle = D_U((b(x)e_{\alpha}, \ e_{\beta})v(x))$$
  
=  $D_U(b(x)e_{\alpha}, \ e_{\beta}))v(x),$   
 $\langle (1_{\mathrm{V}_2} \otimes b(x)) \ (D_U \otimes 1_{\mathrm{H}})v(x) \otimes e_{\alpha}, \ e_{\beta} \rangle = (b(x)e_{\alpha}, \ e_{\beta}) \ (D_Uv(x))$   
=  $((b(x)e_{\alpha}, \ e_{\beta}) \ D_U)v(x)$ 

(i) and (ii) are equivalent and we obtain the lemma.

**Corollary.**  $(1_{V_2} \otimes b(x)) D_U \otimes 1_H$  is equal to  $D_U \otimes 1_H (1_{V_1} \otimes b(x))$  if and only if  $(b(x)e_{\alpha}, e_{\beta}) \in c(D, U)$  for any  $e_{\alpha}, e_{\beta} \in \{e_{\alpha}\}$ .

**Definition.** (i). A smooth  $\mathscr{B}(H)$ -valued function on U is called a c(D)-class  $\mathscr{B}(H)$ -valued function on U if it satisfies either of (i), (ii) or (iii) of lemma 4.

(ii). Let G be a subgroup of  $\mathscr{B}(H)$ . Then a G-valued function on U is called a c(D)-class G-valued function on U if it is also a c(D)-class  $\mathscr{B}(H)$ -valued function.

**Lemma 5.** (i). If b(x) is a c(D)-class  $\mathscr{B}(H)$ -valued function on U and  $V \subset U$ , b(x) is a c(D)-class  $\mathscr{B}(H)$ -valued function on V.

(ii). The set of all c(D)-class  $\mathscr{B}(H)$ -valued functions on U is a ring and the set of all G-valued functions on G is a group.

(iii). Denote  $b^*(x)$  the  $\mathscr{B}(H)$ -valued function defined by  $b^*(x) = (b(x))^*$ , the adjoint operator of b(x), where b(x) is a c(D)-class  $\mathscr{B}(H)$ -valued function,  $b^*(x)$  is a c(D)-class  $\mathscr{B}(H)$ -valued function if  $c(D, U) = \overline{c(D, U)} = \{\overline{f} | f \in c(D, U) \}$ ,  $\overline{f}(x) = \overline{f(x)}$ , the conjugate complex of f(x).

**Proof.** By the corollary of lemma 3 and lemma 1, we have (i). By the same reason of lemma 2, (i), we have (ii). Since  $(b^*(x)e_{\alpha}, e_{\beta}) = \overline{(b(x)e_{\beta}, e_{\alpha})}$ , we have (iii).

**Corollary** b(x)h(x) is a c(D)-class H-valued function if b(x) is a c(D)-class  $\mathscr{B}(H)$ -valued function and h(x) is a c(D)-class H-valued function. Here h(x) is a c(D)-class H-valued function if  $(h(x), e_{\alpha}) \in c(D, U)$  for any  $e_{\alpha} \in \{e_{\alpha}\}$ .

3. For a system of differential operators S, we denote ker(S)<sub>a</sub> the germ of the elements of ker (S) at a. For r(D), the subsystem consisted by the 1-st order operators is denoted by  $r_1(D)$ . We also set  $r(D)_a = \{\sum_{I} B_I(a)\partial^{|I|}/\partial x^I\}$ ,  $r(D) = \sum_{I} B_I(x)$  $\partial^{|I|}/\partial x^I$  on U, a neighborhood of a, etc.. Similarly, D(a) means  $\sum A_I(a)\partial^{|I|}/\partial x^I$  if  $D = \sum_{I} A^I(x)\partial^{|I|}/\partial x^I$  on U. In this n°, we call  $a \in M$  to be a normal point of r(D)

if ker  $(r_1(D(a)))_a \supset \ker(r_1(D))_a$ .

**Lemma 6.** If the set of normal points of r(D) contains an open dense set of M, we have

(3) ker 
$$r_1(D) = \ker r(D)$$
, on any open set of  $M$ .

**Proof.** Since the problem is local, we consider the problem in a fixed coordinate neighborhood of M.

By the definition of r(D), if  $P(x, \partial/\partial x) \in r(D)$ , we have  $I_i(x, \partial/\partial x) \in r_1(D)$ , where  $P(x, \xi) = \sum_i L_i(x, \xi) \xi^{\alpha_i}, \xi^{\alpha_i} = \xi_1^{\alpha_{i,1}} \dots \xi_n^{\alpha_{i,n}}$ . Hence we have (3) if D is a constant coefficients operator.

Let *a* be a normal point of r(D) such that there exists a neighborhood U(a) of *a* consisted by the normal points of r(D) and set  $D=D(a)+D_1$ . Then, if  $r_1(D)f=0$ , we have  $r_1(D(a))f=0$  on U(a). Hence (Df-fD)(a)=0. Therefore  $f \in c(D, U(a))$  and we have the lemma by assumption.

Note. By the proof of example 3,  $n^{0}1$ , if D is a scalar valued real elliptic operator, any point of M is a normal point of r(D).

For a smooth  $\mathcal{B}(H)$ -valued function f on U, we set

$$\delta_D(f) = Df - fD = (D \otimes 1_{\mathrm{H}})(1_{E_1} \otimes f) - (1_{E_2} \otimes f)(D \otimes 1_{\mathrm{H}}).$$

By definition, we have  $\delta_D(f) = \sum_{PJ \in r(D)} P_J(x, \partial/\partial x) \partial^{|J|} / \partial x^J$ . We also set

$$\delta_{D,1}(f) = \sum_{P \mathbf{J} \in r_1(D)} P_{\mathbf{J}}(x, \frac{\partial}{\partial x}) \frac{\partial |\mathbf{J}|}{\partial x^{\mathbf{J}}},$$

**Lemma 6**'. If D satisfies the assumption of lemma 6,  $\delta_D(f)$  is equal to 0 if and only if  $\delta_{D,1}(f) = 0$ .

**Corollary.** Let G be a subgroup of  $\mathscr{B}(H)$  and g is a smooth G-valued function on U. Then to set

$$\rho_D(g) = \delta_D(g) g^{-1} = D \otimes 1_{\mathrm{H}} - (1_{E_2} \otimes g) (D \otimes 1_{\mathrm{H}}) (1_{E_1} \otimes g^{-1}),$$
  
$$\rho_{D,1}(g) = \delta_{D,1}(g) g^{-1},$$

 $\rho_D(g)=0$  is equivalent to  $\delta_D(g)=0$  and if D satisfies the assumption of lemma 6,  $\rho_{D,1}(g)=0$  implies  $\rho_D(g)=0$ .

Since  $\delta_D$  is a derivation and  $\delta_D(f)=0$  if and only if f is a c(D)-class  $\mathscr{B}(H)$ -valued function, we have

(4)<sub>i</sub> 
$$\rho_D(g)=0$$
, if and only if g is a  $c(D)$ -class G-valued function,

(4)<sub>ii</sub> 
$$\rho_D(gh) = \rho_D(g) + \rho_D(h)^g, \quad \rho_D(h)^g = (1_{E_2} \otimes g) \rho_D(h) (1_{E_1} \otimes g^{-1}),$$

(4)<sub>iii</sub> 
$$\rho_D(g^{-1}) = -\rho_D(g)^{g^{-1}}$$

Since  $\delta_{D,1}$  is also a derivation, (4)<sub>ii</sub> and (4)<sub>iii</sub> are hold for  $\rho_{D,1}$ . (4)<sub>i</sub> is hold for

 $\rho_{D,1}$  if D satisfies the assumption of lemma 6.

**Example.** If D is a 1-st order operator, r(D) is equal to  $r_1(D)$  and therefore  $\rho_D(g) = \rho_{D,1}(g)$ . Moreover, if D is homogeneous, we may regard Dg to be a  $\mathscr{B}(H)$ -valued 1-form and as a 1-form, we have  $\rho_D(g) = (Dg)g^{-1}$ . Especially, we obtain  $\rho_d(g) = dg \cdot g^{-1}$  and  $\rho_{\overline{\partial}}(g) = \overline{\partial}g \cdot g^{-1}$  (cf. Introduction).

On M, we denote  $\mathscr{D}(\mathrm{H})_d$  and  $G_d$  the sheaves of germs of smooth  $\mathscr{D}(\mathrm{H})$  and G-valued functions over M. The sheaves of germs of c(D)-class  $\mathscr{D}(\mathrm{H})$  and G valued functions over M are denoted by  $\mathscr{D}(\mathrm{H})_{c(D)}$  or  $G_{c(D)}$ .  $\rho_D$  and  $\delta_D$  induce the maps  $\rho_D$  and  $\delta_D$  on  $G_d$  and  $\mathscr{D}(\mathrm{H})_d$ . We set

$$\rho_D(\mathbf{G}_d) = \mathbf{L}_{G,D}, \ \delta_D(\mathscr{B}(\mathbf{H})_d) = \mathscr{L}_{\mathscr{B}(\mathbf{H})}, \ D$$

By definitions, we have the following exact sequences of sheaves.

$$0 \longrightarrow \mathbf{G}_{c(D)} \xrightarrow{i} \mathbf{G}_{d} \xrightarrow{\rho_{D}} \mathbf{L}_{G, D} \longrightarrow 0,$$
$$0 \longrightarrow \mathscr{B}(\mathbf{H})_{c(D)} \xrightarrow{i} \mathscr{B}(\mathbf{H})_{d} \xrightarrow{\delta_{D}} \mathscr{L}_{\mathscr{B}(\mathbf{H}), D} \longrightarrow 0.$$

**Example.** For H=C, the complex number field, denote  $C^*$  the multiplicative group of complex numbers without 0, we have the following commutative diagram of sheaves with exact lines and columns.



Here Z is the constant sheaf of integers,  $\iota$  is the inclusion regarding a constant to be a constant function, exp and k are given by

exp 
$$(f_x) = (e^{2\pi \sqrt{-1}f})_x$$
,  $k((Df - fD)_x) = \rho_D(e^{2\pi \sqrt{-1}f})_x$ ,

where  $f_x$ , etc., mean the germ of f, etc., at x (cf. Introduction).

# §2. D-flat G-bundles and D-Fuchs type differential equations

4. Since  $G_{c(D)}$  and  $G_d$  are sheaves of groups, the coboundary maps  $\delta_i = \delta : C^i(\mathfrak{U}, G_d) \longrightarrow C^{i+1}(\mathfrak{U}, G_d)$  or  $C^i(\mathfrak{U}, G_{c(D)}) \longrightarrow C^{i+1}(\mathfrak{U}, G_{c(D)})$ , i=0, 1, are defined. Here  $\mathfrak{U}$  is an open covering of M. For  $C^i(\mathfrak{U}, L_{G,D})$ , i=0, 1, we define  $\delta^{L_i} = \delta^{L_i} : C^i(\mathfrak{U}, L_{G,D}) \longrightarrow C^{i+1}(\mathfrak{U}, L_{G,D})$  by

$$\delta^L \rho_D = \rho_D \delta.$$

Explicitly,  $\delta^{L_1}$  and  $\delta^{L_2}$  are given by

$$\delta^{L_1}(L)_{U, V} = L_U - L_V^{g_{UV}}, \quad L_U = \rho_D(h_U), \quad g_{UV} = h_U h_V^{-1},$$
  
$$\delta^{L_2}(L)_{U, V, W} = L_{U, V} + L_{V, W}^{g_{UV}} + L_{W, U}^{g_{UW}}, \quad L_{U, V} = \rho_D(g_{UV})$$

**Note.**  $\delta^L$  may not be defined on  $C^i(\mathfrak{U}, L_{G, D})$ . But if  $\{L\} \in C^i(\mathfrak{U}, L_{G, D})$ , there exists a refinement  $\mathfrak{B}$  of  $\mathfrak{U}$  such that  $\delta^L$  is defined for  $t_{\mathfrak{M}}^{\mathfrak{U}}(\{L\})$  if  $\mathfrak{M}$  is a refinement of  $\mathfrak{B}$ . Here  $t_{\mathfrak{M}}^{\mathfrak{U}}: C^i(\mathfrak{U}, L_{G, D}) \longrightarrow C^i(\mathfrak{M}, L_{G, D})$  is the map induced by the refinement.

We set  $B^{i}(\mathfrak{U}, L_{G, D}) = \ker \delta^{L_{i}} = \{\{L\} \mid \{L\} \in C^{i}(\mathfrak{U}, L_{G, D}), \delta^{L_{i}}(\{L\}) = 0\}, i = 0, 1, \text{ and} H^{0}(\mathfrak{U}, L_{G, D}) = B^{0}(\mathfrak{U}, L_{G, D}).$  On  $B^{1}(\mathfrak{U}, L_{G, D})$ , we define an equivalence relation  $\sim$  by

$$\begin{split} \{L_{U, V}\} &\sim \{L_{U, V}'\} \ if \ L_{U, V} - L_{U, V}' = \rho_D(h_U) - \rho_D(h_V)^{h_U g_{UV} h_{V} - 1}, \\ L_{U, V} &= \rho_D(g_{UV}), \ for \ some \ \{h_U\} \in C^0(\mathfrak{U}, \ G_d). \end{split}$$

We denote  $H^{1}(\mathfrak{U}, L_{G, D})$  the quotient set of  $B^{1}(\mathfrak{U}, L_{G, D})$  by this relation. Then, to set  $H^{1}(M, L_{G, D}) = \lim [H^{1}(\mathfrak{U}, L_{G, D}), t_{\mathfrak{W}}^{\mathfrak{U}}]$ , we have the following exact sequence of cohomology sets.

(6) 
$$0 \longrightarrow H^{0}(M, G_{c(D)}) \xrightarrow{i^{*}} H^{0}(M, G_{d}) \xrightarrow{\rho_{D}^{*}} H^{0}(M, L_{G,D}) \xrightarrow{\delta} \longrightarrow H^{1}(M, G_{c(D)}) \xrightarrow{i^{*}} H_{1}(M, G_{d}) \xrightarrow{\rho_{D}^{*}} H^{1}(M, L_{G,D})$$

Here  $\delta: H^0(M, L_{G, D}) \longrightarrow H^1(M, G_{c(D)})$  is given by

 $\delta(L) = \{g_{UV}\}, \ g_{UV} = h_V^{-1}h_V, \ L \mid U = \rho_D(h_U).$ 

**Definition.** (i). An element of  $H^1(M, G_{c(D)})$  is called a c(D)-class G-bundle.

(ii). A smooth G-bundle in i\*-image is called a D-flat G-bundle.

(iii). A connection  $\{\theta_U\}$  of D with respect to  $\xi$ , a smooth G-bundle, is called a D-flat connection if there exists  $\{h_U\} \in C^0(U, G_d)$  such that

$$\theta_U = \rho_D(h_U)$$
, for any  $U \in \mathfrak{U}$ .

**Proposition 1.** For any  $\xi \in H^1(M, G_d)$ , the followings are equivalent.

(i).  $\xi$  is a D-flat G-bundle.

(ii). D allows 0 as a connection with respect to  $\xi$ .

(iii). D has a D-flat connection with respect to  $\xi$ .

**Proof.** If  $\xi = \{g_{UV}\} \in H^1(M, G_{c(D)})$ , we have  $D_U \otimes 1_H(g_{UV, 1} \otimes g_{UV}) = g_{UV, 2} \otimes g_{UV}$  $(D_V \otimes 1_H)$ , where  $\{g_{UV, i}\}$  is the transition function of  $E_i$ . Hence (ii) follows from (i). If D allows 0 as a connection with respect to  $\xi$ ,  $\{-\rho_D(h_U)\}$  is a connection of D with respect to  $\{h_U^{-1}g_{UV}h_V\}$  ([3]). Hence (iii) follows from (ii). If (iii) is hold, we have

#### Akira Asada

 $(1_{V_2} \otimes h_U)(D_U \otimes 1_{\rm H})(1_{V_1} \otimes h_U^{-1}g_{UV}) = (1_{V_2} \otimes g_{UV}h_V)(D_V \otimes 1_{\rm H})(1_{V_1} \otimes h_V^{-1}).$ 

Hence  $\{h_U^{-1}g_{UV}h_V\}$  is a c(D)-lcass G-bundle and (i) follows from (iii).

**Corollary.** A G-bundle  $\xi$  is D-flat if and only if D has a D-flat connection with respect to  $\xi$ .

By proposition 1, (ii), if  $\xi$  is a c(D)-class *G*-bundle, *D* is lifted to a differential operator  $C^{\infty}(M, E_1 \otimes \xi) \longrightarrow C^{\infty}(M, E_2 \otimes \xi)$  with connection 0. This lift of *D* is denoted by  $D \otimes 1_{\xi}$ . By definition and proposition 1,  $D \otimes 1_{\xi}$  is defined if and only if  $\xi$  is a c(D)-class *G*-bundle.

**Example.** If r(D) is maximal, D-flat is flat in the usual sence. On the other hand, if  $D = \overline{\partial}$ , a G-bundle  $\xi$  is D-flat if and only if G is a complex Lie group and  $\xi$  is a holomorphic G-bundle.

5. If  $L \in H^0(M, L_{G, D})$ ,  $L: C^{\infty}(M, E_1 \otimes H) \longrightarrow C^{\infty}(M, E_2 \otimes H)$  is a differential operator of order at most k-1. Hence  $D \otimes 1_H - L: C^{\infty}(M, E_1 \otimes H) \longrightarrow C^{\infty}(M, E_2 \otimes H)$  is a differential operator such that

(7) 
$$\sigma(D \otimes 1_{\rm H} - L) = \sigma(D) \otimes 1_{\rm H}.$$

Here  $\sigma(D)$ , etc., means the principal symbol of D, etc., On the other hand, since  $L \in H^0(M, L_{G, D})$ , we obtain

$$(D \otimes 1_{\rm H} - L) | U = D^{h_u} = (1_{V^2} \otimes h_U) (D_U \otimes 1_{\rm H}) (1_{V^1} \otimes h_U^{-1}), \ L | U = \rho_D(h_U).$$

(8) shows the commutativity of the diagram

$$C^{\infty}(M, E_{1} \otimes \delta(L)) \xrightarrow{D \otimes 1_{\delta(L)}} C^{\infty}(M, E_{2} \otimes \delta(L))$$
$$t_{\delta(L)} \uparrow \cong t_{\delta(L)} \uparrow \cong t_{\delta(L)} \uparrow \cong C^{\infty}(M, E_{1} \otimes H) \xrightarrow{D \otimes 1_{H} - L} C^{\infty}(M, E_{2} \otimes H).$$

Here  $t_{\delta(L)}$  is the map given by the smooth trivialization of  $\delta(L)$ . Explicitly,  $t_{\delta(L)}$  is given by

(9) 
$$t_{\delta(L)}(\{f_U \otimes \varphi\}) = f_U \otimes h_U \varphi, \ \delta(L) = \{h_U h_V^{-1}\},$$
$$\varphi \text{ is a smooth H-valued function.}$$

Using  $t_{\delta(L)}$ , (8) is rewritten as

(8)'  $t_{\delta(L)}(D \otimes 1_{\mathrm{H}} - L)t_{\delta(L)}^{-1} = D \otimes 1_{\delta(L)}.$ 

**Definition.** A differential operator of the form  $D \otimes 1_{\rm H} - L$  is called a D-Fuchs type differential operator and  $\delta(L)$  is called its monodromy bundle.

**Lemma 7.**  $\delta(L) = \delta(L')$  if and only if there exists a smooth G-valued function f on M such that

(10) 
$$L' = \rho_D(f) + L^f, \ L^f = (1_{E_2} \otimes f) L(1_{E_1} \otimes f^{-1}).$$

(8)

**Proof.** By the exactness of (6), set  $L = \rho_D(h_U)$  and  $L' = \rho_D(h_U')$ , we have

$$h_U' = fh_U c_U$$
,  $c_U$  is a  $c(D)$ -class G-valued function on  $U$   
 $f \in H^0(M, G_d)$ .

This shows (10).

If r(D) is maximal, there is a bijection  $\chi: H^1(M, G_{c(D)}) \longrightarrow \text{Hom}(\pi_1(M), G)$ . We call  $\chi(\delta(L))$  the monodromy representation of  $D \otimes 1_H - L$  and  $\chi(\delta(L))(\pi_1(M))$  the monodromy group of  $D \otimes 1_H - L$  (cf. Introduction). For D = d/dz,  $H = \mathbb{C}^n$ , the *n*-dimensional complex vector space, and *M* is a Riemann surface, these definitions are same as usual definitions.

**Definition.** The least structure group of  $\delta(L)$  as a c(D)-class undle is called the monodromy group of  $D \otimes 1_{\rm H} - L$ .

In the rest of this §, we construct the monodromy group of  $D \otimes 1_{\rm H} - L$  under the assumption that G is a Lie group.

**Definition.** Denote  $\pi_F: M_F \longrightarrow M$  the projection of a smooth G-bundle with the fibre F over M, if D can be lifted on  $C^{\infty}(M_F, \pi_F^*(E_1))$  with connection 0, we denote  $\pi_F^*(D)$  this lift of D.

Let *F* be a smooth right *G*-manifold with a *G*-invariant measure  $d\mu$  constructed by *G*-invariant vector fields over *F*. Then, denote  $U(L^2(F))$  the group of unitary operators on  $L^2(F) = L^2(F, d\mu)$ , there is a unitary representation  $\kappa: G \longrightarrow U(L^2(F))$ given by the *G*-action on *F*, and the following diagram is commutative.

(11) 
$$U(L^{2}(F))_{c(D)} \longrightarrow U(L^{2}(F))_{d}$$
$$\kappa^{*} \uparrow \qquad \kappa^{*} \uparrow \qquad G_{c(D)} \longrightarrow G_{d}.$$

**Lemma 8.** Let  $\xi$  be a D-flat G-bundle,  $\theta$  a connection of associate F-bundle of  $\xi$ ,  $\kappa(\xi)$  the associate  $L^2(F)$ -bundle of  $\xi$  defined by  $\theta$  (cf. [3]). Then, to denote  $M_F$  the tatal space of the associate F-bundle of  $\xi$ ,  $\pi_F^*(D)$  is defined.

**Proof.** By the commutativity of (11) and proposition 1,  $\kappa(\xi)$  is *D*-flat. Hence *D* can be lifted on  $C^{\infty}(M_F, \pi_F^*(E_1))$  with connection 0 (cf. [3]). Therefore we get the lemma.

**Corollary.** (i). If  $D \otimes 1_H - L$  is a D-Fuchs type operator and  $M_F$  is the associate *F*-bundle of  $\delta(L)$  which satisfies the above assumptions, then  $\pi_F^*(D \otimes 1_H - L)$  is defined.

(ii). Under the same assumptions, if  $M_F$  is the principal bundle,  $\pi_F^*(\xi)$  is trivial as a  $c(\pi_F^*(D))$ -class bundle.

(iii). Under the same assumptions, if  $\pi_F^*(\delta(L))$  is a trivial  $c(\pi_F^*(D))$ -bundle then there is a smooth G-valued function f on  $M_F$  such that

(12) 
$$\pi_F^*(D \otimes 1_H - L) = \pi_F^*(D)^f.$$

# Akira Asada

**Proof.** Since  $\pi_F^*(D)$  is defined,  $\pi_F^*(D_U)$  is equal to  $\pi_F^*(D_V)$  on  $\pi_F^{-1}(U) \cap \pi_F^{-1}(V)$ . Then, since  $(D \otimes 1_H - L) | U = D^{h_U}$ ,  $\pi_F^*(D \otimes 1_H - L)$  is given by

(12)'  $\pi_F^*(D \otimes 1_H - L) | \pi_F^{-1}(U) = (\pi_F^*(D_U))^{\pi_F^*(h_U)}.$ 

This shows (i). The trivialization of  $\pi_F^*(\xi)$  is given by

(13) 
$$\{h_U(x, g) \mid h_U(x, g) = g \in G, x \in U \subset M\}.$$

Hence we have (ii). (iii) follows from (12)'.

6. In this n<sup>0</sup>, we use same notations and assumptions as in lemma 8. Since  $M_F$  is a right *G*-space, we set  $f^g(u) = f(ug)$ ,  $u \in M_F$ ,  $g \in G$ . Here *f* is a function on  $M_F$ . The set of  $c(\pi_F^*(D))$ -class *G*-valued functions on  $M_F$  is denoted by  $G_{c(D), M_F}$  and we set

$$B^{1}(G, G_{c(D), M_{F}}) = \{\chi : G \longrightarrow G_{c(D), M_{F}} | \chi_{gh} = \chi_{h} \chi_{g}^{h}, \chi_{g}^{h}(u)$$
$$= \chi_{g}(uh), \chi_{g} = \chi(g) \}.$$

We call  $\chi$  and  $\chi' \in B^1(G, G_{c(D), M_F})$  to be equivalent if  $\chi_{g'} = h^{-1}\chi_g h^g$  for some  $h \in G_{c(D), MF}$  and denote  $H^1(G, G_{c(D), M_F})$  the quotient set of  $B^1(G, G_{c(D), M_F})$  by this relation.

Since a constant function is a  $c(\pi_F^*(D))$ -class function invariant under the action of G, there is a map  $\iota_F : \operatorname{Hom}(G, G) \longrightarrow H^1(G, G_{c(D), M_F})$ . Here  $\operatorname{Hom}(G, G)$  means the set of Lie homomorphisms of G. We set

ker 
$$\iota_F = \{\kappa \mid \iota_F(\kappa) = \iota_F(1), 1_g = g \text{ for all } g \in G\}.$$

**Definition.**  $\overline{\chi} \in H^1(G, G_{c(D), M_F})$  is called to have (smooth) representative function if there exists a smooth G-valued function f on  $M_F$  such that  $f^g = f\chi_g, \ \chi \in \overline{\chi}, \ g \in G$ . This f is called a representative function subordinate to  $\overline{\chi}$ .

If  $\chi \sim \chi'$ , and  $\chi$  has a representative function f, set  $\chi_g' = h^{-1}\chi_g h^g$ , f' = fh is a representative function subordinate to  $\chi'$ . Hence this definition does not depend on the choice of a representative of  $\overline{\chi}$ .

We set

$$\begin{split} \delta(H^{0}(M, \ \mathbf{L}_{G, \ D}))_{M_{F}} &= \{\delta(L) \mid \pi_{F}^{*}(\delta(L)) \text{ is trivial,} \} \\ H^{1}(G, G_{c(D), \ M_{F}})_{f} &= \{\overline{\chi} \in H^{1}(G, \ G_{c(D), \ M_{F}}) \mid \overline{\chi} \text{ has a smooth} \\ & representative function} \}. \end{split}$$

**Lemma 9.** (i). There is a bijection  $\chi : \delta(H^0(M, L_G, D))_{M_F} \longrightarrow H^1(G, G_{c(D), M_F})_f$ and if  $M_F$  is the associate F-bundle of  $\delta(L)$ , we obtain

(14) 
$$\chi(\delta(L)) \in \ker \iota_F.$$

(ii).  $\iota_F(\kappa)$  belongs in ker  $\iota_F$  if and only if there exists  $f \in G_{c(D), M_F}$  such that

(15)  $f^g = \kappa_g^{-1} f g.$ 

**Proof.** If  $\pi_F^*(D)^f$  comes from an operator on M, set  $f^g = f\chi_g$ ,  $\chi = \{\chi_g\}$  defines an element of  $H^1(G, G_{c(D), M_F})$ . If  $\pi_F^*(D)^f = \pi_F^*(D)^{f'}$ , set  $f^g = f\chi_g$ ,  $f'^g = f'\chi_{g'}$ ,  $\chi$  and  $\chi'$  define same element of  $H^1(G, G_{c(D), M_F})$ . Hence  $\chi$  is 1 to 1 by lemma 7. If  $\overline{\chi} \in H^1(G, G_{c(D), M_F})_{f'}$ , there exists f such that  $f^g = f\chi_g$ ,  $\chi \in \overline{\chi}$ . Then  $\pi_F^*(D)^f$  comes from a D-Fuchs type operator on M and  $\chi$  is onto. If  $M_F$  is the associate F-bundle of  $\delta(L)$ , the trivialization of  $\pi_F^*(\delta(L)$  given by (13) gives  $\iota_F(1)$ . This shows (14). (ii) follows from the definition of the equivalence in the definition of  $H^1(G, G_{c(D), M_F})$ .

**Lemma 10.** (i). If  $\kappa \in \ker \iota_F$ , there exists a smooth G-valued function f on  $M_F$  such that

(16) 
$$\pi_F^*(D \otimes 1_H - L) = \pi_F^*(D)^f, \ f^g = f_\kappa(g),$$

and the structure group of  $\delta(L)$  is reduced to  $\kappa(G)$  as a c(D)-class bundle.

(ii). If the structure group of  $\delta(L)$  is reduced to  $G_0$  as a c(D)-class G-bundle, there exists  $\kappa \in \ker \iota_F$  such that  $\kappa(G) = G_0$ .

**Proof.** Since  $\kappa$  has a representative function f, we have (16) by (15). (15) also shows the second assertion of (i). Since a c(D)-class reduction of the structure group of  $\delta(L)$  gives a representative function on  $M_F$ , we obtain (ii) by lemma 9, (ii).

**Definition.** We call  $\kappa_1 \kappa_2$  in Hom (G, G) (resp. in ker  $\iota_F$ ), if  $\kappa_2 = \kappa \kappa_1$  for some  $\kappa \in \text{Hom } (G, G)$  (resp.  $\kappa \in \text{ker } \iota_F$ ) and  $\kappa_1 \sim \kappa_2$  if  $\kappa_1 \kappa_2$  and  $\kappa_2 \kappa_1$ .

**Lemma 11.** (i). If  $\kappa_1$  and  $\kappa_2$  belong in ker  $\iota_F$ , there composition  $\kappa_1\kappa_2$  also belongs in ker  $\iota_F$ .

(ii). If  $\kappa_1\kappa_2$  and  $\kappa_2$  belong in ker  $\epsilon_F, \kappa_1$  belongs in ker  $\epsilon_F$ .

**Proof.** If  $f_1^{g} = \kappa_{1,g}^{-1} f_1 g$  and  $f_2^{g} = \kappa_{2,g}^{-1} f_2 g$ , we have

$$(\kappa_2(f_1)f_2)^g = \kappa_2(\kappa_1(g))^{-1}\kappa_2(f_1)f_2g.$$

This shows (i). Similarly, if  $f^g = \kappa_1(\kappa_2(g))^{-1}fg$  and  $f_2^g = \kappa_{2,g}^{-1}f_2g$ , we have  $(K_1(f_2)^{-1}f)^g = \kappa_{1,g}^{-1} \kappa_1(f_2)^{-1}fg$ , which shows (ii).

**Corollary.** (i). If  $\kappa_1$  and  $\kappa_2$  are in ker  $\iota_F$  and  $\kappa_1\kappa_2$  in Hom (G, G),  $\kappa_1 > \kappa_2$  in ker $\iota_F$ .

(ii). If  $\kappa_1 \sim \kappa_2$ ,  $\kappa_1(G)$  is isomorphic to  $\kappa_2(G)$ .

**Proof.** (i) follows from lemma 11, (ii). If  $\kappa_1 \sim \kappa_2$ , we have  $\kappa_1 = \kappa \kappa_2$  and  $\kappa_2 = \kappa' \kappa_1$ . Hence dim  $\kappa_1$  (G)=dim  $\kappa_2$  (G) and there are discrete subgroups  $N_1$  of  $\kappa_1$  (G) and  $N_2$  of  $\kappa_2$  (G) such that

$$\kappa_1(G)/N_1\cong\kappa_2(G), \ \kappa_2(G)/N_2\cong\kappa_1(G),$$

because  $\kappa_1(G)$  and  $\kappa_2(G)$  are Lie groups. Hence there are isomorphisms  $\hat{\kappa} : \widetilde{\kappa_1(G)} \longrightarrow \widetilde{\kappa_2(G)}$ , where  $\widetilde{\kappa_1(G)}$  and  $\widetilde{\kappa_2(G)}$  are the universal covering groups of  $\kappa_1(G)$  and  $\kappa_2(G)$ ,

and  $\hat{\kappa}': \widetilde{\kappa_1(G)} \longrightarrow \widetilde{\kappa_1(G)}$  such that  $\hat{\kappa}$  maps  $\pi_1$  ( $\kappa_1(G)$ ) isomorphic into  $\pi_1$  ( $\kappa_2(G)$ ) and  $\hat{\kappa}'$  maps  $\pi_1$  ( $\kappa_2(G)$ ) isomorphic into  $\pi_1$  ( $\kappa_1(G)$ ). Since  $\kappa_1$  (G) and  $\kappa_2$  (G) are Lie groups, this shows  $\hat{\kappa}: \pi_1$  ( $\kappa_1(G)$ ) $\cong \pi_1$  ( $\kappa_2(G)$ ) and we have (ii).

**Lemma 12.** ker  $\iota_F$  has the least element in the above semiorder.

**Proof.** Let  $\{\kappa_{\alpha}\}$  be an increasing system in ker  $\iota_{F}$  and set  $\kappa_{\alpha}(G) = G_{\alpha}$ . Then there are Lie epimorphisms  $\kappa_{\alpha}^{\beta}$ ,  $\beta < \alpha$  and Lie monomorphisms  $\iota_{\alpha}$  such that

$$\kappa^{\beta}_{\alpha}\kappa_{\alpha} = \kappa^{\beta}_{\beta}, \ \kappa^{\beta}_{\alpha} : G_{\alpha} \longrightarrow G_{\beta}, \ \iota_{\alpha} : G_{\alpha} \longrightarrow G, \ \kappa^{\beta}_{\alpha}\iota_{\alpha} = \iota_{\beta}.$$

Hence  $\lim [G_{\alpha}: \kappa_{\alpha}^{\beta}] = G_0$ ,  $\kappa_0: G \longrightarrow G_0$  and  $\iota_0: G_0 \longrightarrow G$  are defined. Since  $\kappa_{\alpha}^{\beta}$  and  $\iota_{\alpha}$  are Lie maps,  $\kappa_0$  is a Lie epimorphism and  $\iota_0$  is a Lie monomorphism.

By lemma 9, (ii), there exists  $f_{\alpha} \in G_{c(D), M_F}$  such that  $(f_{\alpha})^g = (\kappa_{\alpha})_g^{-1} f_{\alpha g}$  for any  $\alpha$ . Then, since  $(\kappa_{\alpha}^{\beta} f_{\alpha})^g = (\kappa_{\beta})_g^{-1} f_{\beta} g$ , set

$$f_0 = \iota_0 \{ (\kappa \beta^{\alpha} f_{\alpha}) \},$$

 $f_0 \in G_{c(D)}, M_F$ . Because each  $\kappa_{\alpha}^{\beta}$  is a smooth map and  $f_0^{g} = (\kappa_0)_g^{-1} f_{og}$ . Hence by Zorn's lemma, there exist minimum elements in ker  $\iota_F$ . But if  $\kappa_1$  and  $\kappa_2$  are different minimum elements in ker  $\iota_F$ ,  $\kappa_1 \kappa_2$  and  $\kappa_2 \kappa_1$  are in ker  $\iota_F$  by lemma 11, (i). Hence  $\kappa_1 > \kappa_2$  and  $\kappa_2 > \kappa_1$ . Therefore  $\kappa_1 \sim \kappa_2$  and ker  $\iota_F$  has the least element.

**Definition.** The least element of ker  $\iota_F$  is called the monodromy homomorphism (or representation) of  $D \otimes 1_H - L$ .

By lemma 10, (ii), lemma 12 and the definition of the monodromy groups of D-Fuchs type operators, we obtain

**Theorem 1.** If G is a Lie group, a D-Fuchs type operator has the monodromy group.

**Proof.** Since  $D \otimes 1_H - L$  has the monodromy homomorphism and the image of *G* by the monodromy homomorphism is the least structure group of  $\delta(L)$  as a c(D)-class bundle, we have the theorem.

# §3. Characteristic classes related to c(D)-class bundles

7. In this § and next §, we assume  $H = C^n$  and G = GL(n, C).

By the commutative diagram in n°3, example, we have the following commutative diagram with exact lines

**Lemma 13** (i).  $\xi \in H^1(M, \mathbb{C}_d^*)$  is in  $i^*$ -image if and only if  $\delta_2 k^{*-1} \rho_D^*(\xi) = 0$ . (ii). Let  $ch: H^1(M, \mathbb{C}^*_d) \xrightarrow{\cong} H^2(M, \mathbb{Z})$  be the isomorphism given by  $ch(\xi) = c^1(\xi)$ , the first Chern class of  $\xi$ , and  $\iota: \mathbb{Z} \longrightarrow \mathbb{C}_{c(D)}$  the inclusion, then

(17) 
$$\delta_2 k^{*-1} \rho_D^*(\xi) = \iota^* c h(\xi), \ \xi \in H^1(M, \ \mathbb{C}^*_d).$$

**Proof.** (i) follows from the definition. By the definition of k, we have

$$\delta_2 k^{*-1} \rho_D^*(\xi) = \frac{1}{2\pi \sqrt{-1}} (\log g_{UV} + \log g_{VW} + \log g_{WU}), \ \xi = \{g_{UV}\}.$$

Since this right hand side represents  $ch(\xi)$ , we get (17).

**Definition.** Let  $\xi$  be a  $GL(n, \mathbb{C})$ -bundle over M, denote  $ch(\xi)$  its tatal Chern class, then we call  $\iota^*(ch(\xi))$  the (tatal) c(D)-characteristic class of  $\xi$ . The component of  $\iota^*(ch(\xi))$  in  $H^{2p}(M, \mathbb{C}_{c(D)})$  is called p-th c(D)-characteristic class of  $\xi$ .

**Example.** If r(D) is maximal, c(D)-characteristic class is the (tatal) complex Chern class. If M is a compact Kaehler manifold and  $D = \overline{\partial}$ , p-th c(D)-characteristic class is the (0, 2p)-component of p-th complex Chern class.

In the rest, we denote the flag manifold  $GL(m, \mathbb{C})/\mathcal{A}(m, \mathbb{C}) = \mathbb{U}(m)/T^m$  by F = F(m). The associate Flag bundle of a (c(D)-class)  $GL(m, \mathbb{C})$ -bundle  $\xi$  is denoted by  $M_F = \{M_F, F, M, \pi_F\}$ .

**Lemma 14.** Under the above notations, if  $\xi$  is a c(D)-class bundle,  $\pi_F^*: H^*(M, C_{c(D)}) \longrightarrow H^*(M_F, C_{c(\pi_F^*(D))})$  is a monomorphism.

**Proof.** If  $\pi_F^{-1}(U) = U \times F$ ,  $(\mathbf{C}_{c(D)}|U) \otimes \mathbf{C}_d(F)$  is dense in  $C_{c(\pi_F^*(D)}|\pi_F^{-1}(U)$ , that is  $H^0(U, C_{c(D)}) \otimes H^0(F, C_d)$  is dense by the  $\mathscr{C}^{\infty}$ -topology in  $H^0(\pi_F^{-1}(U), C_{c(\pi_F^*(D))})$ . Since  $C_d(F)$  is a fine sheaf,  $H^*(M_F, C_{c(\pi_F^*(D))})$  is calculated by a covering of the form  $\{\pi_F^{-1}(U)\}$  by Leray's theorem. Then, taking the invariant measure  $d\mu$  on F such that  $\int_{F} d\mu = 1$ , we set

$$\int_{F} \{g_{i_0,\ldots,i_p}\} = \{\int_{F} g_{i_0,\ldots,i_p} d\mu\},\$$

$$g_{i_0,\ldots,i_p} \text{ is defined on } \pi_F^{-1}(U_{i_0}) \cap \ldots \cap \pi_F^{-1}(U_{i_p}) = \pi_F^{-1}(U_{i_0} \cap \ldots \cap U_{i_p}).$$

By definition,  $\int_{F}$  defines a homomorphism from  $H^{*}(M_{F}, C_{c(\pi_{F}^{*}(D))})$  into  $H^{*}(M, C_{c(D)})$ and  $\int_{F} \pi_{F}^{*}$  is the identity. Hence we get the lemma.

**Corollary.** Under the same assumptions, c(D)-characteristic class of  $\xi$  vanishes if and only if  $c(\pi_F^*(D))$ -characteristic class of  $\pi_F^*(\xi)$  vanishes.

**Proof.** Since  $\pi_F^*$  in both sides in the following commutative diagram are monomorphisms, we have the lemma.

$$\begin{array}{ccc} H^{*}(M_{F}, \mathbb{Z}) & \stackrel{\iota^{*}}{\longrightarrow} H^{*}(M_{F}, \mathbb{C}_{c(\pi_{F} * (D))}) \\ \pi_{F}^{*} & \uparrow & \pi_{F}^{*} & \uparrow \\ H^{*}(M, \mathbb{Z}) & \stackrel{\iota^{*}}{\longrightarrow} H^{*}(M, \mathbb{C}_{c(D)}). \end{array}$$

**Proposition 2.** If  $\xi$  is a c(D)-class GL(m, C)-bundle, its c(D)-characteristic class vanishes.

**Proof.** By lemma 13, the proposition is true if m=1. Set m=q+1 and assume the proposition is true for c(D)-class GL(r, C)-bundle if  $r \leq q$ .

On  $M_F$ ,  $\pi_F^*(\xi)$  is an extension bundle of a  $c(\pi_F^*(D))$ -class GL(q, C)-bundle  $\eta_q$ and a  $c(\pi_F^*(D))$ -class complex line bundle  $\eta_1$ . Since  $C_{c(\pi_F^*(D))}$  is a sheaf of rings by lemma 2, (i),  $\iota^*(ch(\eta_1)) \cup \iota^*(ch(\eta q))$  is defined and we have

$$\iota^{*}(ch(\pi_{F}^{*}(\xi))) = \iota^{*}(ch(\eta_{1})) \cup \iota^{*}(ch(\eta_{q})) = 0,$$

by inductive assumption. Hence we obtain the proposition by corollary of Lemma 14.

Note. For flat bundles and holomorphic bundles, this proposition is known. In fact, a vector bundle is flat if and only if its curvature form is equal to 0 and therefore its complex Chern class is equal to 0. On the other hand, a vector bundle is equivalent to a holomorphic bundle if and only if (0, 2)-type part of its curvature form is equal to 0. Hence (0, 2p)-type part of the Chern class of a holomorphic vector bundle is equal to 0.

8. For 
$$\{g_{i_0,...,i_p}\} \in C^p(\mathfrak{U}, \mathbb{C}^*_{c(D)})$$
 and  $\{h_{i_0,...,i_q}\} \in C^q(\mathfrak{U}, \mathbb{C}^*_{c(D)})$ , we set  
 $(g*h)_{i_0,...,i_{p+q+1}} = \exp\left[\frac{1}{2\pi\sqrt{-1}}\log g_{i_0,...,i_p}(\delta\log h)_{i_p,...,i_{p+q+1}}\right],$   
 $(\delta\log h)_{i_0,...,i_{q+1}} = \sum_{j=0}^{q+1} (-1)^j \log h_{i_0,...,i_{j-1},i_{j+1},...,i_{q+1}}.$ 

Here we assume  $\mathfrak{l}$  is sufficiently fine and log  $g_{i_0,\ldots,i_p}$  or log  $h_{i_0,\ldots,i_q}$  are determined as 1-valued functions. The choice of the branch of logarithm is arbitraly, and therefore this definition of (g\*h) depend on the choice of the branch of logarithm.

**Lemma 15.** (i). If  $\{g_{i_0,\ldots,i_p}\}$  and  $\{h_{i_0,\ldots,i_q}\}$  are both cocycles,  $\{(g*h)_{i_0,\ldots,i_{p+q+1}}\}$  is a cocycle and its cohomology class in  $H^{p+q+1}(M, \mathbb{C}^*_{c(D)})$  does not depend on the choice of the branch of logarithm.

(ii). If either of  $\{g_{i_0,\ldots,i_p}\}$  or  $\{h_{i_0,\ldots,i_q}\}$  is a coboundary and the other is a cocycle,  $\{(g*h)_{i_0,\ldots,i_{p+q+1}}\}$  is a coboundary.

Proof. Since we have

$$\log g_{i_1,...,i_{p+1}} (\delta \log h)_{i_{p+1},...,i_{p+q+2}} - \\ -\log g_{i_0,i_2,...,i_{p+1}} (\delta \log h)_{i_{p+1},...,i_{p+q+2}} + \cdots +$$

$$+(-1)^{p} \log g_{i_{0},...,i_{p-1},i_{p+1}} (\delta \log h)_{i_{p+1},...,i_{p+q+2}} + \\+(-1)^{p+1} \log g_{i_{0},...,i_{p}} (\delta \log h)_{i_{p},i_{p+2},...,i_{p+q+2}} + \cdots + \\+(-1)^{p+q+2} \log g_{i_{0},...,i_{p}} (\delta \log h)_{i_{p},...,i_{p+q+1}} \\= (\delta \log g)_{i_{0},...,i_{p+q+1}} (\delta \log h)_{i_{p+1},...,i_{p+q+2}} + \\+(-1)^{p} \log g_{i_{0},...,i_{p}} \{\delta (\delta \log h)\}_{i_{p},...,i_{p+q+2}},$$

 $\{(g_*h)_{i_0,\ldots,i_{p+q+1}}\}$  is a cocycle if  $\{g_{i_0,\ldots,i_p}\}$  and  $\{h_{i_0,\ldots,i_q}\}$  are both cocycles. If we take other branches of logarithm in the definition of  $(g_*h)$ , denote log' other branches of log, we get

$$(g_*h)_{i_0,\ldots,i_{p+q+1}} \{ (g_*h)'_{i_0,\ldots,i_{p+q+1}} \}^{-1}$$

$$= \exp\left[\frac{1}{2\pi\sqrt{-1}} \{ (\log g_{i_0,\ldots,i_p} - \log' g_{i_0,\ldots,i_p}) \ (\delta \log h)_{i_p,\ldots,i_{p+q+1}} + \log' g_{i_0,\ldots,i_p} \ (\delta \log h)_{i_p,\ldots,i_{p+q+1}} - \langle \delta \log' h \rangle_{i_p,\ldots,i_{p+q+1}} \} \right].$$

Since  $(1/2\pi\sqrt{-1})$   $(\delta \log h)_{ip,\ldots,ip+q+1}$  is an integer if  $\{h_{io,\ldots,ip}\}$  is a cocycle, we get by this formula

$$(g_{*}h)_{i_{0},...,i_{p}+q+1} \{(g_{*}h)'_{i_{0},...,i_{p}+q+1}\}^{-1}$$
  
= $g_{i_{0},...,i_{p}}^{(n_{i_{p+1}},...,i_{p+q+1}-n_{i_{p}},i_{p+2},...,i_{p+q+1}+\cdots+(-1)^{q+1}n_{i_{p}},...,i_{p+q}),$ 

where each  $n_{i_0,\ldots,i_q}$  is an integer. Then, to define  $f_{i_0,\ldots,i_{p+q}}$  by

$$f_{i_0,\ldots,i_{p+q}}=g_{i_0,\ldots,i_p}n_{i_p,\ldots,i_{p+q}},$$

we get

$$\begin{split} &(\delta f)_{i_0,\ldots,i_p+q+1} \\ &= (g_{i_1,\ldots,i_p} g_{i_0,i_2,\ldots,i_{p+1}}^{-1} \cdots g_{i_0,\ldots,i_{p-1},i_{p+1}}^{-(-1)^p})^{n_{i_{p+1},\ldots,i_{p+q+1}}} \\ &\cdot g_{i_0,\ldots,i_p}^{((-1)^{p+1}n_{i_{p+2},\ldots,i_{p+q+1}}^{++\cdots+(-1)^{p+q+1}}n_{i_{p},\ldots,i_{p+q}}^{-(-1)^p}) \\ &= g_{i_0,\ldots,i_p}^{(-1)^p} n_{i_{p+1},\ldots,i_{p+q+1}}^{-1} g_{i_0,\ldots,i_p}^{((-1)^{p+1}n_{i_{p},i_{p+2},\ldots,i_{q+q+1}}^{++\cdots+(-1)^{p+q+1}}n_{i_{p},\ldots,i_{p+q}}^{-(-1)^p}, \end{split}$$

if  $\{g_{i_0,\ldots,i_p}\}$  is a coboundary. Hence we obtain the second assertion of (i).

If 
$$\{h_{i_0,\ldots,i_q}\}$$
 is a coboundary, we also get  
 $(g_*h)_{i_0,\ldots,i_{p+q+1}} = g_{i_0,\ldots,i_p} (n_{i_{p+1},\ldots,i_{p+q+1}} - n_{i_p,i_{p+2},\ldots,i_{p+q+1}} + \cdots + (-1)^{q+1} n_{i_p,\ldots,i_{p+q}}),$ 

because  $\{(1/2\pi\sqrt{-1}) \ (\delta h)_{i_0,\ldots,i_{q+1}}\}$  is an integral coboundary in this case. Hence

 $\{(g_*h)_{i_0,\ldots,i_p+q+1}\}$  is a coboundary if  $\{g_{i_0,\ldots,i_p}\}$  is a cocycle. But since

$$\begin{split} \delta(\log \ g_{i_0,...,i_p} \log h_{i_p,...,i_{p+q}})_{i_0,...,i_{p+q+1}} \\ = (\delta \log g)_{i_0,...,i_{p+1}} \log h_{i_{p+1},...,i_{p+q+1}} + \\ + (-1)^p \log g_{i_0,...,i_p} (\delta \log h)_{i_p,...,i_{p+q+1}}, \end{split}$$

we may define  $g_*h$  by

$$(g_*h)_{i_0,\ldots,i_{p+q+1}} = (-1)^{p+1} \left[\frac{1}{2\pi\sqrt{-1}} (\delta \log g)_{i_0,\ldots,i_{p+1}} \log h_{i_p,\ldots,i_{p+q+1}}\right].$$

Hence  $\{(g_*h)_{i_0,\ldots,i_{p+q+1}}\}$  is a coboundary if  $\{g_{i_0,\ldots,i_p}\}$  is a coboundary and  $\{h_{i_0,\ldots,i_q}\}$  is a cocycle. Therefore we obtain (ii).

**Definition.** If  $c_p \in H^p(M, \mathbb{C}^*_{c(D)})$  and  $c_q \in H^q(M, \mathbb{C}^*_{c(D)})$  are the cohomology classes of cocycles  $\{g_{i_0,\ldots,i_p}\}$  and  $\{h_{i_0,\ldots,i_q}\}$ , we denote  $c_{p*}c_q$  the cohomology class of  $\{(g_*h)_{i_0,\ldots,i_{p+q+1}}\}$  in  $H^{b+q+1}(M, \mathbb{C}^*_{c(D)})$  and call the \*-product of  $c_p$  and  $c_q$ .

**Lemma 16.** (i).  $\sum_{b} H^{p}(M, C^{*}_{c(D)})$  is a ring by the \*-product. That is, we have

 $c_{1*}(c_{2*}c_3) = (c_{1*}c_2)_{*3}, \ c_{1*}c_2 = (-1)^{p+1}c_{2*}c_1, \ c_1 \in H^p(M, \ C^*_{c(D)}),$ 

 $c_{1*}(c_2c_3) = (c_{1*}c_2) (c_{1*}c_3), cc'$  is the usual product in  $\sum_p H^p(M, C^*_{c(D)}).$ 

(ii). Let  $\delta: \sum_{b} H^{b-1}$   $(M, \mathbb{C}^*_{c(D)}) \longrightarrow \sum_{b} H^{b}(M, \mathbb{Z})$  be the coboundary homomorphism, we have

(18)

$$\delta(c_1 \ast c_2) = (\delta c_1) \cup \delta(c_2).$$

Proof. Since we have

$$\begin{split} \delta(\log g_{i_0,...,i_p}(\delta \log h)_{i_p,...,i_{p+q+1}}) \\ &= \delta \log g_{i_0,...,i_{p+1}}(\delta \log h)_{i_{p+1},...,i_{p+q+2}}, \\ &\log g_{i_0,...,i_p}(\delta \log h)_{i_{p+1},...,i_{p+q+1}} - \\ &- (-1)^{b+1}(\delta \log g_{i_0,...,i_{p+1}}) \log h_{i_{p+1},...,i_{p+q+1}} \\ &= (-1)^{b+1}(\delta (\log g_{i_0,...,i_p} \log h_{i_{p},...,i_{p+q}})_{i_0,...,i_{p+p+1}}), \\ &\delta \log f_{i_0,...,i_{p+1}}(\log g_{h_{p+1},...,i_{p+q+1}} + \log h_{i_{p+1},...,i_{p+q+1}}), \end{split}$$

we obtain (i) by lemma 15.

By the definition of \*-product, we get

$$\frac{1}{2\pi\sqrt{-1}} (\delta \log (g_*h))_{i_0, \dots, i_{p+q+1}}$$
$$= \frac{1}{2\pi\sqrt{-1}} (\delta \log g)_{i_0, \dots, i_{p+1}} \frac{1}{2\pi\sqrt{-1}} (\delta \log h)_{i_{p+1}, \dots, i_{p+q+2}}$$

Since this right hand side represents  $\delta(c_1) \cup \delta(c_2)$ , we obtain (ii).

**Corollary.**  $\delta: \sum_{p} H^{p-1}(M, \mathbb{C}^*_{c(D)}) \longrightarrow \sum_{p} H^p(M, \mathbb{Z})$  is a ring homomorphism, where the products are \*-product and cup-product. Especially,  $\sum_{p} H^{2p-1}(M, \mathbb{C}^*_{c(D)})$  is a commutative ring.

Note. We know  $\delta : \sum_{p} H^{p-1}(M, \mathbb{C}^*_d) \cong \sum_{p} H^p(M, \mathbb{Z})$ . In this case, we have  $c_1 * c_2 = \delta^{-1}(\delta(c_1) \cup \delta(c_2))$  by (18).

9. As in  $n^{\circ}7$ , we fix a c(D)-class  $GL(q, \mathbb{C})$ -bundle  $\xi$  and its associate F(q)-bundle  $M_F = \{M_F, F(q), M, \pi_F\}$ . Then we have the following commutative diagram with exact lines.

$$\begin{array}{c} H^{2p-1}(M_{F}, \mathbb{Z}) \xrightarrow{\iota^{*}} H^{2p-1}(M_{F}, \mathbb{C}_{c(\pi F^{*}(D))}) \xrightarrow{\exp^{*}} H^{2p-1}(M_{F}, \mathbb{C}^{*}_{c(\pi F^{*}(D))}) \longrightarrow \\ \pi_{F}^{*} \uparrow & \pi_{F}^{*} \uparrow & \pi_{F}^{*} \uparrow \\ H^{2p-1}(M, \mathbb{Z}) \xrightarrow{\iota^{*}} H^{2p-1}(M, \mathbb{C}_{c(D)}) \xrightarrow{\exp^{*}} H^{2p-1}(M, \mathbb{C}^{*}_{c(D)}) \longrightarrow \\ \xrightarrow{\delta} H^{2p}(M_{F}, \mathbb{Z}) \\ \xrightarrow{\delta} H^{2p}(M, \mathbb{Z}). \end{array}$$

In this diagram, each  $\pi_F^*$  is a monomorphism except  $\pi_F^*: H^{2p-1}(M, \mathbb{C}^*_{c(D)}) \longrightarrow H^{2p-1}(M_F, \mathbb{C}^*_{c}(\pi_{F^*(D)}))$ . Hence  $\pi_F^*: H^{2p-1}(M, \mathbb{C}^*_{c(D)}) \longrightarrow H^{2p-1}(M_F, \mathbb{C}^*_{c}(\pi_{F^*(D)}))$  is also a monomorphism. On the other hand, if  $c \in H^{2p-1}(M_F, \mathbb{C}^*_{c}(\pi_{F^*(D)}))$  is in  $\delta$ -kernel, set  $c = \exp^*(b), \ b \in H^{2p-1}(M_F, \mathbb{C}_{c}(\pi_{F^*(D)})), \ \int_F b$  is defined. Since  $\int_F \iota^*(a), \ a \in H^{2p-1}(M_F, \mathbb{C})$ , is in  $\iota^*$ -image by the definition of  $\int_{F_r} \exp^*(\int_F b) \in H^{2p-1}(M, \mathbb{C}^*_{c(D)})$  is determined by c. Hence we may define  $\int_F c$  by

$$\int_F c = \exp^* \left\langle \int_F b \right\rangle, \ c = \exp^*(b).$$

On  $M_F$ ,  $\pi_F^*(\xi)$  is an *m*-fold extension of  $c(\pi_F^*(D))$ -class C\*-bundles  $\eta_1, \ldots, \eta_q$ as a  $c(\pi_F^*(D))$ -class bundle. Then, regard each  $\eta_i$  to be an element of  $H^1(M_F, \mathbb{C}^*_{c(\pi_F^*(D))})$ , we have

(19)' 
$$\pi_F^*(c^p(\xi)) = \sum \delta(\eta_{i_1}) \cup \ldots \cup \delta(\eta_{i_p}), \ p \leq q.$$

Here  $c^{p}(\xi)$  is the *p*-th integral Chern class of  $\xi$  and  $\sum X_{i_1} \ldots X_{i_p}$  is the *p*-th ele-

mentary symmetric function of indeterminants  $X_1, \ldots, X_q$ .

By lemma 16,  $\prod \eta_{i_1} \dots \eta_{i_p} \in H^{2p-1}(M_F, \mathbb{C}^*_{c(\pi_F^*(D))})$  is defined and we have

(20) 
$$\delta(\prod \eta_{i_1} * \ldots * \eta_{i_p}) = \pi_F * (c^p(\xi)).$$

Since  $c^p(\xi)$  is in  $\delta$ -image by proposition 2, there is an element  $b^p \in H^{2p-1}(M, \mathbb{C}^*_{c(D)})$  such that

$$\delta(\pi_F^*(b^p)) = \delta(\prod \eta_{i_1}*\ldots*\eta_{i_p}).$$

Hence  $\int_F (\prod \eta_{i_1*} \dots *\eta_{i_p}) - \pi_F *(b^p)$  is defined. If  $\delta(\pi_F *(b')) = \delta(\prod \eta_{i_1*} \dots *\eta_{i_p})$ , we get

$$\int_{F} \left\{ (\prod \eta_{i1^{*}} \dots *\eta_{ip}) - \pi_{F} * (b) \right\} - \int_{F} \left\{ (\prod \eta_{i1^{*}} \dots *\eta_{ip}) - \pi_{F} * (b') \right\}$$
$$= \int_{F} \pi_{F} * (b'-b) = b'-b.$$

Because  $\pi_F^*$  is a monomorphism. Hence  $b^p + \int_F \{\prod (\eta_{i_1} \dots \eta_{i_p}) - \pi_F^*(b^p)\} \in H^{2p-1}(M, \mathbb{C}^*_{c(D)})$  does not depend on the choice of  $b^p$ .

**Definition.** For a c(D)-class  $GL(q, \mathbb{C})$ -bundle  $\xi$ , we define  $b^{p}(\xi) \in H^{2p-1}(M, \mathbb{C}^{*}_{c(D)})$  by

(21) 
$$b^{p}(\xi) = b^{p} + \int_{F} \left\{ (\prod \eta_{i_{1}} * \dots * \eta_{i_{p}}) - \pi_{F} * (b^{p}) \right\}, \quad \delta(\pi_{F} * (b^{p})) = \delta(\prod \eta_{i_{1}} * \dots * \eta_{i_{p}}).$$

We also set  $b(\xi) = \sum_{p \ge 1} b^p(\xi)$ .

By the definition of  $b^{p}(\xi)$  and (20), we obtain **Theorem 2.** (i).  $b^{p}(\xi)=0$  if p>q and we have

(19) 
$$\delta(b^p(\xi)) = c^p(\xi)$$
, the *p*-th integral Chern class of  $\xi$ .

(ii). If  $M_Y = \{M_Y, Y, M, \pi_Y\}$  is a c(D)-class bundle over M with the smooth fibre Y, and  $\xi$  is a c(D)-class GL(q, C)-bundle over M, then

$$\pi_Y^*(b^p(\xi)) = b^p(\pi_Y^*(\xi)).$$

(iii). If  $\xi$  is a c(D)-class extension of c(D)-class bundles  $\eta_1$  and  $\eta_2$ , then

$$1+b(\xi) = (1+b(\eta_1))_*(1+b(\eta_2)).$$

(iv). If  $\xi = \delta(L)$ ,  $b^p(\xi)$  is in exp\*-image and if the monodromy group of  $D \otimes 1c^q$ -L is contained in  $GL(q_0, \mathbb{C})$ ,  $q_0 < q$ , then  $b^p(\xi) = 0$ ,  $p > q_0$ .

Note. In some cases, for example D=d or  $\overline{\partial}$ ,  $C^*_{c(D)}$  is also defined on  $M_F$  and  $\pi_F^*: H^{2p-1}(M, C^*_{c(D)})\cong H^{2p-1}(M_F, C^*_{c(D)})^W$ , the invariant subgroup of  $H^{2p-1}(M_F, C^*_{c(D)})$  under the action of Weyl group. In these cases, we can pefine  $b^p(\xi)$  by

$$b^p(\xi) = \pi_F^{*-1} (\prod \eta_{i_1} \cdots \eta_{i_p}).$$

# §4. Characteristic classes related to D-Fuchs type operators

10. We denote the tangent and cotangent bundles of M by T=T(M) and  $T^*=T^*(M)$ . Their fibres at x are denoted by  $T_x$  and  $T^*_x$ . Set  $T^{\mathbb{C}}=T\otimes\mathbb{C}$ , etc., the subspace of  $T^{\mathbb{C}_x}$  spanned by  $r_1(D(x))$  is denoted by  $T^{\mathbb{C},D}_x$  and set  $T^{\mathbb{C},D}=\bigcup_{x\in M}T^{\mathbb{C},D}_x$ . For  $T^{\mathbb{C},D}$ , we assume there is an open covering  $\{U\}$  of M such that on each U, there is a system of smooth vector fields  $\{X^{U_1},\ldots,X^{U_m}\}$  as follows: (i).  $\{X^{U_1}(x),\ldots,X^{U_m}(x)\}$  spannes  $T^{\mathbb{C},D}_x$  if  $x\in U$ . (ii).  $\{X^{U_1}(x),\ldots,X^{U_m}(x)\}$  are linear independent if x is in some dense open subset of U. Under these assumptions, there is a constant m such that dim  $T^{\mathbb{C},D}_x\leq m$  and  $T^{\mathbb{C},D}$  is a vector bundle over some open dense subset  $M_0$  of M. To fix an Hermitian structure of  $T^{\mathbb{C}}$ , we can determin the dual space  $T^{*\mathbb{C},D}_x$  of  $T^{\mathbb{C},D}_x$  as the subspace of  $T^{*\mathbb{C},x}$  for each  $x\in M$ . Set  $T^{*\mathbb{C},D} = \bigcup_{x\in M}T^{*\mathbb{C},D}_x$ ,  $T^{*\mathbb{C},D} \mid M_0$  is the dual bundle of  $T^{\mathbb{C},D} \mid M_0$  and contained in  $T^{*\mathbb{C}}\mid M_0$ . In the rest, we assume  $\{X^{U_1},\ldots,X^{U_m}\}$  to be an 0. N. -basis of  $T^{\mathbb{C},D}_x$  if  $x\in M_0$ , for the given Hermitian structure. Their dual basis are denoted by  $\{X^{U^*}_1,\ldots,X^{U^*}_m\}$ .

**Definition.** For a smooth function f on U, we set

$$d^{D}f(x) = \sum_{i=1}^{m} (X^{U_{i}}f)(x)X^{U^{*}}(x), x \in U.$$

By definition,  $d^D$  is defined on M and does not depend on the choice of  $\{X^{U_1}, \ldots, X^{U_m}\}$ . Set  $A^p T^{*C, D} = \bigcup_x \in_M A^p T^{*C, D}_x$ ,  $d^D$  induces a differential operator  $d^D: C^{\infty}(M, A^p T^{*C, D}) \longrightarrow C^{\infty}(M, A^{p+1}T^{*C, D})$  for any p. Therefore, denote the sheaf of germs of smooth sections of  $A^p T^{*C, D}$  by  $C^{p, D}_d$ , we have the following exact sequence of sheaves

(22) 
$$0 \longrightarrow C_{c(D)} \xrightarrow{i} C_d \xrightarrow{d^D} C^{1, D}_d \xrightarrow{d^D} \dots \xrightarrow{d^D} C^{p, D}_d \xrightarrow{d^D} \dots$$
$$\xrightarrow{d^D} C^{n, D}_d \longrightarrow 0.$$

By the definitions of  $d^{D}$  and  $C^{1,D}_{d}$ , the sequence  $0 \longrightarrow C_{c(D)} \xrightarrow{i} C_{d} \xrightarrow{d^{D}} C^{1,D}_{d}$  is exact if and only if (3) is hold for D.  $d^{D}d^{D}$  is not equal to 0 unless the Lie algebra spanned by  $\{X^{U}_{1}, \ldots, X^{U}_{m}\}$  is abelian.

Note. If D is homogeneous,  $r_1(D)$  is determined by  $\sigma(r(D))$ , the principal symbol of r(D). Hence  $d^D$  is determined by  $\sigma(r(D))$ .

Assumption. In this §, we assume that there is an Hermitian structure on  $T^{c}$  such that the sequence (22) is exact.

Under this assumption, denote the kernel sheaf of  $d^{D}$  in  $C^{p,D}{}_{d}$  by  $B^{p,D}{}_{d}$ , we have the isomorphism

(23) 
$$H^{p}(M, C_{c(D)}) \cong H^{0}(M, B^{p, D}_{d})/d^{D}H^{0}(M, C^{p-1, D}_{d}), p \leq 1.$$

Because the sheaves  $\mathbb{C}_d$ ,  $\mathbb{C}^{1,D}_d$ ,..., are fine.

**Example.** If  $r_1(D)$  is maximal, D satisfies the assumption and the sequence (22) is the de Rham complex. Similarly, if  $r(D) = r_1(D) = \overline{\partial}$ , D satisfies the assumption and the sequence (22) is the Dolbeauldt complex.

**Lemma 17.** If D satisfies the assumption,  $M_Y = \{M_Y, Y, M, \pi_Y\}$  is a c(D)-class bundle over M with the fibre Y, a smooth manifold, then  $\pi_Y^*(D)$  also satisfies the assumption.

**Proof.** By assumption, denote  $T_Y$  the fibre of the tangent bundle of Y, we have  $T^{C, \pi}Y^{*(D)} = \pi_Y^{*}(T^{C,D}\pi_{Y(X)}) \otimes T_Y$ . Hence  $d^{\pi}Y^{*(D)} = \pi_Y^{*}(d^D) \otimes 1_Y$  at  $C_d$ . There fore we have the lemma.

By the definition of  $d^D$  and the assumption on D,  $d^D$  has same formal properties as d. For example,  $d^D$  is linear,  $d^D d^D = 0$  and

$$d^{D}(\varphi_{\wedge}\psi) = d^{D}\varphi_{\wedge}\psi + (-1)^{p}\varphi_{\wedge}d^{D}\psi, \quad \varphi \in C^{\infty}(U, \Lambda^{p}T^{*\mathsf{C}, D}).$$

11. In the sence of de Rham, the (2p-1)-dimensional generator  $\omega^p$  of  $H^*(GL(n, \mathbb{C}), \mathbb{C}) = H^*(U(n), \mathbb{C})$  is given by

$$\omega^{p}(T) = \operatorname{tr}(dTT^{-1}, \dots, dTT^{-1})$$

$$= \sum_{i_{1}, \dots, i_{2p-1}, j_{1}, \dots, j_{2p-1}} \zeta^{j_{1}, i_{2}} \dots \zeta^{j_{2p-2}, i_{2p-1}} \zeta^{j_{2p-1}, i_{1}} \cdot dz_{i_{1}, j_{1}, \dots, d} dz_{i_{2p-1}, j_{2p-1}},$$

$$T = (z_{i_{1}, j}), \quad T^{-1} = (\zeta^{i_{1}, j}),$$

([5], [10]). Hence if  $f: U \longrightarrow GL(n, \mathbb{C})$  is a smooth map, we have

(24) 
$$f^*(\omega^p) = \operatorname{tr}(dff^{-1}, \dots, dff^{-1}).$$

We also set

(24)' 
$$f^{*D}(\omega^p) = \operatorname{tr}(d^D f f^{-1}, \dots, d^D f f^{-1}).$$

**Example.** If  $D = \overline{\partial}$ ,  $f^{*D}(\omega^{b})$  is the type (0, 2p-1)-part of  $f^{*}(\omega^{b})$ .

Lemma 18. If  $\log f$  is defined, we have

(25) 
$$f^*(\omega^p) = \operatorname{tr} (d \log f_{\wedge} \dots_{\wedge} d \log f),$$

(25)'  $f^{*D}(\omega^p) = \operatorname{tr}(d^D \log f_{\uparrow} \dots_{\uparrow} d^D \log f).$ 

**Proof.** Since  $dff^{-1} = (d(fC)) (fC)^{-1}$  and  $d^D ff^{-1} = (d^D(fC)) (fC)^{-1}$  for any constant matrix C, we may assume f-I is inversible and  $\log f$  is given by the Taylor series  $\sum_{m\geq 1} (-1)^{m-1} (1/m) (f-I)^m$  on U, an open set of M. Then, since f-I is inversible by assumption, we get

$$tr[(f-I)^{k_0} df(f-I)^{k_1} \dots df(f-I)^{k_{2p-2}} df(f-I)^{k_{2p-1}-k_0}]$$
  
= tr [df(f-I)^{k\_1} \dots df(f-I)^{k\_{2p-1}}],

for any integers  $k_0, k_1, \ldots, k_{2p-1}$ . Therefore we obtain

$$\operatorname{tr}(d \log f_{\wedge} \dots_{\wedge} d \log f) = \sum_{k_1, \dots, k_{2p-1}} (-1)^{k_1 + \dots + k_{2p-1}} \operatorname{tr}[df(f-I)^{k_1} \dots_{\wedge} df(f-I)^{k_{2p-1}}],$$

because tr is linear. Since  $f^{-1} = \sum_{k \ge 0} (-1)^k (f-I)^k$  under our assumption, this right hand side is equal to tr  $(dff^{-1}, \dots, dff^{-1})$ . Therefore we obtain (25). (25)' is obtained by the same way, because  $d^D$  has same formal properties as d.

**Corollary.**  $f^{*D}(\omega^p)$  is  $d^D$ -closed.

**Lemma 19.** Let  $L = \{\rho_D(h_U)\}$  be an element of  $H^0(M, L_{G,D})$ . Then to set

(26) 
$$L^*(\omega^p) | U = h_U^{*D}(\omega^p),$$

 $L^*(\omega^p)$  is a  $d^D$ -closed (2p-1)-form on M and does not depend on the choice of  $\{h_U\}$ .

**Proof.** Since  $\rho_D(h_U) = \rho_D(h_V)$  on  $U_{\cap}V$ , we get  $h_U^{*D}(\omega^p) = h_V^{*D}(\omega^p)$  on  $U_{\cap}V$ . On the other hand, if  $\rho_D(h_U) = \rho_D(h_U')$ ,  $h_U'$  is written as  $h_U f_U$ , where  $f_U$  is a c(D)-class  $GL(n, \mathbb{C})$ -valued function. Hence  $h_U^{*D}(\omega^p)$  is equal to  $h_U'^{*D}(\omega^p)$ . Therefore we have the lemma.

**Lemma 20.** Set  $\langle L^*(\omega^p) \rangle$  the cohomology class of  $L^*(\omega^p)$  in  $H^{2p-1}(M, \mathbb{C}_{c(D)})$ , we have

$$<\!\!L^*(\omega^p) > \\ = \{(-1)^{p-1} \operatorname{tr}[\log g_{i_0,i_1} \ (\delta \log g)_{i_1,i_2,i_3} \dots (\delta \log g)_{i_2p-3}, i_{2p-2}, i_{2p-1}]\} \\ g_{ij} = h_{Ui}^{-1} h_{Uj}, \ (\delta \log g)_{ijk} = \log g_{jk} - \log g_{ik} + \log g_{ij}.$$

**Proof.** Since we can take the open covering  $\{U\}$  sufficiently fine, we may assume  $\log h_U$  is defined for any  $U \in \{U\}$ . Then, by lemma 18, to set

$$L^*(\Omega^q) = d^D \log h_{U_{\wedge}} \dots d^D \log h_U,$$

we have

tr 
$$L^{*}(\mathcal{Q}^{2p-1}) = \text{tr } L^{*}(\omega^{p}), L^{*}(\mathcal{Q}^{q}) = (-1)^{q-1} d^{D} [L^{*}(\mathcal{Q}^{q-1}) \log h_{U}]$$

Moreover, by the same calculation as in the proof of lemma 18, we get

$$\operatorname{tr}[L^*(\mathcal{Q}^q)_{\frown} d^D (\log h_U^{-1} h_V)]$$
  
= 
$$\operatorname{tr}[L^*(\mathcal{Q}^q)_{\frown} d^D \log h_V - L^*(\mathcal{Q}^q)_{\frown} d^D \log h_U]$$

Hence the Čech cocycle represents the class of  $L^*(\mathcal{Q}^p)$  in  $H^1(M, \mathbb{B}^{2p-2} D_d)$  is  $\{\text{tr } [L^*(\mathcal{Q}^{2p-2}) \log g_{ij}]\}$ . Then, since  $\delta\{(\delta \log g\}_{i_0, i_1, i_2, i_3}=0, \text{ we get } \}$ 

 $\log h_{i_1} (\delta \log g)_{i_1, i_2, i_3} - \log h_{i_0} (\delta \log g)_{i_0, i_2, i_3} + \\ + \log h_{i_0} (\delta \log g)_{i_0, i_1, i_3} - \log h_{i_0} (\delta \log g)_{i_0, i_1, i_2}$ 

 $=(\log h_{i_1} - \log h_{i_0}) \delta \log g)_{i_1, i_2, i_3}$ 

Hence in  $H^2(M, B^{2p-3, D}_d)$ ,  $L^*(\omega^p)$  is represented by  $\{-\operatorname{tr}[L^*(\Omega^{2p-3}) \log g_{i_0, i_1} (\delta \log g)_{i_1, i_2, i_3}]\}$ . Since  $(\delta \log g)_{i_1, i_2, i_3}$  is a constant matrix, we can repeat this process. Therefore we have the lemma because  $(-1)^{(p-1)(2p-1)} = (-1)^{p-1}$ .

**Corollary**. Denote  $c^p$  the (2p-1)-dimensional generator of  $H^*(GL(n, \mathbb{C}), \mathbb{Z}) = H^*(U(n), \mathbb{Z})$ , we have

$$e^*(c^p) = \frac{(-1)^{p-1}}{(2\pi\sqrt{-1})^p} < \omega^p >.$$

**Proof.** Since  $(\delta g)_{ijk} = I$ , the identity matrix,  $(\delta \log g)_{ijk} = 2\pi\sqrt{-1} N_{ijk}$ , where  $N_{ijk}$  is a matrix with integral proper values, for any *i*, *j*, *k*. On the other hand,  $\log g_{ij} = 2\pi\sqrt{-1} N_{ij}$  if  $h_{Ui} = h_{Uj}$  on  $U_i \cap U_j$ . Hence  $f^*(\omega^p)$  is represented by a cocycle of the form  $\{(-1)^{p-1}(2\pi\sqrt{-1})^p \ n_{i0,\ldots,i_{2p-1}}\}$  in  $H^{2p-1}(M, \mathbb{C})$ , where  $n_{i0,\ldots,i_{2p-1}}$  is an integer for any  $(i_0, i_1, \ldots, i_{2p-1})$  and  $f: M \longrightarrow GL(n, \mathbb{C})$  is a smooth map. On the other hand  $\iota^*(c^p)$  is represented by  $a_p \omega^p$  where  $a_p$  is a constant,  $\iota^*(f^*(c^p))$  is represented by  $\{(-1)^{p-1}a_p(2\pi\sqrt{-1})^p n_{i0,\ldots,i_{2p-1}}\}$  and it is an integral class. Since we can take *f* and *M* arbitrally,  $(-1)^{p-1}a_p(2\pi\sqrt{-1})^p$  should be equal to 1. Therefore we obtain the corollary.

12. Definition. We define  $\beta^{p}(L) \in H^{2p-1}(M, \mathbb{C}_{c(D)})$  by

$$\beta^{p}(L) = \frac{(-1)^{p-1}}{(2\pi\sqrt{-1})^{p}} < L^{*}(\omega^{p}) >.$$

**Theorem 3.** (i). If  $L \in H^0(M, L_{C^*, D})$ , then (27)  $\beta^1(L) = \delta k^{*-1}(L)$ .

(ii). Let 
$$F_{q, pq}(Y_1, \ldots, Y_p) = \sum_{i=1}^{n} a_{i_1, \ldots, i_p} Y_1^{i_1} \ldots Y_p^{i_p}$$
 be the polynomial  $F_{q, p}(s_1, \ldots, s_p) = \sum_{i=1}^{n} X_i^{p_i}$ , where  $s_r$  is the r-th elementary symmetric function of indeterminants  $X_1, \ldots, X_q$ , and set

$$F_{q, p}(b_1, \ldots, b_p) = \prod \left[ (\overline{b_{1*} \ldots * b_1})_{*} \ldots * (\overline{b_{p*} \ldots * b_p}) \right]^{a_{i_1} \cdots , i_p},$$
$$b_r \in H^{2r-1}(M, C^*_{c(D)}).$$

Then we have

(28) 
$$\exp^{*}(\beta^{p}(L)) = (-1)^{p-1} F_{q,p}(b^{1}(\delta(L)), \dots, b^{p}(\delta(L))).$$

 $\beta^p(L) = \iota^*(f^*(c^p)).$ 

(iii). If  $L = \rho_D(f)$ , f is a smooth  $GL(n, \mathbb{C})$ -valued function on M, then

(29)

(iv). If  $L | U = \rho_D(h_U)$ ,  $h_U$  is a smooth  $\Delta(q, \mathbb{C})$ -valued function on U, for each  $U \in \{U\}$ , then

 $\beta^p(L) = 0, \ p \ge 2.$ 

(v). If  $M_Y = \{M_Y, Y, M, \pi_Y\}$  is a c(D)-class bundle over M with the smooth fibre Y, set  $\pi_Y^*(L) = \{\rho_{\pi_Y^*(D)} \ (\pi_Y^*(h_U))\}$ , we have

 $\beta^{p}(\pi_{Y}^{*}(L)) = \pi_{Y}^{*}(\beta^{p}(L)).$ 

(vi). If D is homogeneous and satisfies the assumption in  $n^{\circ}10$ ,  $\beta^{p}$  (L) is determined by  $\sigma(L)$ , the principal symbol of L.

**Proof.** If  $L = \{\rho_D(h_U)\} \in H_0(M, L_{C^*, D}), \ \delta k^{*-1}(L)$  is given by  $(1/2\pi\sqrt{-1})$   $(\log h_U - \log h_V)$ . Hence we have (i) by lemma 20. (iii) also follows from lemma 20 and (v) follows from the definitions of  $\beta^p(L)$ ,  $\pi_Y^*(L)$  and lemma 17.

To show (ii), first we assume  $\delta(L) = \{g_{ij}\}$  is a  $\Delta(q, \mathbb{C})$ -bundle. Then  $\delta(L)$  is a q-fold extension of c(D)-class  $\mathbb{C}^*$ -bundles  $\eta_1, \ldots, \eta_q$  and the transition function of each  $\eta_m$  is given by the *m*-th diagonal element  $\{g_{ij,m}\}$  of  $\{g_{ij}\}$ . Since  $g_{ij}$  is a  $\Delta(q, \mathbb{C})$ -valued function,  $\log g_{ij}$  is a  $\Delta(q, \mathbb{C})$ -valued function whose *m*-th diagonal element is  $\log g_{ij,m}$ . Hence we have

$$\operatorname{tr}\left[\log g_{i_{0}, i_{1}}(\delta \log g)_{i_{1}, i_{2}, i_{3}}\cdots(\delta \log g)_{i_{2}p-3, i_{2}p-2, i_{2}p-1}\right]$$
$$=\sum_{m=1}^{q}\log g_{i_{0}, i_{1}, m}(\delta \log g)_{i_{1}, i_{2}, i_{3}, m}\cdots(\delta \log g)_{i_{2}p-3, i_{2}p-2, i_{2}p-1, m}$$

Therefore we obtain

$$\exp^*(\beta^p(L)) = \left\{\sum_{m=1}^{q} \eta_m^{-1} \cdots \eta_m^{p-1}\right\}^{(-1)^{p-1}}$$

Hence by the definitions of  $b^{p}(\xi)$  and  $F_{q,p}$ , we have (28) by lemma 16.

To show (ii) in general, we use the commutative diagram

$$\begin{array}{ccc} H^{2^{p-1}}(M_{F}, \ \mathbf{C}_{c(\pi_{F}^{*}(D))}) \xrightarrow{\exp^{*}} H^{2^{p-1}}(M_{F}, \ \mathbf{C}^{*}_{c(\pi_{F}^{*}(D))}) \\ \pi_{F}^{*} & & \\ H^{2^{p-1}}(M, \ \mathbf{C}_{c(D)}) \xrightarrow{\exp^{*}} & \pi_{F}^{*} \\ & & H^{2^{p-1}}(M, \ \mathbf{C}^{*}_{c(D)}), \end{array}$$

where  $M_F$  is the associate F(q)-bundle of  $\delta(L)$ . Since  $\pi_F^*(D)$  satisfies the assumption of n°10 by lemma 17,  $\beta^p(\pi_F^*(L))$  is defined and since  $\pi_F^*(\delta(L))$  is a c(D)-class  $\Delta(q, C)$ -bundle, we have

$$\exp^{*}(\beta^{p}(\pi_{F}^{*}(L))) = (-1)^{p-1}F_{q,p}[b^{1}(\delta(\pi_{F}^{*}(L))), \dots, b^{p}(\delta(\pi_{F}^{*}(L)))].$$

But since  $\delta(\pi_F^*(L)) = \pi_F^*(\delta(L))$  by the definition of  $\pi_F^*(L)$ , we have by (v) and theorem 2, (ii)

$$\pi_F^*(\exp^*(\beta^p(L))) = \pi_F^*[(-1)^{p-1}F_{q,p}(b^1(\delta(L)),\ldots,b^p(\delta(L)))],$$

because by the definition of \*-product, we get  $\pi_F^*(a_*b) = \pi_F^*(a)_*\pi_F^*(b)$ . Then, since each  $\pi_F^*$  is a monomorphism, we obtain (ii).

If  $h_U$  is a  $\Delta(q, \mathbb{C})$ -valued function,  $d^D h_U h_U^{-1}$  is a  $\Delta(q, \mathbb{C})$ -valued 1-form. Hence to set  $d^D h_U h_U^{-1} = (\varphi_{ij})$ , we get

$$\operatorname{tr}(L^*(\mathcal{Q}^r)) = \sum_{i=1}^{q} \varphi_{i,i,\ldots,\alpha} \varphi_{i,i} = 0, \ r \geq 2.$$

This shows (iv).

If D is homogeneous,  $\sigma(L)$  is determined by  $r_1(D)$ . Hence we have (vi). Corollary. If  $\delta(L) = \delta(L')$ ,  $\beta^p(L) - \beta^p(L')$  is in  $\iota^*$ -image for all p. Note 1. By (ii), we have

$$(28)' \qquad \qquad b^1(\delta(L)) = \exp^*(\beta^1(L))$$

On the other hand, since the diagram

$$\begin{array}{cccc} H^{0}(M, \ \mathbf{C}_{d}) & \longrightarrow & H^{0}(M, \ \mathscr{L}_{\mathbf{C}, \ D}) \xrightarrow{\delta_{2}} & H^{1}(M, \ \mathbf{C}_{c(D)}) \longrightarrow 0 \\ & & k^{*-1} \Big[ = & \exp^{*} \Big] \\ & & H^{0}(M, \ \mathbf{L}_{\mathbf{C}^{*}, \ D}) \xrightarrow{\delta_{1}} & H^{1}(M, \ \mathbf{C}^{*}_{c(D)}) \\ & & \delta \Big] \\ & & & H^{2}(M, \ \mathbf{Z}), \end{array}$$

is commutative, we can define,  $\beta^{1}(L)$  by (i) without any assumption about D and it satisfies (28)'.

Note 2. If  $d^D = d$  or  $\overline{\partial}$ , we can define  $\pi_Y^*(\beta^p(L))$  and  $\beta^p(\pi_Y^*(L))$  (resp.  $\pi_Y^*(b^p(\xi))$ ) and  $b^p(\pi_Y^*(\xi))$ ) as the elements of  $H^{2p-1}(M_Y, \mathbb{C})$  or  $H^{2p-1}(M_Y, \mathbb{C}\omega)$  (resp.  $H^{2p-1}(M_Y, \mathbb{C}^*)$  or  $H^{2p-1}(M_Y, \mathbb{C}^*\omega)$ ) and for these elements, theorem 3, (v) (resp. theorem 2, (ii)) hold.

# Appendix. Curvature operators of connections of differential operators

In this appendix, we assume  $E_1 = E_2 = E$ , that is *D* is defined on  $C^{\infty}(M, E)$  and maps into itself. For a differential operator  $L: C^{\infty}(U, E \otimes H) \longrightarrow C^{\infty}(U, E \otimes H)$  with order at most k-1, k = ord D, we set

$$\Theta_D(L) = (D \otimes 1_{\rm H})L + L(D \otimes 1_{\rm H}) - L^2,$$

and call the curvature operator of L with respect to D. By definition, if  $-L = \{-L_U\}$  is a connection of D with respect to  $\xi$ , a G-bundle with the fibre H ([3]), set  $D_L = \{D \otimes 1_H - L_U\} : C^{\infty}(M, E \otimes \xi) \longrightarrow C^{\infty}(M, E \otimes \xi)$ , we have

$$D_L^2 | U = D_U^2 \otimes 1_{\mathrm{H}} - \Theta_D(L_U).$$

Hence if L is flat, that is  $L = \rho_D(h)$ , we obtain

$$\Theta_D(L) = \rho_{D^2}(h).$$

**Example 1.** Let  $C^{\infty}(M, E_1) \xrightarrow{D_1} C^{\infty}(M, E_2) \xrightarrow{D_2} \cdots \xrightarrow{D_m} C^{\infty}(M, E_{m+1})$  be a differential complex,  $\xi$  a *G*-bundle with the fibre H,  $-\theta_i$  is a connection of  $D_i$  with respect to  $\xi$ ,  $1 \leq i \leq m$ . Then, to set  $E = E_1 \oplus \cdots \oplus E_{m+1}$ ,  $D(f_1 \oplus \cdots \oplus f_{m+1}) = 0 \oplus D_1 f_1 \oplus \cdots \oplus D_m f_m$  and  $\theta(f_1 \oplus \cdots \oplus f_{m+1}) = 0 \oplus \theta_1 f_1 \oplus \cdots \oplus \theta_m f_m$ ,  $\theta$  is a connection of D with respect to  $\xi$  and  $\Theta_D(\theta) = -(D_\theta)^2$ . Therefore the series  $C^{\infty}(M, E_1 \otimes \xi) \xrightarrow{D_1, \theta_1} C^{\infty}(M, E_2 \otimes \xi) \xrightarrow{D_2, \theta_2} \cdots \xrightarrow{D_m, \theta_m} C^{\infty}(M, E_{m+1} \otimes \xi)$  is a differential

 $C^{\infty}(M, E_1 \otimes \xi) \xrightarrow{\cup i_1 \otimes i_1} C^{\infty}(M, E_2 \otimes \xi) \xrightarrow{-i_1 \otimes i_2} \cdots \xrightarrow{-m_1 \otimes m} C^{\infty}(M, E_{m+1} \otimes \xi)$  is a differential complex if and only if the curvature operator of  $\theta$  with respect to D vanishes. To vanish the curvature operator of  $\theta$ , it is sufficient there exist  $h_U \in C^{\infty}(U, G_d)$  such that  $\theta_{i, U} = \rho_{Di} (h_U), 1 \leq i \leq m$ , for all U.

**Example 2.** In the above example, if  $D_i = d$  or  $\overline{\partial}$  for each *i*,  $\Theta_D(\theta)$  is equal to  $d\theta - \theta_{\wedge}\theta$  or  $\overline{\partial}\theta - \theta_{\wedge}\theta$ .

Lemma 1. We have

(1)<sub>i</sub> 
$$\Theta_D(cL) = c\Theta_D(L) + (c-c^2)L^2$$
, c is a constant G-valued function,

(1)<sub>ii</sub> 
$$\Theta_D(L_1+L_2) = \Theta_D(L_1) + \Theta_D(L_2) - (L_1L_2+L_2L_1),$$

(1)<sub>iii</sub> 
$$\Theta_D(L^g) = [\Theta_D(L_1)]^g + [\Theta_D(g)L^g + L^g \Theta_D(g)].$$

**Corollary 1.** If  $\Theta_D(L_1) = \Theta_D(L)^g + \rho_{D^2}(g)$ , then there exists a differential operator P such that  $L^g + \rho_D(g) = L_1 + P$ ,  $\Theta_D(P) = L_1 P + PL_1$ .

**Corollary 2.** (i). If  $L = \{L_U\}$  is a connection of D with respect to  $\xi = \{g_{UV}\}$ , then

(2) 
$$\Theta_D(L_U) = \Theta_D(L_V)^{g_{UV}} + \rho_{D^2}(g_{UV}), \text{ on } U_{\cap}V.$$

(iii). If (2) is hold for  $L = \{L_U\}$ , then

$$\Theta_D(L_U+P_{UV}) = \Theta_D(L_U) \text{ on } U_\cap V, P_{UV} = (D_U-L_U) - (D_V-L_V)^{g_{UV}}.$$

**Proof.** If  $L = \{L_U\}$  is a connection of D with respect to  $\xi$ , we have  $(D_U - L_U)^2 = (D_V^{g_{UV}} - L_V^{g_{UV}})^2$  on  $U_{\cap}V$ . Since  $(D_U - L_U)^2 = D_U^2 - \Theta_D(L_U)$  and  $(D_V^{g_{UV}} - L_V^{g_{UV}})^2 = D_U^2 - \rho_D^2(g_{UV}) - [\Theta_D(L_V)]^{g_{UV}}$ , we get (i). Since  $(D_U - L_U)^2 - (D_V^{g_{UV}} - L_V^{g_{UV}})^2 = 0$  if (2) is hold, set  $P_{UV} = (D_U - L_U) - (D_V - L_V)^{g_{UV}}$ , we get (3) by (1)ii.

Corollary 3. If  $\Theta_D(L) = \rho_D^2(h)$ , L is equal to  $\rho_D(h) + P$ , where  $\Theta_D^{h}(P) = 0$ .

**Definition:** Let  $L, L': C^{\infty}(U, E \otimes H) \longrightarrow C^{\infty}(U, E \otimes H)$  be differential operators of order at most k-1, we call  $L \sim L' \mod \Theta_D$  if there exists a smooth G-valued function g on U such that  $\Theta_D(L) = \Theta_D(L')^g + \rho_{D^2}(g)$ .

By lemma 1,  $L \sim L'$  is an equivalence relation and it induces an equivalence relation on  $\mathscr{D}_{E\otimes H}^{k-1}$ , the sheaf of germs of differential operators  $L: C^{\infty}(U, E \otimes H)$  $\longrightarrow C^{\infty}(U, E \otimes H)$  of order at most k-1. The quotient sheaf of  $\mathscr{D}_{E\otimes H}^{k-1}$  by this relation is denoted by  $\widetilde{\Theta}_D \mathscr{D}_{E\otimes H}^{k-1}$ . The map from  $\mathscr{D}_{E\otimes H}^{k-1}$  onto  $\widetilde{\Theta}_D \mathscr{D}_{E\otimes H}^{k-1}$  induced by the relation  $L \sim L'$  is denoted by  $\widetilde{\Theta}_D$ . The kernel sheaf of  $\widetilde{\Theta}_D$  is denoted by  $\widetilde{L}_{G, D}$ .  $\widetilde{L}_G, D$  containes  $L_{G, D}$ .

**Definition** For  $\xi = \{g_{UV}\} \in H^1(M, G_d), \{L_U\} \in C^{\infty}(U, \mathscr{D}_{E\otimes H}^{k-1})$  and  $\{L_{UV}\} \in C^1(U, \mathscr{D}_{E\otimes H}^{k-1})$  we set

$$\delta_{\xi} \{L\}_{UV} = L_U - L_V^{g_{UV}}, \ \delta_{\xi} \{L\}_{UVW} = L_{UV} + L_{VW}^{g_{UV}} + L_{WU}^{g_{UW}}.$$

**Lemma 2.**  $\delta_{\xi}(\delta_{\xi}\{L\})_{UVW} = 0$  and if  $\{(\delta_{\xi} \ L)_{UVW}\} = 0$  and there is a partition of unity by smooth functions subordinate to  $\{\mathfrak{U}\}, \{L_{UV}\} = \{\delta_{\xi}(R)_{UV}\}$  for some  $\{R_U\} \in C^{\infty}$  $(\mathfrak{U}, \mathscr{D}_{E\otimes H}^{k-1})$  (cf. [3]).

**Proof.**  $\delta_{\xi} \{ L \}_{UVW} = 0$  follows from the definitions. If  $(\delta_{\xi} L)_{UVW} = 0$ , we have  $L_{UU} = 0$  and  $L_{UV} = -L_{VU} g_{UV}$ . Hence set  $R_U = \sum_{W \cap U \neq \phi} e_W L_{UW}$ ,  $\{e_W\}$  is the Partition of unity subordinate to  $\mathfrak{U}$ , we have  $\delta_{\xi}(R)_{UV} = L_{UV}$ .

Denote  $L_U$  the section of  $\mathscr{D}_{E\otimes H}^{k-1}$  on U and set  $\mathfrak{U} = \{U\}$ , an open covering of M, we set

$$\begin{split} H_{D}^{0}(\mathfrak{U}, \ \mathbf{L}_{G, \ D}) &= \{\{L_{U}\} \mid (\delta_{\xi}L)_{UV} = \rho_{D}(g_{UV}), \ for \ some \ \xi = \{g_{UV}\} \in H^{1}(M, \ \mathbf{G}_{d}), \\ L_{U} \ is \ a \ section \ of \ \widetilde{\mathbf{L}}_{G, \ D} \ on \ U\}. \\ H_{0}^{D}(\mathfrak{U}, \ \mathcal{D}_{E\otimes H}^{k-1}) &= \{\{L_{U}\} \mid (\delta_{\xi}L)_{UV} = \rho_{D}(g_{UV}) \ for \ some \ \xi = \{g_{UV}\} \in H^{1}(M, \ \mathbf{G}_{d})\}. \\ H^{0}(\mathfrak{U}, \ \widetilde{\Theta}_{D} \mathcal{D}_{E\otimes H}^{k-1}) &= \{\{\Theta_{D}L_{U}\} \mid \delta_{\xi}(\Theta_{D}L)_{UV} = \rho_{D}^{2}(g_{UV}) \ for \ some \ \xi \\ &= \{g_{UV}\} \in H^{1}(M, \ \mathbf{G}_{d})\}. \end{split}$$

We define  $H_0^D(M, \widetilde{L}_{G, D})$ ,  $H_0^D(M, \mathscr{D}_{E\otimes H}^{k-1})$  and  $H^0(M, \widetilde{\Theta}_D \mathscr{D}_{E\otimes H}^{k-1})$  as the limits of these sets. We also set

$$B^{1}_{\theta D}(\mathfrak{U}, \mathscr{D}_{E\otimes H}^{k-1}) = \{ \{R_{UV}\} \mid R_{UV} = (\delta_{\xi}L)_{UV} \text{ for some } \xi \} = \{g_{UV}\} \in H^{1}(M, G_{d})$$

and 
$$\Theta_D(R_{UV}) = \rho_{D^2}(g_{UV}) - [\{\rho_D(g_{UV}) - R_{UV}\} L_V^{g} UV + L_V^{g} (\rho_D(g_{UV}) - R_{UV})].$$

We call  $\{R_{UV}\}$  and  $\{R_{UV'}\} \in B^{1}{}_{\theta D}(\mathfrak{U}, \mathscr{D}_{E\otimes H}^{k-1})$  to be equivalent if

$$R_{UV} = (\delta_{\xi} L)_{UV}, \quad R_{UV'} = (\delta_{\xi} (L+Q))_{UV}, \quad \Theta_D(Q_U) = L_U Q_U + Q_U L_U.$$

The quotient set of  $B^{1}_{\theta D}$   $(\mathfrak{U}, \mathscr{D}^{k-1}_{E\otimes \mathrm{H}})$  by this relation is denoted by  $H^{1}_{\theta D}$   $(\mathfrak{U}, \mathscr{D}^{k-1}_{E\otimes \mathrm{H}})$ . Its limit set is denoted by  $H^{1}_{\theta D}(M, \mathscr{D}^{k-1}_{E\otimes \mathrm{H}})$ . Then by lemma 1 and lemma 2, we have the following exact sequence of cohomology sets

$$(4) \qquad \qquad 0 \longrightarrow H_D^0 \ (M, \ \widetilde{L}_{G, \ D}) \xrightarrow{i} H_D^0(M, \ \mathscr{D}_{E\otimes \mathrm{H}}) \xrightarrow{\widetilde{\Theta}_D} H^0(M, \ \widetilde{\Theta}_D \ \mathscr{D}_{E\otimes \mathrm{H}}^{k-1}) \xrightarrow{\widetilde{\delta}}$$

$$\longrightarrow H^{1}_{\theta D}(M, \quad \mathscr{D}^{k-1}_{E\otimes \mathrm{H}}) \xrightarrow{i} H^{1}(M, \quad \mathscr{D}^{k-1}_{E\otimes \mathrm{H}}) = \{0\}.$$

Note. By the definition of  $\delta^L$  (n°4), there is an inclusion map  $\iota: H^1(M, L_{G, D}) \longrightarrow H^1_{\partial D}(M, \mathscr{D}_{E\otimes H}^{k-1})$  and we have the commutative diagram

$$\begin{array}{cccc} H^{1}{}_{\theta D} & (M, & \mathscr{D}_{E\otimes H}^{k-1}) \xrightarrow{i_{1}} H^{1} & (M, & \mathscr{D}_{E\otimes H}^{k-1}) = \{0\} \\ & & & \downarrow & & \downarrow \\ H^{1}(M, & \mathcal{G}_{d}) \xrightarrow{\rho_{D}^{*}} H^{1}(M, & \mathcal{L}_{G, D}) \xrightarrow{i_{2}} \end{array}$$

In this diagram, the explicit trivialization of  $i_2\rho_D^*(\xi)$  is the connection of D with respect to  $\xi$ . If the category is not smooth (for example, holomorphic category or topological category),  $H^1(M, \ \mathcal{D}_{E\otimes H}^{k-1})$  may not be equal to  $\{0\}$  and  $i_2\rho_D^*(\xi)$  gives the obstruction class to have a connection in this category (cf. [2], [4]).

**Definition.** Regard  $\{L_U\} \in H_0^D(\mathscr{D}_{E\otimes H}^{k-1})$  to be a connection of D with respect to  $\xi$ , we call  $\widetilde{\Theta}_D(\{L_U\})$  to be the curvature operator of  $\{L_U\}$ .

**Theorem.** A c(D)-class G-bundle  $\xi$  has a connection of D with respect to  $\xi$  with the curvature operator equal to 0. Conversely, if  $\widetilde{L}_{G,D} = L_{G,D}$ , a G-bundle  $\xi$  is of c(D)-class if D has a connection with respect to  $\xi$  with a curvature operator equal to 0.

**Proof.** Since a c(D)-class *G*-bundle  $\xi$  allows  $\{0\}$  as a connection of *D* with respect to  $\xi$ , we have the first assertion. If  $\widetilde{L}_{G, D} = L_{G, D}$ , we have  $\rho_D(g_{UV}) = \rho_D(h_U) - \rho_D(h_V)^{g_{UU}}$  if  $\xi = \{g_{UV}\}$  has a connection of *D* with respect to  $\xi$  with the curvature operator is equal to 0. Hence  $\{g_{UV}\}$  is in  $\delta$ -image in the sequence (6) of n°4. Therefore we obtain the theorem.

#### References

- ASADA, A. : Connection of flat vector bundles, J. Fac. Sci. Shinshu Univ., 2 (1967), 109-116.

- [4] ATIYAH, M.F. : Complex analytic connection in fibre bundles, Trans. Amer. Math. Soc., 85 (1957), 181-207.
- [5] BRAUER, R. : Sur les invariants intégraux des variétés représentatives des groupes de Lie simples clos, C. R. Sci. Paris, 202 (1935), 419-421. Collected Papers, Vol. III, 443-445.
- [6] CHERN, S. S. -SIMONS, J. : Characteristic forms and geometric invariants, Ann. of Math., 99 (1974), 48-69.
- [7] DUPONT, J. L. : Curvature and Characteristic Classes, Lecture Notes in Math., Nr. 640. Berlin, 1978.

#### Akira Asada

- [8] FLASCHKA, H.-NEWELL, A.C. : Monodromy-and Spectrum-Preserving Defor-mations, I, Commun. math. Phys., 76 (1980), 65-116.
- [9] GOLDSCHMIDT, H.-SPENCER, D. C. : On the non-linear cohomology of Lie equations, I, II, Acta Math., 136 (1976), 103-239.
- [10] HODGE, W. V. D. : The Theory and Applications of Harmonic Integrals, Cambridge, 1952.
- [11] KANBER, F. W. -TONDEUR, P. : Foliated Bundles and Characteristic Classes, Lecture Notes in Math., Nr. 493. Berlin 1975.
- [12] MANIN, JU. I. : Moduli fuchsiani, Ann. della Sc. Nor. Sup. di Pisa, 19(1965), 113 -126.
- [13] PHAM, F. : Singularités des Systèmes Différentiels de Gauss-Manin, Boston, 1979.
- [14] RÖHRL, H. : Das Riemann-Hilbertsche Ploblem der Theorie der Linearen Differentialgleichungen, Math. Ann., 133 (1957), 1-25.
- [15] SATO, M. (ed.). : Classical theory and quantum theory of completely integrable non linear systems (in Japanese), Kyoto, 1980.
- [16] UENO, K. : Monodromy preserving deformation of linear differential equations with irregular singular points, Pro. Jap. Acad., 56 (1980), Ser. A, 97-102.