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Introduction

In the previous paper [ 1] with the same title we discussed the admissible multipli-
cations in a-coefficient cohomology theories and we gave a sufficient condition for
existence of admissible multiplication in the case a&m,+,-1(S") satisfies lcAa =
(S7Ha'(S7+%1z) and #{S*a)=0.

This paper is the continuations of [I] and is devoted to the discussion of com-
mutativity and associativity of admissible multiplication g, which is given by [I].

In §1 and §2, we discuss the associativity and commutativity of g, in the
case 1cAa=0. For the case lcAa0, we discuss in §3 to §5.

We use all notations and notions defined in [1].

§ 1. Preparation for case 1¢ Aa=0,

Let « be the homotopy class of a stable map g: S"*#"1—S” (k>>1) of order ¢
Since the stable homotopy type of the mapping cone of g depends only on « we
denote as

Ca = Sr U gC(S“’k‘l).
For simplicity we denote C=Cla.
Now we consider the stable element e (S”+#-1, S”} satisfying

1.1) leAa=0 and {(S*a)=0.

Then there exists a homotopy equivalence &:CAC—>Na=S"CVS"**C and let
¢ : Na— CAC be a homotopy inverse of &
Let

wyt: §7kC— Na
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and
16 : Na—>S’C
be the inclusion and the map collapsing S”**C, respectively.

Put

I'=Cx;" 1 STHC— CAC

o' =4 : CANC—>S"C,
then we obtain the relations
(1. 2) #i"=0, o"(lcAi)=1gr¢ and (lcAzr)i"=1g"**¢,
Then we see immediately

Lemma 1L 1. (lcAn)*, (IcAds, =" and i"y are monomorphic and we have the
Jollowing direct sum decompositions ;

{) (W, CACY=(LcAi) (W, STC} @ " (W, S7+*C},
(i) {CAC, W)={cAr)*{ST**C, W} @ o"™*(S"C, W}
Jor any W, and in particular
(iii) {CAC, CACY=[LcA)*LecAm)*{ST**C, S"C} @ (LeNi) " {S7C, S7C)
@ "w(LeAr)*{STHFC, STHC) @ {"™*a"*(S7C, ST*ECY.
From Lemmal.1 and Lemma 2.2 of [1],

Corollary 1.2. We have the following direct sum decomposition
(S7**C, CAC=(1cAD«{S7™*C, STC} @ i".{S"**C, S7**(C)
= A} + (") + (i"(FeALgr+t)y + finite group
=7+ Z+Z+ finite group
and the relations
(ST R =G, (ST HE(E)) (ST ) =0 and (GAD) (S”HED)=TAdL.
In this section, we consider only the element ye&{S"**C, CAC)} satisfying the
following relations
(1. 3) (10/\”)7,:(_1)r+klsr+kc’
(1. 4) (leNAm)TT= 1Sr+kc
and
(1.5)  T(cAd)+(=1)"* (1o Ai)
=(= 1R+ (ST RN (ST ) F1/2{ (= 1) (= 1) *2} ({EAd) + (A g(STw)
for some g€Gr/(na) (see Proposition 2.9 of [I]) and T=T(C,C).
By Corollary 1.2, we can put
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(%) T=(1cAi)ar+i"as
with a1 {S7**C, S7C) and g2€ {S"**C, S7*%C}. Compose (1cAz) on hoth sides of
(¥) from the left, then we get
(—1)r*klgrebc=(1lc Am)l by (1.3)
=(lgAn)i"as=az by (1.2).
Making use of Lemma 2.8 of [I] and the fact that &¢"=0, we have
(e Am)Ti"=(—1)"** (1o Ax)i"—n' (it \a)i" 4 (— 1) 7T+ R(ST ki) o
—(— 1) grekg—n (iEAL o) by (L.2),
and
(e AR)T (Lo Ad)= (—1)7C+-(S7+k}) (ST ),
Now compose (1¢c AT on (¥) from the left. Using the above remarks, we have

lgrebe=cAm)TT
(e Am)TAe Adar+ 1 An)Ti'as
={— 1)7'(r+k) (S” "ki) (Srn.)al_f_lsﬁlec — (_1)7' *kn'(z?/\lsrﬂc),

i

Thus,
(—1)r k(ST Ry (S p)gr=(—1)7 thy! ({EA L gr+k).
Since (S7+%j), : {ST*kC, ST AST+E} — (STTEC, CAS”*®} is an isomorphism into, we
have
(S )@= (— 1)+ R AT gred),
If #(S*a)=0, then, from (2. 3) of [I], there exists an element 8 of (S*C, C) satisfying
the relation
(S7x) (S76)=S7**z,
Thus we have
(S72)as=(— 1) +D0 k0! (S77)(S7d).
Therefore we can put
ar=(— 1) +1(7 +&dy ! (57 ) mod (S70)«{S7**C, S27}
{or a1={—1)7*DU Ry (87 5) -+ (571) g, for some g,€{S”"**C, S¥})
where {S7**C, $27} is torsion group..
Proposition 1.8,  Assume that £(S*a)=0. Let y={S"**C, CAC) be an element
satisfying (1.3) and (1.4). Then theve holds the relation
(1. 6) r= (1) R (- 1O R (G AG) (i A D) g,
Jor some g,€{S**C, S},
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Let 7 be an element satisfying (1.3) and (1.4). By Lemma 1.1, we can put
(o) Tr=1cA)b1+1"b2

with by €{S***C, S7C} and b: €{S"**C, S"+*C}. Compose lc Az on both sides of
(#%) from the left, then, by (1.4) and (L. 2), we get

bz:lsr-l—kC_

Compose (LcA=)T from the left, then by the similary caluculation as in Proposi-
tion 1.3 we have

br=(—1)7 +E (1)< +1(r Ry (S7 5) mod (7). (S7+*C, 27},
Thus, from Proposition 1.3, we obtain

Proposition 1.4. Assume that tN(Ska):O. Let v be an element satisfying (1.3)
and (1.4). Then

(—1)7**Tr=y mod (i/N\D),{S7+EC, §27)
where T=T(C, C).

Lemma 1.5 Let y be an element of {S™**C, CAC) satisfying (1.3). Then we
have

(=) 1cAy) (PALsr+R)=(rALlc) (LcAT') (yALsr+r) mod G
where G=1cac A {S¥1C, CACAS”} and T'=T(C, S"*%),
Proof. By (1.3) and 1cac=1lcAlc,
(=1)7**(lcacAm) (LcAr) (rALsret)=rAlgrit,
Compose (lcac/Axm) on the right hand side from the left, we have

(leacAm)FALe) LeAT!) (FALgrk)
=(yALgr+t) (Lcasr+tAx)(IcAT') (yA1gr+k)
=(rA\1ls7) (LeAT(S"*E, ST*F)) (Lc AmALsr+k)(yAlsr+#)
=yA1lgr+k by (1.3).
leacA
From the exact sequence associated with cofibration CACAS" ———— CACNC

leacAr
— CACASTHE

(TcacAD* (IcacAm)*
—— {S¥HC, CACAC) —————

{5‘27+2kc’ C/\C/\Sr+k} N

ey {SZY+2]ZC, C/\C/\Sr}

we obtain the result. q.e.d.

Lemma 1. 6. Let y be an element of {S***C, CAC} satisfying (1.3} and (1. 4).

Then we have
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(=171 Ay) fALs+)=(rALc) (1cAT') (yAlsr+) mod G’
where G'=(1c NiALC){S2*2RC, CAS"ACY and T'=T(C, S7+k),
Proof. We put T=T7T(C, C). We have

(=7 +k(leArAle) (le A7) (FALs7+)

=(=1)7"**1cAT") (leacAr) (LeAT) (LeAy) (A Lsr+H)
(=1)7"** (L AT Le AL Am)TT) (yALsr+k)
(=17 RAe AT (A Lgr+h). by (1.4).

I

|

On the other hand, by (L. 3),

(e ArALcYyALe) Qe AT') (FALgr+k)
=(1cAr){yAlc) Qe AT )y Alsr+k)
:(_1)r+k(lc/\T/) (7’/\15”13)-

lcainle

From the exact se quence associated with cofibration CAS” AC - CACAC

leArnAlc
— > CASTHEAC

(IcAiAle)* (lenzAle)*
— (S ¥2kC CASTACY ————s {S2¥2RC, CACAC) —— s

{Szr+2kc’ C/\Sr"*k/\C} —_—
we obtain Lemma. q.e. d

Proposition 1.7. Let y be an element of {S"**C, CAC} satisfying (1.3) and
(1.4). Then we have

(=17 (L Ap) (FALsT R =(r ALY I AT") (y/A\1s7+k) mod G"
where G"=1cNiADL{S¥EC, CAS"AS?} and T'=T(C, S"+F),

Proof. For simplicity we put a=(—1)"**(1c A7) (fAlgr+k) and b=(yAlc)
(LeAT") (yALgrek),
From Lemmas 1.5 and 1.6,

a—b=(1cA1l¢c i)
=g AiA1g)e!

for some ce (St *2*C, CACAS”) and ¢'&{S¥*2C, CAS"AC).
Thus we have

0=(1cAaAle) (e ANinlele'=1cArALe) lcAlcAd)e
=cAlgr+tNi)(1c ArAlgrc.

Since (LcAlgr+kAd)y : {ST12RC, CASTHRAST) — (SR7+2C CAST*EAC) is an iso-
morphism into, we have

(e AnA1lgric=0,
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Thus, from the homotopy exact sequence associated with cofibration CAS”AS?

leNinlse leAnAlgr
—————— CACAS" ————— CAS"*#AS”, there exists an element c'& {S?7*24C,

CAS” AS”} such that (1cAiAlgr)c"=c.
Hence we obtain that
a—b=(1c ANlcANi)c
(Le ALcAD) (e AiALgr)c"
(Lec NiND)C". q.e.d.

Il

l

§ 2. Commutativity and associativity for case 1¢c Aa=0.

Hereafter, we use the following convention : for each xeﬁ"(X; a) which is the
same as ﬁ“”k(X/\C) by definintion, we denote ¥ as ¥ when we consider it as an
element of 7+ +E(XAC).

Let p be the associative and commutative multiplication in the reduced general-
ized cohomology theory {#*,s} defined on the category of finite CW-complexes and
{(h*( ;a), oa) be the a-coefficient cohomology theory associated {/*,s} defined in [I].

Making use of an element y{S"**C,CAC,} we define a map

(2.1) tat B QWY @) — RY(XAY;a)
as the composition
Pa=(— 1) B+ (1 y Ap)* (Lx AT"Alc)*p
where T"=T(Y, C).
For any element f={g} of {4, B}, p**: W (XAB) — I*(XAA) is denoted by
pri=o"n(1xAg)*am.
Proposition 2. 1. If y={S”**C, CAC} satisfyies
(2.2) (T7)** = (—1)7 +ky=x
in h*, then the relation
T1¥ 11, (%@3) = (—1)" p{ y®x)
holds for x<hi(X:a) and yel(Y:a), where T=T(C, C) and T,=T(Y, X).
Proof. On I'(X;)@K(Y;a), we have
18 ®) = (= 1T (TIN L) ¥~ T DLy Ay AP *(Lx AT ALc)* p{x®y)
(—1)ir =gl (T Ao ALsr+d)*(Lxay AP *(Lx AT Ale)*p(x®y)
(—1)ir b= ek (1y g AYH(TiALeac)* Ix AT ALe) *p(x®y)
(—1)irekyerskg=rekd (1y ) x A7V*(lyax ATHTiAleac) *AxAT'Ale) *p(x®y)
by (2.2)
(—1)ireldrrskg=(rek) (1 x APV ¥ 1y AT(X, CYALS)*T(YAC, XAC)* n{xR)
= (=1 +Btiig=Cr k) (1y A x AP *(ly AT(X, C) Ale)* p(y®x)

H

H

H

Il
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by commutativity of g
= (*1)ljﬂa(y®x) q. €. d.
As a consequence of Propositions 1.4, 2.1 and Theorem 3.3 of [I], we obtain
the following Theorem.
Theorem 2.2 Assume that an element «aEmwy+p-1(S”) satisfies (1.1) and t=2 if
kis even. If €%=0 in h* for any e {ST+*C, S¥}, then there exists a commutative

admissible multiplication in B*( ;).
Proposition 2.8. If y={S"**C, CAC} satisfies the relation
(2.3) (=17 (L Ay) (FATsT+8))**=((rALlc) (L ATY) (A Lgred))**
in b* where T'=T(C,S"*%), then the map p, of (2.1) satisfies
talpta®1) = pa(1@sta).

Proof. Put W=XAYAZ, the map U : WACACAC — XACAYACAZAC is
given by permutation of factors as Ulx, y, 2, p, p', p")=(&, p, ¥, D', 2, D).
On 7(X; o) QW (Y: a)@EI(Z; @), by the definition of p, and a simple calculations,
we obtain that
Laltta®1)
= (=1 =+ (1 AV *(Ly Ay AT(Z, CYA1¢)*
2o (Ax Ay AP U AT(Y, C)A10)* ®1)
:<__1)j(r+k)o.—2(r+k) (r/\lsr”‘)**T(C, S“k)**(r/\lc)**U*‘u(ﬂ(@l)

and
ﬂa(1®ﬂa)
= (= D)+ eI A (Ux AT(YAZ, CYALg)*
p(1®0~ T+ B(1y Az AP)* Ly AT(Z, CYALc)*p)

:(—“1)(j+1)(r+k)0—2(7+k)(7’/\15”")**(10AT)**U*#(1®/1)-
Thus, from the associativity of p and (2. 3), it follows that

ﬂa(ﬂa® 1) :ﬂa(1®ﬂa)' gd.e. d.

From Propositions 1.7, 2.3 and Theorem 3.3 of [I], we obtain

Theorem 2.4. Let o be an element of mr+p-1(S") satisfying (1.1) and =2 if
k is even. If e¥*=0 in h* for any e=(S¥*2*C, S2C}, then there exists an associa-
tive admissible multiplication in 7*( ; a).

Let » be the stable homotopy class of Hopf map S* — S% and 72=9(Sy) be a
generator of stable homotopy group {S”*%, S7}==Z: Then »? satisfy (1.1). From

Theorem 3.3 of [I], there exists the admissible multiplication g, in Z*( ;7?).
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From Puppe's exact sequence associated with a cofibration
st g T g7,
we obtain that

(2. 4) {S3Cy2, 87} = {v?z) + (v}
= Zo+Zou

where v is the generator of stable homotopy group {S57+3,8%}=<Zs and v is defined
by v(S%)=u.
Since »2*x=0 and 7%=0, it follows that =y : {S°Cy:, Cp2} —> {S*Cyz, S7*3} is

an epimorphism. Thus we have

Corollary 2.5. If e**=0 in h* for any é{SCuz, Cn2), then there exists a com-

mutative and associative admissible multiplication in T*( ;0.

§3. Stable homotopy of some complexes
In this section, let a be the element of my+%-1(S7) satisfying
(3.1) leAa=(S")a'(S"*#n)s£0 and  #(S*a)=0

for some non-trivial element ' of m2r+2£-1(S¥) and the integer ¢ such that fa=0
and t=2 if £ is even (cf. Lemma 2.3 of [I]).

We put Na=(S2\/S?+k) 2”2k where ¢2”+2% is attached to S2"\/S2"*# by a
map represented by sum of &' and S”**x. Let @ be the mapping cone of «', i.e.,
Q=S yedr+2k Tet {': S —@Q and =’ : @—> S27*2% he the inclusion and the map
collapsing S?” respectively. Then we have a cofibration

lent 1Az
(3 2) CAS? —> C/\Q — CASY +2k.

From Puppe’s exact sequence associated with (3.2) and Lemma 2.2 of [I], we

obtain

Lemma 3.1 The groups {CAQ, CAS* i} are isomorphic to the corresponding
groups in the following table,

generators of free part
{CAQ, CaS2T -k} Z+ finite group
{CAQ, CAS?} Z+Z+ finite group u, v
{CAQ, CASET+RY} Z+Z+ finite group darm!, w
{CAQ, CASEY+2RY Z+Z+ finite group tnan!, loax!
{C/\Q, C/\SZV”k} VA (Szr+3ki)(ﬂ/\ﬂ/)
{CAQ, CAS?+i} finite group for j#—k, 0, k, 2k, 3k,
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The elements u, v and w are defined by u(lecAi'Y=tilc, v(lcAi')=tir and
w(le A= t5(S?+#)(SEx) where t1, to and ts ave order of elements lcAa', tnAa
and (Lo A&')(S%)x respectively.

Lemma 3. 2.
(CAQ,CAQY = (InA1o} +{Llcaq) +{{Le AiYu} +{(Le Ai'Yw} + finite group
= 7+ Z+Z+Z+ finite group.

Since the complex CAC is homotopically equivalent with the complex NaU i
e?”*k in stable range, we shall see that

CACAC == CA(NaUiwe?**¥) 2 (CANa)U sC(ST +471C),

where f=1lcAiw. From the complex structure of Ne, foa’ is homotopic to ia.
Thus we have

F=1cNiga=(1cNiy) (S276) (S7a) (S27+k-1x)
(i/\ioa’) (Szr+k—1n.)

(i/\ilaf) (Sz“k“ln‘)

(10/\1'1) (SZHki) (SZ"‘“kof) (Sz”k“ln)
0.

I

il

i

|

Consider the cofibration

iy Ty
SZr+k — Ny —— Q,

we have
CANx == CA(S e Jan C(ST1Q)) == (CASE R Y gCICASTIQ),
where
g=1cAan'=(S2 k) (S7+ka') (S2+2k-17) (1o AS™12")
=(S2"+k)) (mAa'r")
=0,
Thus, we obtain

Lemma 8.8, The complex CACAC is homotopically equivalent with (S *RC)\/
(CAQN/ (S *2C) in stable range.
Then, from above Lemma, it follows that

Proposition 3. 4.

{CAQ,CNCAC)={CNQ, ST *CYD(CARQ, CAQYD{CAQ, S2T+k(CY
ZZ4 2 242+ Z+Z+Z+ Z+-finite group.

The following two lemmas will be used in the later sections.
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Lemma 3.5. We can choose an element p,€{CAQ, NaAS"**} satisfying the

relations;

(3.3) Dolle A" )= (igA\1g7+k) (mA1ger),

(3. 4) (mgN1greb)p,=1c Az’

and

(3.5) (mAlgret)p,=(lo Am)T for T=T(C,Q).

Proof. Since Na is the reduced mapping cone of the map «'(S7*¢-iz) : S"+k-1C
— 8527 we have
(io/\lsf+k) (7‘[/\1321’) (lc/\a’):(io/\lsri—k) (al/\lsr+k) (7‘[/\1521‘+2k—1>
:Sr+k(i0“/(sr+k—-1n.))

=0.

From the Puppe’s exact sequence

(IeAm')* e ALY

—— {CASH 3k, NaAST k) ———5 (CAQ, NaAS™*) ———
(Iena)*
{CASE, NaAST+k) 5

associated to (3.2}, it follows that there exists an element p,"E{CAQ, NaAS”**}
such that

D" (e N )= ALsr+#) (wAlger)
=(i,A\1gr+&) T (ST+k, S27) (m A 1g27).
Consider the Puppe’s exact sequence
(LcAm')* (Teni')*
s {C/\527+2k’ Q/\57+k} RSN {C/\Q, Q/\SVHe} ey {C/\Sr”, Q/\57+k}.
Since
(LeNiV* LA T(C, Q)={1oAm)T(C, Q) (LcNi')
=(m Algr+t) ([, A\ Lsr+) T(S7**, S27) (zA1g2r)
=(m, Alsr+&)p,"(1c Ni')
= (e AD)*({m, ALsm+8) py"),
it follows from the exactness of the above sequence that
(w Algr+b)p"— (Lo Am)T(C, Q)& (lc Ar')*{CASE 2k QAST k),

Since (m Algr+k), 1 (CASE* 2R N ASTHR) — (CAST 2k QAST*%) 45 an epimor-
phism, we have

(m A1srek)p)"— (Lo Am)T(C, @)= (x, Alsr+8)d(1c Ax')

for some de& {CASE *2k N AS7+k},
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Now we put
po’:po”~ d(lcAr').

Then p," satisfy (3.3) and (3.5).
Discussing the Puppe’s exact sequence associated with the cofibration (3.2), we
have

(Lo Ar)* 1 {CASE ¥k CASET 2Ry 2 (CAQ, CASY +2k),
Thus from Lemma 2.2 of [I] we can put
() (oA lgret)p,' = a(legAx')+ (@A Lgr28e(lcAr')

for some ec {CASE*2k S§7 AQ27+2k} and some integer @. Composing wAlgwr+k on
both sides of (¥) from left, we heve

(rA\1gar+zk) (7[0/\15r+k)p0’ =(n' Algr+k) (7;’/\13r+k)p0'
=(a'Alsr+t) (1o A7) T(C, Q)

=z Az

and

(mA1gereet) (a(loAr')+(EA1ger+2k) ¢ 1o Ax'))=a(zAx').
Thus we see that a=1.

For iNlgrek=myi,’

(o Algret)p)' =1c Aa' +(mgAlgr+k) ((1A1gr+8) e (Lo Axr').

Now we put
Dy=py' —([a A\ 1sr+kle(lc Nr').

Then we can see that p, satisfy the relations (3.3)—(3.5).

Lemma 8.6, For any B &{Na, CAC} satisfying (lcAn)f =mn, there exists an
element k=xp, € {CNQ, CANz} such that

(3.6) (AcAm)e=(8'Nlgr+t)py and (lcAm)e=1lcaq.
Proof. From Lemma 3.5, we have

(LeA (St )z) (B' Algret)py=(1c AS'a') (e ArAlgr+t) (B' ALgr+)p,
(LeASW') (wy A 1s7+k)p,
(1cASle’) (1cAx")

I

I

=0,
Thus from the exact sequence
(Lo A (LeA(S'a)m) s
{CAQ, CANz} ———— {CAQ, CACAST+Hh) ———— 5 ([CAQ, CAST )

it follows that there exists an element «'€{CAQ, CAN«} such that
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(e Ame' =(B' Algr+k)p,.
Now

leAaNlsr+) (1cAre' —1c A=’

(LeAr) (TeAm)e’ —1eag)=(
=(lcAaAlgr+k) (B Algr+b)p,—1c A=’
(

I

w Algred)p,—1c A=’ by assumption

I

0 by (3. 4).
Thus, for some element x={CAQ, CASE"},

(lenm)e’—1lcro={1cAi')x
=(lcAm) (LeAiy)x,

because i’ ==, Put
£=r"—(lcNi)x,
then
(IcAm)e=1cAm)'—(LcAm) (LcAd)x = 1cag
and
(IcArgy=1cAm)e' —{(1c Amy) (Le Nig)x
=(B'Alsr+k)p,. q.e. d.
§ 4. Commutativity of p, for the case lcAa#0.

From Propositions 2. 11 and 2. 12 of [I], there exists an element 8 of {Naz, CAC}
which satisfies

4.1) (leAmB=(—1)"**x,
4.2) (lcAn)TB=m,
and
4.3  TcA)+ (=17 *1cAd)
=(— 1A (§7 ) 4 1/2{(— 1) +(— 1) *RY GEAD) + i AD) gl ST )

for some g&Gr, where T=T(C, C).
Composing T=T(C, C) on both sides (4.3) from the left, it follows that

(4. 4) Tir—(—1)7*piy=(—DFOR{(— 1)+ +(—1)"*1} (i Ad)g,

since (S7m)* & {S¥+k, CAC) — {CAS?, CAC) is an isomorphism into.
From (4.1) and (4. 2), there exists an element of 8, of {N«, S”C} such that

(4. 5) TR~ (—1)7*k8 = (1c Ai)B,.
Thus, it follows from (4.4) and (4.5) that
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(Lo AG) Bty = (TB—(—1)"**B)i,
{( )(r+k)(k+1)+(_1)(k+1)(r+1)} (i/\i)g
={(=1F 11N} &

Since (1cAd)y : {S27*E, CAST) — (S2"*% CAC) is an isomorphism into, we obtain
that

(4.6) Buiy={(—1)F1+1}(iN1s7)g.

Paticularly, if % is even, then Bii=0. Thus, from the exactness of Puppe's

sequence
% il*

(Q, S L (N, S7C} —— {Sr+k, S7C)

we obtain
Proposition 4. 1. If k is even, then
4.7 Th—(—1)**pe(lc Ai){Q, S"C)ry.
If £ is odd, we put
B = (1) DAy A i)y 4 (1)
and if % is even, we put
B=(—1)" (1—n0) (BAd)my-t+(—1)7 0L

(c. f., Propositions 2. 11 and 2.12 of [I]).
Then this element satisfies (4.1), (4.2) and (4. 3).

Proposition 4.2. For ordinary homology maps induced by (—1)"**8 and T8, we

have
(TR = (—1)"""By if kis even
and
(TH)suA(—1)7 kB, if k is odd.
Proof. Let
er/\Sr er/\er
er/\Sr+k er/N\er+k, Cr+h/\€r
Cr+k/\Sr+k Cr+k/\€Cr+h

be generators systems of groups H.(N«) and H.(CAC) respectively, where e;/\s;j
and eiNe; are generators of Hi+j(N«) and H;+;(CAC) respectively.

For ordinary homology maps ({j)sx and (6Af).mys induced by {j and (dAd)=,, we
have
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er/\Sr er/\er
(€h)s| erNnsrsn = | er/Ner+p+tner+p/N\er
Cr+h/\Sr+k Crvk/\€r+k
and
er/\Sr 0
(5AZ>*TL'O* er/\Sr+kh = ter+r/\er
er+k/\Sr+k 0

For the ordinary homology map Ty : H (CAC) — H.(CAC) induced by a
switching map 7T : CAC—CAC, we have

er/\er (——1)767'/\37
T* er/\er+k, €r+k/\€r = (_1)7‘(7+k)€7'+k/\€r, (—1>r(r+k)€r/\€r+k
Er+h/\€r+k (—1)r+k€r+k/\67+k
Computing (TH)s and (—1)"*#8,, we obtain the results. q.e.d.

Consider the Puppe’s exact sequence

TCI* i/* al*
— (¥, §7C) s (Q,57C) — (S¥, §7C) v {S¥HEE-L, S7C)

7 ’

T
associated to the fibration S%” » Q@ — S?’*2k From this exact sequence and

Lemma 2.1 of [I], it follows that

(4. 8) {@,S7Cl=z{ay) +{S¥*2k S7Clr!
=7 +finite group,

where let ¢’ be the order of (S"i)a’ and «; is defined by i’ =#(S7i).
For the ordinary homology map a;, : Har(Q) —> H2»(S”C) induced by a; which
is the generator of free part of {€, S"C} we have the following relation

(4. 9) arg{e'or)=ter A\sy (' 0)
where ¢'s» and e, Asr are generators of Hzr(€) and H:-(S”C) respectively.
Theorem 4.3. [f k is even, then
TB=(—1)"+*kf4(1c Ni)ern'my
Jor some & <{S¥ek STCY, where {S¥+2k, STC) is torsion group.
Proof. From Proposition 4.1 and (4. 8), we can put
() TB—(—1)" " f=a(lc Ad)ami+b(lc Ad)ex'm

for some integers a and b.
From (*), we obtain the identity

(Tﬁ)*“‘ (_1)r+kﬁ*:a(1c ANE) Q14 T
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of ordinary homology map. Thus, from Proposition 4.2 and (4.9), we see that
a=0. : g.e. d.
Let z be the associative and commutative multiplication in #* and g, an admi-
ssible multiplication in hN*( ;o) constructed in § 3 of [I] (assuming that a'**=0 and
fixing an element g such that satisfies (4. 1)—(4. 3)).
For x&/h'(X: ) and yci(Y:a), we put

(4. 10) ta(¥@y) = (— 1)1+ BT+ Reg (g A * (1x AT Alc)*p(x®y)

then p, is an admissible multiplication in 7 i), where W=XAY, T'=T(Y, C) and
¢ is defined on (3.7) of [I].
Put

1 o2 @) = (= 1) T 1, (yQ)

for 7"=T(X,Y). (/, is also an admissible multiplication in 7L*( ;a). In fact by rou-
tine calculations making use of the commutativity of g and the naturality of ¢w
(Lemma 3.5 of [I]) etc., we see that

¢ a(X®y) = (— 1)1~y (L A (— 1) A TH* (Ix AT Alc)*p(x®y)
where T=T(C,C). Thus we have

Theorem 4.4. Let p be the associative and commutative multiplication in 7* and
assume that «'**=0 in h*. Lf there exists an element B of {Nay, CAC} satisfying (4.1)
—(4.3) and the relation

(—1)7”3(71‘3)**:[3**

in W*, then the admissible multiplication o Which is given by (4.10) is commutative.
Corollary 4.5. Suppose that k is even. Assume that aSwr+p-1(S7) satisfies 1cNa
=(S7)a' (S7*F-ix) £ 0, ta=0 and t=2. Let ¢ be the commutative and associative
multiplication in W*. If &'**=0 and e**=0in k* for any €€ (S 2k STCY| then there
exists a commutative admissible multiplication p, in W a).
Let » be the stable homotopy class of Hopf map $*—S* and Cy=S"Ue"*2 he
the mapping cone of ». Then we have

(4.11) 1c,Ap=(S"i) (3v) (S"*z) and 2p=0

where v is the generator of stable homotopy group {S7*2, S"}=Zb
Since {S7*%, Cy}=0, we obtain

Corollary 4.6. (See Theorem 1.5 of [5]). Let p be lhe commutative and associative
multiplication in AR f (Bv)¥*=0, then there exists a commulative admissible multi-

plication in A€ 7).
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§5. Associativity of p, for the case 1cAa#0.

Under the assumption of «'**=0 in ﬁ*, the exact sequence of 7* associated to
the cofibration
IwAd’ IwAr'
WASY —— WAR —— WASE+2k

breaks into the following short exact sequence

(wAz')* _ (I Ai')*

(5.1)  0—— Fm(WA S #2k) - MWAQ) — —— WMWASH)—0

for any W and integer m. In paticular, for W=S" and m=2r, we can shoose an
element ?;&/42"(Q) such that

1@ = ¢?"(1).
Put
(5.2) Py =n*P1,
Then ¢, satisfies the relations
0Py =0""(1) and i;*¢,=0.

Then the multiplication g, constructed by making use above ¢,==*¢, and
BE{Ne, CACY satisfying (4.1)—(4.3) is admissible from Theorem 3.9 of [I]. Now
we discuss the associativity of such a multiplication g,.

For xk™(WAQ), we have

A ) (2 —plo™ (lw A1) *2 Q1)
={Iw Al x—pule™ Ly Ai') ¥2&i'™*¢y)
0.

By (6.1), (lwA=')* is isomorphism into. Thus we can define a homomorphism
Gry 2 W AQ) — (W AS +2k)

by the formula

(5.3) Py ()= (lw Aw') ¥ @ — plo™ (I A" 2 @)

for any W and xe%’"(WAQ).

Similarly as in Lemma 3.5 in [I], we see

Lemma 5.1. (i) Pw is a left inverse of (yAz)*, i.e., PwlywAn')*=an identity
map;, hence the sequence of (5.1) splits :

(W AQ) = (W ASE YR (W NS +7 k),

(i) Pw is natural in the sense that
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(FALgereeb)* @y =00 (fAlQ)*

where f: W — W,
(iii) 5W is compatible with the suspension in the semse that

(IwAT)*Pw =Cwns (lwATo)*o
where Ty="T(S!, S2*2%) and Ty=T(S}, Q).
Lemma 5.2, For the element p,&{CAQ, NaAS"**} of Lemma 3.5 there holds

the relation
;D‘W/\C(]-W/\pg)* — O_r+k§gwg—(r+k)

where Cw is defined on (3.7) of [11.
Proof. For any x€h"(WAN«AS”**) we have

(W ac AR o™ Hogra=r ()
—(nc AR 0" MLy Aol o Rs— a3 Ly Ad oD@ 00)

=(wnac /\77:')*(1w/\S"‘“km)*‘1(x—o'"+k‘u(0'"2r(lw/\i0)*a'("“k)x®900))
=(LwApo)*x— Ly Apy)*e” ** pulo™2" (Lw Nig) *o™ "+ Dx@my*¢y) by (3.4).

Now

AwApy)*o” ** o™ (I Ady) *o~ T+ FxQmy*¢1)
=1AwAp)*Aw ANl sr+8)*a” *E p(o™2" (Ly Adg)*o~ (" * 2 R;)
— (L Aby)* (L ATLALgr+8)*a” ** u(g=Cr +R=37 (13 A ST +R ) ¥ xR0y
= (I AP * (L AmiALsr+2)* (L A Ts)* plo™2 (L AS” i) *2 R0 1)
where Ts=T(Q,S"+k)

=({IwArAL1Q)* o™ (Lw AS”*Hi) *2@¢s) by (3.5)
=pela™? (I ASE 2)* Ly AST R 2R 1)
=p(o™¥ (lwac ALY (lw A Dy) *xQP) by (3.3).

Thus we have
(Iwac A *a” 20 po~TBg = Ly A po)*x— (o™ (Lyac A8 (Liw A ) ¥ 3 R91)
=(warc A"V PwaclQwAby)*x).

Since (IyacAn')* is monomorphic, we have the result
Lemma 5.3, For f'e{N«, CAC) and w=xpr€{CAQ, CAN«} of Lemma 3.6,
there holds the relation

WW(lW/\ﬁI)*U—(Hk)s”W/\c:0"(r+k)’¢W/\c(1W/\f5)*-
Proof. For XE%’n(WACANa), we put

%' = plo~% (Lwac Aig) ¥x@P1) €R*(WACAQ).
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Then we have

(5.4) (Awac AT *Pwack = 5—plo™* (Iyac Ado) *x@m *91)
=x—(Iwarc Am)*x’

and
(5.5) (a0 A8 = o~ (Lypac Aig) 2 @i *91)
=" p((Iwac Nig) *x&i'*¢,)
=(wacNiy)*x by i'*¢, =4 (1).
Thus we obtain
(5.6) Cwnck'=(lyac Ax')*Ux' — plo™ (Lyac i) *5' @F)))
=(Iwac Az Hx' — (o7 (I ac Aig) *2RP1)) by (5.5)
=0.
Now
P (Iwac AB) a0 g p ot = PR (Ly A ALsr+k)* @iy act
:a—(r+k)§3W/\c(1W/\p0)*(1W/\ﬁ'/\lsr+k)*¢W,\cx by Lemma 5. 2
=T (L AR (La e Amo)* Pow Ack by Lemma 3.6

(
=g~ TP (I AR)* (& — (Ipac Axry) ¥x) by (5.4)
=0 TP (L AR)*x—5") by Lemma 3.6
:U_c,._l_k)'g;W/\C(lW/\m)*x by (5 6)

g.e.d.
For any element w={CAQ, CACAC} we define a triple product
(5.7 w0 * WG )@R(Y; @) QW (Z; @) — B+ (W; )
as composition

o :(_1)].(7+k)a—2(7+k)q’;W/\c(1W/\0))*U*/J(l Ru) :

B (X; ) QW (Y ) QRHZ, @) =R+ *R(X AC) QR T (Y AC)QR! 7 +H(ZAC)

s RIS (X ACAY ACAZAC)

—— RiHIICD(W ACACAC)

*__,%iq-j+l+3(r+k)(W/\C/\Q)

_)%i+j+l+3(r+k)(W/\C/\32r+2k)

_);l’i+j+l+r+k(W/\C) :}F”'”(W )
where W=XAYAZ and U: WACACAC— XACAYACAZAC is the map given
by a permutation of factors as Ulx, y, z, c1, ¢2, c3)={%, c1, ¥, ¢z, 2, €3). 7o is defined
for all (4, 7, I) and natural with respect to three variable X, Y and Z. teo=rw if
and only if they are equal as natural transformations for all (i, 4, {). Clerly
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To+te’ = To+Te’

Let p&{Na«, CAC} be an element satisfying (4. 1)—(4. 3) and g, be the multipli-
cation in 7*( ;a) defined by (3.8) of [I] by making use of this B and ¢, of (5.2).
Let x, be the element which satisfy (3.6) for Bo=(—1)"**8.

Lemma 5. 4. ‘ua(1®/1a):fw(y f07' wq:(lc/\ﬁ)fio.

Proof. By definition,

1a(1@ pta) (* QY 2)
= (— 1) Rg= 0 L (T A B *(Ix A TeA L)
2(x Q(— 1)/t Bg=r+ 10 3 (Lx Ay AB)*(Ix ATiALe (*ply ® 2))
for Tv=T(Z, C) and Te=T(YAZ,C)
= (=)D +RG= P (L A B) o~ By n (L e AB)* U plx @ n(y ®2))
by Lemma 3.5 of [I]
= (— 1) =20 Py, o (Lyy ko) *(Lwnc AR U* (1@ 1) QY @ 2)
by Lemma 5.3

where x€hi(X;a), yehi(Y;a) and z€h'(Z; a). q.e.d.
Let x; be the element which satisfy (3.6) for T8 where T=T(C,C).

Lemma 5.5,  p,(pe®1) = 7o, for my=T'(1c AP)s1,
where T'=T(C, CAC).

Proof. By definition, on 7'(X; a)@%(Y: @)% (Z; a) we have

Laltta®1)
:(—1)j(7'+k)0'_(r+k)¢w(1W’/\ﬁ)*(1X/\Y/\Tl/\lc)*/,t(a'—(r+k)§oxAy(1X/\TZ/\lC)[l@l)
for T1=T(Z, C) and T:=T(Y, C)
= (=11 R0y (L A B (Ly AT) o~ 003 A c(lwac AB*(Iw ATV U* (1@ )
by Lemma 3.5 of [I] and associativity of p
=(— 1) 0= ¥ £ (I Aka)* (wac A ATV U*p(1® p)
by Lemma 5.3
= Twy g.ed

From above Lemmas, twoo—rtor={(—1)/"+Rg=2 00 1 (1 Are) Y (lwac AB)*
— (g Ae)*Awac AR Iw AT )} U*(1Q®p), then we have

Theorem 5.6, Let p be a commutative and associative multiplication in n*, and
assume that «'**=0 in h*. Suppose that there exists an element B satisfying (4.1)—
(4.8). Let ry and ry be the elements of Lemma 3.5 for (—1)"**8 and TB respectively.
If B, ko and k1 satisfy the relation
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(5.8) (T (Le ARk ™ =((1c A Plra) ™

in B*, then the admissible multiplication s (defined by (3.8) in [1] by making use of
B and ¢, (5.2)) is associative.

By Lemmas 3.1, 3.2 and Proposition 3.4, we obtain that if o*=w'* as ordinary
homology maps for w, o' €{CAQ, CACAC) then w—a' is an element of finite order.
Put o'=T"'(1c ABro and wy={(1c AB)rs. Since wy* =w'* in ordinary homology, we obtain

Two — Tw’ = Tt

for some ¢ €{CAQ, CACAC} which is an element of finite order.
If 2 is even, making use of Theorem 4.3, Lemma 3.5 and Lemma 3.6, we
have

5.9 (Le Amo)res =(TBA1sr+k)p,
=((—=1)"*BALsr+)py+(Le Ni)er'm ALsT+)p,

(

(

— 1) RBALgr+k) po+((Le AD)E(ST *Er)mo ALsT+k)p,
=(lc Amo)ro+(Lc ASTH#I) (S *Re) (mAr').

And, we obtain

PwacllwAe)*=Pwac(lw As)*(Iwac Amo)*Pwac
by (56.4), (5.6) and Lemma 3.6
=0yl Are)* wac Ame)* +Aw Ar Ax )V (L AST2)* (la ¢ AST ) *} Py nc
by (5.9)
=5WAC(1WAK0)*‘HDW/\C(lW/\ﬂ/\TF')*(1W/\Sr+k5)*(1W/\Sr+ki1)*
by (v) of Lemma 3.5 of [I].

Then
w1 = T’ + (~1)f<’"’%“2(’+’€)S3W/\C(n/\n’)**8**2'1**(1W/\ﬁ)*(1WAT’)*U*p(1 R ).
Thus we have the following theorem as a corollary of Theorem 5. 6.

Theorem 5.7. Suppose that k is even. Assume that aSrr+p-1(ST) salisfies 1c Na
=(S7i)e! (S **-11) 540, fa=0 and t=2. Let p be the commutative and associative
multiplication in h*. If &'**=0, e*=0 and &**=0 in h* for any e={S?*2k S7C)
and & &finite group of {CAQ, CACAC}, then there exists a commutative and asso-
ciative multiplication pg in B*( ;a).

Put @=%. Then we have {S"*4, Cy}=0 and Tor {C2A®Q, CxACyACr}=0. Thus
we have

Covollary 5.8 (See Theorem 1.6 of [5]). Let p be the commutative and associative
wultiplication in VAR f (Bu)**=0, then there exists an associalive admissible multipli-

cation in h*( ;@)
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