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type

   It is known that there exist two bounded symmetric domains of exceptional

type up to holomorphic diffeomorphism. One of them is of 16 dirnension (carled of

type E6) and the other is of 27 dimension (called of type E7). M. Ise [7] and M.

Koecher [8] gave a realization of type E6 (resp. type E7) as a bounded domain of

GC × 6C (resp. SC), using eigenvalues of Hermitian mappings.

   In this paper we give these another realizations. For this purpose, first we

find a rea!ization D of the non-compact Hermitian symrnetric space E6,o/U(1) SPin

(10) (resp. E7,e/U(1)E6) and then give the Harish-chandra imbedding T:D.QC × 6C
(resp. gC). By the images of these imbecldings T we can realize the symmetric

space E6,o/U(1)SPin(10) (resp. E7,t/U(1)E6) as a bounded domain in the vector

space GC×6C (resp. SC). As consequence of these results, we have our main
Theorems 17 and 28.

                           I. Preliminaries.

   gl. Cayley algebra as, Jordan algebra $ amd Freudenthal's waanifold sw}C.

   Let as denote the Cayley division algebra over the field of real numbers R.

This algebra E has a basis {eo, ei, e2,..., e7} with the ei

following multiplication relations :

   eo =1, ei2=-1, i=1, 2".., 7,

   eiej=-ejei, i#J', i, ]'=1, 2,..., 7, e2
   ele2=es, e2es=e7, e4e2 =e6,... .
   Let asC be the complexification of as over the field of co-

mplex numbers C. In SC, the inner product (x, y) and thee3

positive definite Hermitian inner product <x, y> are defined

respectively by

        (x, y)= ± (Iy+Nx) (hi is the conjugate of x with respect

        <x, y> =:[: (I, y) (N is the conjugate of x with respect

e4
e7

es

to Q),

to 'C),

e6



and we denote (x, x) by [x12 briefly.

   Let S=g(3, Q) denote the exceptional Jordan algebra of all 3×3 Hermitian

matricesXwith entries in E: i

                             & x3 I2                X= X(e, x) =( :# ;z xg; ), 6t eR, xt GE

                                    1with respect to the multiplication XoY= 2 (XY+ YX) and gC the complexification

of g over C. In SC, the inner product (X, Y), the positive definite Hermitian inner

product <X, Y>, the crossed product XxY, the cubic form (X, Y, Z) and the

determinant detX are defined respectively by

                             3
            (X, Y) =- tr(Xo Y) - X (& ,7i + 2(xi, yi)),

                             i--1

            <X, Y>=-(TX, Y)-(X, Y),

            X×y== B (2xoy-tr(x)y-tr(y)x+(tr(x)tr(y)-(x, y))E),

            (X, Y, Z)=(XxY, Z)=(X, YxZ), ･

                   1            detX= 3 (X, X, X)

where X=X(g, x), Y=:: Y(rp, y), T : gC --SC is the complex conjugation (rX is often

denoted by X) and E the 3×3 unit matrix.

   Let g- be the totality of 3×3 skew-Hermitian matrices A with entries in E:

          '
               A==:('l-i -[uzSr -ii )･ zi･ atGng, 2, =- -2,

                                      '
and S.C the compiexification of g..

   For XESC and AGgma, we define mappings :$l, ?i : SC.SC respectively by

                   .iilt(Y)=XoY, yEsC,

      ･ A(Y) =- [A, Y]-AY- YA,                                               YE sa

Iii gC and SmC we adopt the following notations :
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                 1 0 0                                ooo                                                ooo           E,=-(g ,o g), Eq-(g ,i g) E3-(g ,o ?)･

                o o o                                  o o hr'                                                   oxo        Ft(x)-(oO .-O xo), F2(x)=(2 oO oO)･ F3(X)=(g oO oO)･

        .,,,,--(E-i X), .,,,,..(? ,O-]), .,,,)=(.i i i)

   We define a mapping a : gC.ga by

                     a(l'l l/l -l2:)=({')3-i.l-ii')

and an inner product <X, Y>a on tsC by

                          <X, Y>a== <aX, Y>.

Now, we define subspaces gx, St and Sa of SU respectively by

                   g, = {x G gc ix×x= o} ,

                   EYi = {X Ei ESClX×X == O, <X, X> - 1} ,

                   ga ={XESC1X×X= O, <X, X>a=1}.

And we define equivalence relations -v in Sx, Si and $a as follows.

For X, YEi g.,

          XNY <=> CX =Y for some CE C* ={CGC14 7! O},

and for X, YE$i (similarly for ga),

          X･-Y<x> eX=:Y for some eGU(1)={0EC]IOI=1}.

We clenote the totality of equivalence classes of these spaces by [gx], [gi] and

[ga], respectively. For XEgx, we denote its equivalence class by [X]E[g.] and

so on.

   We define a 56 dimensional vector space 8U by

                         sc == $cogCoCoC.

In ase, the positive definite Hermitian inner product <P, Q>, the skew-symmetric

inner product {P, Q} and tlie inner product <P, Q>t are defined respectively by



                  <P, Q> =- <X, Z> + <Y, W> + gC + rpHte,

                  {.P, Q} - (X, MZ) - (Z, Y) + gto - Crp,

                  <P, Q>, - <X, Z> - <Y, W> + gC - ijto

whereP:==(X, Y, 8, rp> andQ=(Z, YV, C, to). An elementP=(X, Y, 6, rp)EasC

is often denoted by P=X+Y+e+O briefly. For example 1=(O, O, 1, O), 1== (O,

O, O, 1).

   We define subspaces swZC (called a Freudenthal's manifold), MZi and EI]Zt of asC

respectivelY by

                                                        '                                            '  EMC={P=(X, Y, e,'rp)E8C[X×X::=rpY, Y×Y=gX, (X, Y)=36v, l)fO},

                     EIIIZi- {P G M?C1<P, P> ::= 1},

                     Sln, = {P G MZal<P, P>, =1}.

And we define equivalence relations -- in SrzC, swZi ad EI]Zt as follows.

For P=(X, Y, g, rp), (?EM, in El[ltC

            P---Q ¢=> (aX, aY, ae, arp)=Q for some aeC"

and in EMi (similarly ln swZt)

            P---Q <==> (0X, eY, 06, 0n) == Q for some eEU(1).

We denote the totality of equivalence classes of these spaces by [EMC], [EMi] and

[EI[r}t], respectively. For (X, Y, 6, rp)EEDZC, we denote its equivalence class by

[X, Y, e, rp] (or [X+Y+8+ij]) er [EVZC] and so on.

   g2. Lie groups E6, E6,a of type E6 and their Lie algebras e6, e6,a [10], [12].

   A simply connected compact simple Lie group E6 of type E6 is defined to be

the group of linear isomorphisms of SC leaving the determinant detX and the

Hermitian inner product <X, Y> invariant :

       E6 =: {a ff Isoc(SC, gC)[clet aX =det X, <cyX, ct Y> =: <X, Y>}

         -- {a E Isoc($C, SC) I evX x crY == TaT(X × Y) , <evX, ctb = <X, Y>}.

A connected non-compact simple Lie group E6,a of type E6(-io is defined to be the

group of linear isomorphisms of gC leaving the determinant detX and the inner

product <X, Y>a invariant:

     E6, a =:= {a a Isoc(SC, gC) 1 det evX = det X, <crX, aY>a = <X, Y>a}

         ={cr EIIsoc(EljC, gC)lcrX × evY =TaevaT(X × Y), <aX, cvY>a := <X, Y>a}.
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A subgroup U(1) of the group E6,o defined by

          u(i) -=(ip (o) ¢(o)x(e, x) =-(ki･i zlglz3 z-Hl.li ), eEi u(i) l

is isomorphic to the group U(1), and we identify U(1) with U(1). A subgroup

ll== {aEE6,alaEi=Ei} is isomorphic to the spinor group SPin(10), and we identify

H with SPin(10). These groups U(1) and SPin(10) are also subgroups of the group

E6. The group E6,a has the following polar decomposition :

                       E6,a =t U(1)SPin(10) × Ra2

where a subgroup U(1)SPin(10) of E6,a is isomorphic to the group (U(1) × SPin(10))

/Z4 (Z4-{(ip(1), 1), (ip(-1), -1), (ip(V-1), -V-1); (¢(-V-1)', V-1)}).

   A connected complex Lie group E6C of type E6 is given by

                E6C == {a E Isoc(gC, gC) ldetaX =: detX} ,

and its Lie algebra e6C is

           e,a = {¢ E Homc(gC, nC) K¢X, X, X) = O}.

                                '                                                             3Let So be a Lie algebra generated by {2iENi +z2IZii2 +z3Erw312ieS, zi = -2i, =zi=O}

and EDoa the complexification of EE)o. Then e6C has a decomposition as a vector space

     e6C = EE)oC + {?li(yi) + 2i2(y2) + Z3(y3) 1yi E asC} -}- {51'IX E ℃C, tr(X) == o} .

For A, Ai E S-oC = {A ES--el tr (A) = O} , X, Xi E 3oC = {X EII Se1 tr (X) =O} (i = 1, 2),

the Lie bracket on e6C is given as foilows.

                                              '             [AN,, A"",]=[A,, A,]N, [Xi, X2]-- i [Xi, X2i

                         [AN, Xf] == [A, X]r

The Lie algebras e6 and e6,a of the groups E6 and E6,a are respectively

                  eG =- {g5 G e6Cl<ipX, Y> + <X, g5 Y> -: O} ,

                e6,a= {¢ee6Cl<¢X, Y>a+<X, ipY>a=O}.
                         '                                            'The automorphism group F4 of S is a simply connected compact simple Lie group

of type F4:

                 F4 == {aEIsoR(g, S)1a(XoY) = avXoaY},



and its Lie algebra f4 is

               f4 = {6 E HomR(Ej, Eg) [S(Xo Y) = tiXo Y+ Xo6Y} .

Any element di of e6 is represented by

                            ip =6+V-IX

where fi G f4 and XE $o = {XE S1tr(X) := O}. And any element ¢ of e6,a is represented

by

                     V-ly3            l O -,V'-IY2xN IV-16i X3 hi2 N--
                                                            J     ip == d+t -V=iy3 o Vrlyi )K x3 v :i& v=l xi

                                 o Li v2                                               ,vlX-x, ,vr-e3 L            " V=iy, -VTiy,

                                3
where dE EE)o, xi, yi E G and ei e R, :Eiil] 6i -- O, i -- 1, 2, 3.

                               i--1
   Now.we shall calculate the Killing form of e6C. To do this, we prepare the

following

   Lernma 1 ([1] P. 36). Let gC be a simPle Lie algebra over C and B the Killing

form of gC. Ilf B' is a nondegenerate symmetric bilinear form ,on gC and invariant

z{nder the adjoint rePresentation ad of gC, then there exists c EC such that B= cB'.

   From [6] Proposltion 1, a set {[.51i, AY)]IX, YE SC} generates f4C (which is

the complexification of f4) additively. Hence we define an inner product on ¥4C as

follows. For bi =: lili:]i [gi, NYi], S2 =: Xi [Zi, tiiZi] e f4C,

                    (Oi, 62) =:X([jili, -Y"i] Vvli, &).

                            i' 1'

From [6] Proposition 2, this inner product (6i, 62) is symmetric and independent of

expressions of 6i, 62. Since any element ¢ of e6C is represented by

ip=6+X, bEf4C, XEgoC, we define an inner product on e6C by

                     (dii, ¢2)= (Si, S2)-(Xi, Xh)

where ¢i --Si+.Xri, i=1, 2.

   Proposition 2, The Kilting form B of e6C is gr'ven by

                  B(dii, ip2)=-12(¢i, di2) ¢i, ip2ff e6C.

   Proof. First we show that the inner product (ipi, ¢2) is ade6(Linvariant.

For ip==b+X, ipi=tii+fii'i (fi, tiiff f4C, X, XiE!i$oC, i=:1, 2), it holds that
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     ([ip , e5 i] , ¢2) -= ([a, 6i] + [.Xi, :Sli] + (tiXili' - (6iX15', 62 + Xfi)

                 = ([6, Si] + [g, Xi], S2) - (SXi - 6iX, X2)

                 = -(ai, [6, 62]) - (Xi, 6,X) + (Xi, aXh) - (6i, [X, X,])

                         N fv ew N tw                 = -(6i + X,, [6, 62] + [X, Xl,] -i- (6Xli) - (62X) )

                 =-(ip1) [di) ip2]))

i. e., the inner product (¢i, ip2) is ade6(L-invariant. Therefore from Lemma 1,

                                                                      .there exists cEC such that B(ipi, ip2) =c(¢i, ip2). we can determine c := -12 putting

di, == ip,=AN,(1) == -4[ENi, 72(1)], Thus B(¢i, di2)--12(ipi, ip2). '

   g3. Lie groups E7, E7,t of type E7 and their Lie algebras e7, e7,e [4], [5].

   A simply connected compact simple Lie group E7 of type E7 is defined to be

the group of linear isomorphisms of %C leaving the manifold EMC, some skew-

symmetric inner product {P, Q} and the Hermitian inner product <P, Q> invariant :

                                          .     E7 == {evEIsoc(8C, asC)levE[JZC=EPZC, {al, ev1} =1, <aP, ctQ> = <P, Q>}.

A connected non-compact simple Lie group E7,t of type E7(-2s) is defined to be the

group of linear isomorphisms of 8C leaving the manifold swZC, some skew-symmetric

inner product {P, Q} and the inner prodcut <P, Q>t invariant:

   E7,t:=={aEIsoc(8C, 8C)]aErrIC= EMC, {al, ai} =1, <aP, ctQ>t=<P, Q>e}.

              '

              '- ,p ooo
                                 .. O TI3T O O
  Asubgroup H= {aEi E7,t]al == l, al=1}= P:= PGE6
                                              OOIO

                                              OOOI

ls isomorphic to the group E6, hence we identify H with E6. A subgroup U(1) of

E7,t defined by

                       '                  ua)-= 'o=- 0'ff /ew, ',"l. bLufol

                                           '
is isomorphic to the group U(1), hence we identify U(1) with U(1). These groLtps



E6 and U(1) are also subgroups of the group E7. The group E7,e has the following

polar decomposition :

                       E7,t f):: U(1)E, × Rs4

where a subgroup U(1)E6 of E7,t is isomorphic to the group (U(1) × E6)/Z3
(Z3 = {(1, 1), (to, to1), (to2, to21)} , to E C, to3 = 1, w 74 1).

   A connected complex Lie group E7C of type E7 is given by

         E7C=={aGIsoc(8C, 8C)laEMC==swZC, {aP, avQ}={P, Q}}.

We define a bilinear symmetric mapping × : 8C× asa-SCOSCOC by

              X Z 2XxZ-vW-toY
               YW
       llPXQ= e × c := 2YxVV-gZ-4X .
               n to (X, W)+(Y, Z)-3(6to÷4q)

The Lie algebra e7C of E7C is .
e7C = {¢ E Homc(asC, %C) 1 diP × P ::= O for all PE MZC, {di1, t} + {1, ipi} = O}

and any element di of e7C is represented by the form:

                        ip-Spl 2B o A

                           2A ip'+gpl B O
         di = di(ip, A, B, p)-

                            oApo
                            B o O -p
                       /
where ¢E e6C, ¢' is the skew transpose of ip with respect to the inner procluct

(X, Y) : (ipX, Y)+(X, ip'Y)=O, A, BGgC, pEC and the action of op on asC is

defined by

                     X ipX- g pX+2BxY+ vA

          ca(ip, A, B, p) Y = 2AxX+iptY+ g pY+eB .

                      e (A, Y)+p6
                      v (B, X)-pn

For ¢i=di(ipi, Ai, Bi, pi)Ee7C (i --1, 2), the Lie, bracket [dii, di2] is given by

         [di(ipi, Ai, Bi, pi), ¢(ip2, A2, B2, p2)]=di(¢, A, B, p)
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           di = [¢i, ¢2] + 2A,VB2 - 2A,VB,,

           A = (¢i +gpil)A2 - (di2 +?p21) Ai,

           B =: (ipi' -gpil)B2 - (¢2' - : p21)Bi,

           p= (Ai, B2) - (Bi, A2)

where (AVB) (X) = I (B, X)A+{}(A, B)X-2B × (A ×X).

  The Lie algebras e7 and e7,t of the groups E7 and E7,t are respectively

            e7 = {di E e7Ci <diP, Q> + <P, di(?> = O} ,

           e7,t = {di E e7Cl <diP, Q>, + <P, ¢Q>, = o} .

Any element di of e7 is represented by

      op = ¢(ip, A, -A, p), ip e e6, AE SC, pG C, p+P == O,

and any element di of e7,e is represented by

      ca=di(di, A, AH, p), ¢Ee6, AE$C, pEC, p+P=:O.

  Now we shall calculate the Killing form of e7C. We define an inner product

(dii, di2) on e7C by

       (dii, cb2) ==2(¢i, ip2)-4(Ai, B2)-4(A2, Bi)-gpip2

where dii=di(¢i, Ai, Bi, pi), i=l, 2.

  Proposition 3. The Killing form B of e7C is given by

           B(dii, di2)=-9(opi, ¢2), dii, ¢2Ee7C.

  Proof. First we shall show that the inner product (dii, ¢2) is ade7C-invariant.

For ¢=di(¢, A, B, p), dii=di(ipi, Ai, Bi, pi), i=1, 2, it holds that

 ([¢, di,], ¢,) =2([ip, ipi]+2AVBi -2AiVB, ip2) -4(ipA, +-Z-pA, -ipiA

                                       '
       --Z--p,A, B,) -4(A2, iprB, -}pB,-ip,'B+ep,B) --g-(A, B,)p,

       +-g-(B, A,)p2

       = -2(ipi, [¢, di2] + 2A V B2 - 2A, VB) + 4(A,, ¢'B,
       (*)
       -gpB2 - ip2'B+S-p2B) +4(¢A2 +-Z--pA2 - ip2A --Z-p2A, B)



            + 83 pi (A, B2) - 83 pi (B, A2) =:= -(ipi, [di, di2])

              ((*) (¢, AVB)--(ipA, B)),

i. e., the inner product (dii, ¢2) is ade7(Zinvariant. Therefore, from Lemma 1

there exists cEC such that B(dii, di2) =::c(dii, ¢2). We can determine c := -9 putting

¢i = op2 = di(O, O, O, p) E e79. Thus B(dii, ip2) = -9(dii, di2).

   g4. Hermitian symmetric pair.

   Let G be a connected Lie group, K a subgroup of G and s an involutive

automorphism of G. Letgbe the Lie algebra of G. We decomposeg as a vector

space using the differential of s (which is also denoted by s) lnto

                               g=fen
                           '
where e={XEglsX=X} and n-- {XEg1sX==-X). Let gbe an inner product on
n. Suppose that n has a complex structure J

   Definition ([11]). The connected Lie group G has an Hermitian symmetric pair

(G, K; s, g, 1) if and only if

   (1) sis not identity. '
   (2) K is a closed subgroup of G such that (Gs)ocKcGs, where Gs is the set.

of fixed points of s and (Gs)o is the identity component of Gs.

   (3) AdK is a compact subgroup of GL (g) (where Ad is the adjoint representation

   (4) g is a positive definite inner product on n satisfying

              g(AdkX, AdleY)=-g(X, Y), kEK, X, YEn,

                    g(IX, IY)-=g(X, Y), X, YEn,

                      f(Adln le) = (Adln fe)L fe G K.

   Lemma 4 ([11] P. 117). Let G be a connected Lie grouP and has an Hermitian

symmetric Pair (G, K; s, g, f). Then the homogeneous sPace G/K has an Hermitian

symmetric structure. . .
   We shall construct Hermitian symmetric pairs of the groups E6,a and E7,e

respectively later on. As the results, we see that the homogeneous spaces E6,a/U(1)

SPin(10) and E7,t/U(1)E6 have Hermitian symmetric structures.

                 Iif. Bounded symmetric domain of type E6.

   g5. Hermitian symmetric pair of E6,a. ･
   We define an involutive automorphism a of the group E6,a (vvhich is a Cartan
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involution) by

                      ca == aaa, aE E6, a.

The decomposition e6,a=fOn as in g4 with respect to cr is given by

 f == Es>o + {Ai(y) lyE as} + {Vfi(eiEi + e2E2 + 83E3 + Ft (x)) lgi 6 R, ]ilil]6i = o, xE G} ,

                                               i--1
                                         '
     n = {,vi;A"V2(y2) + V=r-iA'V3(y3) + 2iii2(x2) + 2i73(x3)1x2, x3, y2, y3 E G}.

We define an inner product g on n by

    g(V-A--2(y2) + V=IZ3(y3) + 2pu2(x2) + 273(x3), V::iA2(y2') + V=T213(y3')

     + 2,Zii2 (X2') + 2,ZF3 (X3')) = (Y2, N2') + (Y3, Y3') + (X2, X2') + (X3, X3'),

and a linear transformation f of n by

                J ::= - g V=i ad(2Ei - E2 - E3 r.

Hence for each N == Vl:Irr2(y2) +V=iA3(y3) +2F-"2(x2) + 2FN3(x3) e n, we have

1(N) := Z [2E, - E2 - E3 , A2 (y,) + A3(y,)]'V- g ,vf =iil[2E, - E, - E, , F, (x,) + F, (x,) ]'V

   -z ,,i:IriAr,(x,) - VrlAN,(x3) - 272(y,) + 2FN3(y3),

so JT is a complex structure on n.

   Proposition 5. (E6,a, U(1)SPin(10) ; 6, g, 1) ts an Hermitian symmetric Pair of

the grouP E6,a.

   Proof We shall check the conditions of Definition in ss4. In [10] Proposition

6, we have seen {ctGE6,aloaa==a} == U(1)SPin(10). Now obviously conditions (1),

(2> and (3) are satisfied. Instead of the first condition (4), it suMces to show that

the inner product g is ade-invariant:

           g'(ad kX, Y) + g(X, adfe Y) == O, X, YG n, fe ciL

For N == V=-rAl,(y,) + V=iAl,(y,) + 2fa,(x,) + 2fa,(x,), ATt = V=iAI,(pt,r) + ,/'I tiAN,(y,t)

+2F"U2(x2')+2F"U3(x3')En, tal<ing the inner product (g6i, {b2) on e6C, we have

(N, N')== -(A(y,)+A,(y,), A,(y,t)+A,(y,'))-4(F,(x2)+F,(x3), F2(x2t)+F3(x3')),

and using i42(y) ==4[E3, ii72(y)] and NA3(y)==-4[lil2, il73(y)], we have



  (N, N')=-4((AN2(y2)+AN3(y3))F2(y2'), E3)+4((A'W2(y2)+AN3 (y3))F3(N3'), E2)

           -8((x2, x2')+(x3, x3t))

         = -8((Y2, Y2') + (Y3, Y3') + (X2, X2') + ( V3, X3')).

So gis adf-invariant, since the inner product (¢i, ip2) on e6C is ade6(Linvariant.

And for the above N, N' Ein, we have

   g(fN, nV') = g(V=iA2(x2) - V=irr3(x3) - 2ft(y2) + 2fi3(y3),

                             ,V-AA", (x,,) - V:[-i[IAI, (x,,) - 2i, (y,,) + 2FA', (y,,))

               = (x2, x2') + (x3, x3') + (y2, y2') + (ys, y3') = g(N, N'),

and for leEf, NEn

 fodfe N = - g V=i[(2E, - E2 - E3 )-", [le, N]]

                                               '        = - : vt-[k, [(2E, - E, - E,)7 N] - : Vny[[(2Ei - E2 - E3Y, fe], N]

         = adle 11V, ([(2Ei - E2 - E3), k] = O).

Hence the condition (4) is satisfied. Thus the proof is completed.

   From Lemma 4 and Proposition 5, we see that the homogeneous space E6,a/U(1)

SPin(10) has a structure of an Hermitian symmetric space.

   S6. Realizatiott of the symmetric space E6,a/U(1)Spin(10).

   The space [gi] has a differentiable structure induced by that of the manifold

gi, because on the manifold gi the group U(1) acts freely.

   Propositien 6. The homogeneozts sPace E6/U(1)SPin(10) is dij7laomomphic to the

?nanifo ld [℃i] == [ {X E ℃C lX × X- O, <X, X> = 1} ].

   Proof. The group E6 acts on gi, since for aEE6, XEE gi we have

            aXx avX == rcrr(X × X) = O, <aX, crX> == <X, X> = 1.

FroTn [12] Proposltion 5, for each XEgi there exists aEE6 such that aX=&Ei

+&E2+&E3, 6iGC. evXEgi implies crX=eiEi,lgil=1 for some i=1, 2, 3. If

i=1, then ¢(6i-t)aX == Ei, and if i--2 or 3, then ¢(6i-i2)crX=:E,, From [13] Theo-

rem 5. 53, E2 and E3 can be transformed into Ei using the elements of the group

F4. Hence for XEgi, we have aX=Ei for some aeE6. Therefore E6 acts transi-

tively on gi and [gi]. Let crEE6 fix the point [Ei]E[gi], Then aEi=eEi for
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                    11some eff U(1). So ip(0 4)aEi==Ei, that is, ¢(e T)evESPin(10). Therefore evciEU

(1)SPin(10). Conversely, iet cif be an arbitrary eleinent of U(1)SPin(10). Then

ev[Ei] =[Ei]. Thus the homogeneous space E6/U(1)SPin(10) is diffeomorphic to the

manifold [gi].

   Lemma 7. The grouP E6C acts on the sPace [℃.] transitively. Let U be the
isotroPy subgrouP of E6C at [Ei]E[g,]. Then the homogeneous sPace E6/U is

homeomomphic to the sPace [g.].

   Proof is similar to that of Proposition 6.

   From now on, we identify E6/U with [gxl and introduce the differentiabte and

complex structure of E6/U lnto [Sx].

   Now, we shall realize the symmetric space E6,a/U(1)SPin(10). Any element cu

of the group E6,a Ieaves the inner product <X, Y>a invariant and satisfies aX× aX

=wctoT(XxX). Hence E6,o acts on the space Eja and [E3a]. Since the isotropy

subgroup of E6,o at [Ei]G [ga] is U(1)SPin(10) (this follows from the equivalence

relation in ga and the definition of the groups U(1) and SPin(10)), we shall consider

E6,o/U(1)SPin(10) as the. orbit space E6,a[Ei] in [Sa]. To describe the orbit space

E6,o[Ei] explicitely, we need the following arguments,

   Let X=X(e, x) E!i Sa, then X×X=:=O and <X, X>a= 1, so we have

         62e3 == (Xi, Xi), g3g"i= (X2, X2), g2gi == (X3, X3),
     (5) I 61xi =:: x2x3, , 82x2 == x3xi, 63x3 =: xlx2,

        K 1cil2+Ie212+1g3l2+2<xi, ci>-2<x2, x2>-2<t3, x3>=1.

    '
   Lemrna 8 ([9]-I, P. 161, Corollary 1). Let G be a connected semisimPle Lie

grottP with Lie algebra g, cr a Cartan involution of g, 6' an involutive automorphism

ofgsuch that 6o'=ff'a, and g=fOii the Cartan decomPositon. Let n± be the
(ti 1)-eigen sPaces of if' in it, and K the szabgrouP coriesPonding to E. Then the mop

(X, Y, le)-(expX)(exp Y)le is a ddeomorphism of it+×it- ×K onto G.

   We define a mapping a' : $C-ga by

               a(i-:, l,:, /ii･)-(m･y/i31 --ii･)

and an involutive automorphism cr' of Homc(SC, SC) by

                    a'ip==a'ipa', ¢EIEHomc(gC, gC),

   Lernzna 9. The maPPing a' is an involutive automorphism of the Lie algebra e6,o

and commute with the Cartan involz{tion a of e6,a.



   Proof. Let ip be an arbitrary element of e6,a. For XE$a, we have (es'ipX, X,

X) = (a'¢a'X, X × X) = (¢a'X, a' (X × X)) == (¢a'X, a'X, a'X) = O, and for X, YE

 gc
             '
   <dg6X, Y>a+<X, tf'gbY>a:=<a'g6dX, Y>a+<X, o'¢G'Y>o

    = <aa'di ff 'X, Y> + <X, aa'¢a' Y> =:: <a'aipa'X, Y> + <X, a'gipa' Y>

   = <a¢(a'X), a'Y> + <a'X, a¢(o']V)>=<ip(a'X), a'Y>o+ <a'X, ip(a'Y)>a == O.

Hence a'Ee6,a. And the commutativity oo' =a'ff is clear. Thus the proof is com-

pleted.

     For 1･t =: {V ;A""2 (y2) + AvX IriAr3 (y3) + 2FN2 (x2) + 2F'W3 (x3) I x2, x3, y2, y3 e 6} ,

the decomposition it= it+<Dit- as in Lemma 8 with respect to a' is given by

                 lt, = {V ijAI,(y,) + 2P`3(x3) 1x3, y3 G 6} ,

                 rt.. = {VfiAA'2(y2) + 2fi2(x2) Ix2, y2 G as}･

Therefore any ctEE6,a is represented by the form :

 a - exp(V=iA3(y3) + 2FN3(x3))exp(V=l[A2(y2)+2FN2(x2))fe, le E U(1)SPin(10).

   Now we shall calculate exp(VrlAN3(y3) +2F-"3(x3))exp(V :i.2i2(y2)+2FA'2(x2))Ei.

First of all, exp(VrlAN2(y) + 2?;'2(x))Ei is calculated as follows.

 exp(V=iA2(y) + 2fr2 (x))Ei

  = Ei + F2 (z) + 22! (<2, z>Ei + (z, z)E3) + 32! F2(<2, 2>z + (z, z) 2)

  + i/ (<z, z>2Ei + 2(2, z) <z, z>E3 + (g, z) (2, 2)Ei)

  + s4! F2 (<2, z>2z + 2(z, z) <z, z>2 + (z, z) (2, 2) z)

  + 68! (<z, z>3Ei+3<z, z>2(z, z)E3+3<z, 2>(z, 2)(2N, 2)Ei+(z, z)2(2, 2)E3)

                '
 +-t- -

                                                        n                     7t                     2 ] be the maximal integer not greater than 2 ,where 2 =x + Av"-=iN. Le't [
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[ : ]' =[ : ] for nttr2 and [ Z ]' ==1 for n-- O, 1. Then we have

            exp(V-A-'2(y2) + 2fa2(x2))Ei == 6(z2)Ei + v(z2)E3 + F2(u(g2))

 where s(z2)=S,=o (inn)! /ii.li/o(Eik)(z2, 22)h(22, 22)fe<z2, a2>n-2le,

                       t        rp(z2) = th,=o (22n")! Iirllli]o(-2' ile7g-i)(z,, z,)k+i(2,, 2,)k<z,, z,>n--2le-i,

        U(Z2) = iX,=, (2n 24'-'` 1) ! (X'=: ], (2nk) (z2, z2) le (22, 22)k<z2, z2>n"2 fez2 +

                [S' ]' -
              + il.lilo(2le n+ 1)(22, 22)h+i (22, 22)k <2,, 2,>n-2le-izN,), (z, = x, + vrly,).

                     -N -Li -N "wNext, we calculate exp(V-IA3(y3) + 2F3(x3))exp(V-IA2(N2) + 2F2(x2))Ei.

          ny tw iv -tW N     exp(-v' -IA3(N3) + 2F3 (x3))exp(tvi -IA2(y2) + 2F2 (x2))Ei

   == exp(VXA'W3(y3) + 2.Z73(x3))(e(22)Ei + ny(22)E3 + F2(u(z2))

    =8(g2)(g(23)Ei + v(2"'3)E2 + F3(u(zN3)) + rp(z2)E3 + F2(v(u(z2), 23)) + Fi(v'(z2, z3))

   where z, =x, + v::'i17y,, v(u(z,), z3) := ]S, l..l, (2i) ! (. .. (u(z,)2,)le,)zN,1`.,)a,

                                                     '
and v'(z2, z3) =k,=,(2nti)! E3 (･IIT･"(23(23czN'3u(22))･･･). Therefore from (s) we .have

     (u(22), zt(z2)) =6(22)?(72), e(22)2+Irp(22)I2-2<u(22), u(z2)> == 1,

     (u(23), tt(23))=6(23)q(23), g(23)2+]rp(23I2-2<tt(zN3), u(zN3)>= 1,

 (6) (v(u(z2), zs), v(u(22), 23))==g(z2)6(23)rp(z2),

     V(U(Z2), z3)U(zN3) =:6(23)V'(Z2, 23),

     -<U(Z2), U(22)>=-<V(U(Z2), 23), V(U(Z2), Z3)>+<V'(22, Z3), V'(Z2, 23)>.

                                                           t   We define mappings u: gC-$C and v( , zo): gC-ga respectively by

                                                 '
                     Xl-U(2), Zl-V(Z, 2o).

We shall show that the mappings u and v( , 2o) are both surjections. To do this,



we prepare the following elements exp(V=iAi(a)), exp(7i(a)) of the group E6,e

(i=2, 3, aEG).

   (i) exp(･v!-ANi(a))X(6, x) = Y(v, y)

  where rpih,. ei'i Iil ei'i + 6i-iiei"' cosh2ta1-V=i (aiafi) sinh2la1,

          rpi -- ei,

         ,7i., = gi-iIll 6i+i . ei-i Ii; ei+i cosh21a1+ Vq (aiaiiil sinh 2ia1,

                   '

        yi-i == xi-i coshlal +V=i all' sinh Ial,

          yi -- xi - 2(g'. Ili)asinh2ial +V=il (6i-i2ill.fi"`)"sinh 21a1,

        Yi+i=xi+i cosh1a1-V; Xi-aila sinhia1,

   (ii) exp(Fi(a))X(e, x) == Y(v, y)

  where rpi", .., ei-iggi+i + ei-i;ei+i cosh1aI+(aiafi)sinhlal,

  . 77i=6i,
        vi,,= - ei-i Il; gi'i + gi-i 21 ei" coshIa1+ (aiafi)sinhlaI,

              '
        yi", = xi-, cosh g + afiii sinh g ,

          yi = xi + 2(g '. 1{ `)"sinh2 # -i- (&"i21I.gi"`)a sinh lal ,

        Yi+i==xi+i cosh : + Xi-ai]a sinh : ,

                                                  sinh1a1
                                                          means O).(the indices are considered as mod. 3, and if a=O, then a
                                                    lal

   Lemma ZO. The maPPing u is onto.

                                               pmN --t   Proof. The Lie subalgebra b of e6,a generated by {V-IA2(y) +2F2(x)]x, y(ii 6}

is {V-IAN2 (y) + 272 (x) + tv=' lr(Ei - E3Tl x, yE 6, rE R} . Let H be the con nected

subgroup of E6,a corresponding to b. Then from [1] (6. 4. 6), we have {the F2-

component of h[Ei] l h E H} = {the F2-component of exp(V=I AA'2(y) + 2rwF2 (x)) [Ei] 1
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                                       ,x, yEQ}. By formal computation we have

            exp(?vf=NiAfi-2(y))exp(2fa2(x))Ei = 8iEi + g3E3 + F2(x2)

  where g'i= ; (cosh21xI+cosh2Iyl-V=1 l(yYi.f21 sinh2ix1sinh21yl),

        g3 = ; (cosh21x1-cosh21y1+v= l(yYife1 sinh2lxisinh2ly1),

         x2 == ; sinh 2]x1( l:l - l2ik. iY sinh21yD+V=2ry1sinh21y1･

                        x 2(y, x)yWe put a= ; sinh2Ixl (I.l - INI,. t.l sinh21yl) and b==:2ilyllsinh21y]･ If aJ7(: rb

for all rGR"=R-{O}, then there doesn't exist sER" such that x== sy, and then

        x 2(y, x)y
We haVe lxl - lyl2. Ixl sinh21Yl 7!:O･ Therefore for anybEiG, when we move x

for all points of 6, the point a ranges over all points of G-{rb]rEi! R'}. If a=rb

                                                                    xfor some rGR*, then there exists sER* such that x=sy, and then we have
                                                                   Ixl
  2(y, x)y .                                                      1                     s･y- ty12. 1.} SMh21Y] = l,i.Iyl (1-2 Sinh21yD･ Let sinh21yl = 2. Then there ex-

ists CER" such that lbl:=: C. Therefore when we move x and y for all points of

as, the point x2 doesn't range at most over {rb+ivi-lblrE! R", bGas, Ibl =C}, For

x==sy and w=ty (ye6, s, tcxR"), the F2-component y2 of exp(2FN2(w))exp(V-1

A2(y))exp(2ii2(x))Ei is given by

       y2 == 2iS,Yy1 (1-2sinh21y1)sinh21syI+ 2lttYy1 cosh2lsy1sinh 1tN1

           + Av/fi 2h sinh 2ly[ (1 + 2sinh2 1 ty1).

Therefore when we move yEas, s, tER*, the point y2 ranges over all points of

 {rb+,v/-lblreR*, bGas, lbl==g}. Thus we have {the F2-component of hEilhE

H}=EC. Similarly we have {the Ei-component of hEilhEH}==C. Therefore

these imply {the F2-component of exp(V -IAA'2 (y) + 2P2 (x>>Ei lx, y E S} == SC. Thus

the mapping u is onto.

    Let 2o=xo+Avi-lyo (xo, yo Ei E) be an arbitrary point of GC and fixed.

    Leixisna ll. The maPPing v( , zo) is onto.

                                              dN rw -    Proof. The Lie subalgebra of e6,a generated by {ivi-IA3(yo)+2F3(xo)} is {"vi-1

AN3(tNo) + 2iP 3(sxo) + tV -lr(Ei - E2Yl r, s, t G R*} . If xo and yo are both small eno-

ugh, there exist r, s, tER' such that

exp(VrlAN3 (yo) + 2i73(xo)) ; exp(V -IAN3(tyo))exp(2?73(sxo))exp(Vrlr(Ei - E2T/.



By formal computation for aE6C we have

     exp(V-IAA'3(tye)) exp (273(sxo))F2(a)

    =Fi( isaxX,Ol sinh1sxo1cosh1tyoI-V-'1 tlX,Ol coshIsxo1sinhityol)

                                           st(axo)yrmo
             +F2(acosh1sxo1coshltye1+V-1 gsx,1.1ty,1 sinhIsxo1sinh1tYo])･

                                                      '

If we put a=ai+V-la2 (ai, a2EQ) and the above F2-component==bi+V-lb2

(bi, b2 ffG), we have

                                 st(a2xo)yLo      Ibi =ai cosh1sxo1coshItyoi- 1sx,l.#y,1 sinh1sxo1sinh1tyo1,

      1b2 =a2 cosh1sxo1cosh1tyo1+ 1sSxt(,ali.XIOIy-t:1 sinh]sxolsinh1tyol.

Therefore these points bi+V-lb2 range over all points of asC independent of xo

and yo, when pointsamove all over 6C. On the other hand, it holds that exp
                      ,iJ --(V-lr(Ei-E2)-- )F2(a) := eL27/lai F2(a). Therefore points v(a, 2o) range over ail points

o'f EC. For not small xo, yeE6, there existaiarge integer n and srnall numbers

r, s, tE R" such that

exp(V-IAN3(yo) + 2F"W3(xo)) = (exp (V-IA'")3(tyo))exp(2'FV 3(sxo))exp (V-lr(Ei - E2'W )))n.

Similarly as the above argument, points v(a, 2o) range over all points of GC inde-

pendent of zo. Thus the mapping v( , zo) is onto.

   For 2 ='x+V-ly (x, yE! ng), g(z) is a positive real number and satisfies e(z)>

1op(2)1. Using the condition (6) we can put exp(V-IA3(y3)+2F3(x3))･

                             6v vx y

exp(V-IA2(y2)+272(x2))Ei by pt rp8' i y-x . Moreover from (6), we have

                                  1,
                             Y e pax v

       (x, x) == 46', g2+lg'12-2<x, x> == 1,     I (y, y) :=: 6vv', rp2 +1rp' 12 - 2<y, y> + e2, <yx, yx> ='=rm 1.

                                          '

These imply that e2 is a solution of the quadratic equation:



and from e>O

        1(7) 6==
vFif

Similarly q2 is

 On

and

bounded symmetric domains of

  X2 - (1 + 2<x, x>)X+ ] (x,

e2 ll 16' [2 we have

 exceptional

x)12 =O,

  Vl+2<x, x> +V(1+2<x, x>2-41(x,

    a solution of the quadratic equation

                     2                       <yx, yx>)X+   X2 - (1 + 2<Y, Y> -
                    62

rp>O and o2 }) lv'12 we have

x)l2

:

  1
    l(y,
 e2

type

       1, (8'= 6 (x, x)).

y) l2 =:: O,

83

and from

(8) ny=,.t'L2 1+2<N, Y>-gu22 <YX, YX>+V(1+2<Y, Y>-3, <Yx, yx>)2-grm4, l(y, y)l2,

         1            (y, y)).    (qr =
         eo

Thus we have

   Proposition 12. The homogeneous sPace E6,a/U(1)SPin(10) is homeomozPhic to

the sPace D:

D.. Pl z 7xX, x) i-t x-yl6[g.] x, yEtsc,gand ny are given by (7), (s)

      Ly iyx gliy,y)]

                     '                   '
   Proof. From the Preceding arguments (Lemma 10 and 11), the group E6,a acts

on the space D transitively. The isotropy subgroup of E6,o at [Ei]ED is U(1)SPin

(10). Thus E6,a/U(1)SPin(10) is homeomorphic to D.

   From now on, we identify E6,a/U(1)SPin(10) with D, and introduce the diffe-

rentiable and complex structure of E6,a/U(1)SPin(10) into D.

   g7. Harish-Chandra imbedding.

   Let itC be the complexification of it. We sha" decompose ttC into the ( ± ,vX-1)-

eigen spacesn!･ with respect to the complex structure f on it. Since this J is

- Z ,V -lad(2Ei - E2 - E3Y, for A'V2 (y2) + 143(y3) + 2,Zi`2 (x2) + 2ii)3 (x) E .itC we have

    fv ew N fW -N N fXJ rw  1(A,(y,) + A3(y3) + 2F2(x2) + 2F3(x3)) == tvX-1(A2(x2) - A3(x3) + 2F2(y2) - 2F,(y,)).

This implies



            it+ == {AAJ2(y) ÷ A[3(x) + 2ii`2(y) - 2i73(x) 1x, y E GC} ,

            it- = {A[,(y) + 2i,(x) - 2iP4,(y) + 2fa,(x) lx, NE EC}.

We define a mapping f: iL' ,[ENx] by

               f(N) - (exp lV) [E,] = [; (., X.) ttyy'

                                 Ly yx (y, y)

where N=2(2(y)+2[3(x)+2Fiv2(y)-21i73(x)En'. Therefore f is an injection. Let ¢

be the natural mapping of D :=] E6,a/U(1)SPin(10) into [g.] =:: E6C/UL

Then we have

   Lenirna 13. ¢(D) c f(it").

   Proof Let X= [i;Z Zi(xVyXxx) eirp (iy-Yynvyx)]be an arbitrary pomt of D

                           1 lu                    1 eX grpY

                   1" 1                                     1
Then we have ¢(x)= 6x 6, (x, x) g,rp y-t e[gx]. On the other hand,

                   111                                      (y, y)                             yx                     y                           e2rp                                   82n2                   6v

we have f(AN2( glv y)+AN3( i x)+2FN2( elrp y)-2F'V3( i x))=¢(x). Thus ¢(D)c

f(;1").

   From the above Lemma, we can define a holomorphic imbedding W' : D-it'

by
                                              . D.mo!L [B,il

               ¢(x)-f(T(x)) ･ ljxS./,M
for each XE D [2]. This imbedding T is called a Harish-Chandra. imbedding.

   Lemma 14. The imbedding T is gt'ven by

 T [: Z (il x) : yrm. 1 =- 2[2( ,', y)÷Abe3 (-l;-x)+2ii2( ,', y)-2i'3( i x)･

    Ly iyx ,',(y,y)J .
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   Proof is similar to that of Lemma 13.

   Let z be a natural mapping of it' onto 6CxasC defined by

               rc (A2(y) + A3(x) + 2F"J2(y) - 2fi3(x)) -r- (x, y),

and denote the mapping ffoep' also by T.

   Theorem Z5. The imbedding W' maPs D onto D(V) :

                  D(V) =[( f , ; )E 6C × QC lx, yE GC,

85

6- vl-2 "Vil + 2<x, x> + tN/ (1 + 2<x, x>)2 - 4 Kx, x) i2,

v= vl-2 Ve2 +262<y, y> -2<yx, yx>+ iV'(e2 + 262<y, y> -2<yx, yx>)2-462](y,y)l2i

Moreover D(V) is a bounded domain of QC × GC, since the imbedding T is hoiomo-
rphic.

proof. Let x= E-Z z li, x) iYy'r ED. From Lemma i4 we have

              [y i yx 6io (y,y)

T(X) =( f , 6Yv )･ Now we denote e? by rp, so ep"(X) ==( f, Yrp )Ei D(V). Con-

versely let (x, y)GD(V). If we put 2=(1+l(x, x)l2+1(y, y)I2+2<yx, yx>-

               nv1
2<x, x>-2<y, y>) 2, then we have

     [inf 2(:Xx) 2t2iY erD..d ur[i-. R(:Xx) Rt2."t ..(., y).

     Ldi Ry Zyx                  2(y,y) L2y Ryx 2(y,y)

Therefore T(D) == D(V).

   S8. Symmetric structure of D and D(V).

   Any point XffD is represented by (expN)[Ei] for some NEn. For N:=

 m"" --J rm AJ N twV-IA2(y2) + tv'-IA3(y3) + 2F2(x2) + 2F3(x3) Ei n, we have

       1,i-m, t ((exp tN)Ei - Ei) == NEi = F2 (x2 + V- ly2) + F3 (x3 - V=liy3).



Hence we can regard the space {F2(x) + F3(y)1x, yE 6C} as the tangent space Di

of D at [Ei]. Therefore the mapping :

      ii D vXAA'2(y,) + V-IArW3(y3) + 2.ZF2(x2) + 2P`3(x3) ,F2(x2 + V-ly2)

                        ÷ Fs(x3 - V-ly3) E Di

gives a Iinear isomorphism of n to Di.

   We define an inner product gi on Di by

            gi(X, Y)-6(<X, Y>+<Y, X>), X, YEDic5C.

For X :== F2(x2 ÷V-ly2) + F3(x3 -V-ly3), Y= F2(x2' +V-ly2') + F3(x3' - V-ly3')

EDi we have

           gi(X, Y)=48((x2, x2')+(x3, x3')+(Y2, JY2')+(Y3, Y3')),

hence using this gl we can define an Hermitian metric g on D (Lemma 4).

   Let X' be a representative element of the class XGD. We define a transfor-

mation si : D-D by si(X)=[aX']. For any X=(expN)[Ei]ED (NEn), we have

        si((expN)[Ei]) == [ff(expN)Ei] :a(expN)a[Ei] =a(expN)[Ei].

Therefore si is a symmetry at the point [Ei] (Lemma 4). For any X= (expNo)[Ei]

ED (NbGn), we define a transformation sx of D by

               sx((expN)[Ei]) == (exp2Ar6)(exp(-N))[Ei],

then sx is a symmetry at the point X. In fact, for (expN)[Ei]ED we have

        (expATb)si(exp(-Nb))(expN)[Ei]==(expNo)a(exp(-No))aa(expN)a[Ei]

             = (explVo)(expNo)(exp(-N))[Ei] = sx((expN)[Ei]),

so sx is a symmetry at X (Lemma 4).

   Thus we have following

   Theerem 16. (D, sl is a non-comPact Hermitian sNmmetric sPaee of tmpe E6.

   Remark. The compact dual space of D is [gi] = E6/U(1)SPin(10).

   From the symmetric structure of (D, gl we can induce a symmetric structure

of D(V) using the imbedding T.

   Now we shall consider the symmetric structure only at the origin of D(V).

For Ar = ,vi-IA'U 2(y2) + A/-IAfW3(y3) + 2FN2(x2) + 2,i53(x3) E rt, we have

  '
      l,it., lt (T((exptN) [Ei]) - ep-([Ei])) = (x3 - Vnyy3, x2 + tvt ;y2).

                                                    '

Hence we can regard the space {(x, y)a6C ×GCIx, yEQC} as the tangent space
D(V)o of D(V> at O. Therefore the mapping:
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ii ii) VrlA'V,(y2) + ,viXAN3(y3) + 2fa,(x,) + 2FN3(x3) . (x3-tvX=y3, x2 + VgY2) ff D(V)o

givesalinear isomorphism ofnto D(V)o. ,
   Let g' be the Bergman metric on D(V) and Il?b the restriction of gon D(V)e. Let

B be the Killing form of the Lie algebra e6,a. Then from [3] P. 397 we have gt=

 1   Bln. On the other hand, from Proposition 2Bln is given by
 2

       B(Ni, N,) -- g6((yl, y:)+(y:, y:)+(xe, x:)+(xg, xg))

where Ni = Avt=li]AI, (yS) t V=l[Al, (yg) + 2.Zi`, (xE) + 2,ii,(xg) E n (i -- 1, 2).

Therefore for (xi, yi) cr D(V)o (i =1, 2) gb is given by

       gb((Xi, Yi), (X2, Y2))=12(<Xi, X2>+<X2, Xi>+<Yi, Y2>+<Y2, Yi>).

This implies that the metric induced by g using the imbedding ep' coinside with g

   Let so be the symmetry of D(V) at Oinduced by (D, gi using the imbedding T.

For any point (x, y)ED(V) there exists XED such that ep'(X)=(x, y) (Theorem

15). Therefore we have

                 so(x, y) =- ep'(si(X))= ep'([aX']) =(-x, -y).

   Thus we have following

   Theorem 17. D(V) =-- (( f, -Y-v )e 6UxGCIx, yE asC,

g-
vi-,

     i
n = vli

is an

gt -glD(V)

D(V) are

 gb((xi, yi),

Vl ÷ 2<2x, x>+V(1+2<x, x>)2-41(x, x)12,

    Ve2 + 262<y, y> - 2<yx, yx> +V(g2 T 262<y, y> - 2<yx, yx>)2 -4e21(y, pt)l2]

 irweducible bounded symmelric domain of tmpe E6. in Particztlar, the restriction

      o of the Beitgman metric g on D(V) and the symmetry so of D(V) at OE

    given resPectively by

       (X2, Y2))=12(<xi, x2>+<x2, xi>+<Yi, ),2>+<Y2, Yi>), (xi, Yi) CID(V)o,

               so(x, N) ==(-x, -y), (x, y) Ei D(V).

             III. Beunded symmetric domain of type E7.

S9. ffermitian syinmetric pair of E7,e.

We define a linear transformation e of asC by



                      '
                    e(X, Y, e, rp)=:=(X, -Y, 6, -v),

and de'fine an involutive automorphism e of the group E7,e (which is a Cartan

involution) by

                          ea =ccrt, crEE7,e.

The clecomposition e7,t ==:fOn as in g4 with respect to e is given by

              t == {di(ip, O, O, p) E e7,t l ip E e6, pE C, p+ -p -- O} ,

              n = {ca(O, A, A, O) E e7,, l A ff SC} .

We denote the element di(O, A, A, O)Ge7,t by th(A) briefiy. We define an inner

prodtict g on n by

                    g( di (A), ¢(B)) - <A, B> + <B, A>,

and a linear transformation 1 of n by

                                      3                    f-addi(O, O, o, -                                        V-1).
                                      2

Therefore for each di(A) en we have

       f( di (A)) =- [di (o, o, o, - ; . Vg) , di (o, A, AH, o)] =- -,vXl l¢ (A),

so f is a complex structure on ii.

   Proposition 18. (E7,t, U(1)E6; e, g, D is an Higrmitian symmetric Pair of the

grouP E7,e.

   Proof. We shall check the conditions of Definition in g4. In [5] Proposition 12,

we have seen {aEE7,eleae=(u} =U(1)E6. Now obviously conditions (1), (2) and (3)

are satisfied. Instead of the first condition (4), it suflices to show that the inner

product g is adf-invariant. For di(A), di(B)En and di(ip, O, O, p) E{if we have

  g([di(¢, O, O, p), di(A)], di(B))+g(di(A), [¢(¢, O, O, p), ¢(B)])

  -g(di(¢A+ g pA), ¢(B))+g(di(A), op(ipB+ g pB))

  =<¢A+ Z pA, B>+<B, ipA+ : pA>+<A, ¢B+ g pB>+<ipB+ : pB, A>

  -: <¢A., B> + <A, ¢B> + <B, ¢A> + <¢B, A> == O,

so gis adf-invariant. And for di(A), di(B)En, we have
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         g(JT¢(A), 1¢(B))-g(-V-!¢(A), -Avi-1di(B))

                       -:<-,vi-1A, -,v,'-IB>+<-V-IB, -V-1A>

                       -:<A, B>+<B, A> ==g(¢(A), mp(B)),

and for di(¢, O, O, p) Ef and ¢(A)Gn

       faddi(ip, o, o, p)di(A) =-la>(diA+ g pA)-¢(-v=i(ipA+ : pA))

                          =addi(ip, o, o, p)la)(A).

Hence the condition (4) is satisfied. Thus the proof is completed.

   From Lemma 4 and Proposition 18, we see that the homogeneous space E7,e/

U(1)E6 has a structure of an Hermitian symmetric space.

   glO. Realization of the symwaetric spaee E7,e/U(1)E6.

   The space [swli] has a differentiable structure induced by that of the manifold

EI)2i, because on the manifold EMi the group U(1) acts freely.

   Proposition 19. The homogeneous sPace E7/U(1)E6 is dzffleomorphic to the mani-

fold [EMi].

   Proof. From [4] Theorem9, the group E7 acts on the manifold EMi transitively

(and differentiably). On the other hand, the isotropy subgroup of E7 at [1]E [EMi]

is U(1)E6. Thus E7/U(1)E6 is diffeomorphic to [EZJ?i].

   Lemma 20, The grouP E7C acts on the sPace [S)?C] transitively. Let U be the

isotropy sblbgrouP of E7a at [1]E[M?C]. Then lhe homogeneobls space E7cyU is

homeomorphic to the sPace [EIJtC].

   Proof is similar to that of [5] Theorem 7.

   From now on, we identify E7(llU with [2IIJIC] and introduce the differentiable

and complex structure of E7C/U into [EMC].

   Now, we shall realize the symmetric space E7,e/U(1)E6. Any element of the

group E7,t leaves the manifold E[VZC and the inner product <P, Q>e invariant. There-

fore E7,e acts on the space 2IJ}e and [EMe] (however not transitively).

   For a(i! C, we define an element ai(a) of E7,t by

                                 sinh1ai                                                         sinh1a1
            1+(coshlal-1)Pi 2a- l.l Ei O " lal Et

               2a Si:h. 11 al Ei i+ (cosh Lal-opi di Si ilh. 11al Ei o

   ev1(a) =
                                 sinhlal
                   O a la] Ei coshlal o
                - sinhia1
                        Ei O O coshlal                a-                   la]



       == exp di(aEi)

where the mapping Pi: 5C +3C is defined by

               P'(il lgi,:,i')=(li ltO;)

and the action of cri(a) on asC is defined as simiiar to that of cb(aEi). Similarly we

can define elements a2(a), ev3(a) of E7,t [5].

   In order to find a realization of E7,e/U(1)E6, we prepare a few Lemmas.

   Lemma 21, The isotroPy subgrouP of the grouP E7,t at [1]E[SVIt] is U(1)E6.

   Proo£ From [5] Theorem 5, we have E7,t=U<1)E6exp(n), i. e. , any ctE!Ezt
has the form

               ev = 0P exp di (A), eE U(1), PE E6, AE SC.

Since Ae $C can be transformed in a diagonal form by a certain element P' G E6 :

       ai o o
P'A=
( g g2 a2 ), ai Ci C, we have a == eBP'-ievi(ai)ev2(a2)cr3(a3)p'.

Therefore we have

cr[1] = ePP''iai(ai)a2(a2)ct3(a3)P'[1] -- ePP'-'ai(ai)cr2(a2>a3(a3)[1]

            coshlaila-2Si?ha,lf21a"'3Siilha,lff31 o o

= o-'pp'-' o a-iSlilha,1ffiicoshla21at'3SiillatY31 o

                      o o a'riSiillatlff'la-2Si:latl121coshla3I

            ai Si:latli 'lcoshla21coshla31 O O . "

                                    sihh1a21
  +0TII)l3'-i O coshlai]a2 1a,l coshla3i O

                                                          sinh1a31
                      o o coshlailcoshla2ia3                                                            1a3i

                                              '
  + 03cosh1ai1coshla21cosh1a3l + (e"3a-iSiillatlfilam, Si?latlF21a-, Sii:l13 1) "]

tf.f,5t],,ig,5ik, `kie,." .W8,}'2Vf,g,1 =.a,2 ,rm'.g3,==.O,1,}m{{-eene. a = op E u(i)E6･
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    Lemma 22. The grouP E7,e acts transitively on D :

           D-{[X, Y, e, v]E[sw2e]1 1<Y, V>1<lel for all Va$i}.

   ProoL LetP=L-[X, Y, se, ny]ED. From tlie definition of D, we have se:7kO,

            11hence P=[e YxY, Y, g, e, detY], Transforming Y in a diagonal form

rpiEi + rp2E2 + rp3E3 (rpi E C) by a certain element rPT E E6, we have

    pp=:=[ S('71ol'73 i7:,,7, ,78,7,)+(ioi' )07o2 ,70t, )e+(l+(,.1, ,7i)72)73)e .

Therefore PP E [EMt] implies

             (1- ll?7ge2 )(1- ll'7e2Ll,2 )(1- lt'7e31122 )= Icl:12 . (i)

On the other hand, Yand e satisfies the condition 1<Y, V>1<lel for all VESi.

Hence we have I<rpiEi+rp2E2+rp3E3, V>i<igl for all VE£Si (Proposition 6), espe-

1:a-a/fii¥.l;,"l.E,i,',,rpjE,2.".'g3E,3l.//)iill?',i,`,l61,,lfi.l.',li,ii,,21･.3',,,NO,"21,W=e,8,aew,i't.,//'i.:

coshla3I. Therefore we have

           coshjaiiaH., Silll:i,lfa21a-, Sill:,1 [a3I o o

p= p-' o a-iSiilah,lcailcoshla21a-3Si:i,lla31 o

                     o o a-iSii]ah,l laiia-2 Siilki,lta21coshlaBl

           ai Siilah,l lailcoshta2tcoshTa3i o o e

                                    sinhla2l
                                           coshla31 O   +7p-i O coshiaila2                                      1a2I

                                                              sinh1a31
                     o o coshlailcoshla2Ia3                                                                ia31
                        '
   + coshlai1'cosh1a2Icosh1a3i + (a-iSii:ii ila-2 Sitl2,l ai 21a--,Siillvi,l ai 3l)e]

   =P-ievi(ai)a2(a2)cr3(a3)[1].

Conversely iet aEE7,t. a[1] has a form appeared in the proof of Lemma 21 and



we denote it by [0"iPP'-iX, 0rPP'-iY, e, v] briefiy. Hence this impiies 1<0rPP'-'Y,

V>l = KY, P'PniV>l$max (sinhlailcoshIa2lcoshIa3l, cosh1aiIsinhla2IcoshIa3l,

coshiailcosh1a21sinhia3i)<coshlailcosh1a2Icoshla3i=I61 for all VEgi. Therefore

a[1] G D. Thus Lemma 22 i$ proved.

   Thus we have
   Prepesitiom 23. The homogeneotts sPace E7,t/U(1)Ee is ho7neomo7tPhic to the sPace

D={[X, Y, 6, rp]E[SMe]H<Y, V>1<l61 for all VG3i}.

   Preof. The group E7,t acts transitively ofi D <lemma 22) and its isotropy sub-

group of E7,t at [1]ED is U(1)E6 (Lemma 21). Therefore the homogeneous space

E7,e/U(1)E6 is homeomorphic to D.

   From now on, we identify E7,t/U(1)E6 with D aiid introduce the differentiable

and complex structure of E7,t/U(1)E6 into D.

   gll. Harisih-Chamdra ivabeddimg.

   Let nC be the complexification of n. We shall decompose nC into the (±V-1) -

eigen spaces n± with respect to the complex structure J on n. Since this J is
              3addi(O, O, O, - 2 tv'-1), for di(O, A, B, O)EnC we have

               !d)(O, A, B, O)= di(O, -,vt-IA, V-IB, O).

                                      '
This implies n" ={di(O, O, B, O) Ee7CIBESC} and n" ={di(O, A, O, O) Ei e7elA (ii gC}.

   We define a mapping f: n' F[EPZC] by

       f<di(O, O, B, O))- (expep(O, O, B, O))[1] == [B ×B, B, 1, detB],

Hence fis an injection. Let ¢ be the natural mapping of D=E7,e/U(1)E6 into

[£VZe] =E79U. Then we have following

   Lemma 24. ¢(D)cf(n').

   Preof. For any P := [X, Y, e, rp] =[ t Y× Y, Y, 8, el, det Y] E D, we have

sb(p) =-[ el y× y, y, e, gl, det y] -[ el yx y, g y, 1, el, det y] ==: f( di (o,

    1O, 6 Y, O)).

Thus ip(D) c .f<n').

   From the above Lemma, we can define a holomorphic imbedding T: D-n'

               ip(p)=f<T(p)) ")l)×.,S/l/

for each P Gi D [2]. This imbedding W is calied a Harish-Chandra imbedding.

   Lernma 25. The imbedding T is given by
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                               1             'ca'([x', y, g, rp])=di(o, o, 6 y, o).

Proof is similar to that of Lemma 24.

LetTbeanatural mapping of tt'" onto SC defined by rr(¢(O, O, B, O)):=B, and
denote the mapping ToT also by llr.

  Theorem 26. The imbedding Zff maPs D onto D(YI) :

           D(VI)={ZEgel 1<Z, V>K1 for all VEEji}.

1va)reover DCVI) is a bounded domain of SC, since the imbedding ep' is holomorphic.

  Proof. Let P =[ i Yx Y, Y, g, gl, det Y] E D. Then it holds

                KY, V>1<lel for all VGgi.

This implies

          'ca'(P) :=: i Y, l< i Y, V>1<l for all VEgi.

Therefore T(P) GD(VI). Conversely let ZED(VI). Transforming Z in a diagonal

form PZ== agiEi+(2E2+(3E3 (giEC) by a certain element PGE6, we have

              <Z × Z, Z× Z> - <Z, Z> +1- 1detZl2

             - <pz × pz, pz × pz> - <pz, pz> +1- 1det pzl2

             = (1 - 1(112)(1 - 1Ci2I2)(1 - 1CI3i2).

From Proposition 6, ZED(VI) implies ICi1<1 for i--1, 2,, 3. Therefore we have

            O< <Z × Z, Z× Z> - <Z, Z> +1- idetZl2;Sl1

If we put e= (<Z × Z, Z× Z> - <Z, Z> +1- ldetZl 2) 't and P == [6Z × Z, eZ, g,

gdetZ], then we have PED and T(P)=Z. Therefore T(D)=D(VI).

  g12. Symmetric structure of D and D(Vif).

  Any point PED is represented by (expdi(A))[1] for some AegC. For di(A)E

it, we have

           l,iin, it ((exp top (A))i - i) - di(A)i == (o, An, o, o).

Hence we can regard the space {(O, X, O, O)ESI3CIXESC} as the tangent space

Di of D at [1], Therefore the mapping :



                       ni¢(A)-(o, A, o, o)GDi

gives a Iinear isomorphism of it to Di.

    We define an inner product gt on Di by

             gt((O, X, O, O), (O, Y, O, O))=18(<X, b+<Y, X>).

Using this gi we can define an Hermitian rnetric g on D (Lemma 4).

    Let P' be a representative eiement of the class PGD. We define a transfor-

mation si : D-D by si(P)=[tP']. For any P==(expop(A))[1]6D (A Ei gC), we

have

         si((exp di(A))[1]) =- [e(exp(A))1] =:= c(exp op(A))e[1] = e(exp ¢(A))[1].

Therefore si is a symmetry at the point [1] (Lemma 4). For any P == (exp¢(A))[1]

GD, we define a tyansformation sp of D by

                sp((exp op(B))[1]) = (exp op(2A))(exp ¢(-B))[1],

then sp is a symmetry at PGD. In fact, for (expdi(B))[1]ED we have

    (exp di(A))si(exp ¢(-A))(exp mp(B))[1] :::: (exp ip(A))e(exp di(-A))ee(exp di(B))e[1]

  = (exp di(2A))(exp op(-B))[1] =- sp((exp di(B))[1]),

so sp is a symmetry at P (Lemma 4).

   Thus we have following

   Theorem 27. (D, g) is a non-comPact Hermitian spammetric sPace of tmpe E7.

   Remark. The compact dual space of D is [sw2i] = E7/U(1)E6.

   From the symmetric structure of (D, g) we can induce a symmetric structure

of D(Vl) using the imbedding epi.

   Now we shall consider the symmetric structure only at the origin of D(VI).

For AESC, A is transformed in a diagonal form PA ==aiEi+a2E2+a3E3, PGE6

(aiEC). Hence we have for tEiR

  ep'((expt¢(A))[1]) = rP-'( 1Zi ] tanht1ailEi + 1ZI 1 tanhtia2 IE2 + 1:l] tanht1a3 1E3).

Therefore this implies

                  1,itb l (ep"((exptdi(A))[1])-T([1]))-AM,

and we can regard the space Sa as the tangent space D(VI)o of D(VI) at O.

Hence the mapping: '
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                      it E di(A) -A E D(VI)o

gives a Iinear isomorphism of it to D(VI)o.

   Let g be the Bergman metric on D(Vl[) and gt the restriction of g on D(VI)o.

Let B be the Killing form of the Lie algebra e7,t. Then from [3] A 397 we have

     1
gb :=: 2 .Bi;i. On the other hand, from Proposition 3,Blii is given by

                                    '
                  B(di(A), di(B))-36(<A, B>+<B, A>).

Therefore for X, YED(VI)o gb is given by

                    gt (X, Y) - 18(<X, b + <Y, X>).

This implies that the metric induced by g using the imbedding T coinside with g

   Let sHo be the symmetry of D(Vl) at O induced by (D, g) using the imbedding

epL For any polnt ZGD(VI), there exists PED such that ep-(P)= Z (Theorem 26).

Hence we have

                    so(Z) =L' W'(si(P)) =- T([eP']) = -l

   Thus we have following

   Theorein 28. D(Vl):= {ZEgCH<Z, V>l<1 for all VEgi} is an irredztcible

bounded symmetric domain of tyPe E7. kt Particular, the restriction gib =:]glD(VI)o

of the Bergman metric g on D(VI) and the symmetry s-o of D(VD at OED(VI) are

given resPectively by

            gt (X, Y) =:= 18(<X, Y> + <Y, X>), X, YE D( VI)o,

                   g,(Z) ==] -Z, ZE D(VI).

   Acknowledgement, The author would like to thank ProL Ichiro Yokota for his

many advices on this work.
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