Another definitions of exceptional simple Lie groups of type $\mathbb{E}_{\left.\gamma(-2)^{2}\right)}$ and $\mathbb{E}_{7(-133)}$

By Takao Imai and Ichiro Yokota
Department of Mathematics, Faculty of Science
Shinshu University
(Received July 9, 1980)

We have proved in [3], [4] that

$$
\left.\left.\left.E_{7,1}=\left\{\alpha \in \operatorname{Ison}\left(\xi_{\beta}, q\right) \mid \alpha\right)\right\}=M\right\}, \quad\{\alpha P, \alpha Q\}=\{P, Q\}\right\}
$$

is a connected simple Lie group of type $E_{\gamma(-25)}$ and

$$
E_{7}=\left\{\alpha \in \operatorname{Iso} C\left(\Re^{C} C, \mathfrak{S}^{C} C\right) \mid \alpha \mathfrak{M} C=\mathfrak{M} C, \quad\{\alpha P, \alpha Q\}=\{P, Q\},\langle\alpha P, \alpha Q>=<P, Q>\}\right.
$$

is a simply connected compact simple Lie group of type E_{7}, where $\mathfrak{M}, \mathbb{R}^{C}$ are the Freudenthal's manifolds and $\{P, Q\},<P, Q\rangle$ inner products in $\Re P, \Re^{C}$ respectively. In this paper, we shall give another expressions of these groups. Our results are as follows. These groups $E_{7,1}$ and E_{7} are also defined by

$$
\begin{gathered}
E_{\gamma, 1}=\left\{\alpha \in \operatorname{Ison}(\Re, \mathfrak{F}, \mathfrak{F}) \mid \alpha(P \times Q) \alpha^{-1}=\alpha P \times \alpha Q\right\}, \\
E_{7}=\left\{\alpha \in \operatorname{Isoc}\left(\not \beta^{C}, \mathscr{F} C\right)\left|\alpha(P \times Q) \alpha^{-1}=\alpha P \times \alpha Q,\langle\alpha P, \alpha Q\rangle=<P, Q\right\rangle\right\}
\end{gathered}
$$

respectively, where $\times: \mathscr{F} \times \mathscr{F} \longrightarrow{ }_{C_{7,1}}, \times: \mathscr{F}_{\beta} C \times \mathscr{F}_{\beta} C \longrightarrow{ }_{C} C$ are mappings defined by Freudenthal in [2].

1. Jordan algebra \mathfrak{F} and Lie algebra $\mathfrak{c}_{6,1}$.

Let © denote the division algebra of Cayley numbers over the field of real
 matrices X with entries in © \mathfrak{E} with respect to the multiplication $X \circ Y=\frac{1}{2}(X Y+Y X)$. In \mathfrak{F}, the symmetric inner product (X, Y), the crossed product $X \times Y$ and the cubic form (X, Y, Z) are defined respectively by

$$
\begin{aligned}
& (X, Y)=\operatorname{tr}(X \circ Y), \\
& X \times Y=\frac{1}{2}(2 X \circ Y-\operatorname{tr}(X) Y-\operatorname{tr}(Y) X+(\operatorname{tr}(X) \operatorname{tr}(Y)-(X, Y)) E),
\end{aligned}
$$

$$
(X, \quad Y, Z)=(X, \quad Y \times Z)=(X \times Y, Z)
$$

where E is the 3×3 unit matrix.
In [1], Freudenthal defined the exceptional simple Lie algebra $\mathfrak{c}_{6,1}$ of type E_{6} explicitly by

$$
\mathfrak{e}_{6,1}=\left\{\phi \in \operatorname{Hom}_{\boldsymbol{R}}(\Im, \Im \Im) \mid(\phi X, X, X)=0\right\}
$$

and, for $A, B \in \mathfrak{\Im}$, he constructed $A \vee B \in \mathfrak{e}_{6,1}$ by

$$
\begin{equation*}
(A \vee B) X=\frac{1}{2}(B, X) A+\frac{1}{6}(A, B) X-2 B \times(A \times X) \quad X \in \Im \tag{i}
\end{equation*}
$$

Finally, for $\phi \in \mathfrak{f}_{\mathfrak{6}, 1}$, we denote the skew-transpose of ϕ by ϕ^{\prime} with respect to the inner product (X, Y) :

$$
(\phi X, \quad Y)+\left(X, \quad \phi^{\prime} Y\right)=0
$$

then also $\phi^{\prime} \in \mathfrak{e}_{6,1}$.

2. Lie algebra ${ }^{\mathfrak{c}_{7,1}}$.

Let \Re be a 56 -dimensional vector space defined by

$$
\mathfrak{F}=\mathfrak{\Im} \oplus \Im \oplus \boldsymbol{R} \oplus \boldsymbol{R}
$$

For $\phi \in \mathfrak{e}_{6,1}, A, B \in \mathfrak{S}$ and $\rho \in R$, we define a linear transformation $\Phi(\phi, A, B, \rho)$ of \mathfrak{B} by

$$
\begin{aligned}
\Phi(\phi, A, B, \rho)\left(\begin{array}{l}
X \\
Y \\
\xi \\
\eta
\end{array}\right) & =\left(\begin{array}{cccc}
\phi-\frac{1}{3} \rho 1 & 2 B & 0 & A \\
2 A & \phi^{\prime}+\frac{1}{3} \rho 1 & B & 0 \\
0 & A & \rho & 0 \\
B & 0 & 0 & -\rho
\end{array}\right)\left(\begin{array}{l}
X \\
Y \\
\xi \\
\eta
\end{array}\right) \\
& =\left(\begin{array}{c}
\phi X-\frac{1}{3} \rho X+2 B \times Y+A \eta \\
2 A \times X+\phi^{\prime} Y+\frac{1}{3} \rho Y+\xi B \\
(A, Y)+\rho \xi \\
(B, X)-\rho \eta
\end{array}\right)
\end{aligned}
$$

Then Freudenthal showed in [2] that

$$
\mathfrak{c}_{7,1}=\left\{\Phi=\Phi(\phi, A, B, \rho) \in \operatorname{Hom}_{\boldsymbol{R}}(\mathfrak{\beta}, \mathfrak{P}) \mid \phi \in \mathfrak{c}_{6,1}, A, B \in \mathfrak{F}, \rho \in \Omega\right\}
$$

is a exceptional simple Lie algebra of type E_{7}. The Lie bracket $\left[\Phi_{1}, \Phi_{2}\right]$ in $\mathfrak{e}_{7,1}$ is given by

$$
\left[\Phi\left(\phi_{1}, A_{1}, B_{1}, \rho_{1}\right), \Phi\left(\phi_{2}, A_{2}, B_{2}, \rho_{2}\right)\right]=\Phi(\phi, A, B, \rho)
$$

where

$$
\left\{\begin{array}{l}
\phi=\left[\phi_{1}, \phi_{2}\right]+2 A_{1} \vee B_{2}-2 A_{2} \vee B_{1} \\
A=\left(\phi_{1}+\frac{2}{3} \rho_{1} 1\right) A_{2}-\left(\phi_{2}+\frac{2}{3} \rho_{2} 1\right) A_{1} \\
B=\left(\phi_{1}^{\prime}-\frac{2}{3} \rho_{1} 1\right) B_{2}-\left(\phi_{2}^{\prime}-\frac{2}{3} \rho_{2} 1\right) B_{1} \\
\rho=\left(A_{1}, B_{2}\right)-\left(B_{1}, A_{2}\right)
\end{array}\right.
$$

For $P=(X, Y, \xi, \eta), Q=(Z, W, \zeta, \omega) \in \Re$, he constructed $P \times Q \in \mathfrak{c}_{7,1}$ by

$$
P \times Q=\Phi(\phi, A, B, \quad \rho), \quad\left\{\begin{array}{l}
\phi=-\frac{1}{2}(X \vee W+Z \vee Y) \\
A=-\frac{1}{4}(2 Y \times W-\xi Z-\zeta X) \\
B=\frac{1}{4}(2 X \times Z-\eta W-\omega Y) \\
\rho=\frac{1}{8}((X, W)+(Z, Y)-3(\xi \omega+\zeta \eta))
\end{array}\right.
$$

and showed the following formula

$$
[\Phi, P \times Q]=\Phi P \times Q+P \times \Phi Q \quad \Phi \in e_{7,1}, P, Q \in \Re
$$

In \Re, , we define a skew-symmetric inner produt $\{P, Q\}$ by

$$
\{P, Q\}=(X, W)-(Z, Y)+\xi \omega-\zeta \eta
$$

for $P=(X, Y, \xi, \eta), Q=(Z, W, \zeta, \omega)$.
Proposition 1. For $P, Q \in \mathfrak{F}$, we have

$$
(P \times P) Q=(P \times Q) P+\frac{3}{8}\{P, Q\} P
$$

Proof is straight-forward calculations using (i).
Finally we define a manifold \mathfrak{M} in $\mathfrak{\beta}$, called the Freudenthal's manifold by

$$
\mathfrak{M}=\{P \in \mathfrak{Y} \mid P \times P=0, P \neq 0\}
$$

3. Lie group $\boldsymbol{E}_{7,1}$.

Theorem 2. $\quad E_{\gamma, 1}=\left\{\alpha \in \operatorname{IsoR}(\mathfrak{F}, \mathfrak{P}) \mid \alpha(P \times Q) \alpha^{-1}=\alpha P \times \alpha Q\right\}$
is a connected simple Lie group of type E_{7}. The polar decomposition of $E_{\gamma, 1}$ is given by

$$
E_{7,1} \simeq\left(U(1) \times E_{6}\right) / Z_{3} \times \boldsymbol{R}^{54}
$$

where $U(1)$ is the unitary group and E_{6} is a simply connected compact Lie group of type E_{0}. The center $z\left(E_{7,1}\right)$ of $E_{7,1}$ is

$$
z\left(E_{7,1}\right)=\{1,-1\} .
$$

Proof, In [3], we showed that the group

$$
E_{7(-25)}=\left\{\alpha \in \operatorname{Iso}_{\boldsymbol{R}}(\mathfrak{F}, \mathfrak{F}) \mid \alpha \mathfrak{M}=\mathfrak{M}, \quad\{\alpha P, \alpha Q\}=\{P, Q\}\right\}
$$

is a connected simple Lie group of type E_{η} which has the properties stated in Theorem 2. We shall prove that the group $E_{7,1}$ coincides with the group $E_{7(-25)}$. First we show that $E_{7,1}$ is a subgroup of $E_{7(-25)}$. In fact, for $\alpha \in E_{7,1}$, we have $\alpha \mathfrak{M}=\mathfrak{M}$, since $\alpha P \times \alpha P=\alpha(P \times P) \alpha^{-1}=0$ for $P \in \mathfrak{M}$. Act $\alpha \in E_{7,1}$ on $(P \times P) Q=(P \times Q) P$ $+\frac{3}{8}\{P, Q\} P$ of Proposition 1, then $\alpha(P \times P) \alpha^{-1} \alpha Q=\alpha(P \times Q) \alpha^{-1} \alpha P+\frac{3}{8}\{P, Q\} \alpha P$, that is,

$$
(\alpha P \times \alpha Q) \alpha Q=(\alpha P \times \alpha Q) \alpha P+\frac{3}{8}\{P, Q\} \alpha P .
$$

On the other hand, from Proposition 1 again

$$
(\alpha P \times \alpha P) \alpha Q=(\alpha P \times \alpha Q) \alpha P+\frac{3}{8}\{\alpha P, \alpha Q\} \alpha P .
$$

Hence we have

$$
\{\alpha P, \alpha Q\}=\{P, Q\} .
$$

Therefore $E_{7,1} \subset E_{7(-25)}$. Conversely, we know that the Lie algebra of the group $E_{7(-25)}$ is $\mathfrak{c}_{7,1}$ [3] and any element of $\mathfrak{c}_{7,1}$ satisfies

$$
[\Phi, P \times Q]=\Phi P \times Q+P \times \Phi Q .
$$

This shows that the Lie algebras of the groups $E_{7(-25)}$ and $E_{7,1}$ coincide. Hence from the connectedness of $E_{\gamma(-25)}$, we see that $E_{\gamma(-25)} \subset E_{7,1}$. Thus we obtain $E_{7,1}=$ $E_{7(-25)}$.

4. Lie group E_{7}.

Let \mathbb{S}^{C} and $\mathfrak{S}^{C}=\Im\left(3, \mathbb{S}^{C}\right)$ be the complexifications of \mathbb{C} and \mathfrak{J} respectively over the field of complex numbers C and put $\Re^{C}=\Im^{C} \oplus \Im^{C} \oplus \boldsymbol{C} \oplus C$. Then the statements in the preceding sections are also valid in the complex case. For example,

$$
\begin{gathered}
\mathfrak{e}_{\mathbf{g}} C=\left\{\phi \in \operatorname{Hom}_{C}\left(\mathfrak{J}^{C}, \mathfrak{J}^{C}\right) \mid\langle\phi X, X, X)=0\right\} \\
\mathfrak{e}_{7}^{C}=\left\{\Phi(\phi, A, B, \rho) \mid \phi \in \mathfrak{e}_{6}^{C}, A, B \in \Im^{C}, \rho \in C\right\}
\end{gathered}
$$

are the simple Lie algebras over C of type E_{6} and E_{7} respectively, and the Freudenthal's manifold \mathbb{M}^{C} is defined by

$$
\mathfrak{M}^{C}=\left\{P \in \mathfrak{F}^{C} \mid P \times P=0, P \neq 0\right\} .
$$

We define positive definite Hermitian inner products $\langle X, Y\rangle$ in \Im^{C} and $<P$, $Q>$ in $\Re^{C} C$ respectively by

$$
\begin{gathered}
<X, Y>=(\bar{X}, Y) \\
<P, Q>=<X, Z>+<Y, W>+\bar{\xi} \zeta+\bar{\eta} \omega
\end{gathered}
$$

where \bar{X} is the conjugate of X with respect to the field C and $P=(X, Y, \xi, \eta)$, $Q=(Z, W, \zeta, \omega) \in \Re_{\beta} C$.

In [4], we showed that the group

$$
E_{7}=\left\{\alpha \in \operatorname{Is} O_{C}\left(\Re^{C}, \mathfrak{P}^{C}\right) \mid \alpha \mathfrak{M}^{C}=\mathfrak{M}^{c},\{\alpha P, \alpha Q\}=\{P, Q\},\langle\alpha P, \alpha Q>=<P, Q>\}\right.
$$

is a simply connected compact simple Lie group of type E_{7}. By the preceding arguments, we see that conditions

$$
\alpha \mathfrak{M} \mathcal{R}^{C}=\mathfrak{M}^{C}, \quad\{\alpha P, \alpha Q\}=\{P, Q\}
$$

is equivalent to

$$
\alpha(P \times Q) \alpha^{-1}=\alpha P \times \alpha Q .
$$

Hence we have
Theorem 3. $E_{7}=\left\{\alpha \in \operatorname{Isoc}\left(\beta^{C} C, \mathfrak{S}^{C}\right)\left|\alpha(P \times Q) \alpha^{-1}=\alpha P \times \alpha Q,\langle\alpha P, \alpha Q\rangle=<P, Q\right\rangle\right\}$ is a simply connected simple Lie group of type E_{7}.

References

[1] H. Freudenthal, Oktaven, Ausnahmegruppen und Oktavengeometrie, Math. Inst. Rijksuniv. te Utrecht, (1951).
[2]
Beziehungen der E_{7} und E_{8} zur Oktavenebene I, Nedel. Akad. Weten. Proc. Ser. A. 57, (1954), 218-230.
[3] T.Imai-I. Yokota, Non-compact simple Lie group $E_{7(-25)}$ of type E_{7}, Jour. Fac. Sci., Shinshu Univ., to appear.
[4]
Simply connected compact simple Lie group $E_{7(-133)}$ of type E_{7}, Jour. Math., Kyoto Univ., to appear.

