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It is known that there exist five simple Lie groups of type E; up to local
isomorphism, one of them is compact and the others are non—compact. The compact

simple Lie group is given by

Ey={acIsoc(SC, J0)ldetaX=det X, (X, aY>=(X, Y}
where (3C is the split exceptional Jordan algebra over the complex numbers € and
<X, Y> the positive definite Hermitian inner product in JC, and it is simply

connected and its center is Z; [8]. Two of the non—compact simple Lie groups are

given respectively by
Eg_o5y={acIsor(S, J)|detaX=det X},

Egey={a€Isor(Qz, Js)|det aX=det X'}

where 3 (resp. ) is the exceptional (resp. split exceptional) Jordan algebra over
the real numbers R, and their polar decompositions are given respectively by

Ee(_zs):F,;XR%, Eg(e)ZSp(4)/Z2><R42,
and both centers are trivial [1], [3], [5].

In this paper, we find out explicitly the two other non-compact simple Lie
groups. The results are as follows. These groups are given respectively by

Ee,o={acIs0c(3C, JO)|det aX=det X, <aX, aYyo=<X, Yo},
Eg, r={acIsoc(SC, O)|det aX=det X, {aX, aYDr=<X, Y r}

where <X, YDs and <X, Y); are the Hermitian inner products in €. Their polar
decompositions are given respectively by

Ey, o2 (U(1) X Spin(10))/Z 4+ X B,

Eg, r=2(Sp(1) xSU(6))/Z 2 x R
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and both centers are given by the cyclic group Z;={1, wl, o?l}, weC, o*=1,
ws£1, of order 3:

Z(EGW):Z% Z(EGyT):Z3-

1. Nom—compact simple Lie group Fs, of type Hs

1. Jordan algebras & and 3.

Let @ be the Cayley algebra over the real numbers R. In this algebra ¢=
H®He (where H is the quaternion field over E), the multiplication xy, the conju-
gate x, the scalar part t(x), the inner product (x, ») and the norm |x| are defined
respectively by

(a-+be)(c+de)=(ac—db)+ (bc+da)e,

a+be=a-—be, tlx)=x4x,
(atbe, c+de)=(a, c)+(b, d), lx)=u/(x, %).

Let 6C ={x1+ixs|x1, 2.6} be the complexification algebra of € In ¢, the
conjugate ¥, the scalar part t{x) and the inner product (x, ») are also defined
naturally;

Let 3=3(3, @) be the Jordan algebra consisting of all 3x3 Hermitian matrices
with entries in €

&1 X3 X
X=X, x)=| % & x|, EiER,%iEE
Xy X1 &

with respect to the multiplication
XoY:—é——(XYJrYX).

In &, the inner product (X, Y), the crossed product XxY, the cubic form
(X, Y, Z) and the determinant det X are defined respectively by
(X, Y)=tr(XcY),

Xx Y:—%(ZXOY»—tr(X) Y—tr(VX+tr(X)tr (V) — (X, Y)E),
X, Y, 2)=(XXxY, Z)=(X, Yx2),
det X:_;)—(X, X, X):&fz{:aﬂ“t(%xﬂg)—51951}1”‘52962—952‘53963@,

where X=X(£, x) and E is the 3x3 unit matrix.
Let 3€=3(8, 6%) be the split exceptional Jordan algebra over the complex
numbers C. This Jordan algebra JC may be considered as the complexification of
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the Jordan algebra J. Especially any element X of 3¢ can be uniquely represented
by the form

X:X1+ZX2, Xl, Xzes, 2= =1,

In &€, the inner product (X, Y), the crossed product X XY, the cubic form
(X, Y, Z) and the determinant detX are also defined naturally. Moreover we define
a mapping, called the complex conjugation, = : JC—-JC by

T(X1+iX2):X1—iX2, Xi, X2€S
and the positive definite Hermitian inner product <X, Y> in {€ by
X, Yo=X, Y)

Next, let & be the Jordan algebra consisting of all 3x3 I'~-Hermitian matrices,
-1 0 0
e, I'X*I'=X, where I'=[ 0 1 0 |, with entries in €
0 01
& Xy —%s
X=X, )=|—x & 21 | &eR, xieQ
X2 X &3

with respect to the multiplication XoY:—é—(XY—I- YX). In 3 also, the inner pro-
duct (X, Y), the crossed product X x 7Y, the cubic form (X, Y, Z) and the deter-
minant det X are defined by the quite analogous formulae as in & (e. g, det X :%
(X, X, X)=E&Es+t(x100%8) —E1%1%1 +EaXoXs+EaaXs).

Furthermore let $:€ be the complexification of the Jordan algebra J; and also
in 3¢ the inner product (X, Y), the crossed product XXY, the cubic form

(X, Y, Z) and the determinant detX are naturally defined. Finally we define the
Hermitian inner product <X, Y> in 3¢ by

X, Yy=(X, Y)

where o{X;+iXs)=X1—iX, for Xi, X2ESi.
From now on, we will use the same notations for the same operations in &
and S, but as occasion demands the notations in J; will be indexed by the figure 1.
Proposition 1. i€ is isomorphic to € as Jordan algebra over C by an isomor-
phism f 1 3i€—3C defined as follows:

fX———Fle—,l*, ['1:

o o =
(el )
= o O

And f satisfies the following properties.
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i) X, Yh=(UX, fY),
(i) det X=det /X,
(ii) <X, Yo)u1={fX, YD
where o : IC—JC is the linear involution defined by

£ X3 Xy & —%3 —%
ol %3 & = | —%3 &s X1
Xo }1 53 —Xg E1 ES

and the inner product <X, Y>s in IC is defined by
X, Yy:=<(eX, Y.

Proof. It is easy to see that f is a linear isomorphism over C and satisfies
f(XoY)=fXofY. And

i) X, Y)i=trXeYV)=tr(f(XoY)=tr(fXofY)=(fX, fY).

(i) We have immediately det X=det /X,

(ili) Since we have feX=rofX, we have

X, Yor=0X, Y)i=(/cX, fY)=@afX, fY)=CofX, fY>={fX, fY s

2. Groups of type E; and F..
The group FEg,o is defined to be the group of linear isomorphisms of JC leaving
the determinant det X and the Hermitian inner product <X, Y)s invariant:

Eo,o={a€Isoc(JC, J0) |det aX=det X, <{aX, aYDe=<(X, Y )s}
={a&€Isoc(JC, IO [(aX, aY, aZ)=(X, ¥, Z), {aX, aYD>e=(X, Y Do}
and Fyo the subgroup of FEg. preserving the inner product (X, Y):
Fyo={a€Egys|(aX, aY)=(X, Y)}
={aEEs,os|aE=E}.
Next, to consider the group Ege we need to define the group FEs, and the subgroup
Fyy of Eey:
Eg,1={a€Is00(310, 310) |detaX =det X, <{aX,aY>=<{X, YD}
={a€Isoc(3C, 310) | (aX, Y, aZ)=(X, ¥V, Z),<{aX, a¥>=<LX, YD},
Fyi={acEs, | (0X, aY)=(X, Y)}
={aE Es,1|aE=E},
Finally we shall recall the compact group Es and the compact subgroup F4 of Eg:
Ey={acIsoc(JC, 3C) | det aX=det X, <{aX, aYV>=<X, Y}
={a&Is0c(IC, 30 | (aX, aY, aZ)=(X, Y, Z), LaX, a¥Y)>=<(X, YD},
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Fi={aeEsl(aX, aY)=(X, Y)}
:{[ZEEGICYE:E}.

Lemma 2. The group Fu, is homeomorphic to Spin(9)XR® and a simple (in
the semse of the center z(Fu)=1) Lie group of type Fy
Proof. We define the group Fu -2y by

Fyany={aclsor(S:, J)|a(XoY)=aXoal}
={aE B -] (X, aY)=(X, Y)}
:{CBEEle(_zg)I(XE:E}

where Elg-o)={a€Isor($1, $i)ldetaX=detX}. Then the argument used in the
proof of Proposition 1 of [8] shows that Fy_sy is isomorphic to Fy: by the
complexification a—a€ (which means aCX+iXs)=aX;+iaX:, X, X&), Recall
now that Fy_g is homeomorphic to Spin(9) X R'® and a simple (in the sense of the
center z(Fy-s0y)=1) Lie group of type F. (Theorem 8 and 11 [67]), then results
follow.

Proposition 3. The group Ees o is isomorphic to the group FEe1 and also Fye to
Fy1. In particular, Fye is homeomorphic to Spin(9) X R'® and a simple (in the sense
of the center z(Fys)=1) Lie group of type Fu.

Proof. By using the isomorphism f: $:6—-3¢ in Proposition 1, we define a
mapping ¢ : Eqo—Es1 by

)X =r"afX, Xe3l

Then from Proposition 1 it is easily obtained that ¢ gives an isomorphism between
Ee o and Ee,1. Furthermore we can readily show that the restriction ¢|Fye gives
an isomorphism between Fye and Fli.

Remark. Let the group Eec—26y and its subgroup F'y_g) be defined respectively

by
Eg-zy={acIsor(J, ) |detaX=detX },
Flysoy=A{a& Egc-265| (@X, aY)e=(X, Y)s}
={acEy-oay|al =1}
where (X, Y)e=(06X, Y). Then we have already known that
Eg-ogy2Fa X RB?, 2(Eg-2ey)=1 ({11, [3]),

Fyeay=Spin(9) X RS, 2(F' 400y} =1 (£67).

Now, define a mapping g : 31— by
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1 X3 —7Xe —& —x3 Xy
gl—% & x| =|—% & x|
x2 X1 & Xy X1 &

then g is a linear isomorphism over R and satisfies the properties det X=—det gX
and (X, Y)i=(gX, gY)s. We see therefore that the mapping ¢’ : Egc-200—=Esc-26)
defined by

¢la) X =g 'agX, Xed

gives an isomorphism between FEgc_96y and Elg.g6y and that the restriction ¢'|F's-20)
gives one between F'y-g0) and Fy-s0).

3. Lie algebra ¢,0 of Hso.
We consider the Lie algebra ¢+ of Ego:

Cﬁ,y:{CEHOmC(,\(\SC,SC)[(CX, X> X):O, <CX7 Y>‘7:M<X) CY>”}-

Theorem 4. Any element { of the Lie algebra cs0 of the group Eq o is uniquely
represented by the form ’

0 S3 52 g 0 O
£=56+35, 0€tso, S=[ 5 0 0 |+il 0 o5 s |,
ss 0 0 0 51 a3

where Zm‘zo, giER, si€C and {y,o={0€¢,s{(0X, V)=—(X, oY)} ={d€¢,s|6E=0}

is the Lie algebra of the group Fyo and, for S, SeHome(XC, S€) is defined by
SX=SoX. In particular, the type of the Lie group Ee o is Es.

Proof. It is easily seen by the analogous argument as in the proof of Theorem
2 of [8].

4. Compact subgroup (Fs o)k of Ego.
‘We shall consider the following subgroup (Ee¢)x of Ego:

(Eoo)k={aEEss|<aX, a¥>=<X, Y>)
={ac Es|<aX, aYe={X, ¥ s}.

To do this, we need some preparations. Following [ 8], we first define the subgroups
Eo' Of E(‘, and EU,1 Of Eur bY

Eo= {dEEG\G(XO‘:C(},

Eoy= {dEEaICt’Elel}

1
where Ey=| 0 . Then we have already known the following
0

S O O
o o O
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Lemma 5. (Proposition 11 [87)). The group Es,1 is isomorphic to the spinor group
Spin(10).

From now on, we identify the group Es,; with the group Spin(10).

We next define the subgroup U(1) of Es,i by

0%, Oxy  Oxs
U)={p0)|$(0)X(§, x)=| Ox3 07% 07%x |, 0€C,|0|=1}.
Oxs  07%; 072
It is obvious that the group U(l) is isomorphic to the usual unitary group U(1)
={0=C||0|=1}. Furthermore we have known that the subgroups U(1) and Spin(10)
of E¢ commute elementwisely (Lemma 12 [8]).
Finally we denote by «* and @ the transpose of a=Isoc(3C, JC) relative to
(X, Y> and <{X, Y)s respectively:
laX, YH=<KX, a*Y>, laX, Yre={X, aY .
Then it holds generally
a=caa, aslsoc(JC, J°),
since we have <X, aY)=<{oX, QY o=<aosX, Y e=<LoacX, Y)>=<X, ea*eY ), noting
that o=¢*=2a.

Proposition 6. The group (Ege)x is isomorphic to the group (U(1)xSpin(10))/Z .
where Zy={(1,¢(1)), (=1, ¢(—1), (i, ¢(—i)), (—i, @)}

Proof. First we shall show that (Eg¢)x=Fs Let a be an element of (Eg,0¢)x, that
is, aa*=aa=1, then from @=o¢a*ec we have sao=a, that is, a=Es Conversely,
let @ be an element of Es, then we have a®=asa*sc=oaa*c=00=1, that is, a&
(Es,0)x. Now, we have already known that a homomorphism ¢ : U(1) X Spin(10)—
Eo=(Eg,0)x defined by (@, f)=¢(0)g induces an isomorphism (Esq)z=2(U(1) xSpin
(10))/Z 4+ (Theorem 13 [8]). Thus Proposition 6 is proved.

6. Polar decomposition of Fg,o.

To give a polar decomposition of Eg s, we use the following

Lemma 7 ([27] pp. 345). Let G be a pseudoalgebraic subgroup of the general linear
group GL(n, C) such that the condition AcG implies A¥*€G. Then G is homeomo-
vphic to the topological product of GNUm) (which is a maximal compact subgroup
of G) and a Euclidean space R?:

G=(GNUm) x RY, d=dimG—dim(G N U(n))

where Uln) is the unitary subgroup of GL#n, C).

To use the above Lemma, first of all we show the following

Lemma 8. FEe o is a pseudoalgebraic subgroup of the general linear group GL(27, C)
=Is0c(3C, IC) and satisfies the condition aE Ee o implies a*& Eg,o.

Proof. Since a=oga*s,ax=1 for a= FEss, we have a*=ca o€ Esqo. It is obvious
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that FEg ¢ is pseudoalgebraic, because Eg o is defined by the pseudoalgebraic relations
det aX=det X and <aX, aY)>o=<X, Yo

Let U(QC) be the unitary subgroup of Isoc(3C, 3€):
U2 =URC) = {a€ls0c(IC, JO)[<aX ,aY>=<X, Y)}.
Then we have
Eos NU(O)=(Es,0) x=2(U(1) X Spin(10))/Z 4

by Proposition 6. Finally we shall determine the dimension of the Euclidean part

of Fgo. Since Eg o is a simple Lie group of type Es by Theorem 4, the dimension
d is obtained by

d=dimEs,o—dim(U(1) X Spin(10) =78 —46=32,

Thus we get the following
Theorem 9. The group Ee o is homeomorphic to the topological product of the
group (U)X Spin(10)/Z, and a 32-dim. Eudlidean space R?*:
Ego(U(1) X Spin(10))/Z + x R,

In particular, Eeo is a connected (but not simply comnected) Lie group.

6. Center z(Fs o) of Ego.

Lemma 10. For a6, a0, the mapping ala) : IC—3C defined by ala)X(E, x)=
Y(5, ») belongs to Eo, where

65 | &t (@, x9)
m==g —|——2 cosh |a|+ ] sinh|a]|,
Ne=E&s,

_ &% 51‘|‘53 (@, )
= e oshla|+—— 2l sinh|a/,

_ lal | axw o o la]
y1=xcosh 3 + la[smh 2

. 2a, xea . ., la|l | (EitEla
Ye=x2-}F | sinh' 5 + 2lal sinh|ea|,
Ya=% coshl—l——l- SN h!al
3—=X3 |a| 5 "

. 0 0 a
Proof. Since, for Fs@)=| 0 0 0 |, Fsla) is an element of ¢go by Theorem
a 0 0

4, it follows a(a)=expFs(a)< Ey,o.
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Theorem 11, The center z2(Eeo) 0f the group Eeoe is isomorphic to the cyclic
group Zs of order 3:

2(Ee0)=Z3={1, ol, %}, wel, o*=1, w1,

proof. Let a=z(Fss). From the commutativity with c€Egs, we have ca=ao,
that is, a€(Eq¢)g. Hence there exists an element (8, B)eU(1)xSpin(l0) such that
a=¢(0, H)=¢(0) B by Proposition 6, Moreover we see that g is an element of the
center z(Spin(10)), noting that the groups U(1) and Spin(10) commute elementwisely.
In fact, it holds ¢(0)pf =p'¢(0)f=¢(0)8'B, hence BA' =g for all F&SpHin(10). Now,
as is well known, the order of z(Spin(10)) is 4 and obviously ¢(¢)Ez(Spin(10)) for
¢=+41, -+i, therefore we have i

2(Spin(10)={¢(1), ¢(—1), ¢{@), ¢(—i)}cU).

Hence a=¢(@")<U(1) for some 0'€C, |0'|=1 Next, from the commutativity with
al@)E Es o as in Lemma 10, we have aa(a)E=a(a)aE, that is,

Acoshlal 0O 0
0 7 0
0 0 pcoshlal
'L;—/lJrg—_lZ_—#coshlal 0 0
= 0 )z 0
A—p  Atp
0 0 5 +———2 cosh|a|

where we denote ¢ by 1 and 72 by p. Hence we have 1=p(=w0), that is,
aE=oF
where w=C and o?*=detaE=det E=1. Since wlez(Eqs), we have o 'acsz(Eq ) and

o 'aE=E, hence v 'aEz(F40). Therefore it follows that o le=1, that is, a=wl,
since z(F4,0)=1 by proposition 3, Thus the proof of Theorem 11 is completed.

II. Non-compact simple Lie group Fyr of type Es

7. Split Jordan algebra J..

Let ¢’ be the split Cayley algebra over R. In @' =H®He¢, the multiplication
xy, the conjugate x, the scalar part t(x) and the inner product (x, y)’ are defined
respectively by

(a+be')(c+de')=(ac+db)+ (bc +da)e’,
at+be' =a—be', tx)=x+x,

(a+be', c+de)=(a, c)—(b, d).
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Let @'C be the complexification algebra of ¢'. In @'C, the conjugate ¥, the
scalar part t(x) and the inner product (x, y)’ are also defined naturally. The mapping
k:@'C— §'C defined by

kla+be)+i(c+de')=(a+de)-+i(c—be)
gives an isomorphism as algebra over C and satisfies
k(x)=Fk(x), (x, ) =(k(x), k().

Let $:=3(3,6') be the Jordan algebra consisting of all 3x3 Hermitian matrices
with entries in @'

& Xy %
X=XE x)=| % & x | EiER, xiEC
X2 X1 &

with respect to the multiplication XOY:—;—(XY—I—YX ). In Q» also, the inner pro-

duct (X, Y), the crossed product XxY, the cubic form (X, Y, Z) and the determi-
nant det X are defined by the quite same formulae in .

Furthermore the complexification J:€ of & and the several operations in (€
are also similar to the definitions in the section 1.

From now on, we will use the same notations for the same operations in $
and Js, but as occasion demands the notations in e will be indexed by the figure
2, |

Proposition 12, J:C is isomorphic to € as Jordan algebra over C by an isomo-
vhhism h : 320—~3C defined as follows:

hX(E, x)=X(&, kx).
And h satisfies the following properties.
) (X, Y)e=X, hY),
(ii) det X=dethX,
(iii) <X, YD a=<hX, hY)r
where 7@ IC—JC is the linear involution defined by

7X(E, atbe)=X(§, a—be)
where E€C, a, b€ HC and the inner product <X, Y>r in JC is defined by
X, YOr=¢X, Y.

Proof. It is easy to see that % is a linear isomorphism over C and satisfies
XY )=hXohY. The properties (i), (ii) and (iii) are shown similarly in the proof
of Proposition 1.
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8. Groups of type E; and I,
The group Eg 7 is defined to be the group of linear isomorphisms of JC leaving
the determinant detX and the Hermitian inner product <X, Y)r invariant:

Egr={ac€Is0¢(3C, J0) |det aX=det X, <aX, aY >r=<X, Y r}
={a€ls0¢(]C,30) | (aX, aY, aZ)=(X, Y, Z), {aX, aYrr=<X, Y r}
and Fyr the subgroup of Egr preserving the inner product (X, Y):
For={a€ Esr|(aX, aY)=(X, Y)}
={aE Esr|aE=E}.

Next, to consider the group FEg; we need to define the group Fse and the subgroup
F4,2 Of Es,gl

Eso={acIsoc(J:C, Jf) [det aX =det X, <aX, a¥)=<(X, Y>}
— {(a€Ts00(Q:0, 3:0) | (@X, aY, aZ)=(X, ¥, Z), X, a¥>=(X, Y},
Fyo={a€ Lz (eX, aV)=(X, Y)}
={aE€ Egs|aE=E}.
Lemma 18. The group Fys is homeomorphic to (Sp(l)xXSp@3)/Zx R*® and a

simple (in the sense of the center z(Fys)=1) Lie group of type Fu.
Proof. We define the group F'ys by

Fl'ypn={aclsor(Ss, Jo)la(XeV)=aXoaY)}
={ac E'qey| (@X, a¥)=(X, )}
Z{CUEE'(;(G)](XE:E}

where E'ge)={a<Isor(Je, Je) |det X =det X}. Then the argument used in the proof
of Proposition 1 of [8] shows that F’yq is isomorphic to Fy,s by the complexification
a—af, Recall now that F'ys is homeomorphic to (Sp(l)><Sp(3))/,2’2><R?8 and a
simple (in the sense of the center z(F'ys)=1) Lie group of type Iy [7], then the
results follow.

Proposition 14, The group Eer is isomorphic to the group Egs and also Far
to Fas In particular, Fyr is homeomorphic to (Sp(1)XSp3)/Z2 X R® and a simple
(in the sense of the center z(F4y)=1) Lie group of type F..

Proof. By using the isomorphism % : 3:6—3¢ in Proposition 12, we define a
mapping ¢ : Egr—Fess by

) X=h"'ahX, XeJL,

Then from proposition 12 it is easily obtained that ¢ gives an isomorphim between
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Eesr and Egs Furthermore we can readily show that the restriction ¢|F4r gives
an isomorphism between Fyr and Fy..

9. Lie algebra ¢, of Er.
We consider the Lie algebra ¢, of Eer:

erT:{‘:EHomC(SC:%C)I(CXs X, X):Or <CX3 Y>T:_<X7 CY>T}'

Theorem 15. Any element { of the Lie algebra eqy of theg roup Eer is uniquely
vepresented by the form

0 sze —sze n t f
C:5-|-§, 0€fy,r, S=|—se 0 sie | it o t |,
S9€ —Si€ 0 tz ?1 T3

whereZJ‘ri:O, R, s;, ,EH and fur={6€¢,1r|(6X, V)=—(X, 8Y)}={d€¢,7|0E=0)}
is the Lie algebra of the group For and, for S,S€Home(IC, S€) is defined by SX
=SoX, In particular, the type of the Lie group Eer is E.

Proof. It is easily seen by the analogous argument as in the proof of Theorem
2 of [8].

10. Compact subgroup (Esr)x of Esr.
We shall consider the following subgroup (Ee7)x of Egr:

(Bor)g={aE Eer|<aX, aY>=<(X, YD}
={ac Eg|<aX, a¥Y)r=<X, Y>r}.
To do this, we need some preparations. Following [8], we first define the subgroup
Ey of Eg by
Ey={ac Es|rayr=a}.
Next we denote by ‘a the transpose of a€Isoc(IC, IOC) relative to (X, Yr:{aX, YDr
=<{X, 'aY>r. Then it holds similarly in the section 4,
‘a=ra*y, aclIsoc(C, 39,

noting that y=y*="r.

Proposition 16. The group (Eer)x is isomorphic to the group (Sp(l)xSU(6))/Z
where Z;=1{(1, E), (—1, —E)}.

Proof. By the proof similar to that of Proposition 6, it follows that (Eg7)x
=FEy. On the other hand, we have already known that E; is isomorphic to the
group (Sp(1) xSU(6))/Zs (Theorem 16 [8]). Thus Proposition 16 is proved.

11. Polar decomposition of Fj, ;.
To use Lemma 7, first of all we show the following
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Lemma 17. Es; is a pseudoalgebraic subgroup of the gemeral linear group
GL(n, C)=Is0c(C,IC) and satisfies the condition o< Eqr implies a*& Eq,r.

Proof. Since ‘a=ya*y,c'a=1 for ac Esy. we have a*=pa~ly&Eqy. It is obvious
that Egy is pseudoalgebraic, because Egy is defined by the pseudoalgebraic relations
detaX=detX and {aX, aY>r=<X, Y.

Next, let U(JC) be the unitary subgroup of Isoc(J¢,3JC) as in the section 5,
then we have

Eor NUC)=(E6,1)x=(Sp(1) X SU(6))/Z>

by Proposition 16. Finally we shall determine the dimension of the Euclidean part
of Egy. Since Egr is a simple Lie group of type Es by Theorem 15, the dimension
d is obtained by

d=dimEq,r—dim(Sp(1) x SU(6))=78—38=40,

Thus we get the following
Theorem 18, The group Eer is homeomorphic to the topological product of the
group (Sp(L)xSUB))/Zs and a 40-dim. Euclidean space R*:

Ee.77=(Sp(1) X SU(6))/ Z 4 X R*.

In particular, Egy is a connected (but not simply connected) Lie group.

12, Center z(FE, ) of Eg,r.
Theorem 19, The center z{Eqy) of the group Eesr is isomorphic to the cyclic
group Zs of ovder 3:

2(Eer)=Z3={1, ol, o}, ocC, o*=1, vl

Proof. We define the linear transformations 8;,i=1,2,3 of J¢ by

& —Xx3 —Xa 1 —X3 X & X1 A3
BX={—%xs & x1 ), PeX=|—% & —x |, P X=| % & X
—%y % & X —X%1 & X3 xa &

for X=X(&,x)=3C. Then as readily seen they are elements of FEgr. Now, let
acz(Egy). From the commutativity with the above gi,i=1, 2, 3, that is, fiaE=
aBilf=aF, we have

cE=o0kE, wsC,0*=1.

Thus, since z{Fyr)=1 by Proposition 14, the result follows similarly in the proof
of Theorem 11,

Since the fundamental group of Egy is Z: from Theorem 18 and the center
z2(Es,r) of Eer is Z3, we have the following
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Theorem 20, The center z(Esy) of the simply connected non-compact Lie group
E6,7:E6(2) is isomor phic to the cyclic group Zg of ovder 6.
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