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   It is well known that the special unitary group SU(4) and the spinor group

SPin(6) are isomorphic. To prove this it is usually used that their Lie algebras are

isomorphic. In this paper, we shall prove it by giving a homomorphism P:SU(4)

-SO(6) explicitly.

   a. Preliftaimaries.

   (1) Let C and ff =CO]'C be the complex and the quaternion fields respectively.
ff is isomorphic to the space sp--{acGM(2, C)lxJ'--J'rc-}, where J'=(.2 g), as

algebra, by the correspondence le:ff-sp, '

                       '                    k(a+jb)==("b ---.b-), . a,bEC,

and fe has the following properties:

                      1         le(hi)==X", 2 (Xy*+yx*)==](x,y)E,                                            xx"=x"x=]x12E

where x==le(x), y:=le(y) and E is the unit matrix. This mapping k is naturally

extended to the spaces of matrices:
                             '
          k:M(2,ff)-M(4,c), le(:,il :1.l)-(i[:lll 2[:l#l).

   (2) Let g(2, ,ff) be the vector space of all 2×2 quaternion Hermitian matrices:

      '                     g(2, ,if) == {XG A4(2, ff) ] X* =X} .

        '
In g(2, ,ff), we define the inner product (X, Y) by

                               1                       (X, Y) = 2 tr(XY+ YX).

                         '                                            '
Let g(2, ff)a:=::{X=Xi+iX21Xi, X2Eg(2, ff)} be the complexification of g(2, ff).
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In S(2, ff)C we define the Hermitian inner product <X, Y> by

        <X,+iX,, Y,+iY,>=(Xi, Yi)+(X2, Yl,)+i((X,, IY,)-(X,, Y,)).

Furthermore let @(4, C) be the vector space of all 4×4 complex skew-symmetric
matrlces :

                      @(4, C)={PEM(4, C)[tP==-P}.
        '
In @(4, C) we define the Hermitian inner product <P, Q> by

                        <P, Q>::::- i tr(PQ+QiPl).

Then the space g(2, .ff)C is isomorphic to the space @(4, C) by the correspondence

h : g(2, ff)C-@(4, C),

               h(x,+iXh)-(k(X,)+ik(Xl,))L J-(6' O,.)･

   (3) Let c2 be the Lie algebra of all 2×2 quaternion skew-Hermitian matrices:

                        c, == {DEM(2, ff) ID* == -D}

and a3 the Lie algebra of all 4×4 complex skew-Hermitian matrices with zero
trace:

                                                  N                    a3-:{SffM(4, C)IS*==-S, tr(S)=O}.

Any element S of a3 can be represented by the form

              S==le(D)+ik(T), DEc2, TES(2, Zl), tr(T)==O

               =le(D)+ife(F(a))+itk(Ei-E2)

where F(a)--(2. g), aeff, Ei-E2=(g -2) and tER (re is the fieid of reai

numbers). In fact, for SEa3, put Di= ± (S-1-Sl) and Ti==- g (S+IS-f), then

we have S= Di+i Ti, Di" == -Di, - DiJ= .LDi and Ti"= Ti, Tif =ITi, tr(Ti) == O.

So D=lemi(Di) and T=k-i(Ti) satisfy the required conditions,

   2. Low dfiwaensional spinor groups,

   We define the low dimensional symplectic groups, the special unitary group

and the orthogonal groups by

            SP(1) J- {aEff 1 Ial=1},

            SP(2)={AEM(2, .ff)1A*A=E},

            SU(4) == {AeM(4, C) IA"A-E, detA=:1},

            SO(3)=SO(Iilb)= {aEi lsoR(Hb, Hb) I (ax, ay) == (x, y), detev == 1}
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where ffe == {xG ff] nvx -- -x} ,

        SO(4)-SO(ff)={aeIsoR(ff, ff)](ax, ay)=(x, y), deta=1},

        SO(5):-SO(go)={evelsoR(So, go)1(aX, evY)=(X, Y), deta=1}

where So=g(2, ]il)e={Xesg(2, me)1tr(X):=O} and

        SO(6)=SO(V)=-{evEIsoR(V, V)1<evX, aY>=<X, Y>, deta=1}

where V=:(( -.e .{e )[eEC, xEffl c3(2, ff)C.

   We note that the restriction of the mepping h of the section 1 on V is an

isometry:

                <h(X), h(Y)>=-<X, Y>, X, YEV

and the group SP(2) acts on the space S(2, ff) by pt:SP(2)xS(2, ff).S(2, ff),

pt(A, X)=AXA* and it holds that

            (AXA", AYA*)=(X, Y), tr(AXA"):-tr(X).

On the other hand, the group SU(4) acts on the space S(4,C) by pt:SU(4)×
@(4, C)-g(4, C), pt(A, P)=AP`A and it hoids that

                     <APtA, AQtA>=<P, Q>.

   Now we define the following homomorphisms.

          Pi:SP(1)-SO(3), Pi(a)x=axa, xEffb,

          P2:SP(1)XSP(1)--SO(4), P2(a, b)x==axb, xGff,

          P3:Sp(2)-÷SO(5), p3(A)X==AXA*, Xeso,
          P=P4 : SU(4).SO(6), P(A)X=h-t(Ah(X)tA), XE V.

Then we have

   Tkeorern 1. The following diagram is commutative

                 lei fe2 le           SP(1) - SP(1)XSP(1) - SP(2) - SU(4)
            Spi j, ip2 j･.. tp3 ]･ ip

           SO(3) - SO(4) - SO(5) -÷ SO(6)
where ki is the diagonal maPPing and le2, 1'i, 1'2, j are natural inclusions. And each

maPPing Pi is the universal covering homomorPhism. In Particbllar, eve have the

following isomorPhisms. .
              SP(1){;SPin(3), SP(1)xSp(1)::Spin(4),
                                         '
              SP(2)2i!SPin(5), SU(4) iiSPin(6).
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   Proof. As for the mapping Pt, P2, they are well known (Chap. I [1]). The

rnapping P3 is also well known, however we will give a proof that P3 is onto by

using the following

    Lemwaa 2. Let G, G' be gromps, H, H' subgromps of G, G' respectively and

P : G-G' a homomorphism satis.fZying P(H)cH'. Ilf P'=:P]H: U.H' and P : G/H-

G'/H' (the induced mapPing of P) are both onto, then P : G.G' is also onto.

                1 ----> H -G ---> G/H - *
                         tp' tp Si ･
                1 - Ht --> G' - Gt/Ht -->' *

    Proof of Lemma 2 is easy (Lemma 1. 50 [2]).

    Let S` be the unit sphere in EY(2,ff)o:

                       s4:= {XEs(2, ff)ol<X, X> =2}.

By using that any element of g(2, ff) can be transformed in a diagonal form by

the action pt of SP(2), we see that any element X of S` can be transformed to

Ei-E2=
(g -?) by Sp(2). This shows that the group SP(2) acts transitively on

S`. Since the isotropy subgroup of SP(2) at Ei-E2 is k2(SP(1)xSP(1)), we have

the following homeomorphism

                         SP(2) /le2(SP(1) × SP(1))=:S4.

Thus we have the following diagram

                                  k,
             1 --- SP(1)xSP(1) ----> SP(2) ---> S4 - *
                          iP2 j, SP3

             1 ---> SO(4) --- SO(5) - S4 ---> *

Therefore, from Lemma 2, we see that P3 is onto. KerP3=Z2= {E, -E} is easily

obtained.

   Now, we consider the mapping P:SU(4)-SO(6). In order to prove that the

mapping P is well-defined, first we have to show that, for AESU(4) and XEV,

                                                  '
                         p(A)X:-h"i(Ah(X)tA)EVL '

Since any element S of the Lie algebra a3 of SU(4) is represented by the form

                       s=le(D)+ile(F(a))+itle(Ei-E2)

as gl (3), the group SU(4) is generated by the elements such as expk(D), expik

(F(a)> and expitk(Ei-E2). For A=k(Ai) where Ai==expDEES2b(2), XGV, we have
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          h-i(Ah(X)tA)=h-i(le(A,)fe(X)ltle(A,))=h-i(le(A,)fe(X)k(A,)*1)

                    =h-i(fe(A,XAi)J) =:A,XA,*E V.

For A=expile(F(a)), XeV, we have

   h-i(Ah(X)tA)==h-i((expife(F(a)))k(X)J`(expile(F(a))))

          =::h-'((expik(F(a)))k(X)(expik(F(a)))1)

          = h-i(le((expili'(a))X(expiF(a)))f)

          = (exp iF(a))X(expiF(a))

          ,.(,[ziOg,1."11.L Z1"a,1.S,i".11a[ )( i -l )( ,lz.CIOg:."]1.1 ZL"a,Lg'1".lai )

          =( Z- -l )E V,

where

          rp == ecos2Ia1 + s-sin2la] +i2(ft EX)sin[a[cos1ai,

          y==x-2i".'i,X)sin21a1+i (6i.g)" sin1a1cosIa1.

For A(t)=exp it le(Ei-E2), X=( i -2 )EY, it is easy to verify that

                  h-i(A(t)h(x)tA(t))=(el.`6 -,Z,E-)GVL

                                           '
Thus P(A)XeY is proved. For AESU(4), we see that P(A)EO(8)=O(V)--{aEiilsoR

(V, V)[<aX, aY>=<X, Y>}, because

            <P(A)X, P(A)Y>=<h(P(A)X), h(P(A)Y)>

                 =-<Ah(X)tA, Ah(Y)tA>=-<h(X), h(Y)>-=<X, Y>.

Since SU(4) is connected, P(SU(4)) is contained in the connected component SO(6)

of identity E in O(V), i.e. P(SUC4))cSO(6). Thus we see that the mapping P is

well-defined.

   Let S5 be the unit sphere in iV:

                         S5={XEVI<X, X>=2}

We shall prove that the group SU(4) acts transitively on S5. To prove this, it
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is su'thcient to show that any element X of S5 can be transformed to i(Ei÷E2)==

(g 9. ). Foragiven XES5, operate some element A(to)=exp-i2-t (Ei-E2), then

we have

                             P(A(t,))XES4.

Since SP(2) acts transitively on S`, there exists AESP(2) such that

                         P(k(A)A(to))X:-Ei'E2,

and then operate A( : )=exp Z4rc (Ei-E2) on it, then we have

                     p(A( : )k(A)A(to))X=i(Ei+E2).

This implies the transitivity of SU(4). Since the isotropy subgroup of SU(4) at

i(Ei+E2) is k(SP(2)), we have the following homeomorphism

                           SU(4)/fe(SP(2))m--S5.

Thus we have the following commutative dlagram

                              le
               1 -> SP(2) H SU(4) . S5 --m, *
                        SP3 j SP

               1 - SO(5) - SO(6) - S5 - *
Therefore, from Lemma 2, we see that P is onto. Kei:P=={E, -E} is easily obtained.

Thus the proof of Theorem 1 is completed.
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