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 ･ It is known that there exist five simple Lie groups of type E6 up to local

isomorphism, one of them is obtained as the projective transformation group of

the Cay!ey projective plane U and defined by E6={crEIsoR(g,S)ldetaX=detX}

(where g is the exceptional Jordan algebra over the Cayley algebra S) and it is

homeomorphic to F4×re26 [1] and a simple (in the sense of the center z(E6)=1) Lie

group L3]. In this paper, we investigate one of the other non-compact simple Lie

groups

                    E6'=={aelsoR($',g')ldetaX==detX}

(where S' is the exceptional Jordan algebra over the split Cayiey algebra ag'). The

results are as follows. The group E6' is homeomorphic to SP(4)/Z2xR`2 and a

simple (in the sense of the center 2(E6')==1) Lie group, and hence the center z(216')

of the non-compact simply connected simple Lie group EfV6':=E6(6) of type E6 is Z2.

   g. Split Jordan algebra fs'

   Let 6' be the split Cayley algebra over the real numbers re. This algebra 6' is

defined as follows. In G'=ffeZIla, where ff is the quaternion field over ve, the

multiplication is defined by

               '                    (a+be)(c+de)=(ac+db)+(bb+da)e.

In E', the conjugate nf', the real part Re(x), the Q-norm Q(x) and the inner product

(x, y)' are defined respctively by

                                             1                 a+be==d-be, Re(x)== 2 (x+I),

              Q(a+be) -= ]a12- [b]2, (a+be,c+ de)'== (a, c)-(b, d).

Let g'=S(3, as') be the Jordan algebra consisting of ali 3×3 Hermitian matrices X
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                x.. x(6, x) .. (:'L X6: Iti), giER, xi cii G'

                          Xx2 hi, 8,l

with respect to the multiplication

                               1                         XoY-= 2 (XY+YX).

In S', the crossed product X× Y, the inner product (X, Y)', the trilinear form tr

(X, Y, Z)', the cubic form (X, Y, Z)' and the determinant detX are defined respe-

ctively by

                1         XXY= 2 (2XoY-tr(X)Y-tr(Y)X+(tr(X)tr(Y)-tr(XoY))E),

                         3
         (X, Y)'=tr(XoY)==(6i77i+2(xi, yi)'),

                        i-1
         tr(X, Y, Z)'=(XoY, Z)'=(X, YoZ)',

         (X, Y, Z)':==(XxY, Z)'==(x, yxz)t,

                1         detX== 3 (X, X, X)'=6i6263+2Re(xix2x3)-6iQ(xi)-e2Q(x2)-63Q(x3)

where X=X(g, x), Y== Y(rp, y) and E is the 3×3 unit matrix.

   In S' we adopt the following notations.

         .,=(i:,g,), .,=(Eg,!), .,=(gEi),

       .,(.,=(g ;, i), .,,.)=(2, g, 'g), F,(.,..(x g, g)

Then these elements generate g' additively and the table of the Jordan multiplication

and the crossed product among them are given respectively as follows.

      EioEi -- Ei, EioEi+i = O,
      EioFi(x)=O, EioFj(x)=;L'(x), i74j,

                                               1      Fi(x)oFi(y)=(x,y)'(Ei+i+Ei+2), Fi(x)oFi+i(y)= 2 Fi+2(li5J),

      EixEi rm-o, EixEi,1= I Ei.2,
                                           2
      EixFi(x)=- ; Fi(x), EixFj(x) ::=:O, iXj,

                                                1      Fi(x)xFi(y)==-(x,y)'Ei, Fi(x)xFi+i(y)= 2 Fi+2(iii5i),
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where the indexes are considered as mod 3.

   Finally we define the positive definite inner products (x, y) in E' and (X, Y) in

S' respectively by

                       (a+be, c+de)=(a, c)+(b, d),

                               3
                       (X, Y)=X (&)7i+2(xi, yi))
                              i=1
where X=X(6,x), Y==Y(rp, y), and we denote by 'a and ta the transpose of aEiilsoR

(g', S') relative to (X, Y)' and (X, Y) respectively:

               (nf, Y)'=(X, 'arY)', (ctX, Y)J=(X, 'aY).

   2. Groups E6' and F4'.

   The group E6' is defined to be the gronp of linear isomorphisms of S' leaving

the determinant detX invariant:

               E6'= {aEIsoR($', g') IdetaX=:detX}

                 -- {aelsoR(£Y', EY')1(aX, aY, aZ)'=(X, Y, Z)'}

                 = {cr (!E IsoR (S', g') 1 crX × crX :== 'a-i(X × X) }

and F4'(=F4,2) the group of automorphisms of g':

      F`' =: {crelsoR(S', g') 1a(XoY) =evXoaY}

         = {cr Ei lsoR(g', g') 1a(X x Y) =crXx crY}

         =:{crEIsoR(g', flY')Itr(aX, aY, cuZ)'=tr(X, Y, Z)',(cL¥, avY)'=(X, Y)'}

         == {cr EiE6'[ (aX, aY)'=(X, Y)'}

         =={crEE6'iaE=E}.

Then the group F4' is homeomorphic to (SP(1)xSP(3))/Z2xR28 and a simple (in the

sense of the center 2(F4')=-1) Lie group [6].

   Remark. In [6], the group F4' (==F4,2) is defined to be the group of automor-

phisms of g' Ieaving the trace invariant. However the condition of the trace-pre-

serving can be omitted, that is, the condition ev(XoY)==aXocrY implies the condition

tr(crX)=tr(X). In fact, any element XES' satisfies the Cayley-Hamilton identity

                               1       Xo(XxX)=X03-tr(X)X2+ 2 (tr(X)2-tr(X2))X=(detX)E. (i)

Now, apply (i) to aX and then operate a-iEAut(g') on it. Then we have

                        1         X03-tr(evX)X2+ 2 (tr(crX)2-tr(aX2))X=(detcrX)E. (ii)

Thus we get by subtraction (i)-(ii)
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                      1    (tr(evX)-tr(X))X2+ 2 (tr(X)2-tr(crX)2+tr(crX2)-tr(X2))X=::(detX-detaX)E.

                                                                     '
So, put X=Fi(ej)i), i=1, 2, 3, 1'=O, 1,･･`, 7, then we have

                              1   (eti,ej)'tr(crFi(ej))(Ei+i+Ei+2)+ 2 (-tr(aFi(e,'))2+tr(evFi(ed)2)-tr(Fi(ei･)2))Fi(ei')

                                   = - (detavFi (ej))E.
                                                                 '
Hence we have

              tr(crFi(ej))==O=tr(Fi(ej)), i=1, 2, 3, 7'=O, 1,･･･, 7,

and also tr(aFi(eD2)=tr(Fi(ej)2) hence

           tr(evEi)=tr(a(E-Fi(1)2))=tr(E-Fi(1)2)=tr(Ei), i=1, 2, 3.

Consequently we obtain ･
                                    '                    tr(avX)=tr(X), for all XESL

   We define the involution r in g' by

                          rX(8,a+be) = X(e,a-be):

Then rEF4','r= tr=r-':=r and two inner products (X, Y)', (X, Y) in $' are combined

with the following relations

                    (X, Y)'== (X, rY), (X, Y)-(X, rY)'.

And we have

                       ta=r'evr, for aEIsoR($', gt),

because it holds that (taX, Y)'=(taX, rY)=(X, arY)=(X, rarY)'= (r'at7tX, Y)' for all

X, YES'.

   3. Jordaev a}gebra g(4, ff) amd Sywapgectic group ,flp(4).

   Before we consider the group E6', we prepare the several spaces S(4,,ff), $(4,

ff)o, ]IP3 and the group SP(4).

   Let S(4, ff) be the Jordan algebra consisting of all 4×4 Hermitian matrices S

with entries in ff:

                        $(4, ff)= {SGM(4, ff) IS* = S}

with respect to the multiplication

1) {eo, ei, ..i, e7}

   where {1, i
   -･･, 7} is a

is the canonical basis of 6':

   eo :1, ei=i, e2=L e3=fe,
, i, le} is the canonical basis

basis of gt.

e4=e, es=ie, e6==de,

 of IZIr. Then {Ei,

 e7=ke
Fi(ej), i=1, 2, 3, 1'=O, 1,
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                                1                         SoT=: 2 (ST+71S).

And we define the positive definite inner product (S, T) in $(4, ff) by

                            (S, IZi)=tr(SoT).

Let S(4, ff)o be the vector space of all SGg(4, ff) such that tr(S)=O:

                      g(4, ff),-: {sEg(4, zz)1tr(s) =o}.

Now, we define a mapping f: g'-S(4, ff) by

                f(tz3f'b3e a31b23e ZilZ:Z)-=(2 -Si i': .bi                                           bi 22 a ke2)

                  ia2+b2e lti-bie 63 t "53 a2 a-i 24L

                                                             '

where2,=-
ll-(g,+e,+e,), R2=-l;(6i-e2-e3), 2,==-li-(e2-g3-gi), R4=-;-(g3-&-g2).

Then we have the following key

   Lemmaa 1. The maPPing f:g'.$(4, .ff)o is an isometry, i.e. fis a linear iso-

morPhism which satisyies

                      (fX,fY)-=(X,Y), X,YeS'

Moreover we have the following identity in g(4, ff)

                                  1               fXofY=-f(T(XX")+ 4 (X, Y)I, X, YEg'

                                      '
where I is the 4×4 unit matrix.

   Proof. Noting that 2!2+R22+232+A42==ei2+822+6B2, it is easy to verify the formula

                                                          1(fX, fY)-(X, Y). Next, to prove the identity fXofY=f(r(XxY))+ 4 (X, Y)L it

is suMcient to show that

                  1     (1) flEiofEi= 4 I,

     (2) yclEi)io.ICIEi.i:=f(EixEi.i),

     (3) flEio.flFi(x)=f(Eixr.F'i(x)),

     (4) fEiofFj(x)=O=f(EixrFj(x)), iS]',

                                      l     (5) fFi(x)o.Mi(y)=:f(r(Fi(x)xFi(y)))+ 4 (Fi(x), Fi(y))I,

     (6) fFi(x)o.1(IFi,i(y)=f(r(Fi(x)XFi+i(y))).

Pxoof of (3). J{Eio.fFi(x) (x=a+be)
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            -±Ci-i -,)o(i ,6 i･ i)

                   Ob O'O
            = ± (g g-2,-2)==- ; fFi(a-be)==f(EixrF,(x)).

Preof of (5). fFi(x)ofT7i(y) (x=a+be, y=c+de)

                             OdOO               ObOO            -(e, s, 2･ ga)o(g･g,i g,)

            =( (b' d) (b' d) (a, c) (., ,) )

            ==(b, d)(fEi+ ; D+(a, c)(-fEi+ 12 D

                                1            =-((a, c)-(b, d))Mi+ 2 ((a, c)+(b, d))l

                          1            --(x, y),fE,+ 2 (i, y)I

                                           '                              1
            =f(r(I7i(x) × Fi(y))) +                                (F,(x), F,(y))L
                              4

The other formulae are also proved by calculations similar to the above.

   Let SP(4) be the symplectic group:

                      Sp(4)={AeM(4, ff)IAA*=I}.

The group SP(4) acts on g(4, ff) by the way pt: SP(4)xg(4, ")-3(4, ff)

                             pt(A, S) =ASA*.

Then this action induces an automorphism of g(4, lf) and an isometry

(and S(4, ll)o):

                         A(SoT)A*=ASA*oATA*,

                         (AsA*, ATA*)=(S, T).

Finally, Iet ffP3 be the 3-dim. quaternion projective space:

,

of ℃(4, ff)
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             ne3={PEg(4, R')IP2=:P, tr(P)=-1}

               ={ALA*jAESP(4)}
where li == ( g g ) ff M(4, ff).

  4. Compact subgroup(E6')K of E6'.

  We shall consider the following subgroup (E6')K of E6'

              (E6')K= {aGE6'I(aX, evY)=(X, Y)}.

  Propositiom 2. The grouP (E6')K is isomorPhic to the grouP SP(4)/Z2, where Z2

-{I, -I}.

  Proof. We define a mapping g : SP(4).(E6')K by

              p(A)X=f-i(A(fX)A*), XEg'.

First of all, we have to show g(A)eE61

     3det(g(A)X) (denoteg(A)X by Y)

       ==(Y, Y, Y)'=(Yx Y, Y)'= (r(Yx Y), Y)

       =(f(r(Yx Y)), fY)

               1       -(fYofY- 4 (Y, Y)I, fY)

               1       -(fYofY- 4 (fY, fY)I, f"

                      1       =(A(fX)A"oA(fX)A"- 4 (A(fX)A", A(fX)A*)I, A(fX)A')

               1       -=(fXofX- 4 (X, X)I, fX)

       ==(f(r(XxX)), fX)

       =(r(X×X),X)==(X×X, X)'==(X, X, X)'=3detX.

Hence g(A)EE6'. And it is obviously obtained that (p(A)X, g(A)Y)=:(X, Y), then

g(A) G (E,t)..

  Obviously g is a homomorphism. We shall prove that g is onto. For a given

aE(E6')K, we consider the elernent crE(iig'. This aE satisfies

                            3                  (f(crE))2=f(aE)+ 4 L

In fact, (f(crE))2==f(r(crExaE))+ i (crE, aE)I=f(r'a-'(ExE))+ i (E,E)I=f(r'av-iE)
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+ 2 f=f(`ctm'rE)+ 2 I=f(tcr-iE)+ 2 I=f(crE)+ 2 L Therefore p= i (2f(aE)

+D satisfies P2=P, tr(P)=1, that is, P is an element of ffP3. Hence there exists

AESP(4) such that

                             P=AkA*.

Then we have g(A)E =f-i(A(fE)A")=f-i(A(2L- ; DA")=f-i(2P- ; D=f-i(f(crE))

:=aE. So, put P=g(A)-ia, then PE=E, that is, PGF4' and satisfies

           ･ (PX, PY)-(X, Y), X, YEg'.
(If we use the notation in [6], PE(F4')K,) Hence, from [6], there exists B==(oP cO)

ESP(4) , where PESP(1)= {PEUUP[ ==1} and CESP(3) = {CEM(3, ff) I CC*=E} such that

                              P==g(B).
                                           '
(In [6], we have proved that the group (F4')K is isomorphic to the group (SP(1)×

SP(3))/Z2. It is easy to see that the mapping to prove this isomorphism coincides

with g, if we note the following

                  fx-f(z-:223,z Zl'i2]B,i "aig.,2iz)

                        tr(X) bi b2 b3                     ::=( li lal3 :･:, ,gi,)-;tr(x)i

                     =( trZX."' tu. ; tr(xff)i

and

            B(fx)B"-( K(pCbXc".)C.") cPxb.Cc", )- ; tr(cxHc*)b.

Hence we have

                  ev==g(A)g(B)-ip(AB), ABESp(4),

that is, op is onto. Finally Kerp==:{I, -I} is easily obtained. Thus the proof of

Proposition 2 is completed. .
                                 '
   5. Polar diecemgeositEopm of E6'.

   To give a polar decomposition of E6' we use the following

   Leixtewa 3 ([2] P. 345). Let G be a real algebraic subgrouP of the general linear
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                                                        '
grouP GL(n, re) such that the condition AEG imPlies tAEG. Then G is homeomorPhic

to the toPolqgical Prodztct of GnO(n) (which is a maximal comPact subgrouP of G)

and a Euclidean sPace ned:

                  G::(GnO(n))×scd, d-=dim(gnb(n))

where O(n) is the orthogonal sztbgrouP of GL(n,re), g the Lie aLgebra of G and b(n)

the vector sPace of all real symmetric matrices of degree n.

   To use the above Lemma, first of all we show the following

   Leinina 4. E6' is a real aigebraic subgromp of the general linear grouP GL(27,K)

==IsoR($', g') and satis17es the condition aEE6' imPlies tcrEE6'.

   Proof. We use the following identity

                  (ZxZ) × (ZxZ) :- (detZ)Z, Za S'.

For evEE6' and YES', we have

               'a-i(Yx Y) × 'ev-i(Yx Y) ==: (ctYx evY) × (aYx aY)

                      = (detaY)evY='. (detY)cr Y= cr((detY) Y)

                      =ev ((Yx Y) × (Yx Y)).

Put Y=XxX for any XES' in the above, then we have

             'a-i((detX)X) x 'ec-`((detX)X) = ev((detX)X) × (detX)X).

Hence, if detXIO then 'crH'iXx'cr-iX==]a(XxX). This implies det'ev""iX=detX, i.e.

(considering a-i instead of a)

                           det 'evX=det X

for XEg' such that detX7kO. The same holds also for XEiS' such that detX==O.

In fact, assume that deVaX:detX==O, then applying the above result to 'evX, we

have det'atX:=deVev"'('aX)=detX, which contradicts the assumption. Therefore

'aEE6', hence

                            tcy==r'crrEIIE6'.

Finally, it is obvious that E6' is real algebraic, because E6' is defined by the

algebraic relation det evX==det Xl

   Let O(Elj') be the orthogonal subgroup of IsoR(£Y', Ej'):

              O(27) ==O($t)-{ecEIsoR(℃',$')1(avX, crY)-(X, Y)}.

Then by Proposition 2 we have

                      E6r n O($') == (E6')KEIISP(4)/Z2.

Next we shall determine the Euclidean part e6'nb(℃') of E6' where
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'

                  e6':={CeHomR(S', g')l(cX, X, X)'=o},

             b(27)==:1)(gt)- {CEHomR(5', g')1(CX, Y)-:(X, agY)}.

(The dimension of the Euclidean part of E6' is obtained by dimE6'-dimSP(4)=78-

36=42. However we investigate the structure of e6'AI)(g') directly.)

   Lemma 5. Any element 4 of the Lie algebra e6' of E6' is uniquely rePresented

by the form
                               '                                             '                  4-6+i7", 6Ef4',TEg',tr(T)=o

where W={6Ee6'I6E=O} is the Lie aigebra of F4' and 7`Eiie6' is dofnedby 7fX=ToX

for XE$t.

   Proof. For a given CEe6', put

                        T=CE and 6=q-7,

then the required results are obtained quite analogously in [1].

   Let q==6+TEie6'nb($'). Then it holds

           (SX, Y)+(7iX, Y)-(X, 6y)+(X, 7Y), x, yEg'.

Put Y=E, then tr(5X)+tr(7X)==O+(X, T). Since tr(6X)=O [6], we have (T, X)'

=(T, X) for all XES'. This implies rT==T, that is,

                      TE$(3, ff), tr(T)=O.

Furthermore we have (7X, Y)==(TNX, rY)'=:tr<T, X, rY)'==tr<rT, X, rY)'=tr<T, rX,

Y)'==tr(T, Y, rX)'-=(7Y, rX)'=(7Y, X)-(X, [?Y), therefore i7`Ee6'nf)(g') and 6eW

nlj(g'). Hence any CEe'6nb($') has a form

              4=6+i 6Gf4'nl)(S'), TES(3, ff), tr(T)=:!O,

and cdnversely. The structure of k'nl)<g') has been already seen in [6] and its

dimension is 28. Hence we have

                       dim(e6'fib<℃'))::=28+14 =42.

Thus we have the following

   Theorervt 6. The grouP E6' is homeomorPhic to the toPological Product of the

grouP SP(4)/Z2 and a 42-dim. Ezaclidean sPace R`2: ･

                          E6'C)tSP(4)/Z,xR42.

in Particular, E6' is a connected <but not simPly connected> Lie grouP.

   6. Simplicity of E6'.

   Prepositiom 7. The center z(E6') of Es' is trivial:

                              z(E6t)= 1.
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   Proof. We define the linear transformations Pi, i--1, 2, 3 of 3' by

    ,,.=(i-i; E3 -2i,2), ,,.=( S.i,Il,i .},), ,,x-(S, /i,) Xzi)

for X=X(e, x)ES'. Then as readily seen thay are elements of F4'. Now, let

evEz(E6'). By the commutativity of PEFd'cE6', we have PaE=aPE=crE. Hence if

we denote aE by Y=Y(v, pa), then

                        PY== Y, for all PEFd'.

From this, putting P==Pi, P2, we get yi==y2=y3--O, that is, Y=viEi+rp2E2+v3E3.

Furthermore, putting P=P3, we get rpi=rp2=v3(==rp), that is, Y=rpE. Since aEE6',

we have rp3==detY=detevE==detE=1. Thus rp=:1, that is, evE=E, which means that

aEiF4', then a is an element of the center z(F4') of F4'. Since z(F4')==1 by [6],

we get a=1, that is, z(E6')==1.

   It is well known that the Lie algebra e6' of E6' is simple [1], [4]. Now, since

E6' is a connected group from Theorem 6 and a simp!e Lie group, any normal

subgroup of E6' is contained in the center 2(E6') except E6' itself. Thus Proposition

7 implies the following

   Theorern 8. The grouP E6' is simPle (in the algebraic sense) Lie grouP.

   Since the fundamental group of E6' is Z2 from Theorem 6 and E6' is a simple

group, we have the following

   Theorem 9. The center 2(E6') ofthe non-comPact simPly connected Lie grouP

E6'=E6(6) of type E6 is Z2.

   7. Gemerators of E6'.

   Analogously in the case of the non-split type, we define the split Cayley

plane ll' by

                                      ttt
                      fl'={AEg'IA2=A, tr(A)::::1}

                        ={AEg'IAxA=o,tr(A)=1}.

Then, from the straightforward calculations, we have the following formulae

                       1
   (I) A×(Yx(A×X))=                         (A, Y)rAxX,
                       4

                       1   (II) Xx<Yx(XxX))= 4 ((detX)Y+(X, Y)'XxX),

                    1   (III) AX(AxX) = 4 (X-2AoX+(A, X)'A),

for AffU', X, YGg'. Therefore, following [5], we can define a mapping ip':



12 OsAMu SHvKuzAwA and !CHIRo YoKoTA

{(A, B)E7T'×ll'KA, B)'vL40}-E6' (ip':U'-F4') as follows

                        1          ip'(A, B)X- (A, B), (8Bx(AxX)+2(B, X),A-(A, B),X)

                  (¢'(A)X-=ip'(A, A)X::=X-4AoX+4(A, X)'A).

Then ip' (¢') has the analogous properties of [5], especially it holds

                a¢'(A, B)a-i=::¢'(crA, 'a-'B), for utEIE6'

                      (cr¢'(A)ev-i==¢'(aA), for aeFi

This implies that the subgroup generated by {¢'(A, B)iA, BGll', (A, B)'74:O}
is a normal subgroup of E6' (so is F4'). Hence by Theorem 8 (by [6] Theorem 12),

we have the following

   Theoregpt gO. The grouP E6' is generated by {di'(A, B)IA, BEll', (A, B)':i40}

(The groscP F4' is generated by {¢'(A)IAefl'}).

   8. Komaogepteeus space E6'/F4'.

   We consider the space gi' consisting of all elements XES' such that detX=1:

                          fs,'={XEi!g'ldetX=1}.

   Tkeerema ZR ([3] Theorem 7). The grouP E6' acts transt'tively on Si' and the

isotropm subgrouP of E6' at E is F4'. Therefore the homageneous sPace E6'/F4' is

homeomorphic to $i':

                               E6'/F4"-vSi'.

   Proof. We define the linear transformations a and r=T(2t, R2, 23) of E)' respe-

ctively by

                          ax==(.",'e-X36e,ee-i,2e),

                              X ex2 ex !e -6a L

               .x.,.( 1;ii,22i, :i,Xgl:: llJxEi2,l: ), 2i2223==I, kEre

                   X JIBx2Jll 2,ilit22 234}3Jl3 1

for X==X(e, x)Eg'. Then as readily seen they are elements of E6'. Now, we shall

prove that E6' acts transitively on gi'. To do this, it is sufllcient to show that

any element of gi' can be transformed to E by some element of E6'. For any

element YESi', as well known there exists AeSP(4) such that fYEg(4, ZI)e is

transformed to a diagonal form by the action pt. Namely, there exists ae(E6')K

such that ctY is a diagonal form

                   aY:::Z==agiEi+42E2+ag3E3, 4its"."ag3=1.
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Here, if there exist Ci<O, then we may assume gi>O, C:<O qB<e by choosing a

suitable element AeSP(4) in the above. Hence, transforming Z by a if necessary,

we may assume Ci>O, i-ml, 2, 3. Therefore operate T=::T(1/rVgi, 1/Vg2, 1/VC3) on

Z, then we have

                                 Tz= ,Eir.

Thus we have proved the transitivity of E6'. Since the isotropy subgroup of E6' at

E is F4', we have the foliowing homeomorphism

                               E6'/F4t 2i gi'.
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