Non-compact Simple Lie Group $E_{6(6)}$ of Type E_6

By OSAMU SHUKUZAWA and ICHIRO YOKOTA

Department of Mathematics, Faculty of Science, Shinshu University (Received March 20, 1979)

It is known that there exist five simple Lie groups of type E_6 up to local isomorphism, one of them is obtained as the projective transformation group of the Cayley projective plane Π and defined by $E_6 = \{\alpha \in \operatorname{Iso}_R(\mathfrak{F}, \mathfrak{F}) | \det \alpha X = \det X\}$ (where \mathfrak{F} is the exceptional Jordan algebra over the Cayley algebra \mathfrak{E}) and it is homeomorphic to $F_4 \times \mathbb{R}^{26}$ [1] and a simple (in the sense of the center $z(E_6)=1$) Lie group [3]. In this paper, we investigate one of the other non-compact simple Lie groups

$$E_6' = \{ \alpha \in \operatorname{Iso}_{\mathcal{R}}(\mathfrak{F}', \mathfrak{F}') | \det \alpha X = \det X \}$$

(where \mathfrak{I}' is the exceptional Jordan algebra over the split Cayley algebra \mathfrak{C}'). The results are as follows. The group E_6' is homeomorphic to $Sp(4)/\mathbb{Z}_2 \times \mathbb{R}^{42}$ and a simple (in the sense of the center $z(E_6')=1$) Lie group, and hence the center $z(\widetilde{E}_6')$ of the non-compact simply connected simple Lie group $\widetilde{E}_6'=E_{6(6)}$ of type E_6 is \mathbb{Z}_2 .

1. Split Jordan algebra \mathfrak{I}'

Let \mathfrak{C}' be the split Cayley algebra over the real numbers R. This algebra \mathfrak{C}' is defined as follows. In $\mathfrak{C}' = H \oplus He$, where H is the quaternion field over R, the multiplication is defined by

$$(a+be)(c+de) = (ac+\overline{db}) + (b\overline{c}+da)e.$$

In \mathfrak{C}' , the conjugate \overline{x}' , the real part $\operatorname{Re}(x)$, the Q-norm Q(x) and the inner product (x, y)' are defined respectively by

$$\overline{a+be} = \overline{a} - be, \qquad \text{Re}(x) = \frac{1}{2}(x+\overline{x}),$$
$$Q(a+be) = |a|^2 - |b|^2, \qquad (a+be, c+de)' = (a,c) - (b,d).$$

Let $\mathfrak{F}'=\mathfrak{F}(3, \mathfrak{C}')$ be the Jordan algebra consisting of all 3×3 Hermitian matrices X with entries in \mathfrak{C}'

$$X = X(\xi, x) = \begin{pmatrix} \xi_1 & x_3 & \overline{x}_2 \\ \overline{x}_3 & \xi_2 & x_1 \\ x_2 & \overline{x}_1 & \xi_3 \end{pmatrix}, \qquad \xi_i \in \mathbb{R}, \ x_i \in \mathfrak{C}'$$

with respect to the multiplication

$$X \circ Y = \frac{1}{2} (XY + YX).$$

In \mathfrak{I}' , the crossed product $X \times Y$, the inner product (X, Y)', the trilinear form tr (X, Y, Z)', the cubic form (X, Y, Z)' and the determinant det X are defined respectively by

$$\begin{split} X \times Y &= -\frac{1}{2} (2X \circ Y - \operatorname{tr}(X) Y - \operatorname{tr}(Y) X + (\operatorname{tr}(X) \operatorname{tr}(Y) - \operatorname{tr}(X \circ Y)) E), \\ (X, \ Y)' &= \operatorname{tr}(X \circ Y) = \sum_{i=1}^{3} (\xi_{i} \eta_{i} + 2\langle x_{i}, \ y_{i} \rangle'), \\ \operatorname{tr}(X, \ Y, \ Z)' &= (X \circ Y, \ Z)' = (X, \ Y \circ Z)', \\ (X, \ Y, \ Z)' &= (X \times Y, \ Z)' = (X, \ Y \times Z)', \\ \det X &= -\frac{1}{3} (X, \ X, \ X)' = \xi_{1} \xi_{2} \xi_{3} + 2\operatorname{Re}(x_{1} x_{2} x_{3}) - \xi_{1} Q(x_{1}) - \xi_{2} Q(x_{2}) - \xi_{3} Q(x_{3}) \end{split}$$

where $X = X(\xi, x)$, $Y = Y(\eta, y)$ and E is the 3×3 unit matrix.

In \mathfrak{J}' we adopt the following notations.

$$E_{1} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \qquad E_{2} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \qquad E_{3} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix},$$
$$F_{1}(x) = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & x \\ 0 & \overline{x} & 0 \end{pmatrix}, \qquad F_{2}(x) = \begin{pmatrix} 0 & 0 & \overline{x} \\ 0 & 0 & 0 \\ x & 0 & 0 \end{pmatrix}, \qquad F_{3}(x) = \begin{pmatrix} 0 & x & 0 \\ \overline{x} & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}.$$

Then these elements generate \Im' additively and the table of the Jordan multiplication and the crossed product among them are given respectively as follows.

$$\begin{cases} E_i \circ E_i = E_i, & E_i \circ E_{i+1} = 0, \\ E_i \circ F_i(x) = 0, & E_i \circ F_j(x) = \frac{1}{2} F_j(x), & i \neq j, \\ F_i(x) \circ F_i(y) = (x, y)'(E_{i+1} + E_{i+2}), & F_i(x) \circ F_{i+1}(y) = \frac{1}{2} F_{i+2}(\overline{xy}), \end{cases}$$
$$\begin{cases} E_i \times E_i = 0, & E_i \times E_{i+1} = \frac{1}{2} E_{i+2}, \\ E_i \times F_i(x) = -\frac{1}{2} F_i(x), & E_i \times F_j(x) = 0, & i \neq j, \\ F_i(x) \times F_i(y) = -(x, y)' E_i, & F_i(x) \times F_{i+1}(y) = \frac{1}{2} F_{i+2}(\overline{xy}), \end{cases}$$

where the indexes are considered as mod 3.

Finally we define the positive definite inner products (x, y) in \mathfrak{C}' and (X, Y) in \mathfrak{T}' respectively by

$$(a+be, c+de) = (a, c) + (b, d),$$

 $(X, Y) = \sum_{i=1}^{3} (\xi_i \eta_i + 2(x_i, y_i))$

where $X = X(\xi, x)$, $Y = Y(\eta, y)$, and we denote by ' α and ${}^{t}\alpha$ the transpose of $\alpha \in Iso_{\mathbf{R}}$ $(\mathfrak{I}', \mathfrak{I}')$ relative to (X, Y)' and (X, Y) respectively:

$$(\alpha X, Y)' = (X, '\alpha Y)', \qquad (\alpha X, Y) = (X, '\alpha Y).$$

2. Groups E_6' and F_4' .

The group E_6' is defined to be the group of linear isomorphisms of \mathfrak{I}' leaving the determinant det X invariant:

$$E_{6}' = \{ \alpha \in \operatorname{Iso}_{R}(\mathfrak{F}', \mathfrak{F}') | \det \alpha X = \det X \}$$
$$= \{ \alpha \in \operatorname{Iso}_{R}(\mathfrak{F}', \mathfrak{F}') | (\alpha X, \alpha Y, \alpha Z)' = (X, Y, Z)' \}$$
$$= \{ \alpha \in \operatorname{Iso}_{R}(\mathfrak{F}', \mathfrak{F}') | \alpha X \times \alpha X = '\alpha^{-1}(X \times X) \}$$

and $F_4'(=F_{4,2})$ the group of automorphisms of \mathfrak{I}' :

$$F_{4}' = \{ \alpha \in \operatorname{Iso}_{R}(\mathfrak{F}', \mathfrak{F}') \mid \alpha(X \circ Y) = \alpha X \circ \alpha Y \}$$

= $\{ \alpha \in \operatorname{Iso}_{R}(\mathfrak{F}', \mathfrak{F}') \mid \alpha(X \times Y) = \alpha X \times \alpha Y \}$
= $\{ \alpha \in \operatorname{Iso}_{R}(\mathfrak{F}', \mathfrak{F}') \mid \operatorname{tr}(\alpha X, \alpha Y, \alpha Z)' = \operatorname{tr}(X, Y, Z)', (\alpha X, \alpha Y)' = (X, Y)' \}$
= $\{ \alpha \in E_{6}' \mid (\alpha X, \alpha Y)' = (X, Y)' \}$
= $\{ \alpha \in E_{6}' \mid \alpha E = E \}.$

Then the group F_4' is homeomorphic to $(Sp(1) \times Sp(3))/\mathbb{Z}_2 \times \mathbb{R}^{28}$ and a simple (in the sense of the center $z(F_4')=1$) Lie group [6].

Remark. In [6], the group $F_{4'}$ (= $F_{4,2}$) is defined to be the group of automorphisms of \mathfrak{F}' leaving the trace invariant. However the condition of the trace-preserving can be omitted, that is, the condition $\alpha(X \circ Y) = \alpha X \circ \alpha Y$ implies the condition $\operatorname{tr}(\alpha X) = \operatorname{tr}(X)$. In fact, any element $X \in \mathfrak{F}'$ satisfies the Cayley-Hamilton identity

$$X \circ (X \times X) = X^{\circ_3} - \operatorname{tr}(X)X^2 + \frac{1}{2} (\operatorname{tr}(X)^2 - \operatorname{tr}(X^2))X = (\det X)E.$$
 (i)

Now, apply (i) to αX and then operate $\alpha^{-1} \in Aut(\mathfrak{Z}')$ on it. Then we have

$$X^{\circ 3} - \operatorname{tr}(\alpha X)X^{2} + \frac{1}{2}(\operatorname{tr}(\alpha X)^{2} - \operatorname{tr}(\alpha X^{2}))X = (\operatorname{det}\alpha X)E.$$
 (ii)

Thus we get by subtraction (i)-(ii)

OSAMU SHUKUZAWA and ICHIRO YOKOTA

$$(\operatorname{tr}(\alpha X) - \operatorname{tr}(X))X^{2} + \frac{1}{2}(\operatorname{tr}(X)^{2} - \operatorname{tr}(\alpha X)^{2} + \operatorname{tr}(\alpha X^{2}) - \operatorname{tr}(X^{2}))X = (\operatorname{det} X - \operatorname{det} \alpha X)E$$

So, put $X = F_i(e_j)^{1}$, $i=1, 2, 3, j=0, 1, \dots, 7$, then we have

$$\begin{aligned} (e_j, e_j)' \mathrm{tr}(\alpha F_i(e_j))(E_{i+1} + E_{i+2}) + \frac{1}{2} (-\mathrm{tr}(\alpha F_i(e_j))^2 + \mathrm{tr}(\alpha F_i(e_j)^2) - \mathrm{tr}(F_i(e_j)^2))F_i(e_j) \\ &= -(\mathrm{det}\alpha F_i(e_j))E. \end{aligned}$$

Hence we have

$$tr(\alpha F_i(e_j))=0=tr(F_i(e_j)), \quad i=1, 2, 3, j=0, 1, \cdots, 7,$$

and also $tr(\alpha F_i(e_j)^2) = tr(F_i(e_j)^2)$ hence

$$\operatorname{tr}(\alpha E_i) = \operatorname{tr}(\alpha (E - F_i(1)^2)) = \operatorname{tr}(E - F_i(1)^2) = \operatorname{tr}(E_i), \quad i = 1, 2, 3$$

Consequently we obtain

$$\operatorname{tr}(\alpha X) = \operatorname{tr}(X)$$
, for all $X \in \mathfrak{I}'$.

We define the involution γ in \mathfrak{I}' by

$$\gamma X(\xi, a+be) = X(\xi, a-be).$$

Then $\gamma \in F_4', \gamma = \tau^{-1} = \gamma$ and two inner products (X, Y)', (X, Y) in \mathfrak{I}' are combined with the following relations

$$(X, Y)' = (X, \gamma Y), \quad (X, Y) = (X, \gamma Y)'.$$

And we have

 ${}^{t}\alpha = \gamma' \alpha \gamma, \quad \text{for } \alpha \in \text{Iso}_{\mathbf{R}}(\mathfrak{F}', \mathfrak{F}'),$

because it holds that $({}^{t}\alpha X, Y)' = ({}^{t}\alpha X, \gamma Y) = (X, \alpha \gamma Y) = (X, \gamma \alpha \gamma Y)' = (\gamma' \alpha \gamma X, Y)'$ for all $X, Y \in \mathfrak{I}'$.

3. Jordan algebra $\Im(4, H)$ and Symplectic group Sp(4).

Before we consider the group E_6' , we prepare the several spaces $\mathfrak{Z}(4, \mathbf{H})$, $\mathfrak{Z}(4, \mathbf{H})_0$, $\mathbf{H}P_8$ and the group Sp(4).

Let $\mathfrak{Z}(4, \mathbf{H})$ be the Jordan algebra consisting of all 4×4 Hermitian matrices S with entries in \mathbf{H} :

$$\Im(4, \mathbf{H}) = \{S \in M(4, \mathbf{H}) | S^* = S\}$$

with respect to the multiplication

1) $\{e_0, e_1, \dots, e_7\}$ is the canonical basis of \mathfrak{G}' :

 $e_0=1$, $e_1=i$, $e_2=j$, $e_3=k$, $e_4=e$, $e_5=ie$, $e_6=je$, $e_7=ke$

4

where $\{1, i, j, k\}$ is the canonical basis of *H*. Then $\{E_i, F_i(e_j), i=1, 2, 3, j=0, 1, \dots, 7\}$ is a basis of \mathfrak{I}' .

Non-compact Simple Lie Group $E_{6(6)}$ of Type E_6

$$S \circ T = \frac{1}{2} \langle ST + TS \rangle.$$

And we define the positive definite inner product (S, T) in $\mathfrak{I}(4, H)$ by

$$(S, T) = tr(S \circ T).$$

Let $\mathfrak{S}(4, \mathbf{H})_0$ be the vector space of all $S \in \mathfrak{S}(4, \mathbf{H})$ such that tr(S) = 0:

 $\Im(4, \mathbf{H})_0 = \{S \in \Im(4, \mathbf{H}) | tr(S) = 0\}.$

Now, we define a mapping $f: \mathfrak{J}' \to \mathfrak{J}(4, H)$ by

$$f\begin{pmatrix} \xi_1 & a_3 + b_3 e & \overline{a}_2 - b_2 e \\ \overline{a}_3 - b_3 e & \xi_2 & a_1 + b_1 e \\ a_2 + b_2 e & \overline{a}_1 - b_1 e & \xi_3 \end{pmatrix} = \begin{pmatrix} \lambda_1 & b_1 & b_2 & b_3 \\ \overline{b}_1 & \lambda_2 & a_3 & \overline{a}_2 \\ \overline{b}_2 & \overline{a}_3 & \lambda_3 & a_1 \\ \overline{b}_3 & a_2 & \overline{a}_1 & \lambda_4 \end{pmatrix}$$

where $\lambda_1 = \frac{1}{2} \langle \xi_1 + \xi_2 + \xi_3 \rangle$, $\lambda_2 = \frac{1}{2} \langle \xi_1 - \xi_2 - \xi_3 \rangle$, $\lambda_3 = \frac{1}{2} \langle \xi_2 - \xi_3 - \xi_1 \rangle$, $\lambda_4 = \frac{1}{2} \langle \xi_3 - \xi_1 - \xi_2 \rangle$. Then we have the following key

Lemma 1. The mapping $f: \mathfrak{I}' \to \mathfrak{I}(4, H)_0$ is an isometry, i.e. f is a linear isomorphism which satisfies

$$(fX, fY) = (X, Y), \quad X, Y \in \mathfrak{I}'$$

Moreover we have the following identity in $\mathfrak{I}(4, \mathbf{H})$

$$fX \circ fY = f(\gamma(X \times Y)) + \frac{1}{4} (X, Y)I, \quad X, Y \in \mathfrak{I}'$$

where I is the 4×4 unit matrix.

Proof. Noting that $\lambda_1^2 + \lambda_2^2 + \lambda_3^2 + \lambda_4^2 = \xi_1^2 + \xi_2^2 + \xi_3^2$, it is easy to verify the formula (fX, fY) = (X, Y). Next, to prove the identity $fX \circ fY = f(\gamma(X \times Y)) + \frac{1}{4}(X, Y)I$, it is sufficient to show that

- (1) $fE_i \circ fE_i = \frac{1}{4}I$,
- (2) $fE_i \circ fE_{i+1} = f(E_i \times E_{i+1}),$
- (3) $fE_i \circ fF_i(x) = f(E_i \times \gamma F_i(x)),$

(4)
$$fE_i \circ fF_j(x) = 0 = f(E_i \times \gamma F_j(x)), \quad i \neq j,$$

(5) $fF_i(x) \circ fF_i(y) = f(\gamma(F_i(x) \times F_i(y))) + \frac{1}{4} (F_i(x), F_i(y))I,$

(6)
$$fF_i(x) \circ fF_{i+1}(y) = f(\gamma(F_i(x) \times F_{i+1}(y))).$$

Proof of (3). $fE_1 \circ fF_1(x)$ (x=a+be)

$$\begin{split} &= \frac{1}{2} \begin{pmatrix} 1 & 1 \\ & -1 \\ & -1 \end{pmatrix} \circ \begin{pmatrix} 0 & b & 0 & 0 \\ \overline{b} & 0 & 0 & 0 \\ 0 & 0 & 0 & \overline{a} & 0 \end{pmatrix} \\ &= \frac{1}{2} \begin{pmatrix} 0 & b & 0 & 0 \\ \overline{b} & 0 & 0 & 0 \\ 0 & 0 & -\overline{a} & 0 \end{pmatrix} = -\frac{1}{2} fF_1(a-be) = f(E_1 \times \gamma F_1(x)). \\ \\ &\text{Proof of (5).} \qquad fF_1(x) \circ fF_1(y) \qquad (x=a+be, \ y=c+de) \\ &= \begin{pmatrix} 0 & b & 0 & 0 \\ \overline{b} & 0 & 0 & 0 \\ 0 & 0 & \overline{a} & 0 \end{pmatrix} \circ \begin{pmatrix} 0 & d & 0 & 0 \\ \overline{d} & 0 & 0 & 0 \\ 0 & 0 & 0 & c \\ 0 & 0 & \overline{c} & 0 \end{pmatrix} \\ &= \begin{pmatrix} (b, d) \\ (b, d) \\ (a, c) \\ (a, c) \end{pmatrix} \\ &= (b, d)(fE_1 + \frac{1}{2}I) + (a, c)(-fE_1 + \frac{1}{2}I) \\ &= -((a, c) - (b, d))fE_1 + \frac{1}{2} ((a, c) + (b, d))I \\ &= -(x, \ y)'fE_1 + \frac{1}{2} (x, \ y)I \\ &= f(\gamma(F_1(x) \times F_1(y))) + \frac{1}{4} (F_1(x), \ F_1(y))I. \end{split}$$

The other formulae are also proved by calculations similar to the above.

Let Sp(4) be the symplectic group:

$$Sp(4) = \{A \in M(4, H) | AA^* = I\}.$$

The group Sp(4) acts on $\mathfrak{J}(4, H)$ by the way μ : $Sp(4) \times \mathfrak{J}(4, H) \rightarrow \mathfrak{J}(4, H)$,

$$\mu(A, S) = ASA^*$$
.

Then this action induces an automorphism of $\mathfrak{F}(4, H)$ and an isometry of $\mathfrak{F}(4, H)$ (and $\mathfrak{F}(4, H)_0$):

$$A(S \circ T)A^* = ASA^* \circ ATA^*,$$
$$(ASA^*, ATA^*) = (S, T).$$

Finally, let HP_3 be the 3-dim. quaternion projective space:

Non-compact Simple Lie Group $E_{G(G)}$ of Type E_{G}

$$HP_{3} = \{P \in \mathfrak{Z}(4, H) | P^{2} = P, \operatorname{tr}(P) = 1\}$$
$$= \{AI_{1}A^{*} | A \in Sp(4)\}$$
$$\begin{pmatrix} 0 \\ 0 \end{pmatrix} \in M(4, H).$$

where $I_1 = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \in M($

4. Compact subgroup $(E_6')_K$ of E_6' .

We shall consider the following subgroup $(E_6')_K$ of E_6'

$$(E_6')_K = \{ \alpha \in E_6' | (\alpha X, \alpha Y) = (X, Y) \}.$$

Proposition 2. The group $(E_6')_K$ is isomorphic to the group $Sp(4)/\mathbb{Z}_2$, where $\mathbb{Z}_2 = \{I, -I\}$.

Proof. We define a mapping $\varphi : Sp(4) \rightarrow (E_6)_K$ by

$$\varphi(A)X = f^{-1}(A(fX)A^*), \qquad X \in \mathfrak{I}'.$$

First of all, we have to show $\varphi(A) \in E_6'$.

$$\begin{aligned} 3 \det(\varphi(A)X) & (\operatorname{denote} \varphi(A)X \text{ by } Y) \\ &= (Y, Y, Y)' = (Y \times Y, Y)' = (\gamma(Y \times Y), Y) \\ &= (f(\gamma(Y \times Y)), fY) \\ &= (fY \circ fY - \frac{1}{4} (Y, Y)I, fY) \\ &= (fY \circ fY - \frac{1}{4} (fY, fY)I, fY) \\ &= (A(fX)A^* \circ A(fX)A^* - \frac{1}{4} (A(fX)A^*, A(fX)A^*)I, A(fX)A^*) \\ &= (fX \circ fX - \frac{1}{4} (X, X)I, fX) \\ &= (f(\gamma(X \times X)), fX) \\ &= (\gamma(X \times X), X) = (X \times X, X)' = (X, X, X)' = 3 \det X. \end{aligned}$$

Hence $\varphi(A) \in E_6'$. And it is obviously obtained that $(\varphi(A)X, \varphi(A)Y) = (X, Y)$, then $\varphi(A) \in (E_6')_K$.

Obviously φ is a homomorphism. We shall prove that φ is onto. For a given $\alpha \in (E_{\mathfrak{s}}')_{\mathfrak{K}}$, we consider the element $\alpha E \in \mathfrak{I}'$. This αE satisfies

$$(f(\alpha E))^2 = f(\alpha E) + \frac{3}{4}I.$$

In fact, $(f(\alpha E))^2 = f(\gamma(\alpha E \times \alpha E)) + \frac{1}{4}(\alpha E, \alpha E)I = f(\gamma'\alpha^{-1}(E \times E)) + \frac{1}{4}(E, E)I = f(\gamma'\alpha^{-1}E)$

 $+\frac{3}{4}I = f({}^{t}\alpha^{-1}\gamma E) + \frac{3}{4}I = f({}^{t}\alpha^{-1}E) + \frac{3}{4}I = f(\alpha E) + \frac{3}{4}I.$ Therefore $P = \frac{1}{4}(2f(\alpha E) + I)$ satisfies $P^2 = P$, tr(P) = 1, that is, P is an element of HP_3 . Hence there exists $A \in Sp(4)$ such that

 $P = AI_1A^*$.

Then we have $\varphi(A)E = f^{-1}(A(fE)A^*) = f^{-1}(A(2I_1 - \frac{1}{2}I)A^*) = f^{-1}(2P - \frac{1}{2}I) = f^{-1}(f(\alpha E))$ = αE . So, put $\beta = \varphi(A)^{-1}\alpha$, then $\beta E = E$, that is, $\beta \in F_4$ and satisfies

$$(\beta X, \beta Y) = (X, Y), \quad X, Y \in \mathfrak{I}'.$$

(If we use the notation in [6], $\beta \in (F_4')_{K}$.) Hence, from [6], there exists $B = \begin{pmatrix} p & 0 \\ 0 & C \end{pmatrix}$ $\in Sp(4)$, where $p \in Sp(1) = \{p \in H \mid |p| = 1\}$ and $C \in Sp(3) = \{C \in M(3, H) \mid CC^* = E\}$ such that $\beta = \varphi(B)$.

(In [6], we have proved that the group $(F_4)_K$ is isomorphic to the group $(Sp(1) \times Sp(3))/\mathbb{Z}_2$. It is easy to see that the mapping to prove this isomorphism coincides with φ , if we note the following

$$fX = f\begin{pmatrix} \xi_1 & a_3 + b_3 e & a_2 - b_2 e \\ \bar{a}_3 - b_3 e & \xi_2 & a_1 + b_1 e \\ a_2 + b_2 e & \bar{a}_1 - b_1 e & \xi_3 \end{pmatrix}$$
$$= \begin{pmatrix} \operatorname{tr}(X) & b_1 & b_2 & b_3 \\ \bar{b}_1 & \xi_1 & a_3 & \bar{a}_2 \\ \bar{b}_2 & \bar{a}_3 & \xi_2 & a_1 \\ \bar{b}_3 & a_2 & \bar{a}_1 & \xi_3 \end{pmatrix} - \frac{1}{2} \operatorname{tr}(X)I$$
$$= \begin{pmatrix} \operatorname{tr}(X_H) & \mathbf{b} \\ \mathbf{b}^* & X_H \end{pmatrix} - \frac{1}{2} \operatorname{tr}(X_H)I$$

and

$$B(fX)B^* = \begin{pmatrix} \operatorname{tr}(CX_HC^*) & pbC^* \\ (pbC^*)^* & CX_HC^* \end{pmatrix} - \frac{1}{2} \operatorname{tr}(CX_HC^*)I).$$

Hence we have

$$\alpha = \varphi(A)\varphi(B) = \varphi(AB), \qquad AB \in Sp(4),$$

that is, φ is onto. Finally $\text{Ker}\varphi = \{I, -I\}$ is easily obtained. Thus the proof of Proposition 2 is completed.

5. Polar decomposition of E_6' .

To give a polar decomposition of E_6' we use the following Lemma 3 ([2] p. 345). Let G be a real algebraic subgroup of the general linear group $GL(n, \mathbb{R})$ such that the condition $A \in G$ implies ${}^{t}A \in G$. Then G is homeomorphic to the topological product of $G \cap O(n)$ (which is a maximal compact subgroup of G) and a Euclidean space \mathbb{R}^{d} :

$$G \simeq (G \cap O(n)) \times \mathbb{R}^d, \qquad d = \dim(\mathfrak{g} \cap \mathfrak{h}(n))$$

where O(n) is the orthogonal subgroup of $GL(n, \mathbb{R})$, 9 the Lie algebra of G and $\mathfrak{h}(n)$ the vector space of all real symmetric matrices of degree n.

To use the above Lemma, first of all we show the following

Lemma 4. E_6' is a real algebraic subgroup of the general linear group $GL(27, \mathbb{R})$ =Iso_R($\mathfrak{I}', \mathfrak{I}'$) and satisfies the condition $\alpha \in E_6'$ implies ${}^t\alpha \in E_6'$.

Proof. We use the following identity

$$(Z \times Z) \times (Z \times Z) = (\det Z)Z, \qquad Z \in \mathfrak{Z}'.$$

For $\alpha \in E_6'$ and $Y \in \mathfrak{I}'$, we have

$$\begin{aligned} {}^{\prime}\alpha^{-1}(Y \times Y) \times {}^{\prime}\alpha^{-1}(Y \times Y) &= (\alpha Y \times \alpha Y) \times (\alpha Y \times \alpha Y) \\ &= (\det \alpha Y)\alpha Y = (\det Y)\alpha Y = \alpha((\det Y)Y) \\ &= \alpha((Y \times Y) \times (Y \times Y)). \end{aligned}$$

Put $Y = X \times X$ for any $X \in \mathfrak{F}'$ in the above, then we have

$$\alpha^{-1}((\det X)X) \times \alpha^{-1}((\det X)X) = \alpha((\det X)X) \times (\det X)X).$$

Hence, if det $X \neq 0$ then $'\alpha^{-1}X \times '\alpha^{-1}X = \alpha(X \times X)$. This implies det $'\alpha^{-1}X = \det X$, i.e. (considering α^{-1} instead of α)

$$\det' \alpha X = \det X$$

for $X \in \mathfrak{F}'$ such that $\det X \neq 0$. The same holds also for $X \in \mathfrak{F}'$ such that $\det X = 0$. In fact, assume that $\det' \alpha X \neq \det X = 0$, then applying the above result to ' αX , we have $\det' \alpha X = \det' \alpha^{-1}(\alpha X) = \det X$, which contradicts the assumption. Therefore ' $\alpha \in E_6$ ', hence

$$t_{\alpha=\gamma'\alpha\gamma\in E_6'}$$

Finally, it is obvious that $E_{6'}$ is real algebraic, because $E_{6'}$ is defined by the algebraic relation det $\alpha X = \det X$.

Let $O(\mathfrak{F}')$ be the orthogonal subgroup of $\operatorname{Iso}_{R}(\mathfrak{F}', \mathfrak{F}')$:

$$O(27) = O(\mathfrak{T}') = \{ \alpha \in \operatorname{Iso}_{R}(\mathfrak{T}', \mathfrak{T}') \mid (\alpha X, \ \alpha Y) = (X, \ Y) \}.$$

Then by Proposition 2 we have

$$E_6' \cap O(\mathfrak{T}) = (E_6')_K \cong Sp(4)/\mathbb{Z}_2.$$

Next we shall determine the Euclidean part $e_6' \cap \mathfrak{h}(\mathfrak{F}')$ of E_6' where

OSAMU SHUKUZAWA and ICHIRO YOKOTA

$$e_6' = \{ \zeta \in \operatorname{Hom}_{R}(\mathfrak{Z}', \mathfrak{Z}') | (\zeta X, X, X)' = 0 \},\$$

$$\mathfrak{h}(27) = \mathfrak{h}(\mathfrak{F}') = \{\zeta \in \operatorname{Hom}_{R}(\mathfrak{F}', \mathfrak{F}') \mid (\zeta X, Y) = (X, \zeta Y)\}.$$

(The dimension of the Euclidean part of E_6' is obtained by $\dim E_6' - \dim Sp(4) = 78 - 36 = 42$. However we investigate the structure of $\mathfrak{e}_6' \cap \mathfrak{h}(\mathfrak{I})$ directly.)

Lemma 5. Any element ζ of the Lie algebra e_6' of E_6' is uniquely represented by the form

$$\zeta = \delta + \widetilde{T}, \qquad \delta \in \mathfrak{f}_4, T \in \mathfrak{F}, \operatorname{tr}(T) = 0$$

where $f_4' = \{\delta \in \mathfrak{e}_6' | \delta E = 0\}$ is the Lie algebra of F_4' and $\widetilde{T} \in \mathfrak{e}_6'$ is defined by $\widetilde{T}X = T \circ X$ for $X \in \mathfrak{H}'$.

Proof. For a given $\zeta \in \mathfrak{e}_6'$, put

$$T = \zeta E$$
 and $\delta = \zeta - \widetilde{T}$,

then the required results are obtained quite analogously in [1].

Let $\zeta = \delta + \widetilde{T} \in \mathfrak{e}_{\mathfrak{f}}' \cap \mathfrak{h}(\mathfrak{F}')$. Then it holds

$$(\delta X, Y) + (\widetilde{T}X, Y) = (X, \delta Y) + (X, \widetilde{T}Y), \quad X, Y \in \mathfrak{Z}'.$$

Put Y=E, then $tr(\delta X)+tr(\widetilde{T}X)=0+(X, T)$. Since $tr(\delta X)=0$ [6], we have (T, X)' = (T, X) for all $X \in \mathfrak{F}'$. This implies $\gamma T=T$, that is,

$$T \in \mathfrak{J}(3, H), \quad \operatorname{tr}(T) = 0.$$

Furthermore we have $(\widetilde{T}X, Y) = (\widetilde{T}X, \gamma Y)' = \operatorname{tr}(T, X, \gamma Y)' = \operatorname{tr}(\gamma T, X, \gamma Y)' = \operatorname{tr}(T, \gamma X, \gamma Y)' = \operatorname{tr}(T, \gamma X, \gamma X)' = (\widetilde{T}Y, \gamma X)' = (\widetilde{T}Y, X) = (X, \widetilde{T}Y)$, therefore $\widetilde{T} \in \mathfrak{e}_{6}' \cap \mathfrak{h}(\mathfrak{F}')$ and $\delta \in \mathfrak{f}_{4}' \cap \mathfrak{h}(\mathfrak{F}')$. Hence any $\zeta \in \mathfrak{e}_{6}' \cap \mathfrak{h}(\mathfrak{F}')$ has a form

$$\zeta = \delta + \widetilde{T}, \qquad \delta \in \mathfrak{f}_4' \cap \mathfrak{h}(\mathfrak{F}), \ T \in \mathfrak{F}(\mathfrak{Z}, \mathbf{H}), \ \mathrm{tr}(T) = 0,$$

and conversely. The structure of $f_4' \cap \mathfrak{h}(\mathfrak{F}')$ has been already seen in [6] and its dimension is 28. Hence we have

$$\dim(\mathfrak{e}_{\mathfrak{b}}' \cap \mathfrak{h}(\mathfrak{F}')) = 28 + 14 = 42.$$

Thus we have the following

Theorem 6. The group E_6' is homeomorphic to the topological product of the group $Sp(4)/\mathbb{Z}_2$ and a 42-dim. Euclidean space \mathbb{R}^{42} :

$$E_6' \simeq Sp(4)/\mathbb{Z}_2 \times \mathbb{R}^{42}$$

In particular, E_6' is a connected (but not simply connected) Lie group.

6. Simplicity of E_6' .

Proposition 7. The center $z(E_6')$ of E_6' is trivial:

$$z(E_6')=1.$$

Non-compact Simple Lie Group $E_{6(6)}$ of Type E_{6}

Proof. We define the linear transformations β_i , i=1, 2, 3 of \mathfrak{F}' by

$$\beta_{1}X = \begin{pmatrix} \xi_{1} & -x_{3} & -\overline{x}_{2} \\ -\overline{x}_{3} & \xi_{2} & x_{1} \\ -x_{2} & \overline{x}_{1} & \xi_{3} \end{pmatrix}, \quad \beta_{2}X = \begin{pmatrix} \xi_{1} & -x_{3} & \overline{x}_{2} \\ -\overline{x}_{3} & \xi_{2} & -x_{1} \\ x_{2} & -\overline{x}_{1} & \xi_{3} \end{pmatrix}, \quad \beta_{8}X = \begin{pmatrix} \xi_{2} & x_{1} & \overline{x}_{3} \\ \overline{x}_{1} & \xi_{3} & x_{2} \\ x_{3} & \overline{x}_{2} & \xi_{1} \end{pmatrix}$$

for $X=X(\xi, x)\in\mathfrak{F}'$. Then as readily seen that are elements of F_4 . Now, let $\alpha \in z(E_6')$. By the commutativity of $\beta \in F_4' \subset E_6'$, we have $\beta \alpha E = \alpha \beta E = \alpha E$. Hence if we denote αE by $Y=Y(\eta, y)$, then

$$\beta Y = Y$$
, for all $\beta \in F_4$.

From this, putting $\beta = \beta_1$, β_2 , we get $y_1 = y_2 = y_3 = 0$, that is, $Y = \eta_1 E_1 + \eta_2 E_2 + \eta_3 E_3$. Furthermore, putting $\beta = \beta_3$, we get $\eta_1 = \eta_2 = \eta_3(=\eta)$, that is, $Y = \eta E$. Since $\alpha \in E_6'$, we have $\eta^3 = \det Y = \det \alpha E = \det E = 1$. Thus $\eta = 1$, that is, $\alpha E = E$, which means that $\alpha \in F_4'$, then α is an element of the center $z(F_4')$ of F_4' . Since $z(F_4') = 1$ by [6], we get $\alpha = 1$, that is, $z(E_6') = 1$.

It is well known that the Lie algebra e_6' of E_6' is simple [1], [4]. Now, since E_6' is a connected group from Theorem 6 and a simple Lie group, any normal subgroup of E_6' is contained in the center $z(E_6')$ except E_6' itself. Thus Proposition 7 implies the following

Theorem 8. The group E_6' is simple (in the algebraic sense) Lie group.

Since the fundamental group of E_6' is Z_2 from Theorem 6 and E_6' is a simple group, we have the following

Theorem 9. The center $z(\widetilde{E}_6')$ of the non-compact simply connected Lie group $\widetilde{E}_6' = E_{6(6)}$ of type E_6 is \mathbb{Z}_2 .

7. Generators of E_6' .

Analogously in the case of the non-split type, we define the split Cayley plane Π' by

$$\Pi' = \{A \in \mathfrak{I} | A^2 = A, \operatorname{tr}(A) = 1\}$$
$$= \{A \in \mathfrak{I} | A \times A = 0, \operatorname{tr}(A) = 1\}.$$

Then, from the straightforward calculations, we have the following formulae

- (I) $A \times (Y \times (A \times X)) = \frac{1}{4} (A, Y)'A \times X,$
- (II) $X \times (Y \times (X \times X)) = -\frac{1}{4} ((\det X)Y + (X, Y)'X \times X),$

(III)
$$A \times (A \times X) = -\frac{1}{4} (X - 2A \circ X + (A, X)'A),$$

for $A \in \Pi'$, X, $Y \in \mathfrak{F}$. Therefore, following [5], we can define a mapping ϕ' :

 $\{(A, B) \in \Pi' \times \Pi' | (A, B)' \neq 0\} \rightarrow E_6' (\phi': \Pi' \rightarrow F_4')$ as follows

$$\begin{aligned} \psi'(A, \ B)X &= \frac{1}{(A, \ B)'} (8B \times (A \times X) + 2(B, \ X)'A - (A, \ B)'X) \\ (\phi'(A)X &= \phi'(A, \ A)X = X - 4A \circ X + 4(A, \ X)'A). \end{aligned}$$

Then $\phi'(\phi')$ has the analogous properties of [5], especially it holds

$$\begin{aligned} \alpha \phi'(A, B) \alpha^{-1} = \phi'(\alpha A, \ '\alpha^{-1}B), & \text{for } \alpha \in E_6' \\ (\alpha \phi'(A) \alpha^{-1} = \phi'(\alpha A), & \text{for } \alpha \in F_4'). \end{aligned}$$

This implies that the subgroup generated by $\{\phi'(A, B) | A, B \in \Pi', (A, B)' \neq 0\}$ is a normal subgroup of E_{6}' (so is F_{4}'). Hence by Theorem 8 (by [6] Theorem 12), we have the following

Theorem 10. The group E_6' is generated by $\{\psi'(A, B) | A, B \in \Pi', (A, B)' \neq 0\}$ (The group F_4' is generated by $\{\psi'(A) | A \in \Pi'\}$).

8. Homogeneous space E_6'/F_4' .

We consider the space \mathfrak{F}_1 consisting of all elements $X \in \mathfrak{F}$ such that detX=1:

$$\mathfrak{F}_1 = \{X \in \mathfrak{F} \mid \det X = 1\}.$$

Theorem 11 ([3] Theorem 7). The group E_6' acts transitively on \mathfrak{F}_1' and the isotropy subgroup of E_6' at E is F_4' . Therefore the homogeneous space E_6'/F_4' is homeomorphic to \mathfrak{F}_1' :

$$E_6'/F_4' \cong \mathfrak{S}_1'$$

Proof. We define the linear transformations σ and $\tau = \tau(\lambda_1, \lambda_2, \lambda_3)$ of \mathfrak{I}' respectively by

$$\sigma X = \begin{pmatrix} \xi_1 & x_3e & \overline{ex_2} \\ \overline{x_3e} & -\xi_2 & ex_1e \\ ex_2 & \overline{ex_1e} & -\xi_3 \end{pmatrix},$$
$$\tau X = \begin{pmatrix} \lambda_1\xi_1\lambda_1 & \lambda_1x_3\lambda_2 & \lambda_1\overline{x}_2\lambda_3 \\ \lambda_2\overline{x}_3\lambda_1 & \lambda_2\xi_2\lambda_2 & \lambda_2x_1\lambda_3 \\ \lambda_3x_2\lambda_1 & \lambda_3\overline{x}_1\lambda_2 & \lambda_3\xi_3\lambda_3 \end{pmatrix}, \quad \lambda_1\lambda_2\lambda_3 = 1, \ \lambda_i \in \mathbb{R}$$

for $X=X(\xi, x)\in \mathfrak{F}'$. Then as readily seen they are elements of E_6' . Now, we shall prove that E_6' acts transitively on \mathfrak{F}_1' . To do this, it is sufficient to show that any element of \mathfrak{F}_1' can be transformed to E by some element of E_6' . For any element $Y \in \mathfrak{F}_1'$, as well known there exists $A \in Sp(4)$ such that $fY \in \mathfrak{F}(4, H)_0$ is transformed to a diagonal form by the action μ . Namely, there exists $\alpha \in (E_6')_K$ such that αY is a diagonal form

$$\alpha Y = Z = \zeta_1 E_1 + \zeta_2 E_2 + \zeta_3 E_3, \qquad \zeta_1 \zeta_2 \zeta_3 = 1.$$

Here, if there exist $\zeta_i < 0$, then we may assume $\zeta_1 > 0$, $\zeta_2 < 0$ $\zeta_3 < 0$ by choosing a suitable element $A \in Sp(4)$ in the above. Hence, transforming Z by σ if necessary, we may assume $\zeta_i > 0$, i=1, 2, 3. Therefore operate $\tau = \tau(1/\sqrt{\zeta_1}, 1/\sqrt{\zeta_2}, 1/\sqrt{\zeta_3})$ on Z, then we have

$$\tau Z = E$$
.

Thus we have proved the transitivity of E_6' . Since the isotropy subgroup of E_6' at E is F_4' , we have the following homeomorphism

$$E_6'/F_4' \simeq \mathfrak{S}_1'$$
.

References

- [1] H. FREUDENTHAL: Oktaven, Ausnahmegruppen und Oktavengeometrie, Math., Inst., Rijksuniv. te Utrecht, (1951).
- [2] S. HELGASON: Differential Geometry and Symmetric Spaces, Academic Press, (1962).
- [3] N. JACOBSON : Some groups of Transformations defined by Jordan Algebras. III, Jour. Reine Angew. Math., 207, (1961), 61-85.
- [5] I. YOKOTA: On a non compact simple Lie group $F_{4,1}$ of type F_4 , Jour. Fac. Sci., Shinshu Univ., vol. 10, (1975), 71-80.