Connections of Differential Operators

By Akira Asada
Department of Mathematics, Faculty of Science, Shinshu University
(Received December 20, 1978)

Introduction

A connection θ of a vector bundle F may be regarded to be the lower order term of a differential operator $D: C^{\infty}\left(M, A^{p} T^{*}(M) \otimes F\right) \rightarrow C^{\infty}\left(M, A^{p+1} T^{*}(M) \otimes F\right)$ with the symbol $\sigma(d) \otimes i d_{F}$ (cf. [1]). Similarly, for an arbitrary differential operator $D: C^{\infty}\left(M, E_{1}\right) \rightarrow C^{\infty}\left(M, E_{2}\right), E_{1}$ and E_{2} being vector bundles over M, we may consider the lower order term of a differential operator $\widetilde{D}: C^{\infty}\left(M, E_{1} \otimes F\right) \rightarrow C^{\infty}\left(M, E_{2}\right.$ $\otimes F)$ with $\sigma(\widetilde{D})=\sigma(D) \otimes i d_{F},(\sigma(D)$, etc., mean the symbols of D, etc. $)$, to be a connection of D with respect to F. This connection has many (formally) similar properties as usual connection. For example, the action of the group of automorphisms of F to the set of all connections of D with respect to F is formally same as usual case (cf. [9]), and the obstruction class $o(D, F)$ which has similar properties as curvature or characteristic classes, can be defined by the help of connection.

The outline of this paper is as follows : In $\S 1$, we define the connection of D with respect to a vector bundle F. After showing the existence of connection, the action of the automorphism of F to the connection is calculated in $\S 1$. In $\S 2$, we define the obstruction class $o(D, F)$ and show D has a connection with respect to F with the degree at most $\operatorname{deg} D-2$ if and only if $o(D, F)=0$. The higher obstructions $o^{j}(D, F)$ are also defined under the assumption $o^{j-1}(D, F)=0$. It is shown that D has a connection with the degree at most $\operatorname{deg} D-j-1$ if and only if $o^{j}(D$, $F)=0$. If F is a complex line bundle, $o(d, F) \in H^{1}\left(M, \mathscr{S}^{1}\right), \mathscr{S}^{1}$ is the sheaf of germs of closed 1 -forms on M, and its de Rham image in $H^{2}(M, \mathrm{C})$ is the 1 -st Chern class of F, the closed 2 form on M whose de Rham image $o(d . F)$, is the curvature form of F. For this reason, we may define $c h(D, F)$ and $c h^{j}(D, F)$ using non-abelian cohomogy theory ([6], [8]). In §3, we consider the extension of differential operator D on the base space M to the tatal space M_{F} of a fibre bundle F and show this problem is also treated by the same way as the connection of D defined in §1. For this reason, to fix a connection $\theta(F)$ of F, we call the
lower order term of the differential operator $\widetilde{D}: C^{\infty}\left(M_{F}, \pi_{F}{ }^{*}\left(E_{1}\right)\right) \rightarrow C^{\infty}\left(M_{F}, \pi_{F}{ }^{*}\left(E_{2}\right)\right)$ with $\sigma(\widetilde{D})=\pi_{\theta(F)}{ }^{*}\left[\pi_{F}{ }^{*}(\sigma(D))\right]$ is called the connection of D with respect to F and $\theta(F)$. Here $\pi_{\theta(F)}{ }^{*}: T^{*}\left(M_{F}\right) \rightarrow \pi_{F}{ }^{*}\left(T^{*}(M)\right)$ is the map defined by $\theta(F)$. It is shown that if F is an $\mathrm{SO}(n)$-bundle or $\mathrm{SU}(n)$-bundle with the fibre R^{n} or C^{n}, D has a connection such that decomposed as the sum of connections of D with respect to $\chi_{p}(F)$ or $\chi_{c, p}(F), q \geqq 0$. Here $\chi_{p}(F)$, or $\chi_{c, p}(F)$, is the associate p-th degree harmonic polynomials bundle, or (p, p)-type harmonic polynomial bundle, of F.

§ 1. Definition of connections

1. Let M be a connected n-dimensional smooth manifold, E_{1}, E_{2} and F are complex (or real) vector bundles over M. The dimensions of the fibres of E_{1} and E_{2} are assumed to be finite, but the dimension of the fibre of F need not be finite (cf. §3). We fix a common (locally finite) coordinate neighborhood $\{U\}$ of E_{1}, E_{2} and F. The (fixed) transition functions of E_{1}, E_{2} and F defined by $\{U\}$ are denoted by $\left\{g_{1, U V}(x)\right\},\left\{g_{2, U V}(x)\right\}$ and $\left\{g_{U V}(x)\right\}$. We denote by $C^{\infty}\left(M, E_{1}\right)$, etc., the space of C^{∞}-cross-sections of E_{1} over M, etc.. Under these notations, a differential operator $D: C^{\infty}\left(M, E_{1}\right) \rightarrow C^{\infty}\left(M, E_{2}\right)$ is a collection of differential operators $D_{U}: C^{\infty}$ $\left(U, E_{1}\right) \rightarrow C^{\infty}\left(U, E_{2}\right)$ such that

$$
D_{U} g_{1, U V}(x)=g_{2, U V}(x) D_{V}, x \in U \cap V .
$$

We set $\operatorname{deg} D=k$. Then D_{U} is written

$$
\begin{gather*}
D_{U}=\sum_{|\mathbf{I}| \leq k} A_{\mathrm{I}, U}(x)\left(\frac{\partial}{\partial x_{U}}\right)^{\mathbf{I}}, \mathbf{I}=\left(i_{i}, \ldots, i_{n}\right), \quad|\mathbf{I}|=i_{1}+\ldots+i_{n}, \tag{1}\\
\left(\frac{\partial}{\partial x_{U}}\right)^{\mathbf{I}}=\frac{\partial|\mathbf{I}|}{\partial x_{U,} i^{i_{1}} \ldots \partial x_{U, n^{i}}},
\end{gather*}
$$

where $\left(\mathrm{x}_{U, 1}, \ldots, x_{U, n}\right)$ is the local coordinate on U. We set

$$
\left.D_{U} \otimes 1_{F}=\sum_{|| | \leqq k} A_{\mathbf{I}, U}(x) \otimes 1_{F} \frac{\partial}{\partial x_{U}}\right)^{\mathbf{I}}, 1_{F} \text { is the identity map of the fibre of } F,
$$

Then $D_{U} \otimes 1_{F}: C^{\infty}\left(U, E_{1} \otimes F\right) \rightarrow C^{\infty}\left(U, E_{2} \otimes F\right)$ is a differential operator on U.
Definition. A collection $\left\{\theta_{U}\right\}$ of differential operators $\theta_{U}: C^{\infty}\left(U, E_{1} \otimes F\right) \rightarrow C^{\infty}(U$, $\left.E_{2} \otimes F\right)$, is called a connection of D (with respect to F) if it satisfies

$$
\begin{equation*}
g_{2, U V}(x) \otimes g_{U V}(x)\left(D_{V} \otimes 1_{F}+\theta_{V}\right)=\left(D_{U} \otimes 1_{F}+\theta_{U}\right) g_{1, U V}(x) \otimes g_{U V}(x), \tag{i}
\end{equation*}
$$

(ii) $\quad \operatorname{deg} \theta_{U} \leqq k-1,(k=\operatorname{deg} D)$.

Proposition 1. For any D and F connection exists.
Proof. Let $\left\{e_{U}(x)\right\}$ be a C^{∞}-partition of unity subordinate to $\{U\}$. Then to set
(2)

$$
\begin{gathered}
\theta_{U}(x)=\sum_{U \cap W \neq p} e_{W}(x) g_{2, U W}(x) \otimes g_{U W}(x)\left\{D_{W} \otimes 1_{F}\left(g_{1, W U}(x) \otimes g_{W U}(x)\right)\right. \\
\left.-\left(g_{2, W U}(x) \otimes g_{W U}(x)\right) D_{U} \otimes 1_{F}\right\},
\end{gathered}
$$

$\left\{\theta_{U}(x)\right\}$ satisfies (i), (ii).
Eefinition. Let $\theta=\left\{\theta_{U}(x)\right\}$ be a connection of D with respect to F. Then the collection $\left\{D_{U} \otimes 1_{F}+\theta_{U}\right\}$ is denoted by D_{θ}.

By definition, $D_{\theta}: C^{\infty}\left(M, E_{1} \otimes F\right) \rightarrow C^{\infty}\left(M, E_{2} \otimes F\right)$ is a differential operator on M and $\operatorname{deg} D_{\theta}=k$. Hence we have

$$
\begin{equation*}
\sigma\left(D_{\theta}\right)=\sigma(D) \otimes i d_{F} \tag{3}
\end{equation*}
$$

where $\sigma(D)$, etc., are the symbols of D, etc., and $i d_{F}$ is the identity map of π^{*} $(F), \pi$ is the projection of $T^{*}(M)$, the cotangent bundle of M.

Note 1. If $E_{1}=A^{p} T^{*}, E_{2}=A^{p+1} T^{*}$ and $D=d$, the exterior differential, then a connection of d with respect to F is a linear connection of F.

Note 2. For a differential complex

$$
(D): C^{\infty}\left(M, \mathrm{E}_{1}\right) \xrightarrow{D_{1}} C^{\infty}\left(M, E_{2}\right) \xrightarrow{D_{2}} \cdots,
$$

Connection (with respect to F) is also defined. But the lifted sequence

$$
\left(D_{\theta}\right): C^{\infty}\left(M, E_{1} \otimes F\right) \xrightarrow{D_{1}, \theta_{1}} C^{\infty}\left(M, E_{2} \otimes F\right) \xrightarrow{D_{2}, \theta_{2}} \cdots,
$$

is not a differential complex in general, although its symbol sequence is exact (cf. [2]).
2. Let $\varphi: E_{1} \rightarrow E_{1}$ be a bundle map, then we set

$$
\begin{equation*}
\varphi D_{U}=\sum_{|\Pi| \leqq k} A_{\mathrm{I}, U}(x) \varphi(x)\left(\frac{\partial}{\partial x_{U}}\right)^{\mathbf{I}}, \tag{4}
\end{equation*}
$$

and set

$$
\begin{equation*}
D_{U \varphi}=\varphi D_{U}+D_{U, \varphi} \tag{5}
\end{equation*}
$$

By definition, $\operatorname{deg} D_{U, \varphi} \leq k-1$.
Lemma 1. If φ is an automophism, then

$$
\begin{equation*}
D_{U, \varphi^{-1}}=-\varphi^{-1} D_{U, \varphi^{\varphi}}{ }^{\varphi-1} . \tag{6}
\end{equation*}
$$

Proof. Since we have $\varphi_{-1}(\varphi D)=D$, we get

$$
D_{U}=D_{U} \varphi^{-1} \varphi=\varphi^{-1} D_{U} \varphi+D_{U, \varphi^{-1}}=D_{U}+\varphi^{-1} D_{U, \varphi}+D_{U, \varphi^{-1}},
$$

we obtain (6).
If $\left\{\theta_{U}\right\}$ is a connection of D with respect to F, we have

$$
g_{2, U V} \otimes g_{U V} D_{V} \otimes 1_{F}-D_{U} \otimes 1_{F} g_{1, U V} \otimes g_{U V}=g_{2, U V} \otimes g_{U V} \theta_{V}-\theta_{U} g_{1, U V} \otimes g_{U V}
$$

Hence we get

$$
\begin{align*}
& g_{2, U V} \otimes h_{U} g_{U V} h_{V}^{-1}\left\{\left(1_{E_{2}} \otimes h_{V}\right) D_{V} \otimes 1_{F}\left(1_{E_{1}} \otimes h_{V}^{-1}\right)\right. \tag{7}\\
& \left.\quad-\left(1_{E_{2}} \otimes h_{U}\right) D_{U} \otimes 1_{F}\left(1_{E_{1}} \otimes h_{U}^{-1}\right)\right\} g_{1, U V} \otimes g_{U V} \\
& =\left(1_{E_{2}} \otimes h_{U}\right)\left\{g_{2, U V} \otimes g_{U V} \theta_{V}-\theta_{U} g_{1, U V} \otimes g_{U V}\right\}\left(1_{E_{1}} \otimes h_{V}^{-1}\right),
\end{align*}
$$

where $1_{E_{1}}$ and $1_{E_{2}}$ are the identity maps of the fibres of E_{1} and E_{2}. But since we get by (6)

$$
\begin{aligned}
& \left(1_{E_{2}} \otimes h_{U}\right) D_{U} \otimes 1_{F}\left(1_{E_{1}} \otimes h_{U}^{-1}\right) \\
= & \left(1_{E_{2}} \otimes h_{U}\right)\left\{\left(1_{E_{1}} \otimes h_{U}^{-1}\right) D_{U} \otimes 1_{F}-\left(1_{E_{1}} \otimes h_{U}^{-1)}\left(D_{U} \otimes 1_{F}\right)_{E_{1}} \otimes h_{U}\left(1_{E_{1}} \otimes h_{U}^{-1}\right)\right\},\right.
\end{aligned}
$$

and since

$$
{\left(1_{E}\right.}^{\left.\otimes / h_{U}^{-1}\right) D_{U} \otimes 1_{F}=\left(1_{E_{2}} \otimes h_{U}^{-1}\right) D_{U} \otimes 1_{F}, ~ ; ~}
$$

we obtain

$$
\begin{equation*}
\left(1_{E_{2}} \otimes h_{U}\right\rangle D_{U} \otimes 1_{F}\left(1_{E_{1}} \otimes h_{U}^{-1}\right)=D_{U} \otimes 1_{F}-\left(D_{U} \otimes 1_{F}\right)_{1_{E_{1}}} \otimes h_{U}\left(1_{E_{1}} \otimes h_{U}^{-1}\right) . \tag{8}
\end{equation*}
$$

By (7), (8), we have
Lemma 2. If $\left\{\theta_{U}\right\}$ is a connection of D with respect to F, where $\left\{g_{U V}\right\}$, a transition function of F, is fixed, then by the change of transition function of F by $\left\{h_{U}\right\},\left\{\theta_{U}\right\}$ is changed to $\left\{\theta_{U}{ }^{\prime}\right\}$ given by

$$
\begin{equation*}
\theta_{U}^{\prime}=\left(1_{E_{2}} \otimes h_{U}\right)\left\{\theta_{U}-\left(1_{E_{2}} \otimes h_{U}^{-1}\right)\left(D_{U} \otimes 1_{F}\right)_{1_{E_{1}} \otimes h_{U}}\right\}\left(1_{E_{1}} \otimes h_{U}^{-1}\right) \tag{9}
\end{equation*}
$$

Note. Since $d_{f}=d f$, the action of the automorphism of F to the connection of D is formally similar as the usual connection (cf. [1], [9]).

Definition. If $\left\{\theta_{1, U_{1}}\right\}$ and $\left\{\theta_{2, U_{2}}\right\}$ are the connections of D with respect to F, we call $\left\{\theta_{1, U_{1}}\right\}$ and $\left\{\theta_{2_{2}, U_{2}}\right\}$ to be equivalent if there exists a common locally finite refinement $\{U\}$ of $\left\{U_{1}\right\},\left\{U_{2}\right\}$ and a collection of bundle automorphisms $\left\{h_{U}\right\}$ of F, each h_{U} is defined on U, such that

$$
\begin{aligned}
& \theta_{1, U_{1}} \mid U=\left(1_{E_{2}} \otimes h_{U}\right)\left\{\theta_{2, U_{2}} \mid U-\left(1_{E_{2}} \otimes h_{U}^{-1}\right)\left(D_{U} \otimes 1_{F}\right)_{1_{1},} \otimes h_{U}\right\}\left(1_{E_{1}} \otimes h_{U}^{-1}\right), \\
& \\
& U \subset U_{1} \cap U_{2}
\end{aligned}
$$

for each U.
Note. If $E_{1}=E_{2}=E, E$ and F both have unitary structures and D is formally selfadjoint, that is, $\left\{g_{1, U V}\right\}\left(=\left\{g_{2, U V}\right\}\right)$ and $\left\{g_{U V}\right\}$ both take the values in unitary group, then to denote inner product on $C^{\infty}(M, E \otimes F)$ defined from the inner products of E and F by $\langle\varphi, \phi\rangle$, we get

$$
\left.\left\langle g_{1, U V}{ }^{-1} \otimes g_{U V}{ }^{-1} D_{U} g_{1, U V} \otimes g_{U V} \varphi, \psi\right\rangle=\left\langle\varphi, g_{1, U V}{ }^{-1} \otimes g_{U V}{ }^{-1} D g_{1, U V} \otimes\right) g_{U V}\right\rangle
$$

if Supp. φ and Supp. ϕ both contained in $U \cap V$. Hence D has a connection θ such that D_{θ} is formally selfadjoint. In this case, if $\left\{h_{U}\right\}$ take values in unitary group, the change $\left\{\theta_{U}{ }^{\prime}\right\}$ of $\left\{\theta_{U}\right\}$ by $\left\{h_{U}\right\}$ given by (9) also gives a formally selfadjoint operator $D_{\theta^{\prime}}$.
3. We set
$\operatorname{Con}(D, F)=\{\theta \mid \theta$ is a connection of D with respect to $F\}$,
$\mathscr{D}^{j}\left(E_{1} \otimes F, E_{2} \otimes F\right)=\left\{\eta: C^{\infty}\left(M, E_{1} \otimes F\right) \rightarrow C^{\infty}\left(M, E_{2} \otimes F\right) \mid \eta\right.$ is a differential operator with degree at most j \}.

Then by definition, to fix $\theta_{0}=\left\{\theta_{0, U}\right\} \in \operatorname{Con}(D, F)$ and define $i_{\theta_{0}}(\theta)=\left\{\theta_{U}-\theta_{0, U}\right\}=D_{\theta}$ $-D_{\theta_{0}}, \quad \theta=\left\{\theta_{U}\right\} \in \operatorname{Con}(D, F)$, we have a bijection

$$
\begin{equation*}
i_{\theta_{0}}: \operatorname{Con}(D, F) \rightarrow \mathscr{D}^{k-1}\left(E_{1} \otimes F, E_{2} \otimes F\right) . \tag{10}
\end{equation*}
$$

Since $\mathscr{D}^{k-1}\left(E_{1} \otimes F, E_{2} \otimes F\right)=C^{\infty}\left(M, H o m\left(E_{1} \otimes F, E_{2} \otimes F\right) \otimes J_{k-1}(M)\right)$ is a topological space by C^{∞}-topology, $\operatorname{Con}(D, F)$ becomes a topological space by (10) and this topology does not depend on the choice of θ_{0}.

Denote $(\$(F)$ the group of bundle automorphisms of $F, \mathbb{F}(F)$ acts on Con $(D$, $F)$ by lemma 2. To copy this action to $\mathscr{D}^{k-1}\left(E_{1} \otimes F, E_{2} \otimes F\right)$ by $i_{\theta_{0}}$, we can define an action of $\mathscr{B}(F)$ on $\mathscr{D}^{k-1}\left(E_{1} \otimes F, E_{2} \otimes F\right)$ which may different from usual action. By (9), the isotropy group $\left(\mathscr{F}(F)_{\theta}\right.$ of $(\mathscr{S}(F)$ at θ is given by

$$
\begin{align*}
\left(\mathscr{S}(F)_{\theta}=\right. & \left\{\left\{h_{U}\right\} \mid\left(1_{E_{2}} \otimes h_{U}\right) D_{U, \theta_{U}}=D_{U, \theta_{U}}\left(1_{E_{1}} \otimes h_{U}\right)\right\}, \tag{11}\\
& D_{U, \theta_{U}}=D_{U} \otimes 1_{F}+\theta_{U} .
\end{align*}
$$

By (10), $\operatorname{Con}(D, F)$ is imbedded in $\mathscr{D}^{k-1, s}\left(E_{1} \otimes F, E_{2} \otimes F\right)=\mathscr{R}^{s}\left(M, \operatorname{Hom}\left(E_{1} \otimes\right.\right.$ $\left.F, E_{2} \otimes F\right) \otimes J_{k-1}(M)$, where \mathscr{X}^{s} means s-th Sobolev space. Hence, if F has a fixed unitary structure, $(8)(F)$ is the group of bundle automorphisms of F with the unitary structure and M is compact, local slice theorem is valid ([4], [7], [9]).

In the case D is formally selfadjoint, we set

$$
\begin{aligned}
\operatorname{Con}_{s}(D, F)= & \{\theta \mid \theta \text { is a formally selfadjoint connection of } D \text { with } \\
& \text { respect to } F\}, \\
\mathscr{D}_{s}{ }_{s}\left(E_{1} \otimes F,\right. & \left.E_{2} \otimes F\right)=\left\{\eta: C^{\infty}\left(M, E_{1} F\right) \rightarrow C^{\infty}\left(M, E_{2} F\right) E \eta\right. \text { is a formally } \\
& \text { selfadjoint differential operator with degree at most } j\} .
\end{aligned}
$$

Then to fix a formally selfadjoint connection θ_{0} of D with respect to F, we get

$$
\begin{equation*}
i_{\theta_{\mathrm{u}}}: \operatorname{Con}_{s}(D, F) \rightarrow \mathscr{D}^{k-1}\left(E_{1} \otimes F, \quad E_{2} \otimes F\right) \tag{10}
\end{equation*}
$$

If M is compact, by the action of $₫(F)$, $\operatorname{Con}_{s}(D, F)$ has local slice.

§ 2. The obstruction class.

4. For the index set $\mathbb{I}=\left(i_{1}, \ldots, i_{n}\right)$, we set

$$
\mathbf{I}+1_{i}=\left(i_{1}, \ldots, i_{j-1}, i_{j}+1, i_{j_{+1}, \ldots, i_{n}}\right)
$$

(cf. [3]). Using this notation, we set

$$
\begin{aligned}
D_{U}= & \sum_{|\mathbf{I}|=k-1}\left[\sum_{j=1}^{n} A_{U, \mathbf{I}_{+1} j}(x)\left(\frac{\partial}{\partial x_{U}}\right)^{\mathrm{I}} \frac{\partial}{\partial x_{u, j}}\right] \\
& +\sum_{|\mathbf{I}|=k-1} B_{U, \mathbf{I}}(x)\left(\frac{\partial}{\partial x_{U}}\right)^{\mathbf{I}}+\text { lower order terms }, \\
& A_{U, \mathbf{I}_{+1} j}(x)=A_{U, \mathbf{I}^{\prime}+1 k}(x) \text { if } \mathbb{I}+1_{j}=\overline{\mathbf{I}}^{\prime}+1_{k} .
\end{aligned}
$$

Then, since $g_{2, U V} D_{V}=D_{U} g_{1, U V}$, we get

$$
\begin{aligned}
& g_{2, U V} \otimes g_{U V} D_{V} \otimes 1_{F}-D_{U} \otimes 1_{F} g_{1, U V} \otimes g_{U V} \\
= & -\sum_{I}\left[\sum_{j} A_{U, \mathrm{I}+1} j\left(\frac{\partial\left(x_{V}\right)^{\mathrm{I}+1}{ }_{j}\left(x_{U}\right)}{} \otimes 1_{F}\left(g_{1, U V} \otimes \frac{\partial g_{U V}}{\partial x_{V, j}}\right)\right]\left(\frac{\partial}{\partial x_{V}}\right){ }^{\mathrm{I}}\right. \\
& + \text { lower order terms. }
\end{aligned}
$$

Therefore, to set a connection $\left\{\theta_{U}\right\}$ of D with respect to F by

$$
\theta_{U}=\sum_{|\mathrm{I}|=k-1} \theta_{U, \mathrm{I}}(x)\left(\frac{\partial}{\partial x_{U}}\right)^{\mathrm{I}}+\text { lower order terms },
$$

we obtain

$$
\begin{aligned}
& g_{2, U V} \otimes g_{U V} \theta_{V, \mathbf{I}}-\theta_{U, \mathrm{I}}\left(\frac{\partial\left(x_{V}\right)}{\partial\left(x_{U}\right)} g_{1, U V} \otimes g_{U V}\right. \\
= & -\sum_{j=1}^{n} A_{U, \mathbf{I}+1 j}\left(\frac{\partial\left(x_{V}\right)^{I+1}}{\partial\left(x_{U}\right)}{ }^{j} g_{1, U V} \otimes \frac{\partial g_{U V}}{\partial x_{V, j}},\right.
\end{aligned}
$$

for each $\mathbf{I},|\mathbf{I}|=k-1$. But since $g_{2, U V} D_{V}=D_{U} g_{1, U V}$, we get

$$
\sum_{j=1}^{n} A_{U, \mathbf{I}_{+1} j}\left(\frac{\partial\left(x_{V}\right)}{\partial\left(x_{U}\right)}\right)^{1+1_{j}} g_{1, U V} \otimes \frac{\partial g_{U V}}{\partial x_{V, j}}=\sum_{j=1}^{n} g_{2, U V} A_{V, \mathrm{I}_{+1} j} \otimes \frac{\partial g_{U V}}{\partial x_{V, j}} .
$$

Hence we have

$$
\begin{equation*}
g_{2, U V} \otimes g_{U V} \theta_{V, \mathrm{I}}-\theta_{U, \mathrm{I}}\left(\frac{\partial\left(x_{V}\right)}{\partial\left(x_{U}\right)}\right)^{\mathbf{I}} g_{1, U V} \otimes g_{U V} \tag{12}
\end{equation*}
$$

$$
=-\sum_{j=1}^{n} g_{2, U V} A_{V, \mathrm{I}+1 j} \otimes \frac{\partial g_{U V}}{\partial x_{V}, j}, \quad|\mathbb{I}|=k-1 .
$$

5. We set by $\xi_{U}{ }^{1}, \ldots, \xi_{U}{ }^{n}$, the dual basis of $\partial / \partial x_{U, 1}, \ldots, \partial / \partial x_{U, n}$ in the cotangent space. Then to set

$$
\mathscr{A}_{U}=\sum_{|\mathbf{I}|=k-1}\left(\sum_{j=1}^{n} A_{U, \mathbf{I}_{+1} j \xi_{U} I^{I+1} j} \otimes \frac{\partial}{\partial x_{U, j}}\right),
$$

\mathscr{A}_{U} is a cross-section of $\operatorname{Hom}\left(E_{1}, E_{2}\right) \otimes S^{k}\left(T^{*}(M)\right) \otimes T(M)$ over U. Here, $S^{k}\left(T^{*}(M)\right)$ $=J_{k}(M) / J_{k-1}(M)$ is the $k-$ th symmetric product of $T^{*}(M)$. By (12), to set

$$
\left.\sigma\left(\theta_{U}\right)=\sum_{|\mathbf{I}|=k-1} \theta_{U, \mathbf{I}} \xi_{U} \mathbf{I}, \quad \sigma\left(\theta_{V}\right) g V U=g_{2, U V} \otimes g_{U V} \sigma\left(\theta_{V}\right) g_{1, V U} \otimes\right) g_{V U}
$$

we get

$$
\begin{aligned}
\sigma\left(\theta_{U}\right)-\sigma\left(\theta_{V}\right) g_{V U} & =g_{2, U V}\left[\mathscr{A}_{V}\left(g_{U V}\right)\right] g_{1, V U} \otimes g_{V U} \\
& =\mathscr{A}_{U}\left(g_{U V}\right)\left(1_{E_{1}} \otimes g_{V U}\right)
\end{aligned}
$$

because $g_{2, U V} \mathscr{H}_{V}=\mathscr{A}_{U} g_{1, U v}$. Since this right hand side does not depend on th choice of $\left\{\theta_{U}\right\}$, we have

Lemma 3. To set

$$
\mathscr{A}_{U V}=\sigma\left(\theta_{U}\right)-\sigma\left(\theta_{V}\right)^{8 V U}=\mathscr{A}_{U}\left(g_{U V}\right)\left(1_{E_{1}} \otimes g_{V U}\right),
$$

$\mathscr{A}_{U V}$ is a cross section of $\operatorname{Hom}\left(E_{1}, E_{2}\right) \otimes S^{k-1}\left(T^{*}(M)\right) \otimes \operatorname{Hom}(F, F)$ over $U \cap V$ and does not depend on the chice of $\left\{\theta_{U}\right\}$.

By definition, the collection $\left\{\mathscr{A}_{U V}\right\}$ satisfies cochain condition

$$
\begin{equation*}
\mathscr{A}_{U V}+\mathscr{A}_{V W^{g}}{ }_{V U}+\mathscr{A}_{W U}^{g W U}=0 . \tag{13}
\end{equation*}
$$

If $\theta^{\prime}=\left\{\theta_{U}^{\prime}\right\}$ is equivalent to θ, we have by (9)

$$
\begin{equation*}
\theta_{U, \mathrm{I}}^{\prime}=\theta_{U, \mathrm{I}}-\sum_{j=1}^{n} A_{U, \mathrm{I}_{+1}} \otimes h_{U}^{-1} \frac{\partial h_{U}}{\sigma x_{U, j}} \tag{14}
\end{equation*}
$$

for any I, $|\mathbf{I}|=k-1$. Conversely, if θ^{\prime} satisfies (14), there exists $\eta \in \mathscr{D}^{k-2}\left(E_{1} \otimes F\right.$, $\left.E_{2} \otimes F\right)$ such that $\theta^{\prime}+\eta$ is equivalent to θ. If θ satisfies (14), then

$$
\begin{equation*}
\sigma\left(\theta_{U}^{\prime}\right)=\sigma\left(\theta_{U}\right)-\left(1_{E_{2}} \otimes h_{U}^{-1}\right) \mathscr{A}_{U}\left(h_{U}\right) \tag{15}
\end{equation*}
$$

But, since $\mathscr{A}_{U}\left(h_{U}^{-1}\right)=-\left(1_{E_{2}} \otimes h_{U}^{-1}\right)\left[\mathscr{A}_{U}\left(h_{U}\right)\right]\left(1_{E_{1}} \otimes h_{U}^{-1}\right),(15)$ is rewritten

$$
\begin{equation*}
\sigma\left(\theta_{U}^{\prime}\right)=\sigma\left(\theta_{U}\right)+\mathscr{A}_{U}\left(h_{U}^{-1}\right)\left(1_{E_{1}} \otimes h_{U}\right) \tag{15}
\end{equation*}
$$

Therefore, if $\left\{\theta_{U}\right\}$ and $\left\{\theta_{U}^{\prime}\right\}$ are equivalent each other, then

$$
\begin{align*}
& \left.\left\{\sigma\left(\theta_{U}^{\prime}\right)-\sigma\left(\theta^{\prime}\right)^{\prime}\right)^{V U}\right\}-\left\{\sigma\left(\theta_{U}\right)-\sigma\left(\theta_{V}\right)^{g V U}\right\} \tag{16}\\
& =\mathscr{A}_{U}\left(f_{U}\right)\left(1_{E_{1}} \otimes f_{U}{ }^{-1}\right)-\left[\mathscr{A}_{V}\left(f_{V}\right)\left(1_{E_{1}} \otimes f_{V}{ }^{-1}\right)\right]^{g V U},
\end{align*}
$$

with suitable $\left\{f_{U}\right\}, f_{U}: U \rightarrow \operatorname{Hom}(F, F)$. Conversely, if (16) is satisfied, then with suitable $\eta \in \mathscr{D}^{k-2}\left(E_{1} \otimes F, E_{1} \otimes F\right), \theta^{\prime}+\eta$ is equivalent to θ. Especially, we have

Lemma 4. (i). The symbol $\sigma(\theta)$ of θ is defined if and only if there exist f_{U}, $f_{U}: U \rightarrow \operatorname{Hom}(F, F)$, such that

$$
\begin{equation*}
\mathscr{A}_{U V}=\mathscr{A}_{U}\left(f_{U}\right)\left(1_{E_{1}} \otimes f_{U}^{-1}\right)-\left[\mathscr{A}_{V}\left(f_{V}\right)\left(1_{E_{1}} \otimes_{V}^{-1}\right)\right]^{g V U} \tag{17}
\end{equation*}
$$

for each $U \cap V$.
(ii). If D has a connection θ with respect to F such that $\sigma(\theta)$ is defined, then there exists a connection θ_{0} of D with respect to F such that $\operatorname{deg} \theta_{0} \leqq k-2$.

Proof. We only need to show (ii). But since $\sigma(\theta)$ is defined, $g_{2, U V} \otimes g_{U V} \theta_{V}-$ $\theta_{U} g_{1, U V} \otimes g_{U V}$ is a differential operator of degree at most $k-2$. Hence there exists $\eta_{0} \in \mathscr{D}^{k-1}\left(E_{1} \otimes F, E_{1} \otimes F\right)$ such that $\sigma(\theta)=\sigma\left(\eta_{0}\right)$ (cf. the proof of proposition 1). Then, since $\sigma(\theta+\eta)=\sigma(\theta)+\sigma(\eta)$ for $\eta \in \mathscr{D}^{k-1}\left(E_{1} \otimes F, E_{2} \otimes F\right)$, we have the lemma.
6. We denote by $\Re(F)$ the associate principal bundle of F and define a differential operator $\mathscr{D}: C^{\infty}(U, \mathfrak{F}(F)) \rightarrow C^{\infty}\left(U, \quad \operatorname{Hom}\left(E_{1}, E_{2}\right) \otimes S^{h-1}\left(T^{*}(M)\right) \otimes \operatorname{Hom}(F, F)\right)$ by

$$
\mathscr{D} f_{U}=\mathscr{A}_{U}\left(f_{U}\right)\left(1_{E_{1}} \otimes f_{U}^{-1}\right) .
$$

The sheaf of germs of images of \mathscr{D} is denoted by $\mathrm{R}(\mathscr{D})$. Then (12) and (13) show that $\left\{\sigma\left(\theta_{U}\right)-\sigma\left(\theta_{V}\right)^{\mathscr{V U U}}\right\}=\left\{\mathscr{\mathscr { A }}_{U V}\right\}$ defines a cohomo logy class in $H^{1}(M, \mathrm{R}(\mathscr{D}))$. By (16), this class is same if θ and θ^{\prime} are equivalent. By lemma 3, this class does not depend on the choice of θ.

Definition. The cohomology class of $\left\{\mathscr{A}_{U V}\right\}$ in $H^{1}(M, \mathrm{R}(\mathscr{D}))$ is denoted by o(D, $F)$.

By this definition, lemma 4 is restated as follows:
Theorem 1. D has a connection θ with respect to F such that $\operatorname{deg} \theta \leqq k-2$ if and only if $o(D, F)=0$.

Example 1. If $D=d$, the exterior differential, $\mathscr{A}(f)$ is equal to $d f$. Hence to define $D_{2}: C^{\infty}\left(M, \operatorname{Hom}(F, F) \otimes T^{*}(M)\right) \rightarrow C^{\infty}\left(M, \operatorname{Hom}(F, F) \otimes A^{2} T^{*}(M)\right)$ by $D_{2} F=d F$ $+F$, we get an exact sequence of sheaves

$$
0 \rightarrow \mathrm{R}(\mathscr{D}) \rightarrow \mathscr{B}^{1}(M) \otimes H o m(F, F) \xrightarrow{D_{2}} D_{2}\left(\mathscr{B}^{1}(M) \otimes H o m(F, F)\right) \rightarrow 0,
$$

where $\mathscr{S}^{1}(M)$ is the sheaf of germs of closed 1-forms on M. Therefore, there exists a $\operatorname{Hom}(F, F)$-valued 2 -form θ on M such that whose de Rham image by
this exact sequence just covers the representative of $o(D, F)$ defined by θ, a connection of F. This Θ is the curvature form of θ. On the other hand, if F is a complex line bundle, then the kernel sheaf of \mathscr{D} is the constant sheaf of complex numbers over M and we have the exact sequence

$$
0 \rightarrow \mathbb{C} \rightarrow \mathbf{C}^{*} d \rightarrow \mathbb{R}(\mathscr{D}) \rightarrow 0
$$

Hence we can define $\delta(o(D, F)) \in H^{2}(M, \mathrm{C})$. It is the 1 -st Chern class of F.
Example 2. If $k=2, E_{1}=E_{2}=1$, the 1-dimensional trivial bundle, then set $D=$ $\sum_{i, j} A_{i, j}(x) \partial^{2} / \partial x_{i} \partial x_{j}+$ lower order terms, $A_{i, j}=A_{j, i}, \mathscr{D}(f)$ is given

$$
\mathscr{D}(f) \sum_{i=1}^{n}\left(\sum_{j=1}^{n} A_{i, j}(x) \frac{\partial f}{\partial x_{j}} f^{-1}\right) d x_{i} .
$$

Hence if F is a complex line bundle and the matrix $\left(A_{i, j}(x)\right)$ is regular at any point of M, the kernel shdaf of \mathscr{D} is the constant sheaf of complex numbers over M.

We denote the kernel sheaf of \mathscr{D} by $\mathfrak{f e r}(\mathscr{D})$. The sheaf of germs of smooth sections of $\mathfrak{\beta}(F)$ is denoted by $\mathfrak{\beta}(F)$. Then we have the exact sequence of sheaves

$$
0 \rightarrow \mathfrak{F e v}(\mathscr{D}) \rightarrow \mathfrak{P}(F) \rightarrow \mathbb{R}(D) \rightarrow 0
$$

Then to set $\mathscr{O} \mathscr{D}$ the sheaf of germs of those automorphisms of $\mathfrak{f r v}(D)$ that can be extended to automorphisms of $\mathfrak{\beta}(F)$, there exists 2 -dimensional cohomology set $H^{2}(M, \Phi \mathscr{D})$ and map $\delta: H^{1}(M, \mathbb{R}(\mathscr{D})) \rightarrow H^{2}(M, \mathscr{D} \mathscr{D})([6],[8])$.

Definition. We denote $\delta(o(D, F))$ by $\operatorname{ch}(D, F)$.
On the other hand, if there is an operator $\mathscr{D}_{2}=\left\{\mathscr{D}_{2, U}\right\}$ such that the local integrabillity condition for the equation $g=\mathscr{D}(f)$ is given by $\mathscr{F}_{2}(g)=0$, then we define the curvature $\Theta=\Theta(\theta, D, F)$ of a connection θ of D with respect so F by

$$
\begin{equation*}
\Theta_{U}=\mathscr{D}_{2},{ }_{U}\left(\theta_{U}\right), \quad \Theta=\left\{\Theta_{U}\right\} \tag{18}
\end{equation*}
$$

7. We assume there is a transition function $\left\{g_{U_{V}}\right\}$ of F such that

$$
\begin{equation*}
\operatorname{deg}\left[g_{2, U V} \otimes g_{U V} D_{V} \otimes 1 F-D_{U} \otimes 1_{F} g_{1, U V} \otimes g_{U V}\right]=k-j, \quad j \geqq 2 \tag{19}
\end{equation*}
$$

We note that under thi assumption, D has a connection θ with respect to F such that deg $\theta \leqq k-j$ (cf. the proof of proposition 1).

Under the assumption (19), we set

$$
\begin{aligned}
D_{U}= & \sum_{|\mathbf{I}|=k-j,|j| \leqq j} A_{U, \mathrm{I}+\mathrm{J}}(x)\left(\frac{\partial}{\partial x_{U}}\right)^{\mathbf{I}+j}+\text { lower order terms, } \\
& A_{U, \mathbf{I}+J}=A_{U}, \mathbf{I}^{\prime}+\mathbf{J}^{\prime}, \text { if } \mathbf{I}+\mathbf{J}=\mathbf{I}^{\prime}+\mathbf{J}^{\prime} .
\end{aligned}
$$

Then we have

$$
\begin{aligned}
& g_{2, U V} \otimes g_{U V} \otimes 11_{F}-D_{U} \otimes 1_{F} g_{1, U V} \otimes g_{U V} \\
= & -\sum_{1| |=k-j}\left[\sum_{1 \leqq|\mathbf{J}| \leqq j} A_{U, \mathbf{I}+\mathbf{J} \otimes 11_{F}} \frac{|J|!!}{\mathbf{J}!} \sum_{\mathbf{J} \geqq \mathbf{K},|\mathbf{K}| \geqq 1} \frac{|\mathbf{J}|!}{\mathbf{K}!(\mathbf{J}-\mathbf{K})!}\left\{\left(\frac{\partial}{\partial x_{U}}\right) \mathbf{J - K} g_{1, U V}\right\} \otimes\right. \\
& \left.\left\{\left(\frac{\partial}{\partial x_{U}}\right) \mathbf{K} g_{U V}\right\}\right]\left(\frac{\partial}{\partial x_{U}}\right) \mathbf{I}+\text { lower order terms. }
\end{aligned}
$$

Let $\left\{\theta_{U}\right\}$ be a connection of D with respect to F such that $\operatorname{deg} \theta_{U} \leqq k-j$, then to set $\theta_{U}=\sum|\mathrm{I}|=k-j \theta_{U, \mathrm{I}}\left(\partial / \partial x_{U}\right)^{\mathbf{I}}+$ loder terms, we have

$$
\begin{aligned}
& g_{2, U V} \otimes g_{U V} \theta_{V, \mathbf{I}}\left(\frac{\partial\left(x_{U}\right)}{\partial\left(x_{V}\right)}\right) \mathbf{I}-\theta_{U, \mathbf{I}} g_{1, U V} \otimes g_{U V} \\
=- & \sum_{1 \leqq|\mathrm{~J}| \leqq j} A_{U, \mathbf{I}+\mathrm{J}} \otimes 1_{F} \frac{|\mathbf{J}|!}{\mathbf{J}!}\left[\sum_{\mathbf{J} \mathbf{K}, 1 \mathbf{K} \mid \leqq 1} \frac{|\mathbf{K}|!}{\mathbf{K}!(\mathbf{J}-\mathbf{K})!}\left\{\left(\frac{\partial}{\partial x_{U}}\right) \mathbf{J - K} g_{1, U V}\{\otimes\}\left(\frac{\partial}{\partial x_{U}}\right)^{\mathbf{K}} g_{U V}\right\}\right] .
\end{aligned}
$$

Hence to set

$$
\begin{aligned}
\mathscr{A}_{U V}^{j}(f)= & \sum_{|\mathbf{1}|=k-j} \xi_{U} \mathbf{I}\left[\sum _ { 1 \leqq | \mathbf { J } | \leqq j } A _ { U , \mathbf { I } + J } \otimes 1 _ { F } \xi _ { U } \frac { \mathrm { J } | \mathbf { J } | ! } { \mathbf { J } ! } \left[\sum_{\mathbf{J} \geqq \mathbf{K},|\mathbf{K}| \geqq \mathbf{1}} \frac{\mid \mathbf{K}!(\mathbf{J}-\mathbb{K})!}{}\right.\right. \\
& \left.\left.\left\{\left(\frac{\partial}{\partial x_{U}}\right) \mathbf{J - K} g_{1, U V}\{\otimes\}\left(\frac{\partial}{\partial x_{U}}\right)^{\mathbf{K}} f\right\}\right]\right],
\end{aligned}
$$

we obtain
(12) ${ }_{j} \quad \sigma\left(\theta_{U}\right)-\sigma\left(\theta_{V}\right)^{g V U}=\mathscr{\mathscr { M }}^{j}{ }_{U V}\left(g_{U V}\right) g_{1, V U} \otimes g_{V U .}$.

By (12) $;, \sigma\left(\theta_{U}\right)-\sigma\left(\theta_{V}\right)^{9 V U}=\mathscr{A}_{U_{U V}}$ does not depend on the choice of θ if $\operatorname{deg} \theta \leqq k-j$. On the other hand, if h_{U} satisfies

$$
\begin{equation*}
\operatorname{deg}\left(D_{U} \otimes 1_{F}\right)_{E_{1}} \otimes h U \leqq k-\jmath, \tag{20}
\end{equation*}
$$

and $\theta^{\prime}{ }_{U}=1_{E 2} \otimes h_{U}\left(\theta_{U}-1_{E_{2}} \otimes h_{U}^{-1} D_{U,} h_{U}\right) 1_{E_{1}} \otimes h U^{-1}$, then

$$
\begin{aligned}
& \left\{\sigma\left(\theta^{\prime}\right)-\sigma\left(\theta^{\prime}{ }_{V}\right)^{\Omega U}\right\}-\left\{\sigma\left(\theta_{U}\right)-\sigma\left(\theta_{V}\right)^{g V U}\right\} \\
= & \mathscr{N}^{j} U_{V}\left(h_{U}^{-1}\right)\left(1_{E 1} \otimes h_{U}\right)-\left[\mathscr{N}_{U V}^{j}\left(h_{V}^{-1}\right)\left(1_{E_{1}} \otimes h_{V}\right)\right]^{g V U} .
\end{aligned}
$$

We set $C_{j^{\infty}}(U, \Re(F))=\left\{f \mid f \in C^{\infty}(U, \Re(F)), \operatorname{deg}\left(D_{U} \otimes 1_{F}\right)_{1_{E 1} \otimes f} \leqq k-j\right\}, j \leqq k$. Since constant section belongs in $C_{j}^{\infty}(U, \mathfrak{P}(F)), C_{j}^{\infty}(U, \mathfrak{P}(F)) \neq \emptyset$ for all j. We define \mathscr{D}^{j} $\left.: C_{j}^{\infty}(U, \mathfrak{\beta}(F)) \rightarrow C^{\infty}\left(U, \operatorname{Hom}\left(E_{1}, E_{2}\right)\right) \otimes S^{k-j}\left(T^{*}(M)\right) \otimes \operatorname{Hom}(F, F)\right)$ by

$$
\mathscr{D}^{j}(f)=\mathscr{A}^{j}(f) f^{-1} .
$$

Then, to set $\mathbb{R}\left(\mathscr{D}^{j}\right)$ the image sheaf of $\mathscr{D}^{j},\left\{\sigma\left(\theta_{U}\right)-\sigma\left(\theta_{V}\right)^{g V U}\right\}$ defines an element of $H^{1}\left(M, \mathbb{R}\left(\mathscr{D}^{j}\right)\right)$.

Definition. Under the above assumptions, the class $\sigma\left(\theta_{U}\right)-\sigma\left(\theta_{V}\right)^{9 v U}$ in $H^{1}(M, \mathbb{R}$ $\left(\mathscr{D}^{j}\right)$) is denoted by $o^{i}(D, F)$.

By definition, we have
Theorem 1'. D has a connection $\left\{\theta_{U}\right\}$ with respect to F such that deg $\theta_{U} \leqq k-j$ -1 if and only if $o^{j}(D, F)=0$.

Corollary. $o^{j}(D, F)$ is defined if and only if $o(D, F)(D, F)\left(=o^{1}(D, F)\right)=o^{2}(D$. $F)=\cdots=o^{j-1}(D, F)=0$.

As in $n^{\circ} 6$, we can define $c h^{j}(D, F)$ and $\Theta^{j}(\theta)$ under the assumption $o^{j-1}(D, F)$ $=0$.

§ 3. Extension of differential operators

8. Let $\xi=\xi(F)=\left\{M_{F}, M, \pi_{F}, F\right\}$ be a G-bundle, G is a Lie group, over M with the coordinate neighborhood system $\{U\}$ and transition function $\left\{g_{U V}(x)\right.$. Let E_{1} and E_{2} are the vector bundles over M such that trivial on each U. Then $f \in C^{\infty}$ ($M_{F}, \pi_{F}{ }^{*}\left(E_{i}\right)$), $i=1,2$, can be written

$$
\begin{gathered}
f=\left\{f_{U}(x, y)\right\}, \quad f_{U} \in C^{\infty}\left(U \times F, \pi_{F}^{*}\left(E_{i}\right)\right), \quad x \in U, \quad y \in F, \\
f_{U}(x, y)=f_{V}\left(x, g_{U V}(x) y\right),(x, y) \in(U \cap V) \times F .
\end{gathered}
$$

We set

$$
\begin{equation*}
g_{U V}(x) \# f_{V}(x, y)=f_{V}\left(x, g_{U V}(x) y\right) \tag{21}
\end{equation*}
$$

Let $D: C^{\infty}\left(M, E_{1}\right) \rightarrow C^{\infty}\left(M, E_{2}\right)$ be adifferential operator of degree kon M. Then to fix a connection $\theta=\theta(F)$ of $F, \pi_{F}^{*}(D)=\pi_{F}^{*}(D)=\pi_{F}^{*}\left(D_{U}\right)$ is defined on each $C^{\infty}(U$ $\left.\times F, \pi_{F}{ }^{*}\left(E_{1}\right)\right)$.

Definition. A collection of differential operators $\left\{\theta_{U}\right\}, \theta_{U}: C^{\infty}\left(U \times F, \pi_{F}{ }^{*}\left(E_{1}\right)\right) \rightarrow$ $C^{\infty}\left(U \times F, \pi_{F}{ }^{*}\left(E_{2}\right)\right)$ is called a connection of D with respect to $\xi(F)$ and $\left.\theta(F)\right)$ if it satisfies

$$
\begin{equation*}
g_{U V}(x) \#\left(\pi_{F}^{*}\left(D_{V}\right)+\theta_{V}\right)=\left(\pi_{F} *\left(D_{U}\right)+\theta_{U}\right) g_{U V}(x) \#, \tag{i}
\end{equation*}
$$

$$
\begin{equation*}
\operatorname{deg} \theta_{U} \leqq k-1 \tag{ii}
\end{equation*}
$$

$$
\begin{equation*}
\theta_{U} \pi_{F}{ }^{*} f=0, \quad f \in C^{\infty}\left(U, E_{1}\right) . \tag{iii}
\end{equation*}
$$

proposition 1^{\prime}. For any D and $\xi($ and $\theta(F))$, connection exists.
Proof. Under the same notations as in proposition 1, it is sufficient to set

$$
\begin{equation*}
\left.\left.\theta_{U, \xi}(x)=\sum_{W \cap U \neq p} e_{W}(x) g_{U W}(x) \#\left\{\pi_{F}^{*}\left(D_{W}\right) g_{W U}\right) x\right)^{\#}-g_{W U}(x) \# \pi_{F}^{*}\left(D_{U}\right)\right\} . \tag{1}
\end{equation*}
$$

Definition. We define a differential operator $D_{\theta}: C^{\infty}\left(M_{F}, \pi_{F}{ }^{*}\left(E_{1}\right)\right) \rightarrow C^{\infty}\left(M_{F}, \pi_{F}{ }^{*}\right.$
$\left.\left(E_{2}\right)\right) b y$

$$
D \theta f_{U}=\left(\pi_{F}^{*}\left(D_{U}\right)+\theta_{U}\right) f_{U}, f=\left\{f_{U}\right\} .
$$

By definition, denote the projection from $T^{*}\left(M_{F}\right)$ to $\pi_{F}{ }^{*}\left(T^{*}(M)\right)$ defined by θ (F), by $\pi_{\theta(F)}$, we get

$$
\begin{equation*}
\sigma\left(D_{\theta}\right)=\pi_{\theta(F)}^{*}\left(\pi_{F}^{*}\left(\pi_{F}^{*}(\sigma(D))\right) .\right. \tag{22}
\end{equation*}
$$

Proposition 2. If F has a G invariant measure μ, M is a Rimannian manfold with the volume element $d v$, and $E=E_{1}=E i_{2}$ has a (fixed) unitary structure, then the formal adjoint $\theta_{\xi^{\prime}}=\theta_{U, \xi^{\prime}}$ of θ_{ξ} is a connection of D^{\prime}, the formal adjoint of D. Especially, if D is formally selfadjoint, then D has a formally selfadjoint con. nection.

Proof. By assumption, $g_{U V}(x)^{\#}$ is extended to a unitary operator of $L^{\prime}((U \cap V)$ $x F, d v \otimes \mu) \otimes E_{x}, E_{x}$ is the fibre of E at x. Hence we have the proposition.

As in $n^{\circ} 3$, we denote the set of all connections (respectively, all formally selfadjoint connections) of D with respect to ξ and $\theta(F)$ by $\operatorname{Con}_{\theta(F)}(D, \xi)$ and $\operatorname{Con}_{\theta}$ $(F), S(D, s)$. Then we have
$(10)^{\prime} \quad \operatorname{Con}_{\theta(F)}(D, \xi) \cong \mathscr{V}^{k-1}\left(\pi_{F}{ }^{*}\left(E_{1}\right), \pi_{F}^{*}\left(E_{2}\right)\right)$,

$$
\operatorname{Con}_{\theta(F), S}(D, \xi) \cong \mathscr{D}^{k-1} s\left(\pi_{F}^{*}\left(E_{1}\right), \pi_{F}^{*}\left(E_{2}\right)\right)
$$

9. Let $\mathscr{F}(F)$ be a function space on F such that G acts on $\mathscr{F}(F)$ by the action $\tau^{\#} f(y)=f(\tau y), \tau \ni G, \quad y \in F, \quad f \in \mathscr{F}(F)$. Then we can construct associate $\mathscr{F}(F)$-bundle $\mathscr{F}(\xi)$ of ξ. The associate $C^{\infty}(F)$-bundle of ξ is denoted by $C^{\infty}(\xi)$.

Lemma 5. (i). Let E be a finite dimensional vector bundle, then there is an isomorphism \& such that

$$
\begin{equation*}
\iota: C^{\infty}\left(M_{F}, \pi_{F}^{*}(E)\right) \cong C^{\infty}\left(M, E \otimes C^{\infty}(\xi)\right) \tag{23}
\end{equation*}
$$

(ii). To fix a connection $\theta(F)$ of F, there is an isomorphism $\left(\theta(F)=\theta_{\theta(F), E_{1}, E_{2}}\right.$ such that
$(23)_{i i} \quad \epsilon_{\theta(F)}: \mathscr{D}^{j}\left(\pi_{F}{ }^{*}\left(E_{1}\right), \pi_{F}^{*}\left(E_{2}\right)\right) \cong \mathscr{D}^{j}\left(E_{1} \otimes C^{\infty}(\xi), E_{2} \otimes C^{\infty}(\xi)\right), j \geqq 1$.
Proof. Since $f_{U}(x, y) \in E_{x} \otimes C^{\infty}(F)$ if $\left\{f_{U}\right\} \in C^{\infty}\left(M_{F}, \pi_{F}{ }^{*}(E)\right), \quad\left\{f_{U}\right\}$ defines a C^{∞}-cross-section of $E \otimes C^{\infty}(\xi)$. Conversely, a C^{∞}-cross-section of $E \otimes C^{\infty}(\xi)$ satisfies $f=\left\{f_{U}\right\}, f_{U}(x) \in E x \otimes C^{\infty}(F), g_{U V}(x) \# f_{V}(x)=f_{U}(x)$, we have (i).

Since a splitting of tangent bundle of M_{F} induces (local) tensor product decomposition of differential operator on M_{F}, we have (ii) by (i).

Lemma 6. (i). Let $\theta_{\xi}=\left\{\theta_{U, \xi}\right\}$ be a connection of D with respect to $\theta(F)$, then

$$
\left\{c^{*}(\theta)_{\xi}\right\}=\left\{\varepsilon_{2} \theta_{U, \xi \epsilon_{1}}{ }^{-1}\right\},
$$

is a connection of D with respect to $C^{\infty}(\xi)$ and satisfies
where K is the space of constant functions on F and D in the right hand side means $D(f \otimes c)=D f \otimes c$.
(ii). Let $\theta=\left\{\theta_{U}\right\}$ be a connection of D with respect to $C^{\circ}(\xi)$ and satisfies (24), then

$$
\left(\epsilon_{(F)^{-1}}\right)^{*} \theta=\left\{\theta_{(F)^{-1}} \theta_{U}\right\},
$$

is a connection of D with respect to $\xi(F)$ and $\theta(F)$.
Corollary. To fix a subbundle $\mathrm{C}^{* \infty}(\xi)$ of $C^{\infty}(\xi)$ such that $\mathrm{K} \otimes C_{*}^{\infty}(\xi)=C^{\infty}(\xi)$, we have

$$
\begin{equation*}
\iota^{*} \operatorname{Con}_{Q(F)}(D, \xi) \cong \operatorname{Con}\left(D, C_{*}{ }^{\infty}(\xi)\right) \tag{24}
\end{equation*}
$$

By this corollary, we can define the action of $\left(\mathfrak{s}(F)\right.$ on $\operatorname{Con}_{\theta(F)}(D, \xi)$, the obstruction class $o(D, \xi)$, characteristic class $\operatorname{ch}(D, \xi)$, etc.. Especially, $\operatorname{ch}(D, \xi)$ belongs in $H^{2}(M, \Phi)$, where Φ is a subsheaf of the sheaf of germs of automorphisms of $\mathfrak{F}(F)$.

Lemma 5^{\prime}. Denote $C_{0}{ }^{\infty}(F)$ and $C_{0}{ }^{\infty}\left(M_{F}, F\right)$ be the spaces of compact support smooth functions on F and compact support smooth cross-sections of $C_{0}{ }^{\infty}(\xi)$, the associate $C_{0}{ }^{\infty}(F)$-bundle of ξ, over M_{F}, we have

$$
(23) i^{i}
$$

$$
\ell C_{0}^{\infty}\left(M_{F}, \pi_{F}{ }^{*}(E)\right) \cong C_{0}^{\infty}\left(M, E \otimes C_{0}^{\infty}(\xi)\right) .
$$

By $(23)_{i}{ }^{\prime}$, we obtain
Lemma 6^{\prime}. We have the isomorphism

$$
\begin{equation*}
\iota^{*}: \operatorname{Con}_{\theta(F)}(D, \xi) \cong \operatorname{Con}\left(D, E \otimes C_{0}^{\infty}(\xi)\right. \tag{24}
\end{equation*}
$$

10. Definition. Let M be a Riemannian manifold with the volume element dv, F has a G-invariant measure μ such that $L^{2}(F, \mu)$ containes $C_{0}{ }^{\infty}(F)$ as a dense subspace and E is an Hermitian vector bundle over M, then we define $n_{\xi}: T[(M, E \otimes$ $\left.L^{9}(\xi)\right) \rightarrow \Gamma(M)$ by

$$
\begin{equation*}
n_{\xi}(f)(x)=\| f(x)| |_{E_{X}} \otimes L^{2}(F, \mu), \tag{25}
\end{equation*}
$$

where $\Gamma\left(M, E \otimes L^{2}(\xi)\right)$ is the space of (not necessarily continuous) cross-sections of $E \otimes L^{2}(\xi)$ over $M, \Gamma(M)$ is the space of (dv-measurable) functions on M and $||f(x)||_{E_{X} \otimes L^{2}(F, \mu)}$ is the norm of $f(x)$ in $E_{X} \otimes L^{2}(F, \mu)$.

Definition. Under the same assumptions as above, we set

$$
\begin{align*}
& L^{2}\left(M, E \otimes L^{2}(\mu)\right)=\left\{f \mid f \in \Gamma\left(M, E \otimes L^{2}(\mu)\right), n \xi(f) \in L^{\gamma}(M, d v)\right\}, \tag{26}\\
& \|f\|=\|n \xi(f)\| \text { in } L^{2}\left(M, \text { dv }, \text { if } f \in L^{2}\left(M, E \otimes L^{2}(\xi)\right) .\right.
\end{align*}
$$

Lemma 7. Under the same assumptions as above, we have

$$
(23)_{i, L^{2}} \quad \epsilon_{L^{2}}: L^{2}\left(M_{F}, \pi_{F}{ }^{*}(E)\right) \cong L^{2}\left(M, E \otimes L^{2}(\xi)\right),
$$

and $\iota_{L^{2}}$ is a unitary transformation. Here the measure on M_{F} is given by $d v \otimes \mu$.
Proof. To triangulate M sufficiently fine such that on each simplex σ_{i} of M by triangulation, ξ and E are both trivial. Then to denote the characteristic function of $\sigma_{i} \times F$ by χ_{i}, we have

$$
\begin{equation*}
\|f\|=\sum_{i} \| \chi_{i} f| |, f \in L^{2}\left(M_{F}, \quad \pi_{F}^{*}(E)\right)=L^{2}\left(M_{F} d v \otimes \mu\right) \otimes E . \tag{27}
\end{equation*}
$$

Then by Fubini's theorem, $f(x)$ belongs in $E_{x} \otimes L^{2}(F, \mu)$ almost everywhere on each $\sigma_{i} \times F$ and

$$
\begin{aligned}
\left\|\chi_{i} f\right\|^{2} & =\int_{\sigma i}\left[\int_{F}\left\{\chi_{i}(x) f(x, y)\right\}^{2} d \mu^{i}\right] d v \\
& =\int_{\sigma i}\left\|n_{\xi}\left(\chi_{i} f\right)\right\|^{2}(x) d v=\int_{M}\left\|n_{\xi}\left(\chi_{i} f\right)\right\|^{2}(x) d v
\end{aligned}
$$

Hence we have (27) by (26). Then, since $C_{0}{ }^{\infty}\left(M_{F}, \pi_{F}{ }^{*}(E)\right)$ is dense in $L^{2}\left(M_{F}, \pi_{F}{ }^{*}\right.$ $(E)), \epsilon_{L}{ }^{2}$ is defined on $L^{2}\left(M_{F}, \pi_{F}^{*}(E)\right)$ and we have the lemma.

In the rest, we assume $G=\mathrm{SO}(n)$ or $\mathrm{SU}(n)$ and $F=\mathbb{R}^{n}$ or C^{n}. First we note
(28) ${ }_{\text {R }}$

$$
\begin{array}{ll}
(28)_{\mathrm{R}} & L^{2}\left(\mathbb{R}^{n}\right)=L^{2}\left(\mathbf{R}^{+}, r^{n-1} d r\right) \otimes L^{2}\left(\mathrm{~S}^{n-1}, d \Omega\right), \\
(28)_{\mathrm{C}} & L^{2}\left(\mathbf{C}^{n}\right)=L^{2}\left(\mathbf{C}^{*}, r^{n-1} d r d \theta\right) \otimes L^{2}\left(C P^{n-1}, d \omega\right),
\end{array}
$$

and the actions of G on $L^{2}\left(\mathbb{R}^{+}, r^{n-1} d r\right)$ or on $L^{2}\left(\mathbf{C}^{*}, r^{n-1} b r d \theta\right)$ are trivial. Here $d \Omega$ and $d \omega$ are the standard volume elements on S^{n-1} and $C P^{n-1}$. It is known that the o. n. -basis of $L^{2}\left(S^{n-1}, d \Omega\right)$ and $L^{2}\left(C P^{n-1}, b \omega\right)$ are taken by harmonic polynomials of homogeneous degree p and type $(p, p), p=0,1,2, \ldots$ We set the space of harmonic polynomials of homogeneous degree p (with n-variables) and type (p, p) by $\mathfrak{S}^{q} n$ and $\mathfrak{S}^{p, p} p_{n}\left([5]\right.$, [10]). Then each $\mathfrak{S}_{2} p_{n}$ or $\mathfrak{S}^{p, p_{n}}$ is the representation spaces of $\mathrm{SO}(n)$ or $\mathrm{SU}(n)$ Denoting their representations by χ_{p} and $\chi \mathrm{C}, p$, the representations of $\mathrm{SO}(n)$ and $\mathrm{SU}(n)$ in $L^{2}\left(R^{n}\right)$ and in $L^{2}\left(\mathrm{C}^{n}\right)$ (equivalently, in $L^{2}\left(\mathrm{~S}^{n-1}, b \Omega\right)$ and in $L^{2}\left(\mathrm{CP}^{n-1}, d \omega\right)$, denoted by χ and $\chi \mathrm{c}$, are decomposed as

$$
\begin{equation*}
\chi=\sum_{p=0}^{\infty} \chi_{p}, \chi_{\mathrm{C}}=\sum_{p=0}^{\infty} \chi_{\mathrm{C}, p} . \tag{29}
\end{equation*}
$$

We denote the associate $L^{2}\left(S^{n-1}, d \Omega\right)$-bundle or $L^{2}\left(\mathrm{CP}^{n-1}, d \omega\right)$-bundle of ξ by $\chi(\xi)$ or $\chi \mathrm{C}(\xi)$, and the associate $\wp_{2} p_{n}$-bundle or $\delta_{\varepsilon}^{p}, p_{n}$-bundle by $\chi_{p}(\xi)$ or $\chi_{\mathrm{C}, p}(\xi)$.

Proposition 3. There exists a connection θ_{ξ} of D with respect to ξ which induces connection $\chi_{p}\left(\theta_{\xi}\right)$ or $\chi_{\mathrm{C}, p}\left(\theta_{\xi}\right)$ of D with respect to $\chi_{p}(\xi)$ or $\chi_{\mathrm{C}, p}(\xi)$ for each p and satisfies

$$
\chi_{0}\left(\theta_{\xi}\right)=0, \text { or } \chi \chi_{\mathrm{C}}, 0\left(\theta_{\xi}\right)=0 \text {. }
$$

Proof. The connection θ_{ξ} constructed in the proof of proposition 1' satisfies the requirements of the proposition.

We denote the sheaves defined for D and $\chi(\xi)$ or $\chi c(\xi), \chi_{p}(\xi)$ or $\chi \mathrm{C}, p(\xi)$ by R $(\mathscr{D} x), \mathrm{R}(\mathscr{D} \chi \mathrm{C}), \mathrm{R}(\mathscr{D} \alpha)$ or $\mathrm{R}\left(\mathscr{D}_{\chi_{\mathrm{C}, p}}\right)\left(\mathrm{cf} . \mathrm{n}^{0} 6\right)$. Then there are maps $c_{p}: H^{1}(M, \mathrm{R}(\mathscr{D}$ $\chi)) \rightarrow H^{1}(M, \mathrm{R}(\mathscr{D} x))$ and $\chi \mathrm{c}, p: H^{1}(M, \mathrm{R}(\mathscr{O} \chi \mathrm{C})) \rightarrow H^{1}(M, \mathrm{R}(\mathscr{D} x \mathrm{C}, p))$ induced by the inclusions $\mathscr{5}^{p}{ }_{n} \rightarrow L^{2}\left(S^{n-1}, d \Omega\right)$ and $\mathscr{y}^{p}, p_{n} \rightarrow L^{2}\left(C P^{n-1}, d \omega\right)$. Then we have by proposition 3 (and lemma 3)

Theorem 2. We have

$$
\begin{align*}
& \iota_{p}(o(D, \chi(\xi)))=o\left(D, \chi_{p}(\xi)\right), \tag{30}\\
& \iota_{C}, p(o(D, \chi \mathrm{C}(\xi)))=o(D, \chi \mathrm{C}, p(\xi)),
\end{align*}
$$

and $o(D, \chi(\xi))\left(\right.$ respectively, $o(D, \chi \mathrm{C}(\xi))$ vanishes if $o\left(D, \chi_{p}(\xi)\right)=0$ (respectively $o(D$, $\chi \mathrm{C}, p(\xi))=0$) for all p.

Proof. We only need to show the second assertion. But since $L^{2}\left(S^{n-1}, d \Omega\right)$ (respectively $\left.L^{2}\left(C P^{n-1}, d \omega\right)\right)$ is the direct sum of $\oint_{\rho}^{p}{ }_{n}$ (respectively $\left.\oint_{j}^{p, p} p_{n}\right)$, we have the second assertion.

Same theorems hold for $\operatorname{ch}(D, \chi(\xi))$, etc., and higher obstruction classes.

Referencences

[1] AsAdA, A. : Connection of topological vector budles, Proc. Japan Acad., 41 (1965), 273-276.
[2] Asada, A. : Elliptic semi-complexes, J. Fac. Sci. Shinshu Univ. 2(1967), 1-17.
[3] Asada, A. : Integration of Alexander--Spanier cochains, J. Fac. Sci. Shinshu Univ., 5(1970), 79-106.
[4] Atiyah, M. F.-Jones, J. D. S. : Topological aspects of Yang-Mills theory, Commun. math. Phys., 61 (1978), 97-118.
[5] Cartan, E. : Sur la determination d'un système orthogonal complet dans un espace de Riemann symétrique clos, Rend. Circ. mat. Palermo, 53 (1929), 217-252.
[6] Dedecker, P. : Sur la cohomologie non abélienne, I, II, Canad. J. Math., 12 (1960), 231-251, 15 (1963), 84-93.
[7] Ebin, D. : The manifold of Rimannian metrics, Proc. symposia in pure math., 15 (1970), 11-40.
[8] Giraud, J. : Cohomologie non abélienne, Berlin, 1971.
[9] Singer, I. M. : Some remarks on the Gribov ambiguity, Commun. math. Phys., 60 (1978), 7-12.
[10] Virenkin, N. Ja. : Special functions and the theory of group represenuauions, Moscow, 1965 (English transl., Providence, 1968).

