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§ 1. Introduction

I’y denotes the symmetric space SOz,/Un. The homotopy groups zq(l's) are
called stable if g<{2n—1. The stable homotopy groups of I'» have been determined
by Bott [4], he showed that in the stable range, wq(l's) == n¢41 (SO), i. e.,

wg(la) = Z for g=2 mod. 4,
wg(l'n) = Zy for g=0, —1 mod. 8,
rg(l'n) = 0 for all other values of q.

The first few unstable homotopy groups ms,,,(I"'») of the symmetric space I'x
for —1<¥<{1 are calculated in [7] and [13].

In this paper, we continue the calculations of unstable homotopy groups of this
space and determine further steps of unstable homotopy groups of ['» using of
fibrations I',,,1 —— 5% with fiber I'» and of fibrations SO,,, —— 'y with fiber Us.
We rely heavily on Kervaire's calculations [91 and Matsunaga's calculations [117,
[127.

The results are summarized in the following table :

Table of ne,.,(I'n) for £>1,

Xl Ak Ak+1 A+2 4h+3
-1 Z+Z, Zn-n z Zn-nly2
0 Zo+ 2, 0 Zy 0
1 Zn+2Zs 4 Zyt or an/Z'l‘Za A YA
o| G+2Z; (k=1mod 3) Zs (=0 mod 3)
Z(24,n—1>/2 Z(24,n—l)
G (k=1 mod 3) Zy (k20 mod 3}
Z+Zy (d=2)
3 VA Z(n+1)l(24, n—-1)/48 z ? (d=1) Z(n+1>l<z4, n-1)/24
Zg (=2 mod 3) G+Z; (=0 mod 3)
4 A Zay,m
Zy (k=2 mod 3) ’ G (k20 mod 3)
5 Z(n+2>l<24,n)/24

where G=Z, or Zs.
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(a, b) is the greatest common divisor of integers @ and b. d (=1 or 2) is a integer
such that mem.e(SOsmss) 2= Zy+Zosa (See [9]). In § 3, we shall discuss on the coho-
mology of I, The homotopy groups of I'» will be calculated in §§4-11. For lower
values of n#, we shall be calculated in § 12,

§ 2. Notions

The rotataion group SOm is imbedded in SOm.» as the upper left hand block
and the unitary group Ux is imbedded in U,,, as the upper left hand block. Let
im : SOm » SOps1 and 'y, : Un —— Unyy be inclusion maps and let pm SOy41
> SOpie1/SOm = S™ and p'u : Upsr — Uyat/Un = S+ be standard natural proje-
ctions.

The unitary group Upx is imbedded in the rotation group SO:, as the subset of
matrices consisting of 2x2 blocks

and let ju : Un » SO3,, be the imbedding.

Let I'» be the homogeneous space SOu,/Un and #»: SOz, —— ['x be its quo-
tient map. The natural map SOz,.1/Un — SOsy40/Ups1 = [ '441 is bijection and the
two manifolds have the same dimension. Thus we shall be used to identify these
spaces and the fibration

SOzn/Un —_— SOzn.u/Un —_— Szn

may be written as

(2. 1) kn qn

'y — Fn+1 — S

We need the homotopy groups of SOx ([9]) and Ux ([117]) in the subsequent
calculations, so we give them in the following tables :

Table 1. The groups me,+:;(Uy)
i= 0 1 2 3 4
7 even Za Zy AST +Z, Z(24, w Z(n+2)‘(24, w/48

n odd Zy 0 Zanin/2 VAT Zensn)l @y ne3y24
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Table 2, The groups x,..(SO,) for #>8,

x 8s 8s+1 8s+2 8s+3 8s+4 8545 8s+6 8s+7
-1 Z+Z, Zo+-Zy Z+Z, Zs A A Zs VA Zs
0| Zo+Zo+2Zy | Zy+Zs Zy z Zy+Zy Z, Zy VA
1\ Zo+Z2+ 2, Zq 4 Zs Zy+Zy Zs Z Zy+Z,
2| ZutZs Z+Zy Zi ZotZy | ZsHZoyg | Z42Z, Ziw+Zy | Zy+Zs
3 Z+Z, 0 Zs Zsa Z+Z, Zy Zs Zy
4 0 Zy YAy Z+Z, Zsy AR Zs AR A

In this table, d is anbiquously 1 or 2.

§ 8. Cohomology groups of I',=S0(n)/Un)

From [1, p. 203], I'x is trosion free ; additively, its integral cohomology groups
are isomorphic to those of the following product of even dimensional spheres:

SexS¢x ... x S21-2,

The cohomology ring H*(I'»; Z;) has a simple system of generators, in the
sense of Borel [1, p. 1417, a,..,a,-1, with «; of degree 2. In the fibre bundle
(Bueny, b, Bsoeay, I'n) with group SO(2n), the generators ay,..,a,_; listed above
are transgressive ; the transgression of the generator «; is the Stifel-Whitney class
Wais1 modulo the ideal generated by Wiy, ..., Wai_1.

Since the transgression commutes with the Steenrod operation, using the for-
mulas of W. T. Wu for the Steenrod operations of the Stiefel-Whitney classes,
we have
{ 0 for i even

(3.1) Sq?a; =
Qi1 for 7 odd

modulo the ideal generated by «ai,..,a; and

jrg for i=2, 3 mod. 4
(3.2) Sqta; :{ .

0 for =0, 1 mod. 4
modulo the ideal generated by ai, .., ai41.

Consider the natural inclusion map k,,¢:I'»x — [',.s. By the standard con-
struction, we may consider that k,,; is a fibre map. Let I',; be its fibre.

By Bott [4], k¢t will’y) — mi(l744e) is an isomorphism for i< 2r—1 and an
epimorphism for i=2n—1, Thus I',,; is (2»—2)-connected and &%, ;: Hil 1 Zs)
» H{(I,, ; Z2) is an isomorphism for i<2:—1 and a monomorphism for i=2n—1.
But H2 NI, Zo)=H""NI", ; Z5)=0. Thus k*,;: H( "y ;2Zs) — Hi(I", ; Zs) is
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an isomorphism for i<(2,—1.
From the commutative diagram of fibre spaces

r, —  Bywm)

fo |

I'yit  — Byt

> BSO(zn)

r BSO(2n+2l)
we have

k¥, tlai)=ai for i=1,..,n—1,
k¥, @y +)=0 Sor j=0,...,t—1,

where k¥, H¥ e 3 Zo) — H¥I'y 5 Zo).

Let = be the transgession in the spectral sequence of fibre space ky,;: [, —
I',.s. Then there exist elements §,. jEHZ"‘”?j“l(F,,, ¢+ 3 Z3) such that «(By.j)=an.; for
7=0, .., f—1.

From the dimensional argument,

(3.3) H*(Fn,t 3 Zo) = A(.Bna Bust, o ,Bn+t—1)

as additive groups for degree <4dn—2.
Since By.; is transgressive and the transgression commutes with the Steenrod

operations, it follows from (3.1) and (3. 2) that

0 for n+j even

S(]Z;Bnu':{ .
Brja for n+j odd

and

Buijre  for m—+j=2, 3 mod. 4
S(]4‘3,1+]':{

for #n+7=0, 1 mod. 4

We denote by 5, and v, generators of ms,.1(S") 22 Z; and 2-primary components
Zs of mey,.s(S™) respectively.
Consider a following cell complex K, ; for each case ;

(i) 7=0 mod. 4,

K’n)a:(szn—l\/SQnﬂ)Ugeznnha’ g:aV211—1\/7]2n+1 : Szn+2_,52n—-1\/82n+1
(ii) =1 mod. 4,
]{n,szszn—l U gC(SZ7I\/SZM+Z)7 g:7}2n_1\/av2n_1 . Sznvsznﬂ_,sznﬂ

(iit) »=2 mod. 4,
Ky y=(S¥1\/ ST U get 42, g=vou-1\/Nans1 3 STHESSI /SR
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(iv) #=3 mod. 4,
Kn, 3:SZM—1 U gC(SZ"\/SZ’HZ), g:772”_1\/l)2n_1 . Szn\/sznm_,,szn—-l

where =0 mod. 2.

We denote by ?G the direct sum of the free part and p-primary components of
a group G. Then, from Lemma 2.5 of [8] and Proposition 8.1 of [16], we have
the following Proposition.

Proposition 3.1 The group *mi(l,s) is isomorphic to *mi(K,s) for i<4n—2
and n>2,

Using the exact sequence of Lemma 3.1 of 8], we obtain

Proposition 3.2. The group 2msu.i(ly,s) is isomorphic to the corresponding
groups

N 4k 4h+1 k2 4h+3
—1 z z z z
0 Zs 0 Zs 0
1 Z+7, z 747, z
2 Z, or Zg Zs
3 z z Z+Zy
4 Z, Zo+Zs 7z Zs+ 7
5 Z, 0 Z,

8§ 4. The groups me,(I'n-1) and zmen(l,-3) for n>8.

For convenience, we will assume always that #=0 mod. 4 in §§4-11.
We consider the exact sequence

7on(SOm-) 72 200(SOum-) P25 200(S%8) —+ g (SOumos) — Tam-1(SOt-2)

namely (table 1),

(378
—_

AT A Ziz_n_—:a Loy — Z+2Zy — Z,

> Lo

From the fact that image of pa,.2=27Zs, there exist generators x, y of
72, (SO02,-2) such that

(4.1) Dbon-a{x) = 2vap_3,
y= iZn—S(y’)
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where x, y generate Zia, Zpin mg,(SOs_2) =% Z1a+7Zs resp., y' is a generator of
7o(SOgy_3) 2= Zp and vg,.s is a generator of g, (S%78) == Zy,
By [11], we have the exact sequence

P'u-1

* TEZn(Szn—a) - 75211—1(Un——2) — 0

0 — weu(Un-z) — meu{Up-1)

namely (see table 1),

f)'n—l

0 — Zn!(24,n-2)/43 — Zn!/2 I Z24 — Z(24,n—2) — 0.
Then we may shoose the generator 6 of ms,(Ux_1) such that
(4.2) Plu-i(0) = (24, n—2)vzy_s.

Now consider the commutative diagram

Jn-1

Ton (U p-1) = m2(SOzy-2)
AN /
p’n—l \N / p2n—2

wen(S¥ )

Put ju-1(0)=ax+by (0<a<<12, 0<O<). From (4.1) and(4. 2),
we have 2a=(24,n—2) mod, 24,
Consider the commutative diagram

Jn-1

75211(Un-—1) I WZn(SOZM—i%)
N\ l .
.7’11-—1\ lon-g
N Pt
ﬂzn(Sozn-l) I ﬂzn(Sozn-l/Un—1)-

Then, from [7], it follows that #',_; is an isomorphism onto. Thus j',-1 is trivial,
Since ig,-3(%)=0 and is,-5(y)5~0 by [9], we obtain that

(4.3) Jn-1(0)=((24, n—2)/2)x

where (24, n—2)/2 is an odd integer.
From the exact sequence

ﬁzn(Un-1) le;l’ ﬂzn(SOzn-z) I ﬁzn(lyn—l) - ﬂan—i(Un—l):O

and (4. 3), we obtain that
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fon(l" y-1) == Cokernel of j,.,

= Ziog, n-)-

Consider the homotopy exact sequence associated to the fibration g¢,-s:/7,_3

Sen-t.
Top41(SP*74) —— ﬂﬂn(l‘n-2) — 77271(1111—1) — 77211(8271—4)-
Then, from may,.1(S¥~*)=ms,(S?"~*)=0 for #>>8, it follows that
Tan (Fn—ﬁ) = ”2n(F1z—1)

There fore we have
T2n (l'n—z) = oy (l'n—l)

=2 Ziot, n-2)

§ 5. The group men.(I,-1) for n>8.

Writting ['»=S80s,,.1/Uj,-1, ['4-1=S0¢y,.2/U,_1, we have a commutative diagram

¥n-1 s 4 -1
7T2n+1(Un-1) - ”2n+1(502n—2) 2 7F2n+1(l n—l) ==

‘ lign-g lk"—l

' A
Tonrt(Un-1) — 72041(S0sn-1) — mones(l'n) —

(5.1

Jn-1

TFZn(Un—l) _ 7[2n(SOZn—-2)

|

n'gn((‘Jl'n_ﬂ — m2n(SO2-1).

Since 2r9y1(Uy-1)=0 and Prz,.3(SO0sn-2)="272,:1(S0s,-1)=0 for odd prime p, we
have that 7,-1 and 7', are monomorphisms. Then, from (4.3) and the exactness
of the upper sequence of diagram (5.1), it follows that there exists an element £ of
Tana1{l mw_1) such that

(5.2) An_y(€)=(24/(24, n—2))0

where 0 is a generator of mg,(U,-1).
On the other hand, by [7], we have the exact sequence

1
vy Aa

> 7T2n+1(l n) - 75211(Un—1) —0,

00— 7T2n+1(802n—1)

namely
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'
n

0 — ZZ+ZS _— ZZ+Zn! > Zn!/z

> Q.
Then we may shoose generators 2, { of mey.i{{'n)=Z2+Zn1 such that
(5.3) 4',())=0 and 4',(()=0

where A, { generate Z,, Z,1 in ms,([,) respectively.
Now put k,_y(§)=ai+b, where a=0 or 1 and 0<(b<{n!. Then, from (5.1) and
(5. 3), we have

Ay (8)=4" vk 1(&)=ad' , (1) + 04" ,({)=b8.
From (5.2), we have
24/(24,n—2)=b mod. n!/2,
Thus we have
(5.4) ku-1(€)=aa+(24/(24, n—2)+n!/2)I)¢
for some integer I
Since 2, £ generate Z,, Zun1, we obtain that
2kn-1(€)=(48/(24, n—2)){+#0

for #n2>8, Then we obtain that the order of & is n!(24, n—2)/24, since k,_. is a
monomorphism and { has order n!. On the other hand, from (4.3) and the upper
exact sequence of (5.1), it follows that the group man+1({"-1) has order
n!(24,n—2)/24. Therefore we have that

(5 5) 75271+1(Fﬂ—1) = an(24, 11—2)/24.

§6. The groups man.o{ln) and zwens oI nar) for n>4.

Consider the homotopy exact sequence of the fibration SOs,/U,=1I",:

al J 1
75'271-(—4(502;1)—'71'2111»4(1 n) R 7f2n+3(Un) = 71'2n+3(802n) > 71'2n+3(l )

namely
0 — 7T2n+4(l'n) > L, w)y —F Z+Zy — Z.

Then the above sequence shows that
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(6.1) 7ol ) = Kernel of j,

= Zsa, nye

From the homotopy exact sequence of the fibration g¢u:{'s;y — S?* and the
fact that wan+dS?*)=ma,:5(S2")=0, it follows that

(6. 2) 7f2n+4(lwn) = 71'2n+4(11n+1)-

= Za, nye.

§7. The groups mon.o(l'n) and weyo(ln-1) for n>8

Consider the homotopy exact sequence associated with the figration g,y : L'u
- San-zs

Tan+s(S¥7E) > monsellne1) —— monaa(ln) — Toaa(SH7R).
From the well known results that

(7.1) Tmea(§™)=0 for m>6 and mp.s(S™)=0 for m>7,

it follows that

7Tzn+2([7n—1) = 752n+2(1 'n)

for n_>b.
Consider the exact sequence of the fibration SOgp-oyUpo1=1"y-1;

(7.2) Tansa(SOsn-2) — apsall net) — Toner(Uno1) — 72ne1(SOzn-2)

where ﬂ2n+2(502n_2) ~ 75 and 7l'zn+1(802n_1) = 7.
Thus we have that

(7.3) Prgpsell not) = Propn(Un-1)

= pZ(24, n+2)/2

for odd prime p.
Since 2ray41(Un-1)=0, it follows from the exactness of (7.2) that

(7. 4) 2neo(l'n-1) is a cyclic group of order at most 8,

>

Consider the homotopy exact sequence associated with the fibration k., s:I"»
I",.s with fibre I',, 3 in the sense of §3;

7"2n+3(ljn+3) I 7'-'2n+2([,n,3) - 7[21“2(],11) — 772;1+2(Fn+3)
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where 7I'2n+3(l,n+3):0 and 71'2,1+2(l'n+3) ~= 7.
From the exactness and (7. 4) we have

77"271+2(Fn) = ”21z+2(1,n,3)-
On the other hand, by Proposition 3.1,

27f2n+2(lyn, 3) = 27?2n+2(Kn, 3)

{ Zs if a=0 or 4
Zs if a=2.

~

Thus
275’2,/”2(11") = Zg or Z4
Therefore we have

7T2n+2([7n—1) = 71'2n+2(1'n)

{ G+2Z; for n+2=0 (3)
G for n+2=0 (3)

where G == Z, or Zs

§8. The group mwoy.s(l'n.1) for n >4,

Consider the commutative diagram

i 4
(8.1) Ty a5(L 'n) - wopea(Uy) — 7'~'2n+4(802n):0
A A
v An+1 jn+1
7T2n+5(l n+1) I 7L'2n+«1~(l]n+1) i 7f2n+4(802n+2)

with exact rows.

From [117, mon+o{Un) =2 Zinendias, n)es a0d let di be its generator. From the upper
exact sequence of (8, 1), it follows that there exists an element 7 of a5 (I',) such
that 4,(y)=0n. Since i'n : map+a(U,) — monsodUys1) is 2 monomorphism, i',4x(y)
has order (n+42)!(24, n)/48. From the commutativity of (8.1), dy.ik, ()= ndu(ry).
Thus the element &,(y) of ma,u.s(l ys1) is of order at least (n-+2)1(24, n)/48,

Consider the homotopy exact sequence of the fibration ¢, 1 e — S22

0:7T2n+6(szn+2) . 75211+5(Fn+1) - 752n+5(l'n+2) - ”2n+5(52n+2>

- Fne1 .
— 71'2n+4(l n+1) 2 7T2n+4(l'n+2).
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Here, from [7], we have that k,.i: wopsal ne1) — menea({ yyee) is trivial and
the group mau.s(l ne2) is of order (n+2)!. Hence, from (6.1) and (6.2), the above
exact sequence shows that the group me,.s(l'y41) is of order (n+2)!(24, n)/48.

Thus we obtain that the element ku(y) must be of order (n+2)!(24, n)/48 and
Ton+s(l ne1) 18 @ cyclic group, i. e.,

(8- 2) 77‘2n+5(1yn+1) = Z(n+2)l(24, 1)/ 48
Now consider the exact sequence

Jnst
7ffz;a+5((]n+1) LAY 772n+5(SOZ‘n+2) I 752n+5(l1n+1)

> 71'2;1-}4(Un+1)

» Ton+a{SOsu42)

> 7[2n+4(1'n+1) - 772n+3(Un+1):O

of the fibration #,.1; SOsyuss — [,1, where ma, 4(SOspy2) == Z1z and moy el Unp1) =
Zinsnylsz. Thus, from (6.2) and (8. 2), it follows that the homomorphism

(8. 3) Tt * TanasUns1) — T2005(SO2u42)
is an epimorphism.

§9. The groups 752'1-}6(1—'11+1) and 752!z+6(ru+2)

From the homotopy exact sequence
Ton (ST ) —— Tanae(l it} — manse({ naz) — Tana6(SPHE)
of the fibration g1t 172 — S#*2 and (7. 1), we obtain that
(9.1) Ton ol na1) = manse(l nae).
Consider the exact sepuence

, J
(9. 2) 772n+6(502n+2) I 71'2n+6(l n+1) I 7’-'2n+5(Un+1) s 752n+5(802n+2)

of the fibration 7,41t SOsuee — Iye1 where moys6(SOouie) = Zsa (d=1 or 2) and
Ton+5(S0242) = Zs. Thus we have

(9. 3) pﬂ'2n+6(['n+1) = 1)71'2)1+5(Un+1)
{ 0 n-+170 mod 3
- Zy 7-+1=0 mod 3.

for odd prime p and
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(9. 4) Tgne6(l 1) is finite,
Consider the exact sepuence

(9, 5) Tonarll nas)

g 7C2n+6(l'n+2,3) — 752)1+6(l'n+2) > W271+G(['n+5)

of the fibration kyus,s: L'pes — I'yys in the sense of §3 where mo,r{ln4s) =220

and may,.6{d nes) 22 Z. From Proposition 3.2,

2on+e (Fn+2, 3) =246 (Kn+2, 3)

=7,
Thus from (9. 4) and (9. 5),
(9. 6) 2one6( n4e) 1S of order at most 2.

Let #=2£0 mod. 8. From (8.3) and the exact sequence (9.2), we obtain that the
sequence

, 7
st * 752n+6([ n+1) D Z4 n+1* Zs — 0
is exact. Thus, from (9.6), we have
9. 7 Sones (L'nst) = Zo for #£0 mod 8.

Let #=0 mod, 8. Writing /',.3=S0s,,5/Un.e. Then, from (8 3) and (9.2), we
have a commutative diagram

Ju+1

(9. 8) 7[2n+6(Un+1) — mop+6lSO0zp42) > 752n+6(1‘n+1) — 0
Z./n+1 z‘”2n+2
Fase ,
7521z+6(Un+2) e 350485 Oga45) —— wan+s(l n+8)=0
NP e
AN /

7[2,”7(82’”5)

with rows exact,

From[97], we may shoose the generator w of may.6(SQs,.s) such that 8(n%sy.s)=
4w, Since j'p.e Is an epimorphism and 2’ : me, 7 (S#*S) —— mg,.6(Unss) Is a split
monomorphism, we can shoose generators 8u.s, Bnie Of Tonie(Unie) = Zinanyt+ 22
such that

(9'9), FueelBure)=w and ' uea(fuiz)=4w.
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From [11], there exists a generator 9,41 Of monse(Un+1) = Znsyisz such that
(9. 10) 1" 341(0ns1)=2Bnss B s
Thus, from the commutativity of (9.8), (9.9) and (9. 10),

i”2n+2j11+1 (5n+1):jln+2il71+1(5¢1+1)

=6w.

On the other hand, since i'snis * Tens6(SOsmss) — Tenso{SOumss) 1S an epimor-
phism and 7g,.6(SOz2,+2) 18 a cyclic group, Juii:Tenso(Unst) — T2p+6(SOsp42) is not
an epimorphism,

Thus, from (9.5),

(9. 11) 2777271+6(1'1z+1) = Z,.
From (9.1), (9.3), (9.7) and (9.11), we have

Ton+6 (Zynn) = 777211+6(1,n+2)

{ A for n+1=£0 mod. 3

~

Zs for #+1=0 mod. 3.

§ 16. The group mon.r{l n.2) for n>>8,

Writing I,.3=S02,16/Uns3, I'n44=S0sy47/Uyrs, we have a commutative diagram

(10, 1) Tonatll mas) ~— Tonan(d nas) » Mo ar(SFO)
7"n+3// \\rnw 7’71+4\\
/ Z.En+5 \ \

W2n+7(SOZn+5) » 752n+7(802n+6) I 772n+7(802n+7)

namely (table 1 and [[7])
Z+Zy — ZAZy — Zs
e
. |
Z+Zy — Z Z.

From [7], the following sequence

0

Y Tona (Fn+3) —_— 7r2n+7(11n+4) - 752n+7(82n+9) — 0

is exact. Let &, ¢' be generators of meusv({ n4e) which generate Z, Z, in wanan (I'nse)
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respectively. Then we can shoose generators &, ¢ oOf moy.r(l p4s)=Z+2Zs such
that

(10. 2) kn+3(5):2‘§, and kn+3(¢):(/)l

where &, ¢ generate Z, Zy in @gyu.4(l 443) respectively.
Moreover, we can shoose a generator #; of the free part of me,;.v(SOzu+i) (=5,
6 and 7) such that

(10- 3) Z.2n+i(ui):ui+1 (125, 6)

by [9].
From [7], we have

(10. 4) Yasa(ttr)=((n+3)! /2)" -+ ¢,

From (10.2)—(10.4) and the commutativity of the diagram (10.1) we obtain
that

(10.5) 7 nasltts) = ((n+3)1/4)E+¢.

Consider the homotopy exact sequence associated to the fibration poyia @ SOzpys

N SZ” +4 ;

Z.Zn+4 . p2n+4
0 v To47{SO0sp+4) — Tansn(SOpss) — Moy, o(SE44)

— ”211+6(SO211+4) a— 71'211+G(SOE¢1+5) — 0

namely

0 — 242y — Z+4-2, > Zos » Lot Zssa

’ZB >

where d=1 or 2. Then we can shoose generators #s, #'y Of 7g,47(SOsp4a)=Z+7,
such that generate Z, Z; respectively and

i2n+4(u4):21/l5, i2n+4(u'4)=%'5 if d=1
(10. 6)

!

i2;1+4(u4):M5, i2)1+4(u’4):u 5 if d=2.
From the commutative diagram

Anse
752n+7(]7n+3) = Ton4n(SHTE)

7’¢1+3\\ //ﬁ2n+4
Tgn +7(502n+5)
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and (10.6) we have

/ B B 0 ifd=2
Gnrs? nea(Us)=Dansa(tts) = .
121)2n+4 if d= 1.

From (10, 5)

QM+27’n+3(u5):(111+2((74‘|’3)!/4)E+§/J)
:((n+3)'/4)Qn+2(§)+[b1+2(¢)
:qn+2(¢) for %}8,

(Since (n+3)!1/4=0 mod 24 for n>>8).
Thus the element ¢ of order 2 is in the image of kuis: wayaa{d nee) —

>

fonsr(lnes) if and only if d=2. Therefore, from the exact sepuence 0

7T2n+7(]'n+2) - 77-'2n+7(lwn+3) I 77:2n+7(82"+4), we obtain that
772;1+7(['1z+2) = { Z+Zs if d=2

zZ if d=1.

§11. The group mapy1 (I'n-2)

Consider the exact sequence
7z2n+2(52”"4) —_— 752;1+1([vn—2) — 77-'2)z+1(lw¢1—1) I 75211+1(Szn—4) =0
where 7g,,2(S% %) == Z,. Thus we have

‘bﬂznn(l’n—l) = 1)752124—1(]'%—1)

= P21, n-2)r2e by (5.5)

for odd prime p.
Consider the homotopy exact sequence associated with the fibration kn_g 35 : L'a_s

T .
ln+1:

2ﬂ2n+1(F11—2,3) - 271'2;“-1([’11—2) I 27T2n+1(Fn+1) - Zﬂzn(l'n—z,s)

— 2772n(rn—2) - 2”2n(1'71+1) I 271'2n—-1(['n—2,3)

where 2mg,({41) 2= Zy and 2oy, 1(L 41) 22 27,1

From Proposition 3. 2,

27272n+l(['n—2, 3) = 27272n+1(Kn—2, 3) =0,

2752;1(11%—2,3) = 2”211(Kn—2,3) =Zs
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2752n—1(1,n—2,3) = 275211—1(Kn—-2,3) =7
Thus from the above sequence we have

onatll n-2) 2= 220124, n-2y24
Therefore we have

Tone1(l " n-2) =2 Zui(og, n-2y2e.

§12. The homotopy group of I', for lower values of n,

We compute the homotopy groups me,.i({n) of ' for lower values of #.
We can be identify the two manifolds SOs/U; and SO;/U. Thus the well known
result SO.=U,; implies that

SO./U,=S5%

Therefor ['; is a 2-sphere.

Consider the fibration S:=1"y > Iy —p+ S* of (2.1). Then we have the fol-
lowing homotopy exact sequence associated with the fiber space p: ['3—S*;

12.1) () P (s D m(SH) —— midTy)

where 4 is the boundary homomorphism. For the boundary homomorphism 4, we

have the formula
(12.2) Ko E)=(d(e)op for acmiyi(SY)

where E:mj{(S) — m,4(S**1) is the suspension homomorphism.

Consider the exact sequence
7y(S*) — m(S%) — m(['y).

Then =3(/'3)=0 by [4] and =y(S?) is an infinite cyclic group generated by Hopf

map »s. Thus we have
(12.3) Aea) =12

where ¢4 is a generator of nS*) = Z.
Thus, from (12.2) and (12, 3), we have

(12. 4) A Ea)=A(es)a=nz(c) for asm;_1(S®).
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The homomorphism
Dax ¢ wi(S?) — wi(S?)

induced by Hopf map 7. is an isomorphism onto for >3,
Thus it follows from (12.4) that the boundary homomorphism 4 : =(S%)
7;.1(S?) is an split epimorphism for i >>»4. Therefore we have an isomorphism

(12.5) wi(S*) 2= wi(I3)Pri-1(S?)
for i>=4.
It is well known that there is map & : S7 » S* whose Hopf invariant is 4 1
and that
(12.6) E®hy @ 7i1(S¥)Pri(S7) — 7i(SY)

an isomorphisms onto for all i.
Thus it follows from (12, 5)and (12, 6),
Proposition 12.1. We have isomor phisms

mi(l's) == mi(S")

Jor 14,

Consider the fibration p: E —— S™ with fiber F. zw(S™) is an infinite cyclic
group generated by on. Let a€mm(E). Then there exists an integer ¢ such that
Pula)=qem where py : wm(E) —— mm(S™) is the homomorphism induced by the proje-
ction p. a=mwm(E) is the homotopy class of a cross section of E if and only if ¢g=1,
The image of py: wm(E) —— mm{S™) concides with the kernel of the boundary
homomorphism 4 : wm(S™) —— mm_1(F).

Hence the fibration p: E —— S™ admits a cross section if and only if d{cw)=

Now we consider the fibration p: 'y — S% with a fiber I's. From ms({)=0
and the above remark, it follows that the fibration p: [’y
section. Therefore we obtain the following proposition.

> S® have a cross

Proposition 12.2. There exists the isomor phism onto
mi(Ig) = wi(I'3)Dmi(S°)

Jor all i,
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