Non compact Simple Lie Group $\mathbb{E}_{6(6)}$ of T Type \mathbb{E}_{6}

By Osamu Shukuzawa and Ichiro Yokota

Department of Mathematics, Faculty of Science, Shinshu University
(Received March 20, 1979)

It is known that there exist five simple Lie groups of type E_{6} up to local isomorphism, one of them is obtained as the projective transformation group of the Cayley projective plane $I I$ and defined by $E_{6}=\left\{\alpha \in \operatorname{Is} \mathcal{O}_{R}(\Im\right.$, $\left.\mathfrak{\Im}) \mid \operatorname{det} \alpha X=\operatorname{det} X\right\}$ (where \mathfrak{F} is the exceptional Jordan algebra over the Cayley algebra © \mathfrak{c}) and it is homeomorphic to $F_{4} \times \mathbb{R}^{28}$ [1] and a simple (in the sense of the center $z\left(E_{6}\right)=1$) Lie group [3]. In this paper, we investigate one of the other non-compact simple Lie groups

$$
E_{6}{ }^{\prime}=\left\{\alpha \in \operatorname{Iso} \boldsymbol{R}\left(\Im^{\prime}, \Im^{\prime}\right) \mid \operatorname{det} \alpha X=\operatorname{det} X\right\}
$$

(where \Im^{\prime} is the exceptional Jordan algebra over the split Cayley algebra (\mathbb{S}^{\prime}). The results are as follows. The group $E_{6}{ }^{\prime}$ is homeomorphic to $S p(4) / \mathbb{Z}_{2} \times \mathbb{R}^{42}$ and a simple (in the sense of the center $z\left(E_{6}{ }^{\prime}\right)=1$) Lie group, and hence the center $z\left(\widetilde{E}_{6}{ }^{\prime}\right)$ of the non-compact simply connected simple Lie group $\widetilde{E}_{6}{ }^{\prime}=E_{6(6)}$ of type E_{0} is \mathbb{Z}_{2}.

1. Split Jordan algebra \mathfrak{S}^{\prime}

Let \mathbb{C}^{\prime} be the split Cayley algebra over the real numbers \mathbb{R}. This algebra \mathbb{s}^{\prime} is defined as follows. In $\mathbb{c}^{\prime}=\mathbb{H} \oplus \mathbb{H}$, where \mathbb{I} is the quaternion field over \mathbb{R}, the multiplication is defined by

$$
(a+b e)(c+d e)=(a c+\overline{d b})+(b \bar{c}+d a) e .
$$

In \mathbb{C}^{\prime}, the conjugate \bar{x}^{\prime}, the real part $\operatorname{Re}(x)$, the Q-norm $Q(x)$ and the inner product $(x, y)^{\prime}$ are defined respctively by

$$
\begin{array}{cc}
\overline{a+b e}=\bar{a}-b e, & \operatorname{Re}(x)=\frac{1}{2}(x+\bar{x}), \\
\mathrm{Q}(a+b e)=|a|^{2}-|b|^{2}, & (a+b e, c+d e)^{\prime}=(a, c)-(b, d) .
\end{array}
$$

Let $\mathfrak{\Im}^{\prime}=\mathfrak{\Im}\left(3, \mathfrak{s}^{\prime}\right)$ be the Jordan algebra consisting of all 3×3 Hermitian matrices X with entries in ${ }^{(5)}$

$$
X=X(\xi, x)=\left(\begin{array}{ccc}
\xi_{1} & x_{3} & \bar{x}_{2} \\
\bar{x}_{3} & \xi_{2} & x_{1} \\
x_{2} & \bar{x}_{1} & \xi_{3}
\end{array}\right), \quad \xi_{i} \in \boldsymbol{R}, \quad x_{i} \in \mathbb{C}^{\prime}
$$

with respect to the multiplication

$$
X \circ Y=\frac{1}{2}(X Y+Y X) .
$$

In \mathfrak{S}^{\prime}, the crossed product $X \times Y$, the inner product $(X, Y)^{\prime}$, the trilinear form tr $(X, Y, Z)^{\prime}$, the cubic form $(X, Y, Z)^{\prime}$ and the determinant $\operatorname{det} X$ are defined respectively by

$$
\begin{aligned}
& X \times Y=\frac{1}{2}(2 X \circ Y-\operatorname{tr}(X) Y-\operatorname{tr}(Y) X+(\operatorname{tr}(X) \operatorname{tr}(Y)-\operatorname{tr}(X \circ Y)) E), \\
& (X, Y)^{\prime}=\operatorname{tr}(X \circ Y)=\sum_{i=1}^{3}\left(\xi_{i} \eta_{i}+2\left(x_{i}, y_{i}\right)^{\prime}\right), \\
& \operatorname{tr}(X, Y, Z)^{\prime}=(X \circ Y, Z)^{\prime}=(X, Y \circ Z)^{\prime}, \\
& (X, Y, Z)^{\prime}=(X \times Y, Z)^{\prime}=(X, Y \times Z)^{\prime}, \\
& \operatorname{det} X=\frac{1}{3}(X, X, X)^{\prime}=\xi_{1} \xi_{2} \xi_{3}+2 \operatorname{Re}\left(x_{1} x_{2} x_{3}\right)-\xi_{1} \mathrm{Q}\left(x_{1}\right)-\xi_{2} \mathrm{Q}\left(x_{2}\right)-\xi_{3} \mathrm{Q}\left(x_{3}\right)
\end{aligned}
$$

where $X=X(\xi, x), Y=Y(\eta, y)$ and E is the 3×3 unit matrix.
In \Im^{\prime} we adopt the following notations.

$$
\begin{array}{rr}
E_{1}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right), & E_{2}=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right), \\
F_{1}(x)=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & x \\
0 & \bar{x} & 0
\end{array}\right), \quad F_{2}(x)=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 1
\end{array}\right), \\
0 & 0
\end{array} 0
$$

Then these elements generate \Im^{\prime} additively and the table of the Jordan multiplication and the crossed product among them are given respectively as follows.

$$
\begin{aligned}
& \begin{cases}E_{i} \circ E_{i}=E_{i}, & E_{i} \circ E_{i+1}=0, \\
E_{i} \circ F_{i}(x)=0, & E_{i} \circ F_{j}(x)=\frac{1}{2} F_{j}(x), \quad i \neq j, \\
F_{i}(x) \circ F_{i}(y)=(x, y)^{\prime}\left(E_{i+1}+E_{i+2}\right), & F_{i}(x) \circ F_{i+1}(y)=\frac{1}{2} F_{i+2}(\overline{x y}),\end{cases} \\
& \begin{cases}E_{i} \times E_{i}=0, & E_{i} \times E_{i+1}=\frac{1}{2} E_{i+2}, \\
E_{i} \times F_{i}(x)=-\frac{1}{2} F_{i}(x), & E_{i} \times F_{j}(x)=0, \\
F_{i}(x) \times F_{i}(y)=-(x, y)^{\prime} E_{i}, & F_{i}(x) \times F_{i+1}(y)=\frac{1}{2} F_{i+2}(\overline{x y}),\end{cases}
\end{aligned}
$$

where the indexes are considered as mod 3 .
Finally we define the positive definite inner products (x, y) in \mathbb{c}^{\prime} and (X, Y) in \Im^{\prime} respectively by

$$
\begin{aligned}
& (a+b e, c+d e)=(a, c)+(b, d), \\
& (X, Y)=\sum_{i=1}^{3}\left(\xi_{i} \eta_{i}+2\left(x_{i}, y_{i}\right)\right)
\end{aligned}
$$

where $X=X(\xi, x), \quad Y=Y(\eta, y)$, and we denote by ' α and ${ }^{t} \alpha$ the transpose of $\alpha \in \operatorname{Isor}$ $\left(\Im^{\prime}, \Im^{\prime}\right)$ relative to $(X, Y)^{\prime}$ and (X, Y) respectively:

$$
(\alpha X, Y)^{\prime}=\left(X,{ }^{\prime} \alpha Y\right)^{\prime}, \quad(\alpha X, Y)=\left\langle X,{ }^{t} \alpha Y\right\rangle
$$

2. Groups $\boldsymbol{E}_{6}{ }^{\prime}$ and $\boldsymbol{F}_{4}{ }^{\prime}$.

The group $E_{6}{ }^{\prime}$ is defined to be the gronp of linear isomorphisms of \Im^{\prime} leaving the determinant $\operatorname{det} X$ invariant:

$$
\begin{aligned}
E_{\mathbf{6}}^{\prime} & =\left\{\alpha \in \operatorname{Ison}\left(\Im^{\prime}, \Im^{\prime}\right) \mid \operatorname{det} \alpha X=\operatorname{det} X\right\} \\
& =\left\{\alpha \in \operatorname{Ison}\left(\Im^{\prime}, \Im^{\prime}\right) \mid(\alpha X, \alpha Y, \alpha Z)^{\prime}=(X, Y, Z)^{\prime}\right\} \\
& =\left\{\alpha \in \operatorname{Isor}\left(\Im^{\prime}, \Im^{\prime}\right) \mid \alpha X \times \alpha X={ }^{\prime} \alpha^{-1}(X \times X)\right\}
\end{aligned}
$$

and $F_{4}^{\prime}\left(=F_{4,2}\right)$ the group of automorphisms of \Im^{\prime} :

$$
\begin{aligned}
F_{4^{\prime}}^{\prime} & =\left\{\alpha \in \operatorname{IsoR}\left(\Im^{\prime}, \Im^{\prime}\right) \mid \alpha(X \circ Y)=\alpha X \circ \alpha Y\right\} \\
& =\left\{\alpha \in \operatorname{IsoR}\left(\Im^{\prime}, \Im^{\prime}\right) \mid \alpha(X \times Y)=\alpha X \times \alpha Y\right\} \\
& =\left\{\alpha \in \operatorname{IsoR}\left(\Im^{\prime}, \Im^{\prime}\right) \mid \operatorname{tr}(\alpha X, \alpha Y, \alpha Z)^{\prime}=\operatorname{tr}(X, Y, Z)^{\prime},(\alpha X, \alpha Y)^{\prime}=\langle X, Y)^{\prime}\right\} \\
& =\left\{\alpha \in E_{6}{ }^{\prime} \mid(\alpha X, \alpha Y)^{\prime}=(X, Y)^{\prime}\right\} \\
& =\left\{\alpha \in E_{6}{ }^{\prime} \mid \alpha E=E\right\} .
\end{aligned}
$$

Then the group $F_{4}{ }^{\prime}$ is homeomorphic to $(S p(1) \times S p(3)) / Z_{2} \times \boldsymbol{R}^{28}$ and a simple (in the sense of the center $z\left(F_{4}^{\prime}\right)=1$) Lie group [6].

Remark. In [6], the group $F_{4}^{\prime}\left(=F_{4,2}\right)$ is defined to be the group of automorphisms of \Im^{\prime} leaving the trace invariant. However the condition of the trace-preserving can be omitted, that is, the condition $\alpha(X \circ Y)=\alpha X \circ \alpha Y$ implies the condition $\operatorname{tr}(\alpha X)=\operatorname{tr}(X)$. In fact, any element $X \in \Im^{\prime}$ satisfies the Cayley-Hamilton identity

$$
\begin{equation*}
X \circ(X \times X)=X^{\circ 3}-\operatorname{tr}(X) X^{2}+\frac{1}{2}\left(\operatorname{tr}(X)^{2}-\operatorname{tr}\left(X^{2}\right)\right) X=(\operatorname{det} X) E . \tag{i}
\end{equation*}
$$

Now, apply (i) to αX and then operate $\alpha^{-1} \in \operatorname{Aut}\left(\Im^{\prime}\right)$ on it. Then we have

$$
\begin{equation*}
X^{\circ 3}-\operatorname{tr}(\alpha X) X^{2}+\frac{1}{2}\left(\operatorname{tr}(\alpha X)^{2}-\operatorname{tr}\left(\alpha X^{2}\right)\right) X=(\operatorname{det} \alpha X) E . \tag{ii}
\end{equation*}
$$

Thus we get by subtraction (i)-(ii)

$$
(\operatorname{tr}(\alpha X)-\operatorname{tr}(X)) X^{2}+\frac{1}{2}-\left(\operatorname{tr}(X)^{2}-\operatorname{tr}(\alpha X)^{2}+\operatorname{tr}\left(\alpha X^{2}\right)-\operatorname{tr}\left(X^{2}\right)\right) X=(\operatorname{det} X-\operatorname{det} \alpha X) E
$$

So, put $\left.X=\mathrm{F}_{i}\left(e_{j}\right)^{1}\right), i=1,2,3, j=0,1, \cdots, 7$, then we have

$$
\begin{gathered}
\left(e_{j}, e_{j}\right)^{\prime} \operatorname{tr}\left(\alpha F_{i}\left(e_{j}\right)\right)\left(E_{i+1}+E_{i+2}\right)+\frac{1}{2}\left(-\operatorname{tr}\left(\alpha F_{i}\left(e_{j}\right)\right)^{2}+\operatorname{tr}\left(\alpha F_{i}\left(e_{j}\right)^{2}\right)-\operatorname{tr}\left(F_{i}\left(e_{j}\right)^{2}\right)\right) F_{i}\left(e_{j}\right) \\
=-\left(\operatorname{det} \alpha F_{i}\left(e_{j}\right)\right) E
\end{gathered}
$$

Hence we have

$$
\operatorname{tr}\left(\alpha F_{i}\left(e_{j}\right)\right)=0=\operatorname{tr}\left(F_{i}\left(e_{j}\right)\right), \quad i=1, \quad 2, \quad 3, \quad j=0, \quad 1, \cdots, 7
$$

and also $\operatorname{tr}\left(\alpha F_{i}\left(e_{j}\right)^{2}\right)=\operatorname{tr}\left(F_{i}\left(e_{j}\right)^{2}\right)$ hence

$$
\operatorname{tr}\left(\alpha E_{i}\right)=\operatorname{tr}\left(\alpha\left(E-F_{i}(1)^{2}\right)\right)=\operatorname{tr}\left(E-F_{i}(1)^{2}\right)=\operatorname{tr}\left(E_{i}\right), \quad i=1,2,3
$$

Consequently we obtain

$$
\operatorname{tr}(\alpha X)=\operatorname{tr}(X), \quad \text { for all } X \in \mathfrak{S}^{\prime}
$$

We define the involution γ in \mathfrak{s}^{\prime} by

$$
\gamma X(\xi, a+b e)=X(\xi, a-b e) .
$$

Then $\gamma \in F_{4}^{\prime},{ }^{\prime} \gamma={ }^{t} \gamma=\gamma^{-1}=\gamma$ and two inner products $(X, Y)^{\prime},(X, Y)$ in \Im^{\prime} are combined with the following relations

$$
(X, Y)^{\prime}=(X, \gamma Y), \quad(X, Y)=(X, \gamma Y)^{\prime}
$$

And we have

$$
{ }^{t_{\alpha}}=\gamma^{\prime} \alpha \gamma, \quad \text { for } \alpha \in \operatorname{Iso} \boldsymbol{R}\left(\mathfrak{S}^{\prime}, \mathfrak{S}^{\prime}\right)
$$

because it holds that $\left({ }^{t} \alpha X, Y\right)^{\prime}=\left({ }^{t} \alpha X, \gamma Y\right)=\left(X, \alpha_{\gamma} Y\right)=\left(X, \alpha_{\gamma} Y\right)^{\prime}=\left(\gamma^{\prime} \alpha \gamma X, Y\right)^{\prime}$ for all $X, Y \in \mathfrak{s}^{\prime}$.
3. Jordan algebra $\mathfrak{J}(4, H)$ and Symplectic group $S_{p}(4)$.

Before we consider the group $E_{6}{ }^{\prime}$, we prepare the several spaces $\Im(4, \boldsymbol{H}), \Im(4$, $\boldsymbol{H})_{0}, H P_{3}$ and the group $S p(4)$.

Let $\mathfrak{J}(4, \boldsymbol{M})$ be the Jordan algebra consisting of all 4×4 Hermitian matrices S with entries in \mathbb{H} :

$$
\mathfrak{\Im}(4, H)=\left\{S \in M(4, H) \mid S^{*}=S\right\}
$$

with respect to the multiplication

1) $\left\{e_{0}, e_{1}, \cdots, e_{7}\right\}$ is the canonical basis of ($^{\prime}$:

$$
e_{0}=1, \quad e_{1}=i, \quad e_{2}=j, \quad e_{3}=k, \quad e_{4}=e, \quad e_{5}=i e, \quad e_{6}=j e, \quad e_{7}=k e
$$

where $\{1, i, j, k\}$ is the canonical basis of H. Then $\left\{E_{i}, F_{i}\left(e_{j}\right), i=1,2,3, j=0,1\right.$, $\cdots, 7\}$ is a basis of \mathfrak{S}^{\prime}.

$$
S \circ T=\frac{1}{2}(S T+T S)
$$

And we define the positive definite inner product (S, T) in $\Im(4, H)$ by

$$
(S, T)=\operatorname{tr}(S \circ T)
$$

Let $\mathfrak{\Im}(4, H)_{0}$ be the vector space of all $S \in \Im(4, H)$ such that $\operatorname{tr}(S)=0$:

$$
\Im(4, H)_{0}=\{S \in \Im(4, H) \mid \operatorname{tr}(S)=0\}
$$

Now, we define a mapping $f: \mathfrak{S}^{\prime} \rightarrow \mathfrak{J}(4, \boldsymbol{H})$ by

$$
f\left(\begin{array}{ccc}
\xi_{1} & a_{3}+b_{3} e & \bar{a}_{2}-b_{2} e \\
\bar{a}_{3}-b_{3} e & \xi_{2} & a_{1}+b_{1} e \\
a_{2}+b_{2} e & \bar{a}_{1}-b_{1} e & \xi_{3}
\end{array}\right)=\left(\begin{array}{cccc}
\lambda_{1} & b_{1} & b_{2} & b_{3} \\
\bar{b}_{1} & \lambda_{2} & a_{3} & \bar{a}_{2} \\
\bar{b}_{2} & \vec{a}_{3} & \lambda_{3} & a_{1} \\
\bar{b}_{3} & a_{2} & \bar{a}_{1} & \lambda_{4}
\end{array}\right)
$$

where $\lambda_{1}=\frac{1}{2}\left(\xi_{1}+\xi_{2}+\xi_{3}\right), \quad \lambda_{2}=\frac{1}{2}\left(\xi_{1}-\xi_{2}-\xi_{3}\right), \quad \lambda_{3}=\frac{1}{2}\left(\xi_{2}-\xi_{3}-\xi_{1}\right), \quad \lambda_{4}=\frac{1}{2}\left(\xi_{3}-\xi_{1}-\xi_{2}\right)$. Then we have the following key

Lemma 1. The mapping $f: \Im^{\prime} \rightarrow \Im(4, H)_{0}$ is an isometry, i.e. f is a linear isomorphism which satisfies

$$
(f X, f Y)=(X, Y), \quad X, Y \in \Im^{\prime}
$$

Moreover we have the following identity in $\mathfrak{s}(4, H)$

$$
f X \circ f Y=f(\gamma(X \times Y))+\frac{1}{4}(X, Y) I, \quad X, Y \in \mathfrak{S}^{\prime}
$$

where I is the 4×4 unit matrix.
Proof. Noting that $\lambda_{1}{ }^{2}+\lambda_{2}{ }^{2}+\lambda_{8}{ }^{2}+\lambda_{4}{ }^{2}=\xi_{1}{ }^{2}+\xi_{2}{ }^{2}+\xi_{3}{ }^{2}$, it is easy to verify the formula $(f X, f Y)=(X, Y)$. Next, to prove the identity $f X \circ f Y=f(r(X \times Y))+\frac{1}{4}(X, Y) I$, it is sufficient to show that
(1) $f E_{i} \circ f E_{i}=\frac{1}{4} I$,
(2) $f E_{i} \circ f E_{i+1}=f\left(E_{i} \times E_{i+1}\right)$,
(3) $f E_{i} \circ f F_{i}(x)=f\left(E_{i} \times \gamma F_{i}(x)\right)$,
(4) $f E_{i} \circ f F_{j}(x)=0=f\left(E_{i} \times \gamma F_{j}(x)\right), \quad i \neq j$,
(5) $\quad f F_{i}(x) \circ f F_{i}(y)=f\left(\gamma\left(F_{i}(x) \times F_{i}(y)\right)\right)+\frac{1}{4}\left(F_{i}(x), \quad F_{i}(y)\right) I$,
(6) $\quad f F_{i}(x) \circ f F_{i+1}(y)=f\left(\gamma\left(F_{i}(x) \times F_{i+1}(y)\right)\right)$.

Proof of (3). $\quad f E_{1} \circ f F_{1}(x) \quad(x=a+b e)$

$$
\begin{aligned}
& =\frac{1}{2}\left(\begin{array}{cccc}
1 & & & \\
& 1 & & \\
& & -1 & \\
& & & -1
\end{array}\right) \circ\left(\begin{array}{cccc}
0 & b & 0 & 0 \\
\vec{b} & 0 & 0 & 0 \\
0 & 0 & 0 & a \\
0 & 0 & \bar{a} & 0
\end{array}\right) \\
& =\frac{1}{2}\left(\begin{array}{cccc}
0 & b & 0 & 0 \\
\bar{b} & 0 & 0 & 0 \\
0 & 0 & 0-a \\
0 & 0-\bar{a} & 0
\end{array}\right)=-\frac{1}{2} f F_{1}(a-b e)=f\left(E_{1} \times \gamma F_{1}(x)\right) .
\end{aligned}
$$

Proof of (5).

$$
f F_{1}(x) \circ f F_{1}(y) \quad(x=a+b e, \quad y=c+d e)
$$

$$
\begin{aligned}
& =\left(\begin{array}{cccc}
0 & b & 0 & 0 \\
\bar{b} & 0 & 0 & 0 \\
0 & 0 & 0 & a \\
0 & 0 & \bar{a} & 0
\end{array}\right) \circ\left(\begin{array}{cccc}
0 & d & 0 & 0 \\
\bar{d} & 0 & 0 & 0 \\
0 & 0 & 0 & c \\
0 & 0 & \bar{c} & 0
\end{array}\right) \\
& =\left(\begin{array}{llll}
(b, d) & & & \\
& (b, d) & & \\
& & (a, c) & \\
& & & (a, c)
\end{array}\right) \\
& =(b, d)\left(f E_{1}+\frac{1}{2} I\right)+(a, c)\left(-f E_{1}+\frac{1}{2} \Gamma\right) \\
& =-((a, c)-(b, d)) f E_{1}+\frac{1}{2}((a, c)+(b, d)) I \\
& =-(x, y)^{\prime} f E_{1}+\frac{1}{2}(x, y) I \\
& =f\left(r\left(F_{1}(x) \times F_{1}(y)\right)\right)+\frac{1}{4}\left(F_{1}(x), \quad F_{1}(y)\right) I .
\end{aligned}
$$

The other formulae are also proved by calculations similar to the above.
Let $S p(4)$ be the symplectic group:

$$
S p(4)=\left\{A \in M(4, \boldsymbol{H}) \mid A A^{*}=I\right\}
$$

The group $S p(4)$ acts on $\mathfrak{F}(4, \boldsymbol{H})$ by the way $\mu: S p(4) \times \mathfrak{F}(4, \boldsymbol{H}) \rightarrow \mathfrak{F}(4, \boldsymbol{H})$,

$$
\mu(A, S)=A S A^{*}
$$

Then this action induces an automorphism of $\mathfrak{J}(4, \boldsymbol{H})$ and an isometry of $\mathfrak{\Im}(4, \boldsymbol{H})$ (and $\left.\mathfrak{\Im}(4, \boldsymbol{H})_{0}\right)$:

$$
\begin{aligned}
& A(S \circ T) A^{*}=A S A^{*} \circ A T A^{*} \\
& \left(A S A^{*}, A T A^{*}\right)=\langle S, T\rangle .
\end{aligned}
$$

Finally, let $H P_{3}$ be the 3 dim. quaternion projective space:

$$
\begin{aligned}
H P_{3} & =\left\{P \in \mathfrak{\Im}(4, \boldsymbol{H}) \mid P^{2}=P, \operatorname{tr}(P)=1\right\} \\
& =\left\{A I_{1} A^{*} \mid A \in S p(4)\right\}
\end{aligned}
$$

where $I_{1}=\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right) \in M(4, \boldsymbol{H})$.
4. Compact subgroup $\left(\boldsymbol{E}_{6}{ }^{\prime}\right)_{K}$ of $\boldsymbol{E}_{6}{ }^{\prime}$.

We shall consider the following subgroup $\left(E_{6}{ }^{\prime}\right)_{K}$ of $E_{6}{ }^{\prime}$

$$
\left(E_{6}{ }^{\prime}\right)_{K}=\left\{\alpha \in E_{6}^{\prime} \mid(\alpha X, \alpha Y)=(X, Y)\right\}
$$

Proposition 2. The group $\left(E_{6}\right)_{K}$ is isomorphic to the group $S p(4) / \mathbb{Z}_{2}$, where \mathbb{Z}_{2} $=\{I,-I\}$.

Proof. We define a mapping $\varphi: S p(4) \rightarrow\left(E_{6}\right)_{K}$ by

$$
\varphi(A) X=f^{-1}\left(A(f X) A^{*}\right), \quad X \in \Im^{\prime}
$$

First of all, we have to show $\varphi(A) \in E_{6}{ }^{\prime}$.

$$
\begin{aligned}
3 \operatorname{det} & (\varphi(A) X) \quad(\text { denote } \varphi(A) X \text { by } Y) \\
& =(Y, Y, Y)^{\prime}=(Y \times Y, Y)^{\prime}=(r(Y \times Y), Y) \\
& =(f(r(Y \times Y)), f Y) \\
& =\left(f Y \circ f Y-\frac{1}{4}(Y, Y) I, f Y\right) \\
& =\left(f Y \circ f Y-\frac{1}{4}(f Y, f Y) I, f Y\right) \\
& =\left(A(f X) A^{*} \circ A(f X) A^{*}-\frac{1}{4}\left(A(f X) A^{*}, A(f X) A^{*}\right) I, \quad A(f X) A^{*}\right) \\
& =\left(f X \circ f X-\frac{1}{4}(X, X) I, f X\right) \\
& =(f(r(X \times X)), f X) \\
& =(r(X \times X), X)=(X \times X, X)^{\prime}=(X, X, X)^{\prime}=3 d e t X .
\end{aligned}
$$

Hence $\varphi(A) \in E_{6}{ }^{\prime}$. And it is obviously obtained that $(\varphi(A) X, \varphi(A) Y)=(X, Y)$, then $\varphi(A) \in\left(E_{6}{ }^{\prime}\right)_{K}$.

Obviously φ is a homomorphism. We shall prove that φ is onto. For a given $\alpha \in\left(E_{6}{ }^{\prime}\right)_{K}$, we consider the element $\alpha E \in \widetilde{S}^{\prime}$. This αE satisfies

$$
(f(\alpha E))^{2}=f(\alpha E)+\frac{3}{4} I .
$$

In fact, $(f(\alpha E))^{2}=f(\gamma(\alpha E \times \alpha E))+\frac{1}{4}(\alpha E, \alpha E) I=f\left(\gamma^{\prime} \alpha^{-1}(E \times E)\right)+\frac{1}{4}(E, E) I=f\left(\gamma^{\prime} \alpha^{-1} E\right)$
$+\frac{3}{4} I=f\left({ }^{t} \alpha^{-1} \gamma E\right)+\frac{3}{4} I=f\left({ }^{t} \alpha^{-1} E\right)+\frac{3}{4} I=f(\alpha E)+\frac{3}{4} I$. Therefore $P=\frac{1}{4}(2 f(\alpha E)$ $+I$ satisfies $P^{2}=P, \operatorname{tr}(P)=1$, that is, P is an element of $H P_{3}$. Hence there exists $A \in S p$ (4) such that

$$
P=A I_{1} A^{*}
$$

Then we have $\varphi(A) E=f^{-1}\left(A(f E) A^{*}\right)=f^{-1}\left(A\left(2 I_{1}-\frac{1}{2} I\right) A^{*}\right)=f^{-1}\left(2 P-\frac{1}{2} I\right)=f^{-1}(f(\alpha E))$ $=\alpha E$. So, put $\beta=\varphi(A)^{-1} \alpha$, then $\beta E=E$, that is, $\beta \in F_{4}{ }^{\prime}$ and satisfies

$$
(\beta X, \beta Y)=(X, Y), \quad X, Y \in \mathfrak{S}^{\prime} .
$$

(If we use the notation in [6], $\beta \in\left(F_{4}^{\prime}\right)_{K}$.) Hence, from [6], there exists $B=\left(\begin{array}{ll}p & 0 \\ 0 & C\end{array}\right)$ $\in S p(4)$, where $p \in S p(1)=\{p \in \boldsymbol{H} \| p \mid=1\}$ and $C \in S p(3)=\left\{C \in M(3, H) \mid C C^{*}=E\right\}$ such that

$$
\beta=\varphi(B) .
$$

(In [6], we have proved that the group $\left(F_{4}^{\prime}\right)_{K}$ is isomorphic to the group $(S p(1) \times$ $S p(3)) / \mathbb{Z}_{2}$. It is easy to see that the mapping to prove this isomorphism coincides with φ, if we note the following

$$
\begin{aligned}
f X & =f\left(\begin{array}{ccc}
\xi_{1} & a_{3}+b_{3} e & \bar{a}_{2}-b_{2} e \\
\bar{a}_{3}-b_{3} e & \xi_{2} & a_{1}+b_{1} e \\
a_{2}+b_{2} e & \bar{a}_{1}-b_{1} e & \xi_{3}
\end{array}\right) \\
& =\left(\begin{array}{cccc}
\operatorname{tr}(X) & b_{1} & b_{2} & \bar{b}_{3} \\
\bar{b}_{1} & \xi_{1} & a_{3} & \bar{a}_{2} \\
\bar{b}_{2} & \bar{a}_{3} & \xi_{2} & a_{1} \\
\bar{b}_{3} & a_{2} & \bar{a}_{1} & \xi_{3}
\end{array}\right)-\frac{1}{2} \operatorname{tr}(X) I \\
& =\left(\begin{array}{cc}
\operatorname{tr}\left(X_{H}\right) & b \\
b^{*} & X_{H I}
\end{array}\right)-\frac{1}{2} \operatorname{tr}\left(X_{H}\right) I
\end{aligned}
$$

and

$$
\left.B(f X) B^{*}=\left(\begin{array}{cc}
\operatorname{tr}\left(C X_{H} C^{*}\right) & p b C^{*} \\
\left(p b C^{*}\right)^{*} & C X_{H} C^{*}
\end{array}\right)-\frac{1}{2} \operatorname{tr}\left(C X_{H} C^{*}\right) I\right) .
$$

Hence we have

$$
\alpha=\varphi(A) \varphi(B)=\varphi(A B), \quad A B \in S p(4)
$$

that is, φ is onto. Finally $\operatorname{Ker} \varphi=\{I,-I\}$ is easily obtained. Thus the proof of Proposition 2 is completed.

5. Polar decomposition of $\boldsymbol{E}_{6}{ }^{\prime}$.

To give a polar decomposition of $E_{6}{ }^{\prime}$ we use the following
Lemma 3 ([2] p. 345). Let G be a real algebraic subgroup of the general linear
group $G L(n, \mathbb{R})$ such that the condition $A \in G$ implies ${ }^{t} A \in G$. Then G is homeomorphic to the topological product of $G \cap O(n)$ (which is a maximal compact subgroup of G) and a Euclidean space \mathbb{R}^{d} :

$$
G \simeq(G \cap O(n)) \times \mathbb{R}^{d}, \quad d=\operatorname{dim}(\mathfrak{g} \cap \mathfrak{b}(n))
$$

where $O(n)$ is the orthogonal subgroup of $G L(n, \mathbb{R}), 8$ the Lie algebra of G and $h(n)$ the vector space of all real symmetric matrices of degree n.

To use the above Lemma, first of all we show the following
Lemma 4. $E_{6}{ }^{\prime}$ is a real algebraic subgroup of the general linear group $G L(27, H)$ $=\operatorname{Isor}\left(\Im^{\prime}, \Im^{\prime}\right)$ and satisfies the condition $\alpha \in E_{6}{ }^{\prime}$ implies ${ }^{t_{\alpha} \in E_{6}{ }^{\prime} .}$

Proof. We use the following identity

$$
(Z \times Z) \times(Z \times Z)=(\operatorname{det} Z) Z, \quad Z \in \Im^{\prime}
$$

For $\alpha \in E_{6}{ }^{\prime}$ and $Y \in \mathfrak{S}^{\prime}$, we have

$$
\begin{aligned}
& \quad \alpha^{-1}(Y \times Y) \times{ }^{\prime} \alpha^{-1}(Y \times Y)=(\alpha Y \times \alpha Y) \times(\alpha Y \times \alpha Y) \\
& \quad=(\operatorname{det} \alpha Y) \alpha Y=(\operatorname{det} Y) \alpha Y=\alpha((\operatorname{det} Y) Y) \\
& \quad=\alpha((Y \times Y) \times(Y \times Y)) .
\end{aligned}
$$

Put $Y=X \times X$ for any $X \in \Im^{\prime}$ in the above, then we have

$$
\left.' \alpha^{-1}((\operatorname{det} X) X) \times{ }^{\prime} \alpha^{-1}((\operatorname{det} X) X)=\alpha((\operatorname{det} X) X) \times(\operatorname{det} X) X\right) .
$$

Hence, if $\operatorname{det} X \neq 0$ then ' $\alpha^{-1} X \times^{\prime} \alpha^{-1} X=\alpha(X \times X)$. This implies $\operatorname{det}^{\prime} \alpha^{-1} X=\operatorname{det} X$, i. e. (considering α^{-1} instead of α)

$$
\operatorname{det}^{\prime} \kappa X=\operatorname{det} X
$$

for $X \in \Im^{\prime}$ such that $\operatorname{det} X \neq 0$. The same holds also for $X \in \mathfrak{S}^{\prime}$ such that $\operatorname{det} X=0$. In fact, assume that $\operatorname{det}^{\prime} \alpha X \neq \operatorname{det} X=0$, then applying the above result to ' αX, we have $\operatorname{det}^{\prime} \alpha X=\operatorname{det}^{\prime} \alpha^{-1}\left(^{\prime} \alpha X\right)=\operatorname{det} X$, which contradicts the assumption. Therefore ' $\alpha \in E_{6}$ ', hence

$$
t_{\alpha=\gamma^{\prime} \alpha \gamma \in E_{6}{ }^{\prime} .} .
$$

Finally, it is obvious that $E_{6}{ }^{\prime}$ is real algebraic, because $E_{6}{ }^{\prime}$ is defined by the algebraic relation $\operatorname{det} \alpha X=\operatorname{det} X$.

Let $O\left(\Im^{\prime}\right)$ be the orthogonal subgroup of $\operatorname{Ison}\left(\Im^{\prime}, \Im^{\prime}\right)$:

$$
O(27)=O\left(\Im^{\prime}\right)=\left\{\alpha \in \operatorname{Isor}\left(\Im^{\prime}, \Im^{\prime}\right) \mid(\alpha X, a Y)=(X, Y)\right\}
$$

Then by Proposition 2 we have

$$
E_{6^{\prime}} \cap O\left(\Im^{\prime}\right)=\left(E_{6^{\prime}}\right)_{K} \cong S p(4) / \mathbb{Z}_{2}
$$

Next we shall determine the Euclidean part $\varepsilon_{6}{ }^{\prime} \cap \mathfrak{b}\left(\mathcal{S}^{\prime}\right)$ of $E_{6}{ }^{\prime}$ where

$$
\begin{gathered}
\mathfrak{e}_{6}^{\prime}=\left\{\zeta \in \operatorname{Hom}_{\boldsymbol{R}}\left(\mathfrak{S}^{\prime}, \mathfrak{J}^{\prime}\right) \mid(\zeta X, X, X)^{\prime}=0\right\} \\
\mathfrak{l}(27)=\mathfrak{h}\left(\mathfrak{J}^{\prime}\right)=\left\{\zeta \in \operatorname{Hom}_{\boldsymbol{R}}\left(\mathfrak{\Im}^{\prime}, \mathfrak{J}^{\prime}\right) \mid(\zeta X, Y)=(X, \zeta Y)\right\} .
\end{gathered}
$$

(The dimension of the Euclidean part of $E_{6}{ }^{\prime}$ is obtained by $\operatorname{dim} E_{6}{ }^{\prime}-\operatorname{dimSp}(4)=78-$ $36=42$. However we investigate the structure of $\mathfrak{e}_{6}{ }^{\prime} \cap \mathfrak{G}\left(\mathfrak{S}^{\prime}\right)$ directly.)

Lemma 5. Any element ζ of the Lie algebra $\mathfrak{e}_{6}{ }^{\prime}$ of $E_{6}{ }^{\prime}$ is uniquely represented by the form

$$
\zeta=\delta+\widetilde{T}, \quad \delta \in \mathfrak{f}_{4}{ }^{\prime}, T \in \mathfrak{F}^{\prime}, \operatorname{tr}(T)=0
$$

where $f_{4}{ }^{\prime}=\left\{\delta \in \mathfrak{e}_{6}{ }^{\prime} \mid \delta E=0\right\}$ is the Lie algebra of F_{4}^{\prime} and $\widetilde{T} \in e_{6}{ }^{\prime}$ is defined by $\widetilde{T} X=T \circ X$ for $X \in \Im^{\prime}$.

Proof. For a given $\zeta \in \mathfrak{e}_{6}{ }^{\prime}$, put

$$
T=\zeta E \quad \text { and } \quad \delta=\zeta-\widetilde{T}
$$

then the required results are obtained quite analogously in [1].
Let $\zeta=\delta+\widetilde{T} \in \mathfrak{e}_{6}{ }^{\prime} \cap \mathfrak{h}\left(\widetilde{s}^{\prime}\right)$. Then it holds

$$
(\delta X, \quad Y)+(\widetilde{T} X, \quad Y)=(X, \quad \delta Y)+(X, \quad \widetilde{T} Y), \quad X, \quad Y \in \Im^{\prime}
$$

Put $Y=E$, then $\operatorname{tr}(\delta X)+\operatorname{tr}(\widetilde{T} X)=0+(X, T)$. Since $\operatorname{tr}(\delta X)=0[6]$, we have $(T, X)^{\prime}$ $=(T, X)$ for all $X \in \mathcal{S}^{\prime}$. This implies $\gamma T=T$, that is,

$$
T \in \Im(3, \boldsymbol{H}), \quad \operatorname{tr}(T)=0
$$

Furthermore we have $(\widetilde{T} X, Y)=(\widetilde{T} X, \gamma Y)^{\prime}=\operatorname{tr}(T, X, \gamma Y)^{\prime}=\operatorname{tr}(\gamma T, X, \gamma Y)^{\prime}=\operatorname{tr}(T, \gamma X$, $Y)^{\prime}=\operatorname{tr}(T, Y, \gamma X)^{\prime}=(\widetilde{T} Y, \gamma X)^{\prime}=(\widetilde{T} Y, X)=(X, \widetilde{T} Y)$, therefore $\widetilde{T} \in \mathfrak{e}_{6}{ }^{\prime} \cap \mathfrak{b}(\Im)$ and $\delta \in \mathfrak{f}_{4}{ }^{\prime}$ $\cap \mathfrak{G}\left(\mathfrak{J}^{\prime}\right)$. Hence any $\zeta \in \mathfrak{f}_{6}^{\prime} \cap \mathfrak{V}\left(\mathfrak{S}^{\prime}\right)$ has a form

$$
\zeta=\delta+\widetilde{T}, \quad \delta \in f_{4}^{\prime} \cap \mathfrak{h}\left(\Im^{\prime}\right), \quad T \in \mathfrak{\Im}(3, \boldsymbol{H}), \quad \operatorname{tr}(T)=0
$$

and conversely. The structure of $f_{4}^{\prime} \cap \mathfrak{G}\left(\mathfrak{S}^{\prime}\right)$ has been already seen in [6] and its dimension is 28 . Hence we have

$$
\operatorname{dim}\left(e_{6}^{\prime} \cap \mathfrak{g}\left(\mathfrak{s}^{\prime}\right)\right)=28+14=42
$$

Thus we have the following
Theorem 6. The group $E_{6}{ }^{\prime}$ is homeomorphic to the topological product of the group $S p(4) / \boldsymbol{Z}_{2}$ and a 42-dim. Euclidean space \boldsymbol{R}^{42} :

$$
E_{6}^{\prime} \simeq S p(4) / \mathbb{Z}_{2} \times R^{42}
$$

In particular, E_{6}^{\prime} is a connected (but not simply connected) Lie group.
6. Simplicity of $\mathcal{E}_{6}{ }^{\prime}$.

Proposition 7. The center $z\left(E_{6}{ }^{\prime}\right)$ of $E_{6}{ }^{\prime}$ is trivial:

$$
z\left(E_{6}^{\prime}\right)=1
$$

Proof. We define the linear transformations $\beta_{i}, i=1,2,3$ of \Im^{\prime} by

$$
\beta_{1} \mathrm{X}=\left(\begin{array}{ccc}
\xi_{1} & -x_{3} & -\bar{x}_{2} \\
-\bar{x}_{3} & \xi_{2} & x_{1} \\
-x_{2} & \bar{x}_{1} & \xi_{3}
\end{array}\right), \quad \beta_{2} X=\left(\begin{array}{ccc}
\xi_{1} & -x_{3} & \bar{x}_{2} \\
-\bar{x}_{3} & \xi_{2} & -x_{1} \\
x_{2} & -\bar{x}_{1} & \xi_{3}
\end{array}\right), \quad \beta_{3} X=\left(\begin{array}{lll}
\xi_{2} & x_{1} & \bar{x}_{3} \\
\bar{x}_{1} & \xi_{3} & x_{2} \\
x_{3} & \bar{x}_{2} & \xi_{1}
\end{array}\right)
$$

for $X=X(\xi, x) \in \Im^{\prime}$. Then as readily seen thay are elements of F_{4}^{\prime}. Now, let $\alpha \in z\left(E_{6}{ }^{\prime}\right)$. By the commutativity of $\beta \in F_{4}{ }^{\prime} \subset E_{6}{ }^{\prime}$, we have $\beta \alpha E=\alpha \beta E=\alpha E$. Hence if we denote αE by $Y=Y(\eta, y)$, then

$$
\beta Y=Y, \quad \text { for all } \beta \in F_{4}^{\prime} .
$$

From this, putting $\beta=\beta_{1}, \beta_{2}$, we get $y_{1}=y_{2}=y_{3}=0$, that is, $Y=\eta_{1} E_{1}+\eta_{2} E_{2}+\eta_{3} E_{3}$. Furthermore, putting $\beta=\beta_{3}$, we get $\eta_{1}=\eta_{2}=\eta_{9}(=\eta)$, that is, $Y=\eta E$. Since $\alpha \in E_{6}{ }^{\prime}$, we have $\eta^{3}=\operatorname{det} Y=\operatorname{det} \alpha E=\operatorname{det} E=1$. Thus $\eta=1$, that is, $\alpha E=E$, which means that $\alpha \in F_{4}{ }^{\prime}$, then α is an element of the center $z\left(F_{4}{ }^{\prime}\right)$ of $F_{4}{ }^{\prime}$. Since $z\left(F_{4}{ }^{\prime}\right)=1$ by [6], we get $\alpha=1$, that is, $z\left(E_{6}{ }^{\prime}\right)=1$.

It is well known that the Lie algebra ${e_{6}}^{\prime}$ of $E_{6}{ }^{\prime}$ is simple [1], [4]. Now, since $E_{6}{ }^{\prime}$ is a connected group from Theorem 6 and a simple Lie group, any normal subgroup of $E_{6}{ }^{\prime}$ is contained in the center $z\left(E_{6}{ }^{\prime}\right)$ except $E_{6}{ }^{\prime}$ itself. Thus Proposition 7 implies the following

Theorem 8. The group $E_{6}{ }^{\prime}$ is simple (in the algebraic sense) Lie group.
Since the fundamental group of $E_{6}{ }^{\prime}$ is \mathbb{Z}_{2} from Theorem 6 and $E_{6}{ }^{\prime}$ is a simple group, we have the following

Theorem 9. The center $z\left(\widetilde{E}_{6}{ }^{\prime}\right)$ of the non-compact simply connected Lie group $\widetilde{E}_{6}{ }^{\prime}=E_{6(6)}$ of type E_{6} is \mathscr{Z}_{2}.
7. Generators of \boldsymbol{E}_{6}.

Analogously in the case of the non-split type, we define the split Cayley plane I^{\prime} by

$$
\begin{aligned}
\Pi^{\prime} & =\left\{A \in \mathfrak{S}^{\prime} \mid A^{2}=A, \operatorname{tr}(A)=1\right\} \\
& =\left\{A \in \Im^{\prime} \mid A \times A=0, \operatorname{tr}(A)=1\right\} .
\end{aligned}
$$

Then, from the straightforward calculations, we have the following formulae
(I) $A \times(Y \times(A \times X))=\frac{1}{4}(A, Y)^{\prime} A \times X$,
(II) $X \times(Y \times(X \times X))=\frac{1}{4}\left((\operatorname{det} X) Y+(X, \quad Y)^{\prime} X \times X\right)$,
(III) $A \times(A \times X)=\frac{1}{4}\left(X-2 A \circ X+(A, X)^{\prime} A\right)$,
for $A \in \Pi^{\prime}, X, Y \in \Im^{\prime}$. Therefore, following [5], we can define a mapping ψ^{\prime} :
$\left\{(A, B) \in \Pi^{\prime} \times \Pi^{\prime} \mid(A, B)^{\prime} \neq 0\right\} \rightarrow E_{6}{ }^{\prime}\left(\psi^{\prime}: \Pi^{\prime} \rightarrow F_{4^{\prime}}\right)$ as follows

$$
\begin{gathered}
\phi^{\prime}(A, \quad B) X=\frac{1}{(A, B)^{\prime}}\left(8 B \times(A \times X)+2(B, X)^{\prime} A-(A, B)^{\prime} X\right) \\
\left(\phi^{\prime}(A) X=\phi^{\prime}(A, A) X=X-4 A \circ X+4(A, X)^{\prime} A\right)
\end{gathered}
$$

Then $\psi^{\prime}\left(\psi^{\prime}\right)$ has the analogous properties of [5], especially it holds

$$
\begin{gathered}
\alpha \psi^{\prime}(A, B) \alpha^{-1}=\psi^{\prime}\left(\alpha A,{ }^{\prime} \alpha \alpha^{-1} B\right), \quad \text { for } \alpha \in E_{6}{ }^{\prime} \\
\left(\alpha \psi^{\prime}(A) \alpha^{-1}=\phi^{\prime}(\alpha A), \quad \text { for } \alpha \in F_{4}^{\prime}\right) .
\end{gathered}
$$

This implies that the subgroup generated by $\left\{\psi^{\prime}(A, B) \mid A, B \in \Pi^{\prime},(A, B)^{\prime} \neq 0\right\}$ is a normal subgroup of $E_{6}{ }^{\prime}$ (so is $F_{4}{ }^{\prime}$). Hence by Theorem 8 (by [6] Theorem 12), we have the following

Theorem 10. The group E_{6}^{\prime} is generated by $\left\{\phi^{\prime}(A, B) \mid A, B \in \Pi^{\prime},(A, B)^{\prime} \neq 0\right\}$ (The group F_{4}^{\prime} is generated by $\left.\left\{\phi^{\prime}(A) \mid A \in \Pi^{\prime}\right\}\right)$.
8. Homogeneous space $\boldsymbol{E}_{6}{ }^{\prime} / \boldsymbol{F}_{4}^{\prime}$.

We consider the space \Im_{1}^{\prime} consisting of all elements $X \in \mathfrak{S}^{\prime}$ such that $\operatorname{det} X=1$:

$$
\mathfrak{s}_{1}^{\prime}=\left\{X \in \widetilde{\Im}^{\prime} \mid \operatorname{det} X=1\right\} .
$$

Theorem 11 ([3] Theorem 7). The group $E_{6}{ }^{\prime}$ acts transitively on $\Im_{1}{ }^{\prime}$ and the isotropy subgroup of $E_{6}{ }^{\prime}$ at E is F_{4}^{\prime}. Therefore the homogeneous space $E_{6}{ }^{\prime} / F_{4^{\prime}}$ is homeomor phic to \Im_{1}^{\prime} :

$$
E_{6}^{\prime} / F_{4}^{\prime} \simeq \Im_{1}^{\prime} .
$$

Troof. We define the linear transformations σ and $\tau=\tau\left(\lambda_{1}, \lambda_{2}, \lambda_{3}\right)$ of \Im^{\prime} respectively by

$$
\begin{gathered}
\sigma X=\left(\begin{array}{ccc}
\frac{\xi_{1}}{x_{3}} & \overline{e x} x_{2} \\
x_{3} e & -\xi_{2} & e x_{1} e \\
e x_{2} & \overline{e x_{1} e} & -\xi_{3}
\end{array}\right), \\
\tau X=\left(\begin{array}{ccc}
\lambda_{1} \xi_{1} \lambda_{1} & \lambda_{1} x_{3} \lambda_{2} & \lambda_{1} \bar{x}_{2} \lambda_{3} \\
\lambda_{2} x_{3} \lambda_{1} & \lambda_{2} \xi_{2} \lambda_{2} & \lambda_{2} x_{1} \lambda_{3} \\
\lambda_{3} x_{2} \lambda_{1} & \lambda_{3} x_{1} \lambda_{2} & \lambda_{3} \xi_{3} \lambda_{3}
\end{array}\right), \quad \lambda_{1} \lambda_{2} \lambda_{3}=1, \quad \lambda_{i} \in R
\end{gathered}
$$

for $X=X(\xi, x) \in \Im^{\prime}$. Then as readily seen they are elements of $E_{6}{ }^{\prime}$. Now, we shall prove that E_{6}^{\prime} acts transitively on $\Im_{1}{ }^{\prime}$. To do this, it is sufficient to show that any element of \Im_{1}^{\prime} can be transformed to E by some element of E_{6}^{\prime}. For any element $\mathrm{Y} \in \Im_{1}^{\prime}$, as well known there exists $A \in S p(4)$ such that $f Y \in \Im(4, \mathbb{H})_{0}$ is transformed to a diagonal form by the action μ. Namely, there exists $\alpha \in\left(E_{6}\right)_{K}$ such that αY is a diagonal form

$$
\alpha Y=Z=\zeta_{1} E_{1}+\zeta_{2} E_{2}+\zeta_{9} E_{3}, \quad \zeta_{1} \zeta_{2} \zeta_{3}=1 .
$$

Here, if there exist $\zeta_{i}<0$, then we may assume $\zeta_{1}>0, \zeta_{2}<0 \zeta_{3}<0$ by choosing a suitable element $A \in S p(4)$ in the above. Hence, transforming Z by σ if necessary, we may assume $\zeta_{i}>0, i=1,2,3$. Therefore operate $\tau=\tau\left(1 / \sqrt{\zeta_{1}}, 1 / \sqrt{\zeta_{2}}, 1 / \sqrt{\left.\overline{\zeta_{3}}\right)}\right.$ on Z, then we have

$$
\tau Z=E
$$

Thus we have proved the transitivity of $E_{6}{ }^{\prime}$. Since the isotropy subgroup of $E_{6}{ }^{\prime}$ at E is F_{4}^{\prime}, we have the following homeomorphism

$$
E_{6}^{\prime} / F_{4}^{\prime} \simeq \Im_{\mathfrak{N}_{1}^{\prime}}^{\prime} .
$$

References

[1] H. Freudenthal : Oktaven, Ausnahmegruppen und Oktavengeometrie, Math., Inst., Rijksuniv. te Utrecht, (1951).
[2] S. Helgason : Differential Geometry and Symmetric Spaces, Academic Press, (1962).
[3] N. Jacobson : Some groups of Transformations defined by Jordan Algebras. III, Jour. Reine Angew. Math., 207, (1961), 61-85.
[4] ——: Exceptional Lie Algebras, Marcel Dekker, New York, (1971).
[5] I. YокотA: On a non compact simple Lie group $F_{4,1}$ of type F_{4}, Jour. Fac. Sci., Shinshu Univ., vol. 10, (1975), 71-80.
[6] : Non-compact Simple Lie Group $F_{4,2}$ of type F_{4}, ibid., vol. 12, (1977), 53-64.

