Notes on the Radical of a Finite Dimensional Algebra

Kaoru Motose

Department of Mathematics, Faculty of Science, Shinshu University
(Recived December 11, 1979)

Throughout this note, A will represent a finite dimensional algebra (with 1) over a field K, N the radical of A, M the left annihilator of N, A the center of A, and Π the radical of A. Moreover, let G be a finite group, P a p-Sylow subgroup of G, and G^{t} the commutator subgroup of G.

In his recent paper [10], Y. Tsushima proved the following: Let K be an algebraically closed field of characteristic p, and $A=K G$. Then $N=\Pi A$ if and only if $\left|G^{\prime}\right| \equiv 0(\bmod p)$. In reality, the "if" part is an immeadiate cosequence of K . Morita's theorem [8, Theorem 2]. The "only if" part will be carried over to the case of finite dimensional algebras (Theorem 1).

In [5], M. Hall showed that if A is (two sided) indecomposable then A is either simple or bound (i. e. two sided annihilator of N is contained in N). More recently, S . Asano [1] has proved that if A is an indecomposable quasi-Frobenius algebra and $N^{2} \neq 0$, then $M \subseteq N^{2}$. Next, we shall give an alternative proof of this result (see Theorem 2).

Now, let K be an algebraically closed field of characteristic p. In case G is p-solvable, R. J. Clarke [2] characterized G such that Π is an ideal of $A=K G$. Recently, S. Koshitani [6] has proved that if Π is an ideal of $A=K G$, then G is p-solvable. This result will be improved in Theorem 3, whose proof is rather elegant compared with that given in [6].

First we shall prove the following, which has been obtained independently by B. Külshammer [7].

Theorem 1. Assume that A is (two sided) indecomposable. If $N=\Pi A$, then A is primary. Moreover, if K is a splitting field for A, then A is a full matrix ring over A.

Proof. Let e and f be primitive idempotents of A. If $e A f$ is contained in N,
then $e A f=e N f=e \Pi A f=\Pi e A f$ by assumption. Since Π is nilpotent, $e A f=0$. Consequently, if $e A f \neq 0$, then the right A-modules $e A$ and $f A$ are isomorphic. Since A is indecomposable, it follows that A contains only one (non-isomorphic) indecomposable right A-submodule and so A is a full matrix ring over a completely primary ring B. Noting that ΠB is the radical of B and Π is nilpotent, we can see that $B=A$ if K is a splitting field for A.

The proof of the next theorem provides an alternative proof of [1, Theorem 1].

Theorem 2. Assume that A is a (two sided) indecomposable quasi-Frobenius algebra. Then the following are equivalent.
(1) $N^{2} \neq 0$.
(2) $e N^{2} \neq 0$ for every primitive idempotent e.
(3) $M \subseteq N^{2}$.

Proof. Since A is quasi-Frobenius, the implications (2) $\rightarrow(3)$ and (3) $\rightarrow(1)$ are trivial. It remains therefore to prove that (1) implies (2). Assume that there exist primitive idempotents e and f of A such that $e N^{2}=0$ and $f N^{2} \neq 0$. Then the right A-modules $e A$ and $f A$ are not isomorphic, and so $e A f \subseteq N$, which implies that $0=e N^{2}$ $\supseteq e A f \cdot N$, namely $e A f=e M f$. Since A is quasi-Frobenius, we must obtain $N^{2} f \neq 0$, and so $N^{2} f \supseteq M f$. Consequently $0=e N^{2} f \supseteq e M f=e A f$. By symmetry, $f A e=0$. This contradicts the hypothesis that A is indecomposable. Hence, $e N^{2} \neq 0$ for every primitive idempotent e.

In the remainder of this note, we assume that K is an algebraically closed field of characteristic p and $A=K G$. Let $\left\{B_{1}, B_{2}, \cdots, B_{s}, \cdots, B_{t}\right\}$ the set of all blocks of A, where B_{1} is a principal block and $\left\{B_{1}, B_{2}, \cdots, B_{s}\right\}$ is the set of all blocks containing linear complex characters. Let Δ_{i} and Γ_{i} be the sets of all irreducible complex characters and all irreducible Brauer characters contained in B_{i}, respectively. We set $k_{i}=\left|\Delta_{i}\right|$ and $l_{i}=\left|\Gamma_{i}\right|$. Furthermore, k_{i}^{\prime} and l_{i}^{\prime} will denote the numbers of all linear complex characters and of all linear Brauer characters in B_{i}, respectively.

The proof of the next lemma is immeadiate, and may be omitted.

Lemma. The groups of all linear complex characters and of all linear Brauer characters are transitive permutation groups acting by multiplications on $\left\{\Delta_{1}, \cdots, \Delta_{s}\right\}$ and $\left\{\Gamma_{1}, \cdots, \Gamma_{s}\right\}$, respectively. In paticular, $\left|G / G^{\prime}\right|=k_{1}^{\prime} s,\left|G / P G^{\prime}\right|=l_{1}^{\prime} s$, and $s \equiv 0$ $(\bmod p)$.

The above lemma will be used freely in the proof of the following theorem.
Theorem 3. If $I I$ is an ideal of $K G$, then G^{\prime} is either a p-nilpotent group or a p^{\prime}-group.

Proof. Assume that $\left|G^{\prime}\right| \equiv 0(\bmod p)$. Then $k_{i}>k_{i}^{\prime}$ for $i \leq s$ (see [4, Theorem 65.2]) and by [2, Lemma 4] $\Pi=K G \sigma$, where $\sigma=\sum_{x \in G^{\prime}} x$. Thus, we have

$$
\sum_{i=1}^{s} k_{i}^{\prime}=\left|G: G^{\prime}\right|=[\Pi: K]=\sum_{i=1}^{t} k_{i}-t,
$$

which implies that $k_{i}=k_{i}^{\prime}+1(i \leq s)$ and for $j>s, B_{j}$ contains only one irreducible complex character χ_{j} such that $\chi_{j}(1) \equiv 0(\bmod |P|)$. We may assume that G is not p-nilpotent. Hence, by Thompson's theorem [9, Theorem 1], there exists a nonlinear irreducible complex character θ such that $\theta(1) \equiv 0(\bmod p)$. Thus, for $i \leq s$, the degree of any non-linear irreducible complex character contained in B_{i} is $\theta(1)$. Hence, by $s \neq 0(\bmod p)$, we obtain

$$
\left|G: G^{\prime}\right|=|G|-s \theta(1)^{2}-\sum_{j>s}^{t} \chi_{j}(1)^{2} \equiv-s \theta(1)^{2} \neq 0(\bmod p) .
$$

It follows then $k_{1}^{\prime}=l_{1}^{\prime}$. On the other hand, $k_{1}^{\prime}+1=k_{1}>l_{1}$ (see [3, Exercise 86.2]), and so $k_{1}^{\prime}=l_{1}^{\prime} \leq l_{1} \leq k_{1}^{\prime}$, which means that G^{\prime} is p-nilpotent (see [4, Theorem 65. 2]).

References

[1] S. Asano : On the radical of quasi-Frobenius algebras, Kodai Math. Sem, Rep. 13 (1961), 135-151.
[2] R. J. Clarke : On the radical of the centre of a group algebra, J. London Math. Soc. 1 (1969), 565-572.
[3] C. W. Curtis and I. Reiner : Representation theory of finite groups and associative algebras, Interscience, 1962.
[4] L. Dornhoff : Group representation theory, Part B, Dekker, 1972.
[5] M. Hall: The position of the radical in an algebra, Trans. Amer. Math. Soc. 48 (1940), 391-404.
[6] S. Koshitani : A note on the radical of the centre of a group algebra, J. London Math. Soc. 18 (1978), 243-246.
[7] B. KüLSHAMMER : Zentral separable Gruppenalgebren, 1979 (unpublished).
[8] K. Morita: On group rings over a modular field which possess radicals expressible as principal ideals, Sci. Report T. B. D. 4 (1951), 177-194.
[9] J. G. THOMPSON : Normal p-complements and irreducible characters, J. Algebra 14 (1970), 129-134.
[10] Y. Tsushima : Some notes on the radical of a finite group ring, Osaka J. Math. 15 (1978), 647-653.

