On Two Theorems of \mathbb{U}. Albrecht

By Masayuki Ôhori
Department of Mathematics, Faculty of Science, Shinshu University
(Received September 3, 1980)

In [1] and [2] U. Albrecht has dealt with finite Galois extensions of division rings. There he has obtained a sufficient condition for a finite Galois extension of division rings to have no finite Galois groups [1, Satz 4] and a sufficient condition for a division ring of finite degree over its center to have no finite Galois groups whose orders coincide with the extension degree over the center [2, Satz 1].

First, by making use of two results in [3], we reprove more briefly [1, Satz 4].

Theorem 1. Let K / L be a finite Galois extension of division rings of degree $[K: L]=q^{r}(r \geq 1), q$ a prime. If the centralizer $V_{K}(L)$ of L in K is not commutaive and if there is no prime $p \geq q$ such that $V_{K}(L)$ contains a primitive $p-t h$ root of 1 , then there is no finite Galois group of K / L.

Proof. Let $V=V_{K}(L), Z_{0}=V_{L}(L)$ and $C_{0}=V_{V}(V)$. Suppose that there exists a finite Galois group G^{*} of K / L. Then the restriction G of G^{*} to V is a finite Galois group of V / Z_{0}, and it is easily seen that the group G_{0} consisting of all the inner automorphisms contained in G is a Galois group of V / C_{0} and $\left[V: C_{0}\right]=q^{s}(s \geq 1)$. Now let p be an arbitrary prime factor of $\left|G_{0}\right|$, and choose a subgroup H of G_{0} with $|H|=p$. If U is the fixed subring of H, then $p \geq[V: U]>1$ and $[V: U] \mid q^{s}$, so that $p \geq q$. By $[3$, Theorem 13.2 (a) $]$ we have then $p=[V: U]$, i. e., $p=q$. Hence $\left|G_{0}\right|$ is a power of q. But this contradicts [3, Lemma 10.3].

According to Albrecht [2], a positive integer n is said to satisfy the condition P if for each group G of order n there exists an arrangement, say $p_{1}{ }^{r_{1}}, \cdots, p_{m}{ }^{r_{m}}$, of the prime powers which appear in the prime factorization of n such that $G=G_{1}$ has a normal subgroup H_{1} of order $p_{1}{ }_{1}, \quad G_{2}=G_{1} / H_{1}$ has a normal subgroup H_{2} of order $p_{2}{ }^{r_{2}}$, and so on.

Let K be a division ring of finite degree over its center Z, and let p_{1}, \cdots, p_{m} be the distinct prime factors of $[K: Z]$. Albrecht $[2$, Satz 1$]$ has proved the following : If $[K: Z]$ satisfies the condition P and Z contains no primitive p_{i}-th roots of 1 for $i=1, \cdots, m$, then there is no finite Galois group of K / Z whose order coincides with $[K: Z]$.

Now, we are in a position to prove the following theorem that yields at once [2, Satz 1].

Theorem 2. Let K be a division ring of finite degree over its center Z, and G a finite Galois group of K / Z. Let p be a prime factor of $|G|$, and $|G|=p^{e} n,(p, n)=1$. If $|G|$ coincides with $[K: Z]$ and if Z contains no primitive $p-$ th roots of 1 , then G cannot contain a normal subgroup of order n.

Proof. Suppose G contains a normal subgroup H of order n, and set $L=K^{H}$, the fixed subring of H. Then by $\left[3\right.$, Lemma 10.2], $[L: Z]=(G: H)=p^{e}$ and G / H is naturally isomorphic to a Galois group of L / Z. Since Z contains no primitive p-th roots of 1 , by [3, Lemma 10.4] we see that $L=V_{L}(Z)=V_{L}(L) \cdot Z$ is a commutative field. Now let M be a maximal subfield of K including L. Then, $p^{a} n=[K: Z]=$ $[M: Z]^{2}=p^{2 e}[M: L]^{2}$. But this is impossible.

References

[1] U. Albrecht : Über endliche galoissche Schiefkörpererweiterungen ohne endliche Galoisgruppen, Comm. Algebra 6(1978), 97-103.
[2] U. ALbRECHT : Nicht streng-galoissche Schiefkörpererweiterungen endlichen ranges über dem Zentrum, Comm. Algebra 6(1978), 1553-1562.
[3] H. Tominaga and T. Nagahara: Galois Theory of Simple Rings, Okayama Math. Lectures, 1970.

