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It is known that there exist five simple Lie groups of type Es up to local
isomorphism, one of them is obtained as the projective transformation group of
the Cayley projective plane Il and defined by Es= {a€Isor(J,J)ldet aX =det X}
(where J is the exceptional Jordan algebra over the Cayley algebra @) and it is
homeomorphic to Fyx R* [17] and a simple (in the sense of the center z(E¢)=1) Lie
group [37]. In this paper, we investigate one of the other non-compact simple Lie
groups

Ey={acIsor(y, I detaX =detX}

(where ' is the exceptional Jordan algebra over the split Cayley algebra ¢'). The
results are as follows. The group E; is homeomorphic to Spd)/Z:XxE* and a
simple (in the sense of the center z(E¢)=1) Lie group, and hence the center z(E)
of the non—-compact simply connected simple Lie group Ee’:Es(s) of type Es is Z.,.

1. Split Jordan algebra &'

Let @ be the split Cayley algebra over the real numbers E. This algebra ¢’ is
defined as follows. In @'=H®He, where H is the quaternion field over R, the
multiplication is defined by

(a-+be)(c+-de)=(ac+db) 4 (bc+-da)e.

In &', the conjugate %', the real part Re(x), the @-norm Q(x) and the inner product
(x, ) are defined respctively by

aFbe—a—be, Re(x) :-;—(erE),
Qla+be)=]a|*—[b|?, (a+be,c+de) =(a,c)—(b,d).

Let '=3(3, @) be the Jordan algebra consisting of all 3x3 Hermitian matrices X
with entries in @'
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L Xz X

X:X(E,x):<53 &g x1>, &eR, xieg

X2 %1 &g
with respect to the multiplication
Xo Y:—;m(XYJr YX).

In g, the crossed product X X ¥, the inner product (X, Y)', the trilinear form tr
(X, Y, Z)', the cubic form (X, ¥, Z)' and the determinant detX are defined respe-

ctively by

Xx Y:%(ZXO Y—tr(X) Y —tr(Y) X+ (tr (XOte(Y) — tr(Xo V) E),

3
(X, YV)=tr(XoY)=> emi+2(xi, 9",

i=]1

tr(X, ¥, Z)=(XoY, Z)'=(X, YoZ),

(X, Y, 2))=(XxY, Z)=(X, YXZ),
det X:%—(X, X, XY =&&s83+2Re(x1x9x5) —E1Q(%1) — E2Q(%2) —E3Q (3)

where X=X(¢&, x), Y=Y{y, ») and E is the 3x3 unit matrix.
In &' we adopt the following notations.

1 00 0 0 0 0 0 0
Elz(O 0 0), E2:<0 1 O), E3:<O 0 O),
0 0 0 0 0 O 0 01
0 0 0 0 0 x 0 x 0
Fl(x):<0 0 x>, Fg(x):<0 0 O), Fg(x):<E 0 O).
0 x 0 x 0 0 0 0 0

Then these elements generate &' additively and the table of the Jordan multiplication
and the crossed product among them are given respectively as follows.
EioEi=F;, EioF;,;=0,

1
2

Fi(®)oFi(y)=(x, ) (Eio1+Eiya), Fi<x>oFi+1<y>:%Fi+z<’m,

Fjx), i#7,

E;oFi(x)=0, EioFjx)=

EixE;i=0, EiXEi.H:_;—Ei_m,

Eix Fi(x)=— ; Fil), Ei % Fi{x) =0, it
1 _

Fi(x) X Fi(y)=—(x, y)'Ei, Fi(x) X Fia(y) =——Fi.a(xy),

2
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where the indexes are considered as mod 3.
Finally we define the positive definite inner products (¥, ) in ¢’ and (X, Y) in

!

&' respectively by

(a+be, c+de)=(a, ¢)+(b, d),

3
(X, Y)=2] (Eimi+2(xi, 1)

i=]
where X=X(£,x), Y=Yy, y), and we denote by 'a and ‘« the transpose of ac=Isor
(&, &) relative to (X, Y)' and (X, Y) respectively:

(aX, V) =(X, 'aY), (@X, V)=(X, '«¥).
2. Groups Es' and F/.

The group E is defined to be the gronp of linear isomorphisms of &' leaving
the determinant det X invariant:

E¢={aclsor(yY, J')|detaX=detX}
={aclsor(Y, ¥)|(eX, aY, aZ)'=(X, Y, Z)'}
={aclsor(S, §)|aX xaX="a" (X x X)}
and F¢(=F4;) the group of automorphisms of J':
F/={aclsor(y, ) |aXoY)=aXoaY}
={a€lsor(y, )|t X X Y)=aX xaY}
~ (acTsor(S, )| traX, a¥, aZ) =tr(X, Y, Z), (X, «¥)=(X, ¥)')
={aeE|{aX, aY)=(X, Y)'}
={acE¢|aE=E},

Then the group F, is homeomorphic to (Sp(1)xSp(8))/Z:x R?® and a simple (in the
sense of the center z(Fy)=1) Lie group [6].

Remark. In [6], the group F¢ (=F4s) is defined to be the group of automor-
phisms of ' leaving the trace invariant. However the condition of the trace-pre-
serving can be omitted, that is, the condition a(XoY)=aXoaY implies the condition
tr{ieX)=tr(X). In fact, any element Xeg' satisfies the Cayley—Hamilton identity

Xo(Xx X) :X°3—tr(X)X2+%(tr(X)2—tr(XZ))X: (detX)E. (i)
Now, apply (i) to aX and then operate a ‘e Aut(y) on it. Then we have
X°3——tr(aX)X2—l-%(tr(aX)z—tr(aXz))X:(detaX)E. (if)

Thus we get by subtraction (i)—(ii)
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(tr(aX)—tr(X))XZJr%(tr(X)Z—tr(aX)2+tr(aX2)~tr(X2))X:(detX~detaX)E.
So, put X=Fi(e;¥, i=1, 2, 3, j=0, 1,.--, 7, then we have

(€4, €3)'tr(aFi(e;)(Ei+Eisz) +%(*tr(aF i)+ tr(aFi(e)®) —tr(File)))Files)
= —(detaFi{e;)))E.
Hence we have
triaFile;)=0=tr(File;)), i=1, 2, 3, j=0, 1,-, 7,
and also tr{aFile;)?)=tr(Fi{e;? hence
tr(eE;)=tr(a(E— Fi{(1)}))=tr(E— Fi(1)})=tr(E;), i=1, 2, 3.
Consequently we obtain

tr{aX)=tr(X), for all Xeg¥'.

We define the involution 7 in ¥ by
rX(&, a+be)=X(§, a—be).
Then yeFS, r=ty=y"'=y and two inner products (X, ¥)',(X, Y) in &' are combined
with the following relations
X, )=, 7Y), X Y)=(X, ).
And we have
la=y'ay, for a€lsor(y, I,

because it holds that (faX, Y)'=(aX, y¥V)=X, ay¥)=(X, rerY)={arX, Y)' for all
X, Yeg.

3. Jordan algebra (4, H) and Symplectic group Sp(4).

Before we consider the group Eg', we prepare the several spaces {4, H), 34,
H),, HP; and the group Sp(4).

Let (4, H) be the Jordan algebra consisting of all 4x4 Hermitian matrices S
with entries in H:

34, H)={SeM{4, H)|S*=S}

with respect to the multiplication

1) {ep, e, e:; is the canonical basis of §':
e=1, ey=i, ex=j, ex=k, ey=e, e;=ie, ey=je, e;=ke
where {1, ¢, j, k} is the canonical basis of H. Then {E;, File;), i=1, 2, 3, j=0, 1,
7} is a basis of J'.

ey
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SeT=—~(ST-+1S)
And we define the positive definite inner product (S, T) in 34, H) by
(S, T)=tr(SeT).
Let 34, H)o be the vector space of all S&3(4, H) such that tr(S)=0:
34, H)o={SsJ4, H)|tr(S)=0}.

Now, we define a mapping f: ¥ —34, H) by
Sflas—bse &2 a;+be bs iz 4

by Gy A @
a2+b2€ 51_1719 &s

5—3 as 51 24

& dg-|-b3€ llz—bze> (21 b1 b2 bﬂ)

where 21:—;*(51"]'524“53), 12:—;‘(51_52*53), 23:_3_(52—53-51), 24:%(53”51—52)-

Then we have the following key
Lemma 1. The mapping f: Y —34, H)y is an isometry, i.e. fis a linear iso-

mor phism which satisfies
(fX, fV=X,Y), X Yy
Moreover we have the following identity in (4, H)
JXof¥Y= flp(Xx H)+~;11—(X, I, X rey

where I is the 4 X4 unit matrix.
Proof. Noting that A2+ 22+ 2+ A2=E2+&2-1&2, it is easy to verify the formula
(fX, fY)=(X, Y). Next, to prove the identity fXofY=f(y(Xx Y))+%(X, I, it

is sufficient to show that
() FEiofEi= 1,
(2) SfEiofEiv=flEiX Ei),
() SEiofFilx)=f(EiXrFi(x)),

(4)  fEiofFilx)=0=f(E:i x7Fi(x)), i%j,

1
4

6) SEix)ofFialy)=fp(Filx) X Fig(y)

6)  SFilx)efFi(y)=fly(Filx) x Fi(y))+——(Filx), Fily)1,

Proof of (3). SEiofF(x) (x=a-+be)
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1 0 b 0 0
_ 17 1 B oo0o0
S 2 -1 000 «
-1 0 0 a 0
0 b 00
_1[b o000} 1 o
~2(0 0 O—a>_ ZfFl(a be)*f(E1><rF1(x)).
0 0—a 0

Proof of (5). JF({x)o fF(y) (x=a+be, y=c-+de)

|

o o olo
[l el e
[RNO O© O
o O O K
oo OO
oo OO

b, d)
- (b, d)
a (@, c)

(a, c)

= (b, d)(fElJr%IH—(a, C)(—fE1+%1)
— _((a, o)—0b, d))fE1+%~((a, O+, d)I
— {5, 9V Bt ——x, )

= FFAE) X Pl +——(Fife), Filo)L.
The other formulae are also proved by calculations similar to the above,
Let Sp(4) be the symplectic group:
Spdy={AeM{4, H)|AA*=1)}.
The group Sp{4) acts on (4, H) by the way p: Sp{d)xJ4, H)—34, H),
nlA4, S)=ASA*,

Then this action induces an automorphism of (4, H) and an isometry of $(4, H)
(and (4, H)o):

A(SoT)A*=ASA*ATA*,
(ASA*, ATA=(S, T).

Finally, let HP; be the 3-dim. quaternion projective space:
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HP;={PesJ4, H)|P*=P, tr(P)=1)
={ALA*|AcSp(4)}

1 0
where I;= )eM(4, H),
0

0

4. Compact subgroup (Ey')i of Es'.
We shall consider the following subgroup (E¢)x of Eg

(Ed)x={a€Ed|(aX, aY)=(X, Y)}.

Proposition 2. The group (E¢)x is isomorphic to the group Spd)/Zs, where Z,
={I, —1I}.
Proof. We define a mapping ¢ : Sp{4)—(E¢)x by

plA)X=HA(fX)A"Y), Xe¥Y.

First of all, we have to show ¢(A)EEy.
3det(p(A)X) (denote p(A)X by Y)

=(Y, Y, Y)=(YXY, Y)=({(YxY), V)
=(f(YxY), fY)

=(fYosf Y=Y, YL, f7)

=(SYof Y=—fY, ST, V)

—(AUX) A% AN AT ———AUXIA*, ATXIAN, A(FX)A")

~(fXefX~——X, XL, £X)
—(frX % X)), FX)
—((XxX),X)=(XxX, X)'=(X, X, X)=3detX.

Hence p(A)eEy. And it is obviously obtained that (p(A)X, ¢(4)Y)=(X, Y), then
plA)e(Ed)k.

Obviously ¢ is a homomorphism. We shall prove that ¢ is onto. For a given
as(Ey)g, we consider the element aE€. This aF satisfies

(@B = faB) T

In fact, (f@E)P=/(raEx aE)H—%(aE, aE)I= f(ya(E % E))+—£11—(E, E)I=f{ya"'E)
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+%I: FltaiyE) +—Z~1: flta-1E) +%I: f(aE)—F%I. Therefore P:—}l—@ F(aE)

+I) satisfies P?=P, tr(P)=1, that is, P is an element of HP;. Hence there exists
AeSp(4) such that

P=ALA*

Then we have p(4)E—=f"A(fE)A*)= F-H(A(2Li———DA%)=f 2P~ D)= U flaE)
=aFE, So, put f=¢{A) '«, then BE=F, that is, p&Fy and satisfies
(BX, pY)=(X, V), X, Yeg.

p 0
(If we use the notation in [67], pe(F4)x. ) Hence, from [6], there exists Bz( C)
0

eSp(d), where peSpl)={peH||p|=1} and CeSp(3)={CeM(3, H)|CC*=E} such that
B=¢(B).

(In [6], we have proved that the group (Fi)g is isomorphic to the group (Sp(l)x
Sp(3))/Z. It is easy to see that the mapping to prove this isomorphism coincides
with ¢, if we note the following

51 d3+b36 ;z—bze )

fX = f( az—bse & a1-+bie
as-+bee 51 —bie &s

Py

& a a
as & m
a; @ &

tl"(X ) b]_ bz b3 )

/”\

SN S S
23

2

( tr(Xa) b ) 1
= ———tr(Xa)I
b*  Xn 2

and
tr(CXaC*) pbCH

B( fX)B*:<
(PBCH*  CXnC*

)—%mcxﬂc*m.

Hence we have

a=p(A)p(B)=0(AB), ABeSp4),
that is, ¢ is onto. Finally Kerp={I, —I} is easily obtained. Thus the proof of
Proposition 2 is completed.

5. Polar decomposition of Ky
To give a polar decomposition of Es' we use the following
Lemma 3 ([2] p. 345). Let G be a rveal algebraic subgroup of the general linear
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group GL(n, R) such that the condition ASG implies 'A€G. Then G is homeomor phic
to the topological product of GNOm) (which is a maximal compact subgroup of G)
and a Euclidean space R%:

G=(GNOm) x R?, d=dim(g NH{n))

where On) is the orthogonal subgroup of GL(n,R), ¢ the Lie algebra of G and hH(n)
the vector space of all real symmetvic matrices of degree n.

To use the above Lemma, first of all we show the following

Lemma 4. Ei is a real algebraic subgroup of the general linear group GL(27,R)
=Isor(Y', ') and satisfies the condition a€Eg implies ‘a=Ey.

Proof. We use the following identity

(ZXZ)x(ZxZ)=(detZ)Z, zeyy.
For acEy and Y, we have
' HY XY ) x'a (Y X Y)=(aY XaY) X (@Y xaY)
=(detaY)a¥=(detY)aY=a((detY)}Y)
=a((YXY)x(YxXY)).
Put Y=XxX for any X&' in the above, then we have
'aH(detX) X)) X 'a Y (detX )X ) =a({det X)X ) X (detX)X).

Hence, if detX 540 then ‘a ' X X'a ' X=a(X xX). This implies det'a"'X=det X, i.e.
(considering a! instead of a)

det'aX=det X

for XeJ' such that detX=4¢0. The same holds also for X&' such that det X=0,
In fact, assume that det'aXs4detX=0, then applying the above result to ‘aX, we
have det'aX =det'a™(aX)=det X, which contradicts the assumption. Therefore
'ac Eg', hence

lo=yareEy.

Finally, it is obvious that Eg' is real algebraic, because E¢' is defined by the
algebraic relation det aX=det X,
Let O(J) be the orthogonal subgroup of Isor(y, I):

027 =0(y)={aclsor, ) (X, a¥)=(X, Y)}.
Then by Proposition 2 we have
EdNO)=(Ed) g =Sp{4)/ Z.

Next we shall determine the Euclidean part ¢’ NH(Y') of Ey' where
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¢'={{eHomr(y¥', J)|(CX, X, X)'=0},
H(27)=h(¥)={{€Homg(Y', ¥)|(X, Y)=(X, {¥)}.

(The dimension of the Euclidean part of Eg is obtained by dimEs—dimSp(4)=78—
36=42. However we investigate the structure of e’ NH(Y') directly.)

Lemma 5. Any element { of the Lie algebra ¢’ of Eg' is uniquely represented
by the form

(=6+T, seid, Ty, tr(T)=0

where fJ/={0<es'|0E=0} is the Lie algebra of F{ and Teeg is defined by TX=ToX
Jor X&',
Proof., For a given {ee¢g’, put

T=tE and 0=¢-T,

then the required results are obtained quite analogously in [1].
Let {=0+Tee’ NY(Y). Then it holds

06X, V)+H(TX, V)=, sV)+X, TY), X, Yeg.

Put Y=EFE, then tr(5X)+tr('.7"X):0—l-(X, T). Since tr(6X)=0 [6], we have (T, X)
=(T, X) for all Xeg'. This implies yT=T, that is,

Tegx(3, H), tr(7)=0.

Furthermore we have (TX, Y)=(TX, y¥)=tr(T, X, 7YY =tr(4T, X, Y =tr(T, 7X,
Y)=tr(T, Y, 1X)=(TY, 1X)=(TY, X)=(X, TY), therefore Tee,’ NH(Y) and i,
NH(Q’). Hence any {e'sNH() has a form

t=5+T, sef/ NS, TeSB, H), tr(T)=0,

and conversely. The structure of {4/ NH(Y') has been already seen in [6] and its
dimension is 28, Hence we have

dim(eg’ NH(Q)= 28+ 14=42,

Thus we have the following
Theorem 6. The group Eg' is homeomorphic to the topological product of the
group Spd)/Z; and a 42-dim. Euclidean space R*:

E~Spl4)/Z, X R%,
In particular, E¢ is a connected (but not simply connected) Lie group.

6. Simplicity of E'.
Proposition 7. The center z2(Ey') of Ey is trivial:

Z(E(;’) =1,
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Proof. We define the linear transformations 8, i=1, 2, 3 of &' by

£ —Xxy —Xz &L —x3 % & X1 X3
BX=| —x3 & ¥, BX=| —® & —x |, BX=| o & om
—X2 X1 &s X2 —x1 & X5 Xz &

for X=X(&, x)e%. Then as readily seen thay are elements of F . Now, let
acz(Ey'). By the commutativity of feF4CEy, we have paE=afE=aL. Hence if
we denote aE by Y=Y(y, ), then

gY=Y, for all geFy.

From this, putting =i, B2, we get yi=y,=y;=0, that is, Y=yLi+nLatnks
Furthermore, putting p=p;, we get m=ne=n(=1), that is, Y=9E. Since acky,
we have 7®=detY=detaE=detE=1. Thus p=1, that is, aE=EFE, which means that
acsF{, then « is an element of the center z(Fy) of F¢. Since z(Fi)=1 by [6],
we get a=1, that is, z(E¢)=1.

It is well known that the Lie algebra ¢’ of Eg' is simple [1], [4]. Now, since
E¢' is a connected group from Theorem 6 and a simple Lie group, any normal
subgroup of Ey' is contained in the center z(Ey') except E¢' itself. Thus Proposition
7 implies the following

Theorem 8. The group Ey' is simple (in the algebraic sense) Lie group.

Since the fundamental group of E¢' is Z; from Theorem 6 and E¢' is a simple
group, we have the following

Theorem 9. The center z(Eﬁ’) of the non—compact simply comnected Lie group
Ed=Eus) of type Es is Zs.

7. Generators of Ey'
Analogously in the case of the non-split type, we define the split Cayley
plane II' by

I'={Acy | A=A, tr(4)=1}
={AeY|AXA=0,tr(4)=1}.
Then, from the straightforward calculations, we have the following formulae

M Ax(Yx(AxX)):—}l-(A, YYAXX,
@ Xx(Yx (XxX)):%((detX)YqL(X, V)X xX),

() Ax(AxX) :%(X—ZAOXJF(A, X)'A),

for Aell', X, Y&&'. Therefore, following [5], we can define a mapping ¢':
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{(A, BlellI'xIl'[{A, B)'s#0}—Eq (¢':/1I'>F¢) as follows

¢'(A, B)X:—(A—l—B—F(SBX(AXX)—FZ(B, X)A—(A, B)X)

(PAX=¢'(A, AAX=X—4AcX+4(A, X} A).
Then ¢' (¢') has the analogous properties of [5], especially it holds
ad/ (A, Blat=¢'(aA, 'a™'B), for a=Ey
(g (Aot =g/ (aA), for e Fy').

This implies that the subgroup generated by {¢'(A, B)|A, Bell', (A, B)#0}
is a normal subgroup of Ey (so is Fy). Hence by Theorem 8 (by [6] Theorem 12),
we have the following

Theorem 10. The group Es is generated by {¢'(A, B)|A, Bell', (A, B)'#0}
(The group Fy is genevated by {(¢'(A)|A<lIl'}).

8. Homogeneous space Ey'/F.
We consider the space Q' consisting of all elements XeJ' such that detX=1:

Xy'= (XY |detX=1),

Theorem 11 ([3] Theorem 7). The group Es' acts transitively on i and the
isotropy subgroup of Ey at E is Fy. Therefore the homogeneous space Eg'/F4 is
homeomor phic fo t':

Ee'/Fatl’—\iS{.

Proof. We define the linear transformations ¢ and r=<(4;, A2, 43) of ' respe-
ctively by

& X3¢  exy
oX=| xe —& exie |,
exs ex.e —&;

ME1dr xale Ai¥els
X= 22—.72321 Ao€als AsX1ls |, AAds=1, i< R
A¥edy  AsXide  Aefaly

for X=X(&, x)=%'. Then as readily seen they are elements of E;. Now, we shall
prove that Eg' acts transitively on &i'. To do this, it is sufficient to show that
any element of J'
element YEJ,', as well known there exists A=Sp(4) such that fYeJM, H), is

transformed to a diagonal form by the action p. Namely, there exists a&(Ed)x

can be transformed to E by some element of FE¢. For any

such that «Y is a diagonal form

aY =Z=0E -} E (5 Es, Cilala=1.
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Here, if there exist {;<{0, then we may assume & >0, £;<0 ¢3<<0 by choosing a
suitable element A=Sp(4) in the above. Hence, transforming Z by ¢ if necessary,
we may assume >0, i=1, 2, 3, Therefore operate r=t(1/4/C;, 1/a/C2, 1/4/C3) on
Z, then we have

tZ=FE.

Thus we have proved the transitivity of Es'. Since the isotropy subgroup of Ey at
E is Fy, we have the following homeomorphism

Ee' /Ry =5
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