J. FAC, SCI., SHINSHU UNIVERSITY Vol. 15, No. 2, 1980

On Two Theorems of U. Albrecht

By Masayuki Ôhori

Department of Mathematics, Faculty of Science, Shinshu University (Received September 3, 1980)

In [1] and [2] U. Albrecht has dealt with finite Galois extensions of division rings. There he has obtained a sufficient condition for a finite Galois extension of division rings to have no finite Galois groups [1, Satz 4] and a sufficient condition for a division ring of finite degree over its center to have no finite Galois groups whose orders coincide with the extension degree over the center [2, Satz 1].

First, by making use of two results in [3], we reprove more briefly [1, Satz 4].

Theorem 1. Let K/L be a finite Galois extension of division rings of degree $[K:L]=q^r \ (r\geq 1)$, q a prime. If the centralizer $V_K(L)$ of L in K is not commutaive and if there is no prime $p\geq q$ such that $V_K(L)$ contains a primitive p-th root of 1, then there is no finite Galois group of K/L.

Proof. Let $V=V_K(L)$, $Z_0=V_L(L)$ and $C_0=V_V(V)$. Suppose that there exists a finite Galois group G^* of K/L. Then the restriction G of G^* to V is a finite Galois group of V/Z_0 , and it is easily seen that the group G_0 consisting of all the inner automorphisms contained in G is a Galois group of V/C_0 and $[V:C_0]=q^s$ $(s\geq 1)$. Now let p be an arbitrary prime factor of $|G_0|$, and choose a subgroup H of G_0 with |H|=p. If U is the fixed subring of H, then $p\geq [V:U]>1$ and $[V:U]|q^s$, so that $p\geq q$. By [3, Theorem 13.2 (a)] we have then p=[V:U], i. e., p=q. Hence $|G_0|$ is a power of q. But this contradicts [3, Lemma 10.3].

According to Albrecht [2], a positive integer n is said to satisfy the condition P if for each group G of order n there exists an arrangement, say $p_1^{r_1}$, ..., $p_m^{r_m}$, of the prime powers which appear in the prime factorization of n such that $G=G_1$ has a normal subgroup H_1 of order $p_1^{r_1}$, $G_2=G_1/H_1$ has a normal subgroup H_2 of order $p_2^{r_2}$, and so on.

Let K be a division ring of finite degree over its center Z, and let p_1, \dots, p_m be the distinct prime factors of [K:Z]. Albrecht [2, Satz 1] has proved the following: If [K:Z] satisfies the condition P and Z contains no primitive p_i -th roots of 1 for $i=1, \dots, m$, then there is no finite Galois group of K/Z whose order coincides with [K:Z].

Masayuki Ôhori

Now, we are in a position to prove the following theorem that yields at once [2, Satz 1].

Theorem 2. Let K be a division ring of finite degree over its center Z, and G a finite Galois group of K/Z. Let p be a prime factor of |G|, and $|G| = p^e n$, (p, n) = 1. If |G| coincides with [K:Z] and if Z contains no primitive p-th roots of 1, then G cannot contain a normal subgroup of order n.

Proof. Suppose G contains a normal subgroup H of order n, and set $L=K^H$, the fixed subring of H. Then by [3, Lemma 10.2], $[L:Z]=(G:H)=p^e$ and G/H is naturally isomorphic to a Galois group of L/Z. Since Z contains no primitive p-th roots of 1, by [3, Lemma 10.4] we see that $L=V_L(Z)=V_L(L)\cdot Z$ is a commutative field. Now let M be a maximal subfield of K including L. Then, $p^en=[K:Z]=[M:Z]^2=p^{2e}[M:L]^2$. But this is impossible.

References

- [1] U. ALBRECHT : Über endliche galoissche Schiefkörpererweiterungen ohne endliche Galoisgruppen, Comm. Algebra 6(1978), 97-103.
- [2] U. ALBRECHT : Nicht streng-galoissche Schiefkörpererweiterungen endlichen ranges über dem Zentrum, Comm. Algebra 6(1978), 1553-1562.
- [3] H. TOMINAGA and T. NAGAHARA : Galois Theory of Simple Rings, Okayama Math. Lectures, 1970.