Explicit Isomorphism between $\mathbb{S U (}(\mathbb{1})$ and Spin(6)

By Ichiro Yokota
Department of Mathematics, Faculty of Science, Shinshu University (Received March 27, 1979)

It is well known that the special unitary group $S U(4)$ and the spinor group Spin(6) are isomorphic. To prove this it is usually used that their Lie algebras are isomorphic. In this paper, we shall prove it by giving a homomorphism $p: S U(4)$ $\rightarrow S O(6)$ explicitly.

1. Preliminaries.

(1) Let \boldsymbol{C} and $\boldsymbol{H}=\boldsymbol{C} \oplus j \boldsymbol{C}$ be the complex and the quaternion fields respectively. \boldsymbol{H} is isomorphic to the space $\mathfrak{K}=\{\boldsymbol{x} \in M(2, C) \mid \boldsymbol{x} \boldsymbol{j}=\boldsymbol{j} \bar{x}\}$, where $\boldsymbol{j}=\left(\begin{array}{rr}0 & 1 \\ -1 & 0\end{array}\right)$, as algebra, by the correspondence $k: H \rightarrow \tilde{L}$,

$$
k(a+j b)=\left(\begin{array}{rr}
a & -\bar{b} \\
b & \bar{a}
\end{array}\right), \quad a, b \in C
$$

and k has the following properties:

$$
k(\bar{x})=x^{*}, \quad \frac{1}{2}\left(x y^{*}+y x^{*}\right)=(x, y) E, \quad x x^{*}=x^{*} x=|x|^{2} E
$$

where $\boldsymbol{x}=k(x), y=k(y)$ and E is the unit matrix. This mapping k is naturally extended to the spaces of matrices:

$$
k: M(2, \boldsymbol{H}) \rightarrow M(4, \boldsymbol{C}), \quad k\left(\begin{array}{ll}
x_{11} & x_{12} \\
x_{21} & x_{22}
\end{array}\right)=\left(\begin{array}{ll}
k\left(x_{11}\right) & k\left(x_{12}\right) \\
k\left(x_{21}\right) & k\left(x_{22}\right)
\end{array}\right) .
$$

(2) Let $\mathfrak{\Im}(2, \boldsymbol{H})$ be the vector space of all 2×2 quaternion Hermitian matrices:

$$
\mathfrak{J}(2, \boldsymbol{H})=\left\{X \in M(2, \boldsymbol{H}) \mid X^{*}=X\right\} .
$$

In $\mathfrak{\Im}(2, \boldsymbol{H})$, we define the inner product (X, Y) by

$$
(X, Y)=\frac{1}{2} \operatorname{tr}(X Y+Y X) .
$$

Let $\mathfrak{\Im}(2, \boldsymbol{H}) \boldsymbol{C}=\left\{X=X_{1}+i X_{2} \mid X_{1}, X_{2} \in \Im(2, \boldsymbol{H})\right\}$ be the complexification of $\mathfrak{\Im}(2, \boldsymbol{H})$.

In $\mathfrak{F}(2, \boldsymbol{H})^{C}$ we define the Hermitian inner product $\langle X, Y\rangle$ by

$$
\left\langle X_{1}+i X_{2}, \quad Y_{1}+i Y_{2}\right\rangle=\left(X_{1}, Y_{1}\right)+\left(X_{2}, \quad Y_{2}\right)+i\left(\left(X_{1}, \quad Y_{2}\right)-\left(X_{2}, \quad Y_{1}\right)\right) .
$$

Furthermore let $\mathbb{S}(4, C)$ be the vector space of all 4×4 complex skew-symmetric matrices:

$$
\mathfrak{S}(4, \mathbb{C})=\left\{\left.P \in M(4, C)\right|^{t} P=-P\right\} .
$$

In $\subseteq(4, C)$ we define the Hermitian inner product $\langle P, Q\rangle$ by

$$
\langle P, \mathrm{Q}\rangle=-\frac{1}{4} \operatorname{tr}(P \overline{\mathrm{Q}}+Q \bar{P}) .
$$

Then the space $\mathfrak{F}(2, H)^{C}$ is isomorphic to the space $\mathfrak{S}(4, C)$ by the correspondence $h: \Im(2, \boldsymbol{H})^{\boldsymbol{C}} \rightarrow \subseteq(4, \mathbb{C})$,

$$
h\left(X_{1}+i X_{2}\right)=\left(k\left(X_{1}\right)+i k\left(X_{2}\right)\right) J, \quad J=\left(\begin{array}{ll}
\boldsymbol{j} & 0 \\
0 & \boldsymbol{j}
\end{array}\right)
$$

(3) Let c_{2} be the Lie algebra of all 2×2 quaternion skew-Hermitian matrices:

$$
\mathfrak{c}_{2}=\left\{D \in M(2, \boldsymbol{H}) \mid D^{*}=-D\right\}
$$

and \mathfrak{a}_{3} the Lie algebra of all 4×4 complex skew-Hermitian matrices with zero trace:

$$
\mathfrak{c}_{3}=\left\{S \in M(4, C) \mid S^{*}=-S, \operatorname{tr}(S)=0\right\}
$$

Any element S of \mathfrak{a}_{3} can be represented by the form

$$
\begin{aligned}
S & =k(D)+i k(T), \quad D \in \mathfrak{c}_{2}, \quad T \in \Im(2, \boldsymbol{H}), \operatorname{tr}(T)=0 \\
& =k(D)+i k(F(a))+i t k\left(E_{1}-E_{2}\right)
\end{aligned}
$$

where $F(a)=\left(\begin{array}{ll}0 & a \\ \bar{a} & 0\end{array}\right), a \in H, E_{1}-E_{2}=\left(\begin{array}{rr}1 & 0 \\ 0 & -1\end{array}\right)$ and $t \in \boldsymbol{R} \quad(\boldsymbol{R}$ is the field of real numbers). In fact, for $S \in \mathfrak{a}_{3}$, put $D_{1}=\frac{1}{2}(S-\bar{J} J)$ and $T_{1}=-\frac{i}{2}(S+\bar{J} J)$, then we have $S=D_{1}+i T_{1}, \quad D_{1}^{*}=-D_{1}, . D_{1} J=J \bar{D}_{1}$ and $T_{1}^{*}=T_{1}, \quad T_{1} J=J \bar{T}_{1}, \quad \operatorname{tr}\left(T_{1}\right)=0$. So $D=k^{-1}\left(D_{1}\right)$ and $T=k^{-1}\left(T_{1}\right)$ satisfy the required conditions.

2. Low dimensional spinor groups.

We define the low dimensional symplectic groups, the special unitary group and the orthogonal groups by

$$
\begin{aligned}
& S p(1)=\{a \in \boldsymbol{H}| | a \mid=1\} \\
& S p(2)=\left\{A \in M(2, \boldsymbol{H}) \mid A^{*} A=E\right\}, \\
& S U(4)=\left\{A \in M(4, \boldsymbol{C}) \mid A^{*} A=E, \operatorname{det} A=1\right\}, \\
& S O(3)=S O\left(\boldsymbol{H}_{0}\right)=\left\{\alpha \in \operatorname{Is} \circ \boldsymbol{R}\left(\boldsymbol{H}_{0}, \boldsymbol{H}_{0}\right) \mid(\alpha x, \alpha y)=(x, y), \operatorname{det} \alpha=1\right\}
\end{aligned}
$$

where $\boldsymbol{H}_{0}=\{x \in \boldsymbol{H} \mid \bar{x}=-x\}$,

$$
\begin{aligned}
& S O(4)=S O(\boldsymbol{H})=\{\alpha \in \operatorname{Iso} \boldsymbol{R}(\boldsymbol{H}, \boldsymbol{H}) \mid(\alpha x, \alpha y)=(x, y), \operatorname{det} \alpha=1\}, \\
& S O(5)=S O\left(\Im_{\Im_{0}}\right)=\left\{\alpha \in \operatorname{Iso}_{\boldsymbol{R}}\left(\Im_{0}, \Im_{0}\right) \mid(\alpha X, \alpha Y)=(X, Y), \operatorname{det} \alpha=1\right\}
\end{aligned}
$$

where $\Im_{0}=\mathfrak{J}(2, \boldsymbol{H})_{0}=\{X \in \Im(2, \boldsymbol{H}) \mid \operatorname{tr}(X)=0\}$ and

$$
S O(6)=S O(V)=\{\alpha \in \operatorname{Ison}(V, V) \mid\langle\alpha X, \alpha Y\rangle=\langle X, Y\rangle, \operatorname{det} \alpha=1\}
$$

where $V=\left\{\left.\left(\begin{array}{cc}\xi & x \\ \bar{x} & -\bar{\xi}\end{array}\right) \right\rvert\, \xi \in \boldsymbol{\xi}, x \in \boldsymbol{H}\right\} \subset \Im(2, \boldsymbol{H})^{C}$.
We note that the restriction of the mepping h of the section 1 on V is an isometry:

$$
\langle h(X), h(Y)\rangle=\langle X, \quad Y\rangle, \quad X, \quad Y \in V
$$

and the group $S p(2)$ acts on the space $\Im(2, \boldsymbol{H})$ by $\mu: S p(2) \times \Im(2, \boldsymbol{H}) \rightarrow \Im(2, \boldsymbol{H})$, $\mu(A, X)=A X A^{*}$ and it holds that

$$
\left(A X A^{*}, A Y A^{*}\right)=(X, Y), \quad \operatorname{tr}\left(A X A^{*}\right)=\operatorname{tr}(X)
$$

On the other hand, the group $S U(4)$ acts on the space $\subseteq(4, C)$ by $\mu: S U(4) \times$ $\mathfrak{S}(4, C) \rightarrow \subseteq(4, C), \mu(A, P)=A P^{t} A$ and it holds that

$$
\left\langle A P^{t} A, A Q^{t} A\right\rangle=\langle P, Q\rangle
$$

Now we define the following homomorphisms.

$$
\begin{array}{ll}
p_{1}: S p(1) \rightarrow S O(3), & p_{1}(a) x=a x \vec{a}, x \in \boldsymbol{H}_{0}, \\
p_{2}: S p(1) \times S p(1) \rightarrow S O(4), & p_{2}(a, b) x=a x \bar{b}, x \in \boldsymbol{H}, \\
p_{3}: S p(2) \rightarrow S O(5), & p_{3}(A) X=A X A^{*}, X \in \Im_{0}, \\
p=p_{4}: S U(4) \rightarrow S O(6), & p(A) X=h^{-1}\left(A h(X)^{t} A\right), X \in V .
\end{array}
$$

Then we have
Theorem 1. The following diagram is commutative
where k_{1} is the diagonal mapping and k_{2}, j_{1}, j_{2}, j are natural inclusions. And each mapping p_{i} is the universal covering homomorphism. In particular, we have the following isomorphisms.

$$
\begin{array}{rr}
S p(1) \cong \operatorname{Spin}(3), & S p(1) \times S p(1) \cong \operatorname{Spin} \\
S p(2) \cong \operatorname{Spin}(5), & S U(4) \cong \operatorname{Spin}(6) .
\end{array}
$$

Proof. As for the mapping p_{1}, p_{2}, they are well known (Chap. I [1]). The mapping p_{3} is also well known, however we will give a proof that p_{3} is onto by using the following

Lemma 2. Let G, G^{\prime} be groups, H, H^{\prime} subgroups of G, G^{\prime} respectively and $p: G \rightarrow G^{\prime}$ a homomorphism satisfying $p(H) \subset H^{\prime}$. If $p^{\prime}=p \mid H: H \rightarrow H^{\prime}$ and $\bar{p}: G / H \rightarrow$ G^{\prime} / H^{\prime} (the induced mapping of p) are both onto, then $p: G \rightarrow G^{\prime}$ is also onto.

Proof of Lemma 2 is easy (Lemma 1.50 [2]).
Let S^{4} be the unit sphere in $\mathfrak{\Im}(2, \boldsymbol{H})_{0}$:

$$
\mathrm{S}^{4}=\left\{X \in \mathfrak{\Im}(2, \boldsymbol{I})_{0} \mid\langle X, \quad X\rangle=2\right\}
$$

By using that any element of $\mathfrak{\Im}(2, H)$ can be transformed in a diagonal form by the action μ of $S p(2)$, we see that any element X of S^{4} can be transformed to $E_{1}-E_{2}=\left(\begin{array}{rr}1 & 0 \\ 0 & -1\end{array}\right)$ by $S p(2)$. This shows that the group $S p(2)$ acts transitively on S^{4}. Since the isotropy subgroup of $S p(2)$ at $E_{1}-E_{2}$ is $k_{2}(S p(1) \times S p(1))$, we have the following homeomorphism

$$
S p(2) / k_{2}(S p(1) \times S p(1)) \simeq S^{4}
$$

Thus we have the following diagram

Therefore, from Lemma 2, we see that p_{3} is onto. $\operatorname{Ker} p_{3}=\mathbb{Z}_{2}=\{E,-E\}$ is easily obtained.

Now, we consider the mapping $p: S U(4) \rightarrow S O(6)$. In order to prove that the mapping p is well-defined, first we have to show that, for $A \in S U(4)$ and $X \in V$, we have

$$
p(A) X=h^{-1}\left(A h(X)^{t} A\right) \in V
$$

Since any element S of the Lie algebra \mathfrak{a}_{3} of $S U(4)$ is represented by the form

$$
S=k(D)+i k(F(a))+i t k\left(E_{1}-E_{2}\right)
$$

as $\S 1$ (3), the group $S U(4)$ is generated by the elements such as $\exp k(D)$, expik $(F(a))$ and $\operatorname{expitk}\left(E_{1}-E_{2}\right)$. For $A=k\left(A_{1}\right)$ where $A_{1}=\exp D \in S p(2), X \in V$, we have

$$
\begin{aligned}
h^{-1}\left(A h(X)^{t} A\right) & =h^{-1}\left(k\left(A_{1}\right) k(X) J^{t} k\left(A_{1}\right)\right)=h^{-1}\left(k\left(A_{1}\right) k(X) k\left(A_{1}\right)^{*} J\right) \\
& =h^{-1}\left(k\left(A_{1} X A_{1}{ }^{*}\right) J\right)=A_{1} X A_{1}{ }^{*} \in V .
\end{aligned}
$$

For $A=\exp i k(F(a)), X \in V$, we have

$$
\begin{aligned}
& h^{-1}\left(A h(X)^{t} A\right)=h^{-1}\left((\exp i k(F(a))) k(X) J^{t}(\exp i k(F(a)))\right) \\
&=h^{-1}((\exp i k(F(a))) k(X)(\exp i k(F(a))) J) \\
&=h^{-1}(k((\exp i F(a)) X(\exp i F(a))) J) \\
&=(\exp i F(a)) X(\exp i F(a)) \\
&=\left(\begin{array}{cc}
\cos |a| & i \frac{a}{|a|} \sin |a| \\
i \frac{\bar{a}}{|a|} \sin |a| & \cos |a|
\end{array}\right)\left(\begin{array}{cc}
\xi & x \\
\bar{x} & -\bar{\xi}
\end{array}\right)\left(\begin{array}{cc}
\cos |a| & i \frac{a}{|a|} \sin |a| \\
i \frac{\bar{a}}{|a|} \sin |a| & \cos |a|
\end{array}\right) \\
&=\left(\begin{array}{cc}
\eta & y \\
\bar{y} & -\bar{\eta}
\end{array}\right) \in V
\end{aligned}
$$

where

$$
\begin{aligned}
& \eta=\xi \cos ^{2}|a|+\bar{\xi} \sin ^{2}|a|+i \frac{2(a, x)}{|a|} \sin |a| \cos |a|, \\
& y=x-\frac{2(a, x)}{|a|^{2}} \sin ^{2}|a|+i \frac{(\xi-\bar{\xi}) a}{|a|} \sin |a| \cos |a| .
\end{aligned}
$$

For $A(t)=\exp \frac{i t}{2} k\left(E_{1}-E_{2}\right), \quad X=\left(\begin{array}{cc}\xi & x \\ \bar{x} & -\bar{\xi}\end{array}\right) \in V$, it is easy to verify that

$$
h^{-1}\left(A(t) h(X)^{t} A(t)\right)=\left(\begin{array}{cc}
e^{i t \xi} & x \\
\bar{x} & -e^{-i t \bar{\xi}}
\end{array}\right) \in V .
$$

Thus $p(A) X \in V$ is proved. For $A \in S U(4)$, we see that $p(A) \in O(8)=O(V)=\{\alpha \in \mathrm{Isor}$ $(V, V) \mid\langle\alpha X, \alpha Y\rangle=\langle X, Y\rangle\}$, because

$$
\begin{aligned}
& \langle p(A) X, \quad p(A) Y\rangle=\langle h(p(A) X), \quad h(p(A) Y)\rangle \\
& =\left\langle A h(X)^{t} A, \quad A h(Y)^{t} A\right\rangle=\langle h(X), h(Y)\rangle=\langle X, Y\rangle .
\end{aligned}
$$

Since $S U(4)$ is connected, $p(S U(4))$ is contained in the connected component $S O(6)$ of identity E in $O(V)$, i. e. $p(S U(4)) \subset S O(6)$. Thus we see that the mapping p is well-defined.

Let S^{5} be the unit sphere in V :

$$
S^{5}=\{X \in V \mid\langle X, X\rangle=2\}
$$

We shall prove that the group $S U(4)$ acts transitively on S^{5}. To prove this, it
is sufficient to show that any element X of S^{5} can be transformed to $i\left(E_{1}+E_{2}\right)=$ $\left(\begin{array}{cc}i & 0 \\ 0 & i\end{array}\right)$. For a given $X \in S^{5}$, operate some element $A\left(t_{0}\right)=\exp \frac{i t}{2}\left(E_{1}-E_{2}\right)$, then we have

$$
p\left(A\left(t_{0}\right)\right) X \in S^{4}
$$

Since $S p(2)$ acts transitively on S^{4}, there exists $A \in S p(2)$ such that

$$
p\left(k(A) A\left(t_{0}\right)\right\rangle X=E_{1}-E_{2},
$$

and then operate $A\left(\frac{\pi}{2}\right)=\exp \frac{i \pi}{4}\left(E_{1}-E_{\Omega}\right)$ on it, then we have

$$
p\left(A\left(-\frac{\pi}{2}\right) k(A) A\left(t_{0}\right)\right) X=i\left(E_{1}+E_{2}\right)
$$

This implies the transitivity of $S U(4)$. Since the isotropy subgroup of $S U(4)$ at $i\left(E_{1}+E_{2}\right)$ is $k(S p(2))$, we have the following homeomorphism

$$
S U(4) / k(S p(2)) \simeq S^{5}
$$

Thus we have the following commutative diagram

Therefore, from Lemma 2, we see that p is onto. $\operatorname{Ker} p=\{E,-E\}$ is easily obtained. Thus the proof of Theorem 1 is completed.

References

[1] C. Chevally ; Theory of Lie Groups I, Princeton Univ. Press, 1946.
[2] I. YокотA; Groups and Representations (in Japanese), Shokabo, 1973.

