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It is known that there exist two bounded symmetric domains of exceptional
type up to holomorphic diffeomorphism. One of them is of 16 dimension (called of
type Es) and the other is of 27 dimension (called of type E7). M. Ise [7] and M.
Koecher [8] gave a realization of type Es (resp. type Ev) as a bounded domain of
GC X 6C (resp. J0), using eigenvalues of Hermitian mappings.

In this paper we give these another realizations. For this purpose, first we
find a realization D of the non—compact Hermitian symmetric space Es,o/U(1) Spin
(10) (resp. Enr./U(1)Es) and then give the Harish-chandra imbedding ¥ : D — @€ x @€
(resp. IC€). By the images of these imbeddings ¥ we can realize the symmetric
space Eso/U(1)Spin(10) (resp. E+/U(1)Es) as a bounded domain in the vector
space GC x € (resp. JC). As consequence of these results, we have our main
Theorems 17 and 28.

I. Preliminaries,
§1. Cayley algebra ¢, Jordan algebra J and Freudenthal’s manifold 9RC.
Let ¢ denote the Cayley division algebra over the field of real numbers R.

This algebra € has a basis {eo, ei, e2,..., er} with the el
following multiplication relations :
=1, e:=-1,i=1, 2,..., 7,
eiej= —eje;, 1574, 1, =1, 2,..., 7, €2 e €7
€162 = €3, €285—€1, €462 = E6,...
Let €€ be the complexification of € over the field of co-
mplex numbers €. In §C, the inner product (x, y) and the €y s €6

positive definite Hermitian inner product {x, y)> are defined
respectively by

(x, v :%@y—!—‘yx} (x is the conjugate of x with respect to @),

X, w=I(% ¥ (% is the conjugate of x with respect to C),
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and we denote (x, x) by |x]? briefly.
Let &
matrices X with entries in € :

&1 a3
=XE, x)=|x &
X2 X1

with respect to the multiplication X oY:—;—

of &

product <X, Y>, the crossed product X XY,
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=J(3, @) denote the exceptional Jordan algebra of all 3 x 3 Hermitian

X1

&

, GieR, i@

(XY 4+ YX) and 3¢ the complexification

over C. In JC, the inner product (X, Y), the positive definite Hermitian inner

the cubic form (X, Y, Z) and the

determinant det X are defined respectively by

3
(X, V) =tr(XoY) = Z‘, Eini + 2xi, i),

X, Yo=0X, Y)

X><Y=-1—
2
X, Y, Z)=(XxY, Z)=

detX:—é—(X, X, X)

where X =X(&, ), Y=Y, 9),

=X, Y),

(2XoY —tr(X)Y — tr(Y)X + (tr(X)tr

¥) - (X, Y)E),

X, Yx2),

}C —QC is the complex conjugation (zX is often

denoted by X) and E the 3 x 3 unit matrix.
Let 3. be the totality of 3 X 3 skew—Hermitian matrices A with entries in @ :

21 as —a
A=| —as 22 ai
a: —ai Z3

and 3-€ the complexification of J..

For X Q¢ and A€ ¢, we define mappings X, A :

X(Y)=XoY,
AY) =

In$§

[A4, Y]=AY—-YA,

, 2i, aie @, z2; = —

QC — QJC respectively by
Yege,

Yegt

Q¢ and 3-¢ we adopt the following notations :
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1 0 0 0 0 0 0 0 O
Ei={0 0 0|, E2=[0 1 0, Ea=l0 0 0|,
0 0 0 0 0 0 0 0 1
0 0 0 0 0 % 0 x 0
Fix)=10 0 x|, Felx)=0 0 0|, Fs(x\=|% 0 0 |,
0 x 0 x 0 0 0 0 O
0 0 O 0 0—y 0 ¥ O
A ={0 0 y [ AO)=(0 0 0| Al={—-3 0 0
00—y 0 y 0 0 0 0 0
We define a mapping ¢ : J€ —3C by
&1 x3 X2 &1 —X3 — %2
gl X & x|=|—% & m
X2 X1 & —%x2 Xt &

and an inner product <X, Y>s on 3C by
X, Yoe=(aX, Y.

Now, we define subspaces Jx, 3t and Js of JC respectively by
Fx ={XeJC|XxX =0},
J=XeJ|XxX=0, <X, X>=1},
Yo ={XeJC|XxX=0, <X, XDe=1}.

And we define equivalence relations ~ in Jx, &t and Js as follows.
For X, Y& 3y,

X~Y <<= X=Y for some {eC*={{aC|{£0},
and for X, Y 31 (similarly for Jo),

X~Y &= 0X=Y

for some 4 U(l) ={6=C|l6|=1}.

We denote the totality of equivalence classes of these spaces by [Jx], [31] and
[3e], respectively. For X € 3y, we denote its equivalence class by [X] € [3x] and

SO on,
We define a 56 dimensional vector space € by

B = DICDCDC.

In BC, the positive definite Hermitian inner product (P, @)>, the skew-symmetric
inner product {P, @)} and the inner product <P, &). are defined respectively by
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P, @=<X, Z>+<Y, W)+& +7o,

P, =X, W)—(Z, YV)+éo—{,

P, @c=LX, Z)—<Y, W)+ & — 7o
where P=(X, Y, & 7) and @ =(Z, W, {, ). An element P=(X, Y, &, 5 %¢
is often denoted by P =X ++ Y + &4 briefly. For example 1=(0, 0, 1, 0), 1= (0,
0, 0, 1).

We define subspaces SRC (called a Freudenthal’s manifold), 9% and M. of BC
respectively by

ME={P=(X, V, & ) EBC|X x X=9Y, VX Y =¢£X, (X, Y)=38, P40},
W= (P e MC|<P, P>=1},
M = (P = ME|<KP, PSo=1).

And we define equivalence relations ~ in 9RC, P ad 9. as follows.
For P=(X, Y, & 7), Q€ BC, in 9RC

P~Q & (aX, aY, a&, ap) =@ for some a s C*
and in i (similarly in 9R.)
P~Q <= (0X, 0Y, 05, Op) =Q for some 8 U(1).

We denote the totality of equivalence classes of these spaces by [IR€], [94] and
[9%.], respectively. For (X, Y, & »)edMC, we denote its equivalence class by
[X, 7Y, & 7] (or [X+Y+&+7]) e [MC] and so on.

§2. Lie groups Es, Eso of type Es and their Lie algebras es, ¢, [10], [12].

A simply connected compact simple Lie group Es of type Es is defined to be
the group of linear isomorphisms of (€ leaving the determinant detX and the
Hermitian inner product <X, Y) invariant :

Es={aeIsoc(QC, J0)|detaX =detX, <aX, a¥)>=<LX, Y)}
={a e Isoc(QC, J0)|aX X aY =car(X X Y), {aX, a¥)>=<X, Y>}.

A connected non-compact simple Lie group Ess of type Esc-14) is defined to be the
group of linear isomorphisms of Q¢ leaving the determinant detX and the inner
product <X, Y)s invariant :

Es,o = {acIso¢(JC, J0)|detaX =detX, <aX, a¥d, =<X, YD
={a e Iso¢(JC, JC)aX x aY =zoasr(X X Y), {aX, a¥ds=<KX, Y)s}.
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A subgroup U(1) of the group Es s defined by
0% Oxs 0%
U)=1{ ¢ (0) ] (0)X(E, x) z(é’is 0728 07%x: ) 0 U(1)

Ox2 07%x1 072

is isomorphic to the group U(1), and we identify U(1) with U(1). A subgroup
H={asFEs«|aE1 = E1} is isomorphic to the spinor group Spin(10), and we identify
H with Spin(10). These groups U(1) and Spin(10) are also subgroups of the group
Es. The group Es s has the following polar decomposition :

Ee,0 = U(1)Spin(10) x R

where a subgroup U(1)Spin(10) of Ese is isomorphic to the group (U(1) x Spin(10))
/Zu (Zs={(p(1), 1), (p(—1), —l),‘(¢(«/:1~), —/=1), (p(—+/=T1], &/—D)).
A connected complex Lie group Es€ of type Es is given by
EoC = {a = Isoc(QC, JV)|detaX =detX},
and its Lie algebra e is

¢ = {¢ € Home(QC, 019X, X, X)=0}.
~ ~ . 3
Let ®o be a Lie algebra generated by {ziE:1+ z:E: + z3Es|z; €6, z; = —Z;, Z‘,z,- =0}
=1
and DoC the complexification of ©o. Then ¢€ has a decomposition as a vector space
¢6C = DoC + {As(y1) 4 Az(y2) + As(ys) | y; € 6€} + (X | X €I, tr(X) =0).

For A, A;e3-C={A3-Clir(A)=0}, X, X;eZ3l={XedCtr(X)=0}G=1, 2),
the Lie bracket on e is given as follows.

[A, Av]=[A1, AJ, [%, % :—%[Xl, X7

[4, X]=TA4, X1
The Lie algebras ¢s and ¢+ of the groups Es and Ese are respectively
= {p € esCl{pX, V> +<X, ¢¥>=0},
ts,0 = {p=esC|<pX, Yo+ <X, ¢¥YDs=0}.

The automorphism group Fy of & is a simply connected compact simple Lie group
of type Fu:

Fi={aclsor(S, J)la(XeoY)=aXoal},
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and its Lie algebra f: is
fi={0 € Homg(J, J)|0(XeY)=08XoY -+ XodY}.

Any element ¢ of e is represented by

g=06++/—1X

where d € f: and X € Jo = {X € §|tr(X) =0}. And any element ¢ of ¢s,0 is represented
by

0 N —lys —a/—1F2 N —1& X3 X2
g=d+| —/=13: 0 T TR R Y S R A T
W =1y —a/ =17 0 X2 N 1% o1&

3
where d € Do, %, y; €6 and &€ R, D )&=0, i=1, 2, 3.
=

Now we shall calculate the Killing form of ¢¢. To do this, we prepare the
following

Lemma 1 ([17] P. 36). Let 6C be a simple Lie algebra over C and B the Killing
Jorm of §C, If B' is a nondegenerate symmetric bilinear form on 6C and invariant
under the adjoint vepresentation ad of 9C, then therve exists ¢ € C such that B=cB'.

From [67] Proposition 1, a set {{X, Y]|X, Y Q¢ generates {:«€ (which is
the complexification of fi) additively. Hence we define an inner product on f€ as

follows. For o1= Ei [5(:,', ?,':], 02 = Zj I:Zj, VNV]:I € .C,

@1, &)= > X:, Vi1 W;, Z)).

i J

From [67] Proposition 2, this inner product (31, &) is symmetric and independent of
expressions of 91, d. Since any element ¢ of eC is represented by

¢=37 +X , 60, X e €, we define an inner product on ¢€ by
(P1, ¢2) = (01, &) — (X1, Xo)

where ¢; = d; +X:,i=1, 2
Proposition 2. The Killing form B of eC is given by

Blg1, ¢2) = —12(¢1, ¢2) &1, g2 € el

Proof. First we show that the inner product (g1, ¢) is adesC~invariant.

For ¢=0+X, ¢gi=0;+X; 0, ;= 1€, X, X;&XC, i=1, 2), it holds that
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[, ¢, ¢o) = (00, 3] +[X, X+ (6X0) — (0X), &+ Xo)
=([0, 6+[X, X1, &) — (63X — 0 X, Xo)
=—(@, [3, o) — (X1, 8:X)+ (X1, 6X2) — (31, [X, X2))
=@+ X1, [5, 8] +[X, X2+ (0Xe) — (@3X)7)
=—(¢, Lo, =),

i. e., the inner product (¢:, ¢=) is adeeC~invariant. Therefore from Lemma 1,
there exists ¢ € C such that B(gi, ¢2) = c(ds, ¢2). we can determine ¢ = —12 putting

h1=¢p2 = Ez(l) = —4[51, ﬁ‘z(l)] Thus B{g1, ¢2) = —12(¢1, ¢2).

§3. Lie groups E:, E-. of type E; and their Lie algebras er, ¢, [4], [5].

A simply connected compact simple Lie group Er of type Er is defined to be
the group of linear isomorphisms of B¢ leaving the manifold INC, some skew-—
symmetric inner product {P, @} and the Hermitian inner product <P, @ invariant:

Ev = {a € Isoe(BC, PBO)|agnC =MC, {al, al) =1, <aP, a@Q> =<P, Q>}.

A connected non-compact simple Lie group Ev,. of type Euw-25) is defined to be the
group of linear isomorphisms of ¢ leaving the manifold INC, some skew—symmetric

inner product {P, @} and the inner prodcut <P, @>. invariant :

Eq, = {a € Isoc(BC, BO)|ainC =ME, {al, al) =1, {aP, a@>. =<P, Q.

B 0 0 0
L. 0 =z 0 O

A subgroup H={a& Ery/lal=1, al=1} =(B= ge s
0 1 0
0 0 0 1

is isomorphic to the group Es, hence we identify H with Es. A subgroup U(1) of
Es,. defined by

510 0 0
0L 0 0

U ={0= 6cU)
0 0 # 0 J
0 0 0 0

is isomorphic to the group U(l), hence we identify U(1) with U(1). These groups
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Es and U(1) are also subgroups of the group Ew The group E7. has the following

polar decomposition :

E7,.>=U1)Es X R*

where a subgroup U(1)Es of Er,. is isomorphic to the group (U(L) X Ee)/Zs
(Zs={(1, 1), (@, al), (e? 1)}, 0E€l, o*=1, 071).
A connected complex Lie group E-C of type Ev is given by

EiC= {aclsoc(PC, PO)|lamC=MC, {(aP, aQ}={P, Q}}.

We define a bilinear symmetric mapping X : $EX PC-ICHICPC by

X Z 2X X Z—9W — Y
Px@Q= ? X ZV = 2Y X W—&Z—¢X
7 ) (X, W)+ (Y, Z)—3¢En+Ly

The Lie algebra ¢:€¢ of E:€ is .
¢ = (@ € Home (¢, BC)|OP x P =0 for all P M, (@1, 1}+{1, O1} =0}
and any element @ of ¢:C is represented by the form :

6——L o1 9B 0o A

3
.
o=0(p, A, B, o=| 24 #Ht—pel B0
0 A P 0
B 0 0 —p0

where ¢ € ¢sC, ¢' is the skew transpose of ¢ with respect to the inner product
X, V): (X, VV+ (X, ¢'Y)=0, A, BeQ’, peC and the action of @ on PC is
defined by

BX ———pX +2B X Y+ 74

X
e
op, A, B, | ¥ |=|2AXX+¢Y+——pY+¢(B |
&

(A, Y)+ ot
7 (B, X)— oy

For @; = ®(¢;, A;, B;, pi)eeC (i=1, 2), the Lie bracket [@:, @] is given by

[D(p1, A1, By, p), @lpe, Az, Be, p2) =@, A, B, p)
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D ={¢1, ¢o] +241\/ B: — 24:\/ By,
2 2

A= (¢1 3 o11) Az — (g2 + 3 p:l) A,
, 2 ; 2
B= (' — 3 pil)Be — (¢’ — 3 021)B1,

p=(A1, B)— (B, A

where (A\/B) (X) :%(B, X)A +~é—(A, BX —2B % (A% X).
The Lie algebras ¢r and ¢7,. of the groups Ev and Eu,. are respectively
tr={@ € &:C[<OP, Q)+ <P, 0Q> =0},
tr,e ={@ € &:C|<OP, Q)+ <P, PQ).=0}.
Any element @ of ¢r is represented by
O=0(p, A, -4, p), ¢, ASQC, peC, p+p=0,
and any element @ of ¢, is represented by
O=0(p, A, A, p), ¢, A=IC, peC, p+p=0.

Now we shall calculate the Killing form of ¢:¢. We define an inner product
(@1, @) on &€ by

(D1, Do) = 2(p1, ¢p2) —4(A1, Bo) —4(A2, Bi)—

8 102
3 p1P
where @; = @(¢;, A;, Bi, pi), i=1, 2

Proposition 3. The Killing form B of &€ is given by

B(@l, @2):—9(@1, (pz), @1, Dre¢,C,

Proof. First we shall show that the inner product (@:, ®:) is ade.C~invariant.

For @ =@(¢, A, B, p), 0;=0(¢;, A;, Bi, pi), i=1, 2, it holds that
([0, 0.7, 02) = 2L, ¢i]+2AN Br —24:1\/ B, ) — AlpAs +—§~pA1 —5A

2

8
3 plB) ——5—(14, Bl)pz

g oA, Ba) — 4(As, ¢'Bl—%p31—¢1'3+
8
—{-—3*-(3, A1)p2

= —2p1, [§, 2]+ 24\ Be— 242\/ B) + 4(A1, ¢'Be
€3

2
3

2
3

——g—sz ' B2 0uB) + 4(pAs +-§—pAz —pA—2 A, B)
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8
3

((+) (¢, AV B)=—(pA, B)),

-

2 pi(A, B~ (B, A2 = —(@1, [®, @7))

i. e., the inner product (@1, @) is ade:“~invariant. Therefore, from Lemma 1
there exists ¢ € C such that B(®:, @) = (P, §2). We can determine ¢ = —9 putting
D=0, =00, 0, 0, p)= :C. Thus B(@:, ©:) = —9(D:, ©s).

§4. Hermitian symmetric pair.

Let G be a connected Lie group, K a subgroup of G and s an involutive
automorphism of G. Let ¢ be the Lie algebra of G. We decompose § as a vector
space using the differential of s (which is also denoted by s) into

g=f@n

where f={Xe¢|sX =X} and n ={Xcg|sX=—-X}. Let g be an inner product on
n. Suppose that n has a complex structure J.

Definition ([117). The connected Lie group G has an Hermitian symmetric pair
G, K; s, g J)if and only if

(1) s is not identity.

(2) K is a closed subgroup of G such that (Gs)e © K C Gs, where Gs is the set
of fixed points of s and (Gs)e is the identity component of Gs.

(3) AdK is a compact subgroup of GL (8) (where Ad is the adjoint representation
of G).

(4) g is a positive definite inner product on n satisfying

gAdRX, AdRY)=g(X, Y), keK, X, Yen,
gUX, JY)=pX, V), X, Yen,
JAdn k) ={Adn R)J, ke K.

Lemma 4 ([11] P. 117). Let G be a connected Lie group and has an Hermitian
symmetric pair (G, K; s, g, J). Then the homogeneous space G/K has an Hermitian
symmetric structure.

We shall construct Hermitian symmetric pairs of the groups FEses and Ev,.

respectively later on. As the results, we see that the homogeneous spaces Es,q/U(1)
Spin(10) and Er,./U(1)Es have Hermitian symmetric structures.

II. Bounded symmetric domain of type s,

§5. Hermitian symmetric pair of Ejo.
We define an involutive automorphism ¢ of the group Es,s (which is a Cartan
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involution) by
o = odo, ac Es,o.

The decomposition ¢s,c =f@n as in §4 with respect to ¢ is given by
- . _ 3
t=Do+{Ai(y)|y € 6} + (/ —LEE: + &Ez + &Es + Fu(x)) |6, € R, D)6 =0, x€6),
i=1

n= {«/—_112{’2()’2) -+ «/L-—lz‘Ta(ys) -+ 2?2(&62) -+ 2F3(x:a) |22, x3, ¥2, ys € @).

We define an inner product g on 1 by

g/ —14x(y2) + o/ —1As(ys) + 2F(w2) + 2Fs(2), &/ —1Aa(32') -+ o/ —1As(ys")
+ 2F‘2($\72') -+ Zﬁa(xa')) = (y2, ')+ (y5, ys') + (x2, x2’) + (x5, x3"),

and a linear transformation J of n by
2 — ~
J= —Tv~1 ad(2E1 — E: — Es).

Hence for each N =/ —1A2(y2) + 4/ —LAs(ys) + 2Fe(x2) + 2Fs(xs) & n, we have

TN :%[2& — Er— Es, Aslye) + As(ya) T —é~¢fi[2E1 — Er— Es, Fa(xa) + Fa(xs)]

= \/:T;fz(xz) — M—-—lﬁa(xa) — 2?2(}’2) + ZFa(ya),

so J is a complex structure on 1,

Proposition 5. (Es,e, U(1)Spin(10); o, g, J) is an Hermitian symmetric pair of
the group Es,o.

Proof. We shall check the conditions of Definition in §4. In [10] Proposition
6, we have seen {a & Fso|oao=a} = U(1)Spin(10). Now obviously conditions (1),
(2) and (3) are satisfied. Instead of the first condition (4), it suffices to show that
the inner product g is adf-invariant :

gladkX, Y)+ g(X, adkY) =0, X, Yen, ket

For N =/ —142(v2) + &/ —1As(ys) + 2Fs(x2) + 2Fs(xs), N' =/ —1A2(y2') + »/ —1As(ys")

4 2F(xe') + 2Fs(xs’) € n, taking the inner product (¢, ¢2) on ¢C, we have
(N, NY=—(A(y2) + As(ys), A2(y2') + As(ys')) — 4(Fa(xe) + Fslxs), Fa(xe') 4 Fa(xs")),

and using Ax(y) =4[ Es, Fa2(y)] and As(y)=—4[Ez, Fi(y)], we have
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(N, N')= —4((Aa(y2) + As(ys)) Faly2'), Es) + 4((Aelyz) + As (y2)Falys'), Ez)
— 8((x2, x2’) + (xs, x3))
= —8((yz, ¥2')+ (ys, ')+ (%2, x2') -+ (23, x3")).

So g is adf-invariant, since the inner product (¢:, ¢2) on &€ is adesC~invariant,
And for the above N, N'=1n, we have

g(JN, JN') = gln/—1As(x2) — &/ —LAs(x5) — 2F2(v2) + 2Fs(ys),
N —1A5(x2") — &/ =1 As(xa") — 2F2(32") + 2Fa(ys"))
= (22, x2')+ (3, xs') + (y2, 32") + (35, 3} =g(N, N'),

and for k€t, Nn
Jadk N = ——2—«/?1[(2& — Eo— Ef. [k, NT]
- —%«Jﬁ[k, [(2F: — Ex»— Esf7 N7 ——%Mﬁ[[(ZEl — B —Ta), K], N1

=adk JN, ([(2E:1— E:— Es), k]=0).

Hence the condition (4) is satisfied. Thus the proof is completed.
From Lemma 4 and Proposition 5, we see that the homogeneous space Es,o/U(1)
Spin(10) has a structure of an Hermitian symmetric space.

§6. Realization of the symmetric space Fe o/ U(1)Spin(10).

The space [i] has a differentiable structure induced by that of the manifold
31, because on the manifold i the group U(1) acts freely.

Proposition 6. The homogeneous space Es/U(1)Spin(10) is diffeomorphic to the
manifold [ ]={XeJC|XxX=0, <X, X>=11.

Proof. The group Es acts on 1, since for a € Es, X € 31 we have

aXxaX =rar(X X X) =0, X, aX>=<X, X>=1.
From [127] Proposition 5, for each X € Js there exists a € FEs such that aX =& F:
+ &Ly + &L, §,&C. aX e implies aX =&E;, &) =1 for some i=1, 2, 3. If

i=1, then ¢(El_%)Q'X:E1, and if /=2 or 3, then ¢(§,~L2)aX:E,-. From [137 Theo-
rem 5,53, E: and Es can be transformed into E: using the elements of the group
Fi. Hence for X & 1, we have aX = E: for some a & FEs. Therefore Es acts transi-
tively on S and [J:]. Let a< Es fix the point [Eiy]€[3:]. Then «F;=0FE; for
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some fe U(l). So ¢(0—%)aE1 = F1, that is, ¢(0—%)aESj)in(10). Therefore ac U
(1)Spin(10). Conversely, let « be an arbitrary element of U(1)Spin(10). Then
alEi]=[Ei]. Thus the homogeneous space Es/U(1)Spin(10) is diffeomorphic to the
manifold [$i].

Lemma 7. The group EC acts on the space [J.| transitively. Let U be the
isotropy subgroup of E¢ at [EV1€[3Ix]. Then the homogeneous space Es/U is
homeomorphic to the space [y

Proof is similar to that of Proposition 6.

From now on, we identify E¢/U with [3x1 and introduce the differentiable and
complex structure of Es/U into [J,].

Now, we shall realize the symmetric space FEs,o/U(1)Spin(10). Any element «
of the group Eeos leaves the inner product <X, Y>s invariant and satisfies aX X aX
=roagr(X X X). Hence Esos acts on the space J¢ and [Js]. Since the isotropy
subgroup of FEes at [Ei] €[] is U(1)Spin(10) (this follows from the equivalence
relation in Je and the definition of the groups U(1) and Spin(10)), we shall consider
Eo,s/U(1)Spin(10) as the orbit space FEeo[ £1] in [Js]. To describe the orbit space
Es,s[ E1] explicitely, we need the following arguments.

Let X=X(£, x)€Js, then X x X =0 and <X, X)s =1, so we have

Eobs = (%1, 1), &3&1 = (x2, X2), &:61 = (xs, xs),
(5 1 &1x1 = xexs, » &oXa = X3x1, Eaxs = X1Xs,

[E1]2 + [&2|2+ |&s]2 4 2{x1, x1) — 2{%2, x2) — 2{ws, x> = 1.

Lemma 8 ([971-I, P. 161, Corollary 1). Let G be a connected semisimple Lie
group with Lie algebra 8, o a Cartan involution of §, &' an involutive automorphism
of § such that ee' =o'c, and §=1®Ou the Cartan decompositon. Let ny be the
(+1)-eigen spaces of &' in n, and K the subgroup corvesponding to t. Then the map
(X, Y, k) —(expX)expY)k is a diffeomorphism of n+« X n- X K onto G.

We define a mapping ¢’ : J€—JC by

& X3 X2 &1 X3 —X
o { X3 & X = X3 & —xi
X2 X1 &3 —X2 —X1 &s

and an involutive automorphism ¢’ of Home(}C, J€) by
o'¢p=a'ga’, s Home(3C, J9),

Lemma 9. The mapping o' is an involutive automorphism of the Lie algebra ce,s

and commute with the Cartan involution o of ¢, .
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Proof. Let ¢ be an arbitrary element of ¢5,0. For X3¢, we have (¢'¢X, X,
X)=(0'¢po'X, X x X)=(¢po'X, " (X x X)) = (¢6'X, ¢’X, ¢’'X)=0, and for X, Y
Qc

Ko'X, Yoo+ <X, 0'9Ypo=<0'do'X, Yo +<X, o'g0'Y)0
=<oa'pa' X, V> +<X, ad'¢a’Yy ={o'0ps'X, V> +<X, o'opa'V)
=<0g(0'X), o'V +<0'X, 0pla’'V)> ={$(0'X), 0'YDs +<o'X, $(a'Y)De = 0.

Hence o' € ¢s,0. And the commutativity ee’ = ¢'e is clear. Thus the proof is com-

pleted.
For n= {Mjiffz(yz) -+ '\/:T/Ts(ys) + Zﬁz(xz) + 2F~3(x3) [ X2, x3, ¥2, ys & @},

the decomposifion n=n+@®- as in Lemma 8 with respect to ¢' is given by

e = {8/ —1As(ys) + 2Fs(x3) | %3, s € 6},
- = {4/—_1;{2(_)’2) + Zﬁa(xz) [x2, €6},

Therefore any a€ Es,0 is represented by the form :
a = exp(y/ —1As(ys) + 2F5(x2))expln/ —LAz(y2) +2Fe(x2))k, k€ UQ)Spin(10).
Now we shall calculate exp(v/ —LAs(ys) + 2F5(xs))exp(y/ —1Aa(y2) + 2 Fa(x2))EL.

First of all, exp(y/—1Az(y) + 2F:(x))E: is calculated as follows.

exp(y/ —1A4x(y) -+ 2F:(x))E:

:E1+F2(z)+—52,—(<z, SE A+ (2, z)Ea)—l—~§2!—Fz(<z, 2+ (z, 2)3)
+%,—(<z, S+ 2z, 2Kz, DEs+ (2, 2)(E DE)

o Fele, 2% 4202, A, DEF (e, 2E 2)2)

e, DE 3, e, DEs+3G, Dl AE DE e 20 DEY

+.oo

n
2

— ”n
where z=x +4/—1y. Let[ 7] be the maximal integer not greater than 5
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[—Z—]’ = [%] for 1422 and [%]' =1 for n =0, 1. Then we have

expln/ —1Az(y2) + 2F2(x2)) E1 = &(z2) Es + 9(20) Es + Fa(u(z2))

2
2 G n
where | &(z2) = ( )(Zz, 22)R(Ze, %2)%<z0, zd-2k
2T fan) e ) B B 20
a7
on [7] 1

n )(Zz 22) R4 (Zy, Zo)Rdza, zedMRRAL
Z0(2k+1 ’ ’ ’

Rl on
o) =33y (g e 20042, B)ACas, aynosh

[ﬂ]’ -1
2
+ Z(Zkﬁ— 1 ) (22, 22)8*1 (22, Zo)* (oo, 220" 2R71Z), (22 = 22+ &/ —132).

k=0

Next, we calculate exp(y/—1As(ys) + oF 3(X3))€Xp(«/?1;12(y2) + 2F5(x2)) Ex

eXp(f\/:Izzlvs(ya) -+ 2;‘3(x3))exp(f\/_-*_11712(y2) -+ 2?‘2(«’\72))E1
= exp(v/ —1As(ys) + 2Fs(x3))(E(22) E1 + 7(22) Es -+ Falu(zs))
= &(22)(E(Za) E1 -+ p(Zs) B2 + Fa(u(Zs)) + n(z2) Es + Fa(v(u(zz), zs)) + Fi(v'(z2, 2s))

(14(22)Zs)Z3)Zs. -+ )23

8

where zs =3+ 4/ —1ys, v(u(ze),

3

H=0
d ,( )*‘E ! (l ”(~(l(“- ( )) ) I f f ()
v s Z u(ze)). .. ). I 5) we hav
an 22, 23 £ 0(2 1)! 3 Z3(23\Z3 2 nererore rom € e

(1(z2), 1(z2)) = E(z2)p(Za), E(22)% + |p(22)|? — 2<u(22), w(z2)) =1,
(u(Zs), u(Zs)) = &(Za)y(Za), &(Zs)? + |n(Zal? — 2<u(Zs), u(Zs)> =1,
(6) ¢ (wulze), 23), v(u(ze), za)) = &(z2)6(Za)p(z2),
v(u(z2), z8)u(Zs) = E(Zs)v' (22, 23),
—ze), u(z2)) = —<vlulze), z3), vlulze), z3)) +<v'(z2, 23), 0'(22, 23)).
We define mappings u: J¢€——3C€ and v( , z0): J€—QJC respectlvely by

21— u(z), z—v(z, 20).

We shall show that the mappings # and v( , zo) are both surjections. To do this,
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we prepare the following elements exp (4/ Z14;(@), exp (F‘ i(a)) of the group FEse
(i=2, 3, as@).
(i) exp(W/—1Ai(@)X(E, %) =Yy, )

(@, xi)

where { ;. 1—51 1_12_5“1 —l—si'l;&“ cosh 2la| — o/ —1 24 ] sinh 2}a|,
9 = §&i,
Disg = El 1"*2_51-%1 . Ei—1;5i+l COShZIa|"|‘r\/ 1( |> | )SlnhZICll
Yioi=x;_, coshl|al 4+ a4/=1 IZIH sinh la|,
yi:xg—g(—z—)smhzlal—k«/ lwsinhmm,
la] 2|a|
Yir1=%is; coshla|—a/—1 1 l ! sinh{al,
(i) exp(Fi{a)X(, ) =Yy, »)
where | ;- = S[“;Ei+l + SM;EM cosh|al+( \’ T)smhlal
ni =&,
7][+1 — Ei—l _€i+l + gi—l +Ei+l COShla|+( )S]nh|ai
2 2 lal
Yio1 = Xi cosh] a 1+ irs g h} a l
2 | " e | 2 |
2a, x)a . l a I (i1 +Ei)a
U h2 hlal|,
yi=%i+ PIE Slnll D) I+ 2a] sinh|a|
Vi1 = Kist coshl a l—\- Yird smhI fl |
L2 laf |2}
(the indices are considered as mod. 3, and if =0, then a s1n|1;||a| means 0).

Lemma 10. The mapping u is onto.

Proof. The Lie subalgebra § of ¢, generated by {8/ —1Aa(y) + 2Fa(x)|x, y € )

s W/ —142(y) + 2Fa(x) + &/ —1#(E1 — E3) |, yE€ 6, rER}. Let H be the connected
subgroup of Eeso corresponding to §. Then from [17] (6. 4. 6), we have {the Fa-

component of A[Ei]|k € H} = {the Fi-component of exp(y/—14s(y)+ 2F2(x))[E:]]
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x, yE6}. By formal computation we have

explv/ —14:(3))exp(2Fe(x))Er = E1E1 + &Es + Fa(xs)

where | &1 :—%— (cosh2|x|+ coshZIyI—M:TMsinh 2|x|sinh 2] y])},

BIRET

(y, %)

1 _—
&3 =-——{(cosh2|x| —cosh2|y|+4/—1

sinh 2{x{sinh 2| y]),

L X 20, %)y .7
X2 =-——sinh 2| & |(—— — ———— sinh? +a4/—1——sinh 2| y|.
b=y | 1y~ 17 o] SR+ v/ =157 sinh 2]
We put a:—l—sinh 2|x| (—:—L—?Q’Zﬂsinh2 |y|) and b:—y—~sinh2|y|. If a4+vb
2 (x| 1y =l 21yl
for all & R* =R — {0}, then there doesn’t exist s € R* such that x =sy, and then
. 2 -
we haveﬁ—%ﬁ’;%sinhﬂyl #0. Therefore for any b= ¢, when we move x

for all points of €, the point @ ranges over all points of € —{(#b|r& R*}. If a=rb

for some 7 & R*¥, then there exists s & R* such that x =sy, and then we have ﬁ
2(y, x)y . _ sy . . 1

——msmhzl 9] ﬂm(l — 2 sinh?|y|). Let sinh?|y} = Then there ex-

ists { = R* such that |6}={ Therefore when we move x and y for all points of

@, the point x2 doesn’t range at most over {0 ++/—1b|r& R*, b6, |b| =&). For

x=sy and w=1ty (Y6, s, t<R*), the Frcomponent y: of exp(2Fa(w))expla/—1
As(y))exp(2Fa(x)E: is given by

. 33y . . 9 . . l(y -
T (1 — 2sinh?®| y|)sinh®|sy| -- 2liy] cosh2|sy|sinh |£y]
+“/—_1§|%,—|Sinhzly|(1-|~25inh2|ty|)_

Therefore when we move yE @, s, t€R¥, the point y: ranges over all points of

h+A/—1blreR*, be@, |b|=. Thus we have {the Fe—component of iEi|he
H}=@¢C. Similarly we have {the FEi—component of hEi|he H}=C. Therefore

these imply {the Fs:—component of exp(djlgz(y)+2Fz(x))E1]x, ye @} =6C¢. Thus
the mapping # is onto.

Let 2o =0+ 4/ —1% (%0, ¥ & @) be an arbitrary point of g€ and fixed.
Lemma 11. The mapping v( , z) is onto.

Proof. The Lie subalgebra of ¢so generated by {v/—1As(yo) + 2Fs(x0)} is {v/ —1

As(tyo) + 2Fs(sx0) + o/ —1r(Es — Eo) |7, s, t€ R*). If xo and yo are both small eno-
ugh, there exist 7, s, { = R¥ such that

exp(v/—1As(y0) -+ 2F3(x0)) = expla/ — LAs(ty0))exp(2Fs(sx0))expla/ — 1r(E1 — Ez)).
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By formal computation for a=@¢ we have

exply/ —1As(ty)) exp (2Fs(sx0))F2la)

= Fy( saxo sinh|sxo|cosh|tyo] —a/—1 tayo cosh|sxo|sinh|yo])
| szo] [20]
+ Fa(acosh |sxo|cosh|tye] + 4/ —1 Msinh[sxolsinh [£30]).
[sxol « [£30]

If we put a=a1++/—1a: (@1, a2 =) and the above Fe—component = b1+ +/—1b2
(b1, b2<E), we have

[ b1 = a1 cosh|sxo|cosh|iye] — % sinh|sxo|sinh|tyo],
st{aixo)¥o .
be = a2 cosh|sxo|cosh|tye| + ————="— sinh|sxo|sinh|{ye].
[sxo] = |£yo]

Therefore these points b: +4/—1b2 range over all points of € independent of o
and ys, when points @ move all over 8¢, On the other hand, it holds that exp

~ K .
(W =17(E1—E3) ) Fz(a) =zt F(a). Therefore points v(a, zo) range over all points
of 6C. For not small x0, yo<= @, there exist a large integer » and small numbers
7, s, t€ R* such that

explv/—1As(yo) + 2F5(x0)) = (exp (v/— LAs(ty0))exp(2Fs(sx0))exp (v/ —17(E1 — E2)))™.

Similarly as the above argument, points v(a, zo) range over all points of ©C inde-
pendent of ze. Thus the mapping v( , z0) is onto.

For z=x++/—1y (¥, yE6), &) is a positive real number and satisfies &(z) >
|7(z)|. Using the condition (6) we can put exply/—LAs(ys) + 2Fs(xs)) -

<zl

§ 9%

exp(«/_——lﬁz(yz)ﬁ—ZF‘z(xz))El by | 7% n&! —%—y_x . Moreover from (6), we have

(x, x)=¢&¢', e8] —2Kx, 2>=1,
2
52

(¥, 3)=¢&pm', 74y 12— 2Ky, W+ {yx, yx> =1

These imply that &% is a solution of the quadratic equation :
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Xt — (142K, o)X +|(x, x)|2=0,

and from £>0 and &2>1&'|? we have

_ 1y 5 . L S
@ §= = L+ 2¢x, )+~ (14+24x, 25 —4(x, %)%, (& o %),

Similarly 7® is a solution of the quadratic equation :

1
Xe— (142K, 35— 522 <o, X+ |0, )P0,
and from >0 and 7= |»'|* we have
(8) n:é 142y y>—~2—<yx ya> 4+ (1 +2{y y>—-2—<yx yx>)2——4- (v, »1*
'\/2 b 52 > > 62 H 62 3 3
N
("= Z (¥, ¥)-

Thus we have
Proposition 12. The homogeneous space FEso/U(1)Spin(10) is homeomorphic to
the space D :

& 7% ¥ _‘
D= 7x —Z-(x, x) —2_—5»'— e[Js]|x, y=6C, & and 5 are given by (7), (8)
Ly =0, 9)
3 &y

Proof. From the Preceding arguments (Lemma 10 and 11), the group FEs. acts
on the space D transitively. The isotropy subgroup of Es. at [Ei]€ D is U(1)Spin
(10). Thus Es,o/U(1)Spin(10) is homeomorphic to D.

From now on, we identify FEs,«/U(1)Spin(10) with D, and introduce the diffe-
rentiable and complex structure of Es,q/U(1)Spin(10) into D.

§7. Harish-Chandra imbedding.

Let 1€ be the complexification of 1. We shall decompose 1€ into the (& a/—1)-
eigen spaces n* with respect to the complex structure J on un. Since this [ is

e —%Mjiad(ﬂﬂ — FEs — Ea)N, for Ez(ya) + 713(313) -+ 2?2(362) 4 ZFs(x) € 11¢ we have

J(As(ys) + As(ys) + 2Fa(x2) + 2Fs(xs)) = o/ — L(As(az) — As(xs) + 2F2(y2) — 2Fs(3s)).

This implies
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wt = {As(y) + As(x) + 2F2(y) — 2Fs(x) |, y < 6L},

- = {Aa(y) + As(x) — 2Fa(y) + 2Fs(x)|x, y < 6C).

»[3x] by

1 x y
SIN)=(expN)[E]= % (x, x) %y
Ly o (3,09

We define a mapping f: n*

where N = le(y) + Ea(x) + 2F 2(y) — oF s(x) € n*. Therefore f is an injection. Let ¢
be the natural mapping of D = Es,¢/U{1)Spin(10) into [Jx] = E¢/U.
Then we have

Lemma 138. ¢(D) < f(n*).

137 X }
_ 7 1 . .
Proof. Let X = | yx g —(x, x) T be an arbitrary point of D.
|f’ -i“yx —(
E 2
L 1 1
5 ¥ &’
1 _ 1 1
Then we have ¢(x) = -é—x & (x, %) e Vx &[3x 1. On the other hand,
Xy sy, )
& & g
(1 ~ (1 ~ (1 ~ 71 A\
we have f(Az( & y)+As<—$—x>+2Fz( & y>—2F3( : x))—gb(x). Thus ¢(D)c
S,
From the above Lemma, we can define a holomorphic imbedding ¥ : D——u*
by
14

p—t s 18]

9LX) = SI(X) BN

for each X = D [2]. This imbedding ¥ is called a Harish-Chandra. imbedding.
Lemma 14. The imbedding ¥ is given by

€7 7% y ']
| 9x —77—(.%‘, x) -;—7 :E2< L
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Proof is similar to that of Lemma 13.
Let = be a natural mapping of n* onto G€x@C defined by

7 (Aa(y) + As(x) + 2Fo(y) — 2Fs(x)) = (x, ¥),

and denote the mapping =o¥ also by ¥.
Theorem 15. The imbedding ¥ maps D onto D(V) :

D(V) :{(—“— %)e@c x 6C|x, ye 6O,

3
¢ = =112, 51 VLT 2, BF — Al D),

n= «—/%—*/52 +28%y, ¥> —2{yx, yx> -+ (&4 280y, > —2{yx, yx))t —4E2](9, ) tz}
Moreover D(V} is a bounded domain of 8¢ X €, since the imbedding ¥ is holomo-
rphic.

& 7% ¥y
Proof. Let X= | 7% —Z—(x, x) %y_x e D. From Lemma 14 we have

Ly —1~yx ——L(y )
3 &n 7’

¥(X) :(—g—, gT) Now we denote &, by », so ¥(X) :<—§~, %)ED(V). Con-

versely let (x, )€ D(V). If we put 1= 1+, 2)|2+]|{y, »|2+2{vx, yx>—

2Kz, x> — 24y, y>)_%, then we have
A Ax Ay A Ax Vg
% Ax, x) % |eDand T| & Ax, x) % |=(x, ).
Ly yx 20,9) Ly  dx 20,9
Therefore ¥(D) = D(V).

§8. Symmetric structure of D and D(V).
Any point X& D is represented by (expN)[E:] for some Neuw For N=

4/———122(3)2) -+ «/——1713([,\13) + 21%(962) + Zﬁs(xa) &n, we have

1tiné"1—((exp IN)E: — Ex) = NE: = Falxa + o/ —Ty2) + Fa(xs — 8/ = Tys).
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Hence we can regard the space {Fa(x) + Fs(y) | x, y = @€} as the tangent space D
of D at [Ei]. Therefore the mapping :

1 28/ —1As(y2) + o/ —LAs(y3) -+ 2Fa(x2) -+ 2Fs(xs) —— Fa(¥%2 + o/ —12)

+ Fi(xs — o/ —1y3) € Dy

gives a linear isomorphism of n to Dx.

We define an inner product g: on D: by
a(X, V)=6(KX, Y>+<LKY, XD, X, YeD cgC.

For X = Fa(x2 -+ 4/ —192) + Faltts — &/ —133), Y = Fa(xe' +a/—192') + Fslws' — &/ —1y5")
e D; we have

a(X, V) =48((w2, x2') + (xs, x3") + (32, 32')+ (35, 33"),

hence using this g we can define an Hermitian metric & on D (Lemma 4).
Let X’ be a representative element of the class X & D. We define a transfor-
mation si1: D—D by si(X)=[cX']. For any X=(expN)[E:i]€ D (N<n), we have

si((expN)[E1]) = [o(expN)Ey] = o(expN)o[ E\] = o(expN)LE1 .
Therefore s: is a symmetry at the point [Ei] (Lemma 4). For any X = (expNo)[ E1]
€D (Noen), we define a transformation sy of D by
sx((expN)[ E]) = (exp2No)(exp(—N))LE1],
then sy is a symmetry at the point X. In fact, for (expN)[E, ] D we have
(exp No)si{exp(—No))(exp NI E1]=(exp No)o(exp(— No))oolexp N)e[ E1 ]|
= (expNo)(expNo)(exp(—N))LE: | = sx((expN)[E\]),
SO Sy is a symmetry at X (Lemma 4).
Thus we have following
Theorem 16. (D, 2) is a non—compact Hermitian symwmetric space of iype Fs.
Remark. The compact dual space of D is [31] = Es/U(1)Spin(10).
From the symmetric structure of (D, g) we can induce a symmetric structure
of D(V) using the imbedding 7.
Now we shall consider the symmetric structure only at the origin of D(V).
For N =a/=1A2(92) + o/ —1As(ys) + 2F2(x2) + 2Fs(xs) € u, we have

lim % (W ((exptN)[ET) — WED) = (x5 — o/ —Tys, 22+ &/ —192).

t—0

Hence we can regard the space {(x, ») €6C x 6C|x, y< @€} as the tangent space
D(V) of D{V) at 0. Therefore the mapping :
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n= .\/jlzz(yz) -} «/W——lﬁg(ya) + 2772(962) + 2[7‘3(,&‘3) —— (x3—a/ —1y3, %2+ A —1y) & D(V)o

gives a linear isomorphism of 1 to D(V)e.
Let 2 be the Bergman metric on D(V) and go the restriction of gon D(V). Let
B be the Killing form of the Lie algebra ¢s,o. Then from [3] P. 397 we have & =

%—Bm. On the other hand, from Proposition 2 B|n is given by
BN, N2y = 96{ (s, 98+ (38, 98)(ah, o)+ (s3, s2))

where Ni=+/"14: (y;) +a/—1As <y§> + 2Fy (xé) + 2F, (xé) en (=1, 2.

Therefore for (x;, yi)eDV) (=1, 2) Zo is given by
&ol(x1, »1), (%2, p2)) =12(<xs, @) +<xz, 21> + ¥y, Yo +<y2, I).
This implies that the metric induced by Z using the imbedding ¥ coinside with 2.
Let so be the symmetry of D(V) at 0 induced by (D, &) using the imbedding ¥,

For any point (x, )€ D(V) there exists X D such that ¥(X)=(x, » (Theorem
15). Therefore we have

solx, ¥)=T(s:(X)) =T {[oX"])=(—x, —I)
Thus we have following

Theorem 17. D(V) = {(—}1—, —%—) &6 x C|x, y=6C,

Sz%—g«/wz@x, 2>+~ LT 2, 5P —4|(x, 2%

1=V E G, 3 — 2w, vyt VT B, 35— 2%, I 4810, T

is an irreducible bounded symmetric domain of type FEs. In particular, the restriction
Bo=2|D(V)o of the Bergman metric & on D(V) and the symmetry so of D(V) at 0
D(V) are given respectively by

&o((x1, 31), (w2, 32)) =12(<x1, x2d> + <z, 20+ <y, y20 + e, I0), (w5, ¥i) € D(V)o,

SO(x, y):(‘x> _y)a (x, y)ED(V)
III. Bounded symmetric domain of type E\.

§9. Hermitian symmetric pair of E-, ..
We define a linear transformation ¢ of € by
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l<X’ Y’ S’ Y/)Z(X’ _._Y’ E, _//);

and define an involutive automorphism ¢ of the group Er. (which is a Cartan

involution) by
= eate, ae Er,..
The decomposition ¢7,. =f@n as in §4 with respect to ¢ is given by
I={0g, 0, 0, p)etr,. gt peC, p+p=0},
n={00, A, A, 0)e¢,. | Ac ).

We denote the element @0, A, A, 0)c¢r,. by @A) briefly. We define an inner
product g on n by

g(@(A), 9(B))=<A, B)+<B, A,

and a linear transformation J of n by
3 —_—
]:ad(Z)(O, 0, O, —T/\/—l)
Therefore for each #(A) &n we have
@A) =[00, 0, 0, ———y/=1), 00, 4, A, 0)]=—y/~10(4),

so J is a complex structure on n.

Proposition 18. (Ev,., U(1)Es; ¢, g, J) is an Hermitian symmelric pair of the
group En,..

Proof. We shall check the conditions of Definition in §4. In [5] Proposition 12,
we have seen {@& Ev,.}wve=a} = U(1)Es. Now obviously conditions (1), (2) and (3)
are satisfied. Instead of the first condition (4), it suffices to show that the inner
product g is adf-invariant. For @(A), ®(B)en and @(¢, 0, 0, p) =¥t we have

&([2(g, 0, 0, p), P(A)], D(B))+&(P(A), [9($, 0, 0, p), P(B)])

— OPA -+ —2-p4), OIB)+ gOA), B +—2—pB)

2 2
~ A+ —2pA, By + (B, pA+—2pA> 1 <A, §B+—pBy+ BB+ 0B, A>

=<pA, B)+ <A, ¢B)> +<B, ¢A> +<{$B, A>=0,

so g is adft-invariant. And for @(4), @(B)=n, we have
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8(J0(4), JO(B)) = g(—~/—10(4), —+/—10(B))
={—v/T1A, —VTIBy +(~/TIB, —v/ 14>
=<4, B)+<B, A)=g®4), 9(B),

and for @(¢, 0, 0, p)f and P(A)en
Jad0(g, 0, 0, PA) = JBGA +—2-pA) = 0~/ 1A +~2-pA)

=ad®(p, 0, 0, p)JB(A).

Hence the condition (4) is satisfied. Thus the proof is completed.
From Lemma 4 and Proposition 18, we see that the homogeneous space Ev,./
U(1)Es has a structure of an Hermitian symmetric space.

§10. Realization of the symmetric space Ey,./U(1)Es.

The space [9%] has a differentiable structure induced by that of the manifold
M1, because on the manifold 9 the group U(1) acts freely.

Proposition 19. The homogeneous space E«/U(1)Es is diffeomorphic to the mani-
Jold [In].

Proof. From [4] Theorem 9, the group Er acts on the manifold 9 transitively
(and differentiably). On the other hand, the isotropy subgroup of E; at 1] [I]
is U(1)Es. Thus E:/U(1)Es is diffeomorphic to [9%:].

Lemma 20. The group E:€ acts on the space [INC) transitively. Let U be the
isotropy subgroup of E:C at [1]e€[MC]. Then the homogencous space FE:C/U is
homeomorphic to the space [INC).

Proof is similar to that of [5] Theorem 7.

From now on, we identify E«€/U with [I€] and introduce the differentiable
and complex structure of E:€/U into [9RC].

Now, we shall realize the symmetric space E+./U(1)Es. Any element of the
group E7,. leaves the manifold 9¢ and the inner product <P, @>. invariant. There-
fore Ev. acts on the space 9% and [92.] (however not transitively).

For a = C, we define an element ai(a) of Eq,. by

_sinh|a| asinh|a| B

1+ (cosh|a] — 1)p: QaTEl 0 ]
. inh
ZaE%ﬂEx 1-+(cosh|a| —1)p: d%ra—'—El 0
wla) = sinlia|
0 —F cosh|aj 0
la]
;Sinbla] Ey 0 0 coshia|

la]
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= exp P{aE\y)
where the mapping p1 : 3¢ »QC is defined by
3} X3 X2 &1 0 0
pL{ % & Cx )= 0 & X1
X2 X &s 0 X1 &3

and the action of ai(¢) on PC is defined as similar to that of ®(aFE:). Similarly we
can define elements wa(a), as(a) of E+. [5].
In order to find a realization of Er,./U(1)Es, we prepare a few Lemmas.
Lemma 21, The isoltvopy subgroup of the group Eur,. at [1]<[IM.] is U(1)Es.
Proof. From [5] Theorem 5, we have Ev.= U)Esexp(n), i. e., any a < Er,.
has the form

a=60fexpP(A), 6= U(l), peEs, Ac .

Since A & 3¢ can be transformed in a diagonal form by a certain element B’ & Es :
ai 0 0

BA=|0 as 0 |, a;=C, we have a = 08p'ai(a)as(az)as(as) 8.
0 0 as

Therefore we have

al 11 = 08B 'ar{a)az(@)s(as) B[ 1] = 0BB ~ter{an)aua(@e)s(@s) 1]

sinh|@z| _ sinh|as|

cosh|ai|a@: g 0
laz| s
= |071pg' ! 0 dl———smhlm}coshlazlds sinh s 0
|a | |as |
_ sinh|a] _ sinh|az]
0 0 Gr————de————cosh|as|
las] laz|
Mcosh |az| cosh|as| 0 0 ’
[a]
+ 0= BB 0 cosh| a1 ]azgl}%cosh |as] 0
2
0 0 cosh|ai|cosh|a: [aas—mM

las]

+ @%cosh |a:|cosh|az | cosh|as| + (6_3513111111511] 7, S ae| , Smh!m') ] :

(75 a3
| a1 |az| |as|

If a[1]=[1], then we have i =a: =as =0. Hence a = 08 e U(1)Es.
Conversely let @ & U(1)Es, then we have o[1]=[1].
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Lemma 22, The group En,. acts transitively on D .
D={X, Y, & ylefm] IKY, V>|<|&| for all V).

Proof. Let P=[X, Y, & »le D. From the definition of D, we have &40,
1
—52—
nEL +neFe 4 psEs (p; € C) by a certain element zfr & Es, we have

hence P:[—;;Yx Y, Y, ¢ detY]. Transforming Y in a diagonal form

naps 0 0 nmo 0 U
1 L '
‘BP = T 0 VEY 0 + 0 72 0 —{‘E—i_ ( 62 771”2773)
L 0 0 7 0 0

Therefore P < [I%.] implies

(=) (-

2
o) o

On the other hand, Y and ¢ satisfies the condition |<Y, V3| <|&| for all V& S
Hence we have |<{mEr 4 peEe +93Es, V)< || for all V&3 (Proposition 6), espe-
cially |<mpEi +neEe + paEs, ED| = |ni| < |&] for i =1, 2, 3. Now we can put jé— =
ljjl tanh|a;| for some a; €C, i=1, 2, 3. This and (i) imply || = cosh|ai|cosh|az|

cosh|as|. Therefore we have

sinh|az| . sinh|as]

cosh|a:|d: as 0 0
|az| [as|
P=|p 0 dlgﬁl—gllcoshlazldsggh—t@—| 0
lai] [as]
0 0 &15111h|m| a smh}azlcoshmal
far] [az|
msl—nhmcosh |az|cosh |as| 0 0 )
lai]
+ of 0 cosh|a: ICZZ‘SI—TE}%&COSh [as] 0
2
0 0 cosh|ai|cosh|az|as S—H!%H—aﬂ
3

+ cosh|ai|cosh|az|cosh|as| + (d1 SlTZJrllfL—z SHT};J ]dzl _3__511;1;3”@{) J

= B la(ar)az(a@2)as(as)[ 1]

Conversely let a= Ey,,. o1 has a form appeared in the proof of Lemma 21 and
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we denote it by [0718p''X, 0zpp' 'Y, & 7 briefly. Hence this implies |[<{0<88 'Y,
Vol = |, B’ 'V>| <max (sinh|ai|cosh|az|cosh|as|, coshl|a:|sinh{a:|cosh|as],
cosh|ai|cosh|az|sinh|as|) < cosh|ai|cosh|az|cosh|as| = |€| for all V & Ji. Therefore
ol 1]e D. Thus Lemma 22 is proved.

Thus we have

Proposition 238. The homogeneous space Er,./U(1)Es is homeomorphic to the space
D={[X, Y, & yple[Mm] KY, V|<|£] for all V& ).

Preof. The group Er,. acts transitively on D (lemma 22) and its isotropy sub-
group of Ev. at [1]e D is U(1)Es (Lemma 21). Therefore the homogeneous space
Ey,./U)Es is homeomorphic to D,

From now on, we identify E-./U(1)Es with D and introduce the differentiable
and complex structure of E+./U(1)Es into D.

§11. Harish-Chandra imbedding.

Let n€ be the complexification of n. We shall decompose n€ into the (d4/—1) —
eigen spaces n* with respect to the complex structure J on n. Since this [ is

ad @0, 0, 0, —~2—Mfl), for ®(0, A, B, 0)=n€ we have

JO(, A, B, 0)=®(0, —+/—1A4, /—1B, 0).

This implies n* = {@(0, 0, B, 0) = &:¢| B ¢} and n~- = {@(0, A, 0, 0) € e:C| A = J°}.
-[INC] by

We define a mapping f: n*
F@0, 0, B, 0))=(exp®(0, 0, B, 0))[11=[Bx B, B, 1, detB].

Hence f is an injection. Let ¢ be the natural mapping of D= IE%./U(1)Es into
[9C] = ExC/U. Then we have following
Lemma 24. ¢(D) C f(n*).

Proof. For any P=[X, Y, &, n]:[%YX Y, Y, ¢, —glrdetY]ED, we have
1 1 1 1 1
g[)(P):[_E—‘YX Y, Y, g, —{:z—detY]:[*EZ-—YX Y, TY’ 1, & detY]:f(@(O,
0, —é-y, o).

Thus ¢(D) C f{n*).
From the above Lemma, we can define a holomorphic imbedding ¥ : D——n*
by 4
[ane]
G

D

$(P) =S¥ (P)) ‘F\*Iﬁ/

for each P« D [2]. This imbedding ¥ is called a Harish-Chandra imbedding.
Lemma 25. The imbedding ¥ is given by
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WX, Y, & 7)) =900, 0, %Y, 0).

Proof is similar to that of Lemma 24.
Let = be a natural mapping of n* onto ¢ defined by =(@(0, 0, B, 0)) =B, and
denote the mapping zo¥ also by V.

Theorem 26. The imbedding ¥ maps D onto D(VI) :

DVI)={ZeJC IKZ, V>| <1 for all Ve ).

Moreover D(VI) is a bounded domain of IC, since the imbedding ¥ is holomorphic.

Proof. Let P = [—é— YXY, Y, ¢ th}z—det Y]e D. Then it holds

KY, V| <|€] for all Ve

This implies

¥ (P) :_é_y, |<—§—Y, VS| <1 for all Ve

Therefore #(P) € D(VI). Conversely let Ze D(VI). Transforming Z in a diagonal
form BZ=CiE1+ LB+ GEs (; € C) by a certain element B Es, we have

ZXZ, ZXZy—<Z, Zyo+1— |detZ]?
={BZ X BZ, BZ X BZy—<{BZ, BZ>+1— |detBZ|*
=1 = &I — (&1 — [Ls]?).
From Proposition 6, Z& D(VI) implies |{;| <1 for i=1, 2,. 3. Therefore we have

0<ZXZ, ZXZ)—{Z, Z)+1— |detZ]2 <1

1
If we put &= (<Z XZ, ZXZ>—LZ, Z>41— 1detz;2) 2 and P=[EeZx Z, £Z, &,
¢detZ], then we have P& D and ¥(P)=Z. Therefore ¥(D) = D(VI).

§12. Symmetric structure of D and D(VI).
Any point P € D is represented by (exp®(A))[1] for some A& Q€. For @A) e
1, we have

lim%((expt(f)(A))l—l):(I)(A)lz(o, A, 0, 0).

t—0

Hence we can regard the space {(0, X, 0, 0) € BC|X &JC} as the tangent space
Dy of D at [1]. Therefore the mapping :
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s @A) —(0, 4, 0, 0)e D

gives a linear isomorphism of 1 to D
We define an inner product g1 on D: by

&0, X, 0, 0), (0, Y, 0, 0) =18(KX, Y>+<Y, XD

Using this g1 we can define an Hermitian metric & on D (Lemma 4).
Let P’ be a representative element of the class P € D. We define a transfor-
mation s1: D——D by si(P)=[¢P’]. For any P = (exp@A)[1]eD (A<, we

have
si((exp P(A))L1]) = Lelexp(A))1] = lexp B(A))[ 1] = e(exp P(A))[1].

Therefore s: is a symmetry at the point [1] (Lemma 4). For any P = (exp®(A))[1]
< D, we define a transformation sp of D by

sp((exp @(B))[ 1]) = (exp D(24))(exp ¢(—B))[ 1],
then sp is a symmetry at P D. In fact, for (exp@(B))[1] € D we have

(exp D(A))si(exp @(—A))(exp D(B))[11 = (exp P(A))(exp D(— A))ulexp P(B))d[ 1]
= (exp @(2A))(exp O(—B))L1] = sp((exp P(B))[1]),

so Sp is a symmetry at P (Lemma 4).

Thus we have following

Theorem 27. (D, g) is a non—compact Hermitian symmetric space of type Ex.

Remark. The compact dual space of D is [u] = E7/U(1)Es.

From the symmetric structure of (D, g) we can induce a symmetric structure
of D(VI) using the imbedding 7.

Now we shall consider the symmetric structure only at the origin of D(VI).
For A=l A is transformed in a diagonal form BA=aiEi+ a:Ee+ asks, & Eo
(a; € C). Hence we have for t€ R

a1
|a1]

tanh | @] Er + ~2 tanh ¢ | as | Ex +—‘litanht|a3|E3).
|622| |d3]

W{(exp10(A)[1]) = o671
Therefore this implies

lim—i—— (I ((exp tD(AN[1]) — ¥([17) = 4,

(=0

and we can regard the space JC as the tangent space D(VI)o of D(VI) at 0.
Hence the mapping :
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ne 9(A)— A D(VI)

gives a linear isomorphism of 1t to D(VI)o.
Let & be the Bergman metric on D(VI) and g the restriction of & on D(VI).

Let B be the Killing form of the Lie algebra es,.. Then from [3] P. 397 we have

& = -—;~B|n. On the other hand, from Proposition 3, B|u is given by

B(@(A), D(B))=36(KA, B> +<{B, A).
Therefore for X, Y& D(VI)o go is given by
SX, V)=18(KX, >+, XD).
This implies that the metric induced by & using the imbedding ¥ coinside with 2.

Let $o be the symmetry of D(VI) at 0 induced by (D, g using the imbedding
¥. For any point Z& D(VI), there exists P & D such that ¥(P) =Z (Theorem 26).
Hence we have

$ol2) = U(si(P) = V([P = 2.

Thus we have following

Theorem 28. DWVI)={Ze Q¢ [KZ, VO|<1 for all Vei} is an irreducible
bounded symmetric domain of type Er. In particular, the restriction S = g\ D{(VI)
of the Bergman metric & on D(VI) and the symmetry So of DWVI) at 0= D(VI) are
given respectively by

Go(X, V)=18(KX, Y>+<Y, X}), X, Y& D(VI),
5o(Z) = —Z, Ze DVI).
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