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The present objective is to reprove more briefly the main theorem of F. Radé
(2] and to improve considerably a proposition of M. A. Quadri [1], by means of
the following explicit theorem.

Theorem. A ring R (£0) is a division ving if (and only if) for every non-zero
xER there holds that xR=R or Rx=R,

Proof. It is obvious that R is a reduced ring. Let x be an arbitrary non-zero
element of R. Then, by hypothesis, there exists x'€R such that x?x'=x or x'x2=
%. By a brief computation, we obtain (vx'x—zx)2=0, whence it follows xx'x=x.
Since the non—zero idempotents xx’ and x'x are central, we obtain xx'R=Rxx'=R
and x'xR—=Rx'x=R, and therefore xx'—1=x'x.

Remark 1. As is well known every indecomposable strongly regular ring is a
division ring. Moreover, a careful examination of the above proof shows that every
indecomposable reduced ring whose elements are right or left =—regular is a division
ring.

Corollary 1 ([2, Theoreml]). A distributive near ving R (540) is a division ring if
(and only if) R contains a right vegular element a (ab=0 implies b=0) and for every
non-zero X< R there exists yE R such that xy=a or yx=a.

Proof. First, we claim that R is a ring. As is easily seen, (—bd)c=—bc=b(—c)
for any b, ceR. Hence, a{(b+c)—(c+b)}=alb+c)+{—a)(c+b)=0, whence it follows
b+c=c+b. Next, we prove that a is left regular, too. Suppose r¢=0 with some
non—zero *<R. Then, by hypothesis there exists s&R such that rs=a or sr=a.
If a=sy then a?=sra=0, a contradiction. Hence, a=rs and srs£0 by rsr=ar+40.
There exists {&R such that a=srt, since a=tsr yields a contradiction a?=0. Then,
art=rsri=ra=0, and hence 7{=0. But this implies a=srt=0, contrary to assump-
tion. We have thus seen that a is (right and left) regular. Now, let x be an arbit-
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rary non-zero element of R. Then axa is non—zero and there exists y=R such that
axay=a or yaxa=a, so that xR=R or Rx=R. Hence R is a division ring by
Theorem. )

Now, assume that the center C of a ring R (540) contains a multiplicative
semigroup S such that for every ¢=R there exists s€S with as=a. We define a
relation < on R as follows : b<la if and only if a=bs with some s€S, It is imme-
diate that the relation < is reflexive and transitive, so we can define an equivalence
relation =on R : a=b if and only if e<b and b<a. For any a=R, we denote by
[a] the equivalence class of @ with respect to =. Let [R/S] be the totality of all
such equivalence classes. We now define multiplication in [R/S] by [a]l-[6]=[ab].
As is easily verified, this multiplication is well-defined and [ R/S] forms a semigroup
with zero [0]. Assume further that for every non-zero x€R there holds that
Lx]-LR/ST=[R/ST or [R/S]-[#]=[R/S]. If [x]-[R/S]=[R/S] (resp. [R/S1-[x]=
[R/S]), then for any yE R there exists z& R such that [x]-[z]=[y] (resp. [z]-[x]
=[¥]), and therefore xzs=y (resp. szx=y) with some s&S. This implies xR=R
(resp. Rx=R). Hence R is a division ring by Theorem. Conversely, if R is a
division ring then we can take C (or C\{0}) as S and [R/SI\{[0]} is seen to be a
group, We have thus improved [1, Proposition 2] as follows :

Corollary 2. A ring R(5%0) is a division ring if and only if the center of R
contains a multiplicative semigroup S such that for every non-zero xR 1) xs=x
with some s€S and 2) [x]-[R/S1=[R/S] or [R/S]-[x]=[R/S].

Remark 2. As is well known, there does exist a semigroup M without identity
such that xM=M for all x& M.
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