By NOBUHIRO ISHIKAWA

Institute of Mathematics, College of General Education, Kyushu University

and HIDEYUKI KACHI

Department of Mathematics, Facaulty of Science, Shinshu, University (Received Nov.14, 1977)

Introduction

In the previous paper [I] with the same title we discussed the admissible multiplications in α -coefficient cohomology theories and we gave a sufficient condition for existence of admissible multiplication in the case $\alpha \in \pi_{r+k-1}(S^r)$ satisfies $1_C \wedge \alpha = (S^r i)\alpha'(S^{r+k-1}\pi)$ and $\tilde{t}(S^k\alpha) = 0$.

This paper is the continuations of [I] and is devoted to the discussion of commutativity and associativity of admissible multiplication μ_{α} which is given by [I].

In §1 and §2, we discuss the associativity and commutativity of μ_{α} in the case $1_C \wedge \alpha = 0$. For the case $1_C \wedge \alpha \neq 0$, we discuss in §3 to §5.

We use all notations and notions defined in [I].

§ 1. Preparation for case $1_C \wedge \alpha = 0$.

Let α be the homotopy class of a stable map $g: S^{r+k-1} \longrightarrow S^r$ (k>1) of order t. Since the stable homotopy type of the mapping cone of g depends only on α we denote as

$$C_{\alpha} = S^r \cup {}_gC(S^{r+k-1}).$$

For simplicity we denote $C = C_{\alpha}$.

Now we consider the stable element $\alpha \in \{S^{r+k-1}, S^r\}$ satisfying

(1.1)
$$1_C \wedge \alpha = 0 \text{ and } t(S^k \alpha) = 0.$$

Then there exists a homotopy equivalence $\xi: C \wedge C \longrightarrow \overline{N}_{\alpha} = S^r C \vee S^{r+k}C$ and let $\zeta: \overline{N}_{\alpha} \longrightarrow C \wedge C$ be a homotopy inverse of ξ .

Let

$$\pi_0^{-1}: S^{r+k}C \longrightarrow \overline{N_{\alpha}}$$

and

$$i'_0: \overline{N}_{\alpha} \longrightarrow S^r C$$

be the inclusion and the map collapsing $S^{r+k}C$, respectively.

Put

$$\begin{split} i'' &= \zeta \, \pi_0^{-1} : \, S^{r+k} C \longrightarrow C \wedge C \\ \pi'' &= i'_0 \xi : \ C \wedge C \longrightarrow S^r C, \end{split}$$

then we obtain the relations

(1.2)
$$\pi'' i'' = 0, \ \pi'' (1_C \wedge i) = 1_{S'C} \text{ and } (1_C \wedge \pi) i'' = 1_{S''} h_C$$

Then we see immediately

Lemma 1.1. $(1_C \wedge \pi)^*$, $(1_C \wedge i)_*$, π''^* and i''_* are monomorphic and we have the following direct sum decompositions;

(i) $\{W, C \land C\} = (1_C \land i)_* \{W, S^r C\} \oplus i''_* \{W, S^{r+k} C\},$

(ii)
$$\{C \land C, W\} = (1_C \land \pi)^* \{S^{r+k}C, W\} \oplus \pi''^* \{S^rC, W\}$$

for any W, and in particular

(iii)
$$\{C \land C, C \land C\} = (1_C \land i)^* (1_C \land \pi)^* \{S^{r+k}C, S^rC\} \oplus (1_C \land i)_* \pi''^* \{S^rC, S^rC\} \oplus i''_* (1_C \land \pi)^* \{S^{r+k}C, S^{r+k}C\} \oplus i''^* \pi''^* \{S^rC, S^{r+k}C\}.$$

From Lemma 1.1 and Lemma 2.2 of [I],

Corollary 1.2. We have the following direct sum decomposition

$$\{S^{r+k}C, \ C \land C\} = (1_C \land i)_* \{S^{r+k}C, \ S^rC\} \oplus i''_* \{S^{r+k}C, \ S^{r+k}C\}$$
$$= \{\delta \land i\} + \{i''\} + \{i''(\widetilde{t}\pi \land 1_S^{r+k})\} + finite \ group$$
$$\cong Z + Z + Z + finite \ group$$

and the relations

$$i''(S^{r+k}i) = \zeta_0$$
, $i''(S^{r+k}(\tilde{t}\pi))(S^{r+k}i) = 0$ and $(\delta \wedge i)$ $(S^{r+k}i) = \tilde{t} \wedge i$.

In this section, we consider only the element $\gamma \in \{S^{r+k}C, C \land C\}$ satisfying the following relations

(1.3) $(1_C \wedge \pi)\gamma = (-1)^{r+k} 1_S^{r+k} C,$

$$(1.4) \qquad (1_C \wedge \pi) I' = 1_S' *^{\kappa} C$$

and

(1.5)
$$T(1_{C} \wedge i) + (-1)^{r+k}(1_{C} \wedge i)$$

= $(-1)^{k(r+k)} \gamma(S^{r+k}i)(S^{r}\pi) + 1/2\{(-1)^{r} + (-1)^{r+k}\}(i\overline{t} \wedge i) + (i \wedge i)g(S^{r}\pi)$

for some $g \in G_k/(\eta \alpha)$ (see Proposition 2.9 of [I]) and T = T(C, C).

By Corollary 1.2, we can put

(*)
$$\gamma = (1_C \wedge i)a_1 + i''a_2$$

with $a_1 \in \{S^{r+k}C, S^rC\}$ and $a_2 \in \{S^{r+k}C, S^{r+k}C\}$. Compose $(1_C \wedge \pi)$ on both sides of (*) from the left, then we get

$$(-1)^{r+k} 1_{S^{r+k}C} = (1_C \wedge \pi) \tilde{i} \qquad \text{by (1.3)} \\ = (1_C \wedge \pi) \tilde{i}'' a_2 = a_2 \qquad \text{by (1.2)}$$

Making use of Lemma 2.8 of [I] and the fact that $\xi_0 i''=0$, we have

$$\begin{aligned} (1_C \wedge \pi) T i'' &= (-1)^{r+k} (1_C \wedge \pi) i'' - n' (i t \wedge \pi) i'' + (-1)^{r(r+k)} (S^{r+k} i) \xi_0 i' \\ &= (-1)^{r+k} 1_{S^{r+k}C} - n' (i t \wedge 1_{S^{r+k}}) \qquad \text{by (1.2),} \end{aligned}$$

and

$$(1_C \wedge \pi) T(1_C \wedge i) = (-1)^{r(r+k)} \langle S^{r+k} i \rangle \langle S^r \pi \rangle.$$

Now compose $(1_C \wedge \pi)T$ on (*) from the left. Using the above remarks, we have

$$1_{S^{r+k}C} = (1_C \wedge \pi) T' = (1_C \wedge \pi) T (1_C \wedge i) a_1 + (1_C \wedge \pi) T i'' a_2 = (-1)^{r(r+k)} (S^{r+k}i) (S^r \pi) a_1 + 1_{S^{r+k}C} - (-1)^{r+k} n' (it \wedge 1_{S^{r+k}})$$

Thus,

$$(-1)^{r(r+k)}(S^{r+k}i)(S^{r}\pi)a_1=(-1)^{r+k}n'(i\overline{t}\wedge 1_S^{r+k}).$$

Since $(S^{r+k}i)_* : \{S^{r+k}C, S^r \land S^{r+k}\} \longrightarrow \{S^{r+k}C, C \land S^{r+k}\}$ is an isomorphism into, we have

$$(S^r \pi)a_1 = (-1)^{(r+1)(r+k)}n'(\overline{t} \wedge 1_S^{r+k}).$$

If $\tilde{t}(S^k\alpha)=0$, then, from (2, 3) of [I], there exists an element δ of $\{S^kC, C\}$ satisfying the relation

$$(S^r\pi)(S^r\delta) = S^{r+k}\overline{t}.$$

Thus we have

$$(S^r\pi)a_1 = (-1)^{(r+1)(r+k)}n'(S^r\pi)(S^r\delta).$$

Therefore we can put

 $a_1 = (-1)^{(r+1)(r+k)} n'(S^r \delta) \mod (S^r i)_* \{S^{r+k}C, S^{2r}\}$ (or $a_1 = (-1)^{(r+1)(r+k)} n'(S^r \delta) + (S^r i)g_1$ for some $g_1 \in \{S^{r+k}C, S^{2r}\}$)

where $\{S^{r+k}C, S^{2r}\}$ is torsion group.

Proposition 1.3. Assume that $\tilde{t}(S^k\alpha)=0$. Let $\gamma \in \{S^{r+k}C, C \land C\}$ be an element satisfying (1, 3) and (1, 4). Then there holds the relation

(1.6)
$$\gamma = (-1)^{r+k} i'' + (-1)^{(r+1)(r+k)} n' (\delta \wedge i) + (i \wedge i) g_{j}$$

for some $g_1 \in \{S^{r+k}C, S^{2r}\}$.

Let γ be an element satisfying (1.3) and (1.4). By Lemma 1.1, we can put

$$(**) T \mathcal{T} = (1_C \wedge i)b_1 + i''b_2$$

with $b_1 \in \{S^{r+k}C, S^rC\}$ and $b_2 \in \{S^{r+k}C, S^{r+k}C\}$. Compose $1_C \wedge \pi$ on both sides of (**) from the left, then, by (1.4) and (1.2), we get

$$b_2 = 1_{S^{r+k}C}$$
.

Compose $(1_C \wedge \pi)T$ from the left, then by the similary caluculation as in Proposition 1.3 we have

$$b_1 = (-1)^{r+k} (-1)^{(r+1)(r+k)} n' (S^r \delta) \mod (S^r i)_* \{S^{r+k} C, S^{2r}\}.$$

Thus, from Proposition 1.3, we obtain

Proposition 1.4. Assume that $\tilde{t}(S^k\alpha)=0$. Let γ be an element satisfying (1.3) and (1.4). Then

 $(-1)^{r+k}T\gamma = \gamma \mod (i \wedge i)_* \{S^{r+k}C, S^{2r}\}$

where T = T(C, C).

Lemma 1.5. Let γ be an element of $\{S^{r+k}C, C \land C\}$ satisfying (1.3). Then we have

$$(-1)^{r+k}(1_C \wedge \gamma) \ (\gamma \wedge 1_S^{r+k}) = (\gamma \wedge 1_C) \ (1_C \wedge T') \ (\gamma \wedge 1_S^{r+k}) \qquad mod \ G$$

where $G = (1_{C \wedge C} \wedge i)_* \{S^{2^r+2k}C, C \wedge C \wedge S^r\}$ and $T' = T(C, S^{r+k})$.

Proof. By (1.3) and $1_{C \wedge C} = 1_C \wedge 1_C$,

$$(-1)^{r+k}(1_{C\wedge C}\wedge\pi) \ (1_{C}\wedge\gamma) \ (\gamma\wedge 1_{S}r^{+k}) = \gamma\wedge 1_{S}r^{+k}.$$

Compose $(1_{C \wedge C} \wedge \pi)$ on the right hand side from the left, we have

$$\begin{aligned} (1_{C\wedge C}\wedge\pi)(\gamma\wedge 1_C) & (1_C\wedge T') & (\gamma\wedge 1_{S^{r+k}}) \\ &= (\gamma\wedge 1_{S^{r+k}}) & (1_{C\wedge S^{r+k}}\wedge\pi)(1_C\wedge T') & (\gamma\wedge 1_{S^{r+k}}) \\ &= (\gamma\wedge 1_{S^{r+k}}) & (1_C\wedge T(S^{r+k}, S^{r+k})) & (1_C\wedge\pi\wedge 1_{S^{r+k}})(\gamma\wedge 1_{S^{r+k}}) \\ &= \gamma\wedge 1_{S^{r+k}} & \text{by (1.3).} \end{aligned}$$

From the exact sequence associated with cofibration $C \wedge C \wedge S^r \xrightarrow{1_{C \wedge C} \wedge i} C \wedge C \wedge C$ $\xrightarrow{1_{C \wedge C} \wedge \pi} C \wedge C \wedge S^{r+k}$;

$$\longrightarrow \{S^{2r+2k}C, \ C \land C \land S^r\} \xrightarrow{(1_{C \land C} \land i)^*} \{S^{2r+2k}C, \ C \land C \land C\} \xrightarrow{(1_{C \land C} \land \pi)^*} \{S^{2r+2k}C, \ C \land C \land S^{r+k}\} \longrightarrow$$

we obtain the result.

Lemma 1.6. Let γ be an element of $\{S^{r+k}C, C \land C\}$ satisfying (1.3) and (1.4). Then we have

q. e. d.

$$(-1)^{r+k}(1_C \wedge \gamma) (\gamma \wedge 1_{S^{r+k}}) = (\gamma \wedge 1_C) (1_C \wedge T') (\gamma \wedge 1_{S^{r+k}}) \mod G'$$

where $G' = (1_C \wedge i \wedge 1_C)_* \{S^{2r+2k}C, C \wedge S^r \wedge C\}$ and $T' = T(C, S^{r+k}).$

Proof. We put T = T(C, C). We have

$$(-1)^{r+k} (1_C \wedge \pi \wedge 1_C) (1_C \wedge \gamma) (\gamma \wedge 1_{S^{r+k}})$$

= $(-1)^{r+k} (1_C \wedge T') (1_{C \wedge C} \wedge \pi) (1_C \wedge T) (1_C \wedge \gamma) (\gamma \wedge 1_{S^{r+k}})$
= $(-1)^{r+k} (1_C \wedge T') (1_C \wedge (1_C \wedge \pi) T \gamma) (\gamma \wedge 1_{S^{r+k}})$
= $(-1)^{r+k} (1_C \wedge T') (\gamma \wedge 1_{S^{r+k}}).$ by (1.4).

On the other hand, by (1, 3),

$$\begin{aligned} (1_C \wedge \pi \wedge 1_C)(\gamma \wedge 1_C) & (1_C \wedge T') (\gamma \wedge 1_{S^{r+k}}) \\ &= ((1_C \wedge \pi)(\gamma \wedge 1_C) (1_C \wedge T')(\gamma \wedge 1_{S^{r+k}}) \\ &= (-1)^{r+k} (1_C \wedge T') (\gamma \wedge 1_{S^{r+k}}). \end{aligned}$$

From the exact sequence associated with cofibration $C \wedge S^r \wedge C \xrightarrow{1_C \wedge i \wedge 1_C} C \wedge C \wedge C$ $\xrightarrow{1_C \wedge \pi \wedge 1_C} C \wedge S^{r+k} \wedge C$;

$$\longrightarrow \{S^{2r+2k}C, C \land S^r \land C\} \xrightarrow{(1_C \land i \land 1_C)^*} \{S^{2r+2k}C, C \land C \land C\} \xrightarrow{(1_C \land \pi \land 1_C)^*} \{S^{2r+2k}C, C \land S^{r+k} \land C\} \longrightarrow$$

we obtain Lemma.

Proposition 1.7. Let γ be an element of $\{S^{r+k}C, C \land C\}$ satisfying (1.3) and (1.4). Then we have

$$(-1)^{r+k}(1_C \wedge \gamma) (\gamma \wedge 1_{S^{r+k}}) = (\gamma \wedge 1_C)(1_C \wedge T') (\gamma \wedge 1_{S^{r+k}}) \mod G''$$

where $G'' = (1_C \wedge i \wedge i)_* \{S^{2r+k}C, C \wedge S^r \wedge S^r\}$ and $T' = T(C, S^{r+k})$.

Proof. For simplicity we put $a = (-1)^{r+k} (1_C \wedge \gamma) (\gamma \wedge 1_{S^{r+k}})$ and $b = (\gamma \wedge 1_C) (1_C \wedge T') (\gamma \wedge 1_{S^{r+k}})$.

From Lemmas 1.5 and 1.6,

$$a-b=(1_C \wedge 1_C \wedge i)c$$
$$=(1_C \wedge i \wedge 1_C)c'$$

for some $c \in \{S^{2r+2k}C, C \land C \land S^r\}$ and $c' \in \{S^{2r+2k}C, C \land S^r \land C\}$.

Thus we have

$$0 = (1_C \wedge \pi \wedge 1_C) (1_C \wedge i \wedge 1_C)c' = (1_C \wedge \pi \wedge 1_C) (1_C \wedge 1_C \wedge i)c$$

= $(1_C \wedge 1_S r^{+k} \wedge i)(1_C \wedge \pi \wedge 1_S r)c.$

Since $(1_C \wedge 1_{S^{r+k}} \wedge i)_* : \{S^{2r+2k}C, C \wedge S^{r+k} \wedge S^r\} \longrightarrow \{S^{2r+2k}C, C \wedge S^{r+k} \wedge C\}$ is an isomorphism into, we have

$$(1_C \wedge \pi \wedge 1_S r)c = 0.$$

Thus, from the homotopy exact sequence associated with cofibration $C \wedge S^r \wedge S^r$ $\xrightarrow{1_C \wedge i \wedge 1_S r} C \wedge C \wedge S^r \xrightarrow{1_C \wedge \pi \wedge 1_S r} C \wedge S^{r+k} \wedge S^r$, there exists an element $c'' \in \{S^{2r+2k}C, C \wedge S^r \wedge S^r\}$ such that $(1_C \wedge i \wedge 1_S r)c'' = c$.

Hence we obtain that

§2. Commutativity and associativity for case $1_C \wedge \alpha = 0$.

Hereafter, we use the following convention: for each $x \in \widetilde{h}^i(X; \alpha)$ which is the same as $\widetilde{h}^{i+r+k}(X \wedge C)$ by definition, we denote x as \overline{x} when we consider it as an element of $\widetilde{h}^{i+r+k}(X \wedge C)$.

Let μ be the associative and commutative multiplication in the reduced generalized cohomology theory $\{\tilde{h}^*, \sigma\}$ defined on the category of finite *CW*-complexes and $\{\tilde{h}^*(; \alpha), \sigma_{\alpha}\}$ be the α -coefficient cohomology theory associated $\{\tilde{h}^*, \sigma\}$ defined in [I].

Making use of an element $\gamma \in \{S^{r+k}C, C \land C, \}$ we define a map

(2.1)
$$\mu_{\alpha}: \widetilde{h}^{i}(X; \alpha) \otimes \widetilde{h}^{j}(Y; \alpha) \longrightarrow \widetilde{h}^{i+j}(X \wedge Y; \alpha)$$

as the composition

$$\mu_{\alpha} = (-1)^{i(r+k)} \sigma^{-(r+k)} (1_{X \wedge Y} \wedge \gamma)^* (1_X \wedge T'' \wedge 1_C)^* \mu$$

where T'' = T(Y, C).

For any element $\beta = \{g\}$ of $\{A, B\}, \beta^{**} : \tilde{h}^*(X \wedge B) \longrightarrow \tilde{h}^*(X \wedge A)$ is denoted by $\beta^{**} = \sigma^{-n}(1_X \wedge g)^* \sigma^n$.

Proposition 2.1. If $\gamma \in \{S^{r+k}C, C \land C\}$ satisfyies

(2, 2)

$$(T\gamma)^{**} = (-1)^{r+k}\gamma^{**}$$

in \tilde{h}^* , then the relation

$$T_1^*\mu_\alpha(x\otimes y) = (-1)^{ij}\mu_\alpha(y\otimes x)$$

holds for $x \in \widetilde{h}^i(X; \alpha)$ and $y \in \widetilde{h}^j(Y; \alpha)$, where T = T(C, C) and $T_1 = T(Y, X)$.

Proof. On $\tilde{h}^i(X; \alpha) \otimes \tilde{h}^j(Y; \alpha)$, we have

by commutativity of μ

$$=(-1)^{ij}\mu_{\alpha}(y\otimes x).$$
 q. e.

As a consequence of Propositions 1.4, 2.1 and Theorem 3.3 of [I], we obtain the following Theorem.

Theorem 2.2 Assume that an element $\alpha \in \pi_{r+k-1}(S^r)$ satisfies (1.1) and t=2 if k is even. If $\varepsilon^{**}=0$ in \tilde{h}^* for any $\varepsilon \in \{S^{r+k}C, S^{2r}\}$, then there exists a commutative admissible multiplication in $\tilde{h}^*(; \alpha)$.

Proposition 2.3. If $\gamma \in \{S^{r+k}C, C \land C\}$ satisfies the relation

$$(2.3) \qquad (-1)^{r+k} (1_C \wedge \gamma) (\gamma \wedge 1_{S^{r+k}}))^{**} = ((\gamma \wedge 1_C) (1_C \wedge T') (\gamma \wedge 1_{S^{r+k}}))^{**}$$

in \tilde{h}^* where $T' = T(C, S^{r+k})$, then the map μ_{α} of (2.1) satisfies

$$\mu_{\alpha}(\mu_{\alpha}\otimes 1) = \mu_{\alpha}(1\otimes \mu_{\alpha}).$$

Proof. Put $W = X \land Y \land Z$, the map $U : W \land C \land C \land C \longrightarrow X \land C \land Y \land C \land Z \land C$ is given by permutation of factors as U(x, y, z, p, p', p') = (x, p, y, p', z, p'').

On $\tilde{h}^i(X; \alpha) \otimes \tilde{h}^j(Y; \alpha) \otimes \tilde{h}^l(Z; \alpha)$, by the definition of μ_{α} and a simple calculations, we obtain that

$$\begin{aligned} & \mu_{\alpha}(\mu_{\alpha}\otimes 1) \\ &= (-1)^{j(r+k)}\sigma^{-(r+k)} (1_{W}\wedge\gamma)^{*} (1_{X\wedge Y}\wedge T(Z,C)\wedge 1_{C})^{*} \\ & \mu(\sigma^{-(r+k)} (1_{X\wedge Y}\wedge\gamma)^{*} (1_{X}\wedge T(Y,C)\wedge 1_{C})^{*}\mu\otimes 1) \\ &= (-1)^{j(r+k)}\sigma^{-2(r+k)} (\gamma\wedge 1_{S^{r+k}})^{**}T(C,S^{r+k})^{**} (\gamma\wedge 1_{C})^{**}U^{*}\mu(\mu\otimes 1) \end{aligned}$$

and

Thus, from the associativity of μ and (2.3), it follows that

$$\mu_{\alpha}(\mu_{\alpha}\otimes 1) = \mu_{\alpha}(1\otimes \mu_{\alpha}). \qquad q. e. d.$$

From Propositions 1.7, 2.3 and Theorem 3.3 of [I], we obtain

Theorem 2.4. Let α be an element of $\pi_{r+k-1}(S^r)$ satisfying (1.1) and t=2 if k is even. If $\varepsilon^{**}=0$ in \tilde{h}^* for any $\varepsilon \in \{S^{2r+2k}C, S^{2r}C\}$, then there exists an associative admissible multiplication in $\tilde{h}^*(; \alpha)$.

Let η be the stable homotopy class of Hopf map $S^3 \longrightarrow S^2$ and $\eta^2 = \eta(S\eta)$ be a generator of stable homotopy group $\{S^{r+2}, S^r\} \cong \mathbb{Z}_2$. Then η^2 satisfy (1.1). From Theorem 3.3 of [I], there exists the admissible multiplication μ_{η^2} in $\tilde{h}^*(; \eta^2)$.

d.

From Puppe's exact sequence associated with a cofibration

$$S^r \xrightarrow{i} C_{\eta^2} \xrightarrow{\pi} S^{r+3},$$

we obtain that

(2.4)
$$\{S^{3}C_{\eta^{2}}, S^{r}\} = \{v^{2}\pi\} + \{\bar{v}\}$$

 $\cong Z_{2} + Z_{24}$

where v is the generator of stable homotopy group $\{S^{r+3}, S^r\}\cong \mathbb{Z}_{24}$ and \overline{v} is defined by $\overline{v}(S^3i) = v$.

Since $\eta^2 v^2 \pi = 0$ and $\eta^2 \overline{v} = 0$, it follows that $\pi_* : \{S^6 C_{\eta^2}, C_{\eta^2}\} \longrightarrow \{S^6 C_{\eta^2}, S^{r+3}\}$ is an epimorphism. Thus we have

Corollary 2.5. If $\varepsilon^{**}=0$ in \tilde{h}^* for any $\varepsilon \in \{S^{*}C_{\eta^2}, C_{\eta^2}\}$, then there exists a commutative and associative admissible multiplication in $\tilde{h}^{*}(; \eta^2)$.

§3. Stable homotopy of some complexes

In this section, let α be the element of $\pi_{r+k-1}(S^r)$ satisfying

(3.1)
$$1_C \wedge \alpha = (S^r i) \alpha' (S^{r+k} \pi) \neq 0$$
 and $\widetilde{t}(S^k \alpha) = 0$

for some non-trivial element α' of $\pi_{2r+2k-1}(S^{2r})$ and the integer t such that $t\alpha=0$ and t=2 if k is even (cf. Lemma 2.3 of [I]).

We put $N_{\alpha} = (S^{2r} \vee S^{2r+k}) \cup e^{2r+2k}$, where e^{2r+2k} is attached to $S^{2r} \vee S^{2r+k}$ by a map represented by sum of α' and $S^{r+k}\alpha$. Let Q be the mapping cone of α' , i.e., $Q = S^{2r} \cup e^{2r+2k}$. Let $i' : S^{2r} \longrightarrow Q$ and $\pi' : Q \longrightarrow S^{2r+2k}$ be the inclusion and the map collapsing S^{2r} respectively. Then we have a cofibration

From Puppe's exact sequence associated with (3, 2) and Lemma 2.2 of [I], we obtain

Lemma 3.1. The groups $\{C \land Q, C \land S^{2r+j}\}$ are isomorphic to the corresponding groups in the following table;

		generators of free part
$\{C_{\wedge}Q, C_{\wedge}S^{2r-k}\}$	Z+finite group	
$\{C_{\wedge}Q, C_{\wedge}S^{2r}\}$	Z+Z+finite group	<i>u, v</i>
$\{C \land Q, C \land S^{2r+k}\}$	Z+Z+finite group	$\delta_{\wedge}\pi', w$
$\{C_{\wedge}Q, C_{\wedge}S^{2r+2k}\}$	Z+Z+finite group	$\tilde{t}\pi_{\wedge}\pi', \ 1_{C}\wedge\pi'$
$\{C_{\wedge}Q, C_{\wedge}S^{2r+3k}\}$	Z	$(S^{2r+3k}i)(\pi \wedge \pi')$
$\{C \land Q, C \land S^{2r+j}\}$	finite group for $j \neq -k$, 0, k, 2k, 3k.	

The elements u, v and w are defined by $u(1_C \wedge i') = t_1 1_C$, $v(1_C \wedge i') = t_2 \tilde{t}_{\pi}$ and $w(1_C \wedge i') = t_3(S^{2r+k}i)(S^{2r}\pi)$ where t_1 , t_2 and t_3 are order of elements $1_C \wedge \alpha'$, $\tilde{t}_{\pi} \wedge \alpha'$ and $(1_C \wedge \alpha')(S^k)\pi$ respectively.

Lemma 3.2.

$$\{C \land Q, C \land Q\} = \{\tilde{t}\pi \land 1_Q\} + \{1_{C \land Q}\} + \{(1_C \land i')u\} + \{(1_C \land i')v\} + finite group$$
$$\cong Z + Z + Z + Z + finite group.$$

Since the complex $C \wedge C$ is homotopically equivalent with the complex $N_{\alpha} \cup_{i_0 \alpha} e^{2r+k}$ in stable range, we shall see that

$$C \wedge C \wedge C \simeq C \wedge (N_{\alpha} \cup {}_{i_0 \alpha} e^{2r+k}) \simeq (C \wedge N_{\alpha}) \cup {}_f C(S^{2r+k-1}C),$$

where $f=1_C \wedge i_0 \alpha$. From the complex structure of N_{α} , $i_0 \alpha'$ is homotopic to $i_1 \alpha$. Thus we have

$$f = 1_C \wedge i_0 \alpha = (1_C \wedge i_0) (S^{2r}i) (S^{2r}\alpha') (S^{2r+k-1}\pi)$$

= $(i \wedge i_0 \alpha') (S^{2r+k-1}\pi)$
= $(i \wedge i_1 \alpha) (S^{2r+k-1}\pi)$
= $(1_C \wedge i_1) (S^{2r+k}i) (S^{2r+k}\alpha) (S^{2r+k-1}\pi)$
= $0.$

Consider the cofibration

$$S^{2r+k} \xrightarrow{i_1} N_{\alpha} \xrightarrow{\pi_1} Q,$$

we have

$$C \wedge N_{\alpha} \simeq C \wedge (S^{2r+k} \cup_{\alpha \pi'} C(S^{-1}Q)) \simeq (C \wedge S^{2r+k}) \cup_g C(C \wedge S^{-1}Q),$$

where

$$g = 1_C \wedge \alpha \pi' = (S^{2r+k}i) (S^{r+k}\alpha') (S^{2r+2k-1}\pi) (1_C \wedge S^{-1}\pi')$$

= (S^{2r+k}i) (\pi \lambda \alpha'\pi')
= 0.

Thus, we obtain

Lemma 3.3. The complex $C \land C \land C$ is homotopically equivalent with $(S^{2r+k}C) \lor (C \land Q) \lor (S^{2r+k}C)$ in stable range.

Then, from above Lemma, it follows that

Proposition 3.4.

$$\{C \land Q, C \land C \land C\} = \{C \land Q, S^{2r+k}C\} \oplus \{C \land Q, C \land Q\} \oplus \{C \land Q, S^{2r+k}C\}$$
$$\cong Z + Z + Z + Z + Z + Z + Z + Z + finite \ group.$$

The following two lemmas will be used in the later sections.

Lemma 3.5. We can choose an element $p_0 \in \{C \land Q, N_{\alpha} \land S^{r+k}\}$ satisfying the relations;

$$(3.3) p_0(1_C \wedge i') = (i_0 \wedge 1_S r^{+k}) (\pi \wedge 1_S r^{*r}),$$

$$(3.4) \qquad (\pi_0 \wedge 1_{S^{r+k}}) p_0 = 1_C \wedge \pi'$$

and

(3.5)
$$(\pi_1 \wedge 1_S r^{+k}) p_0 = (1_Q \wedge \pi) T$$
 for $T = T(C, Q)$.

Proof. Since $N\alpha$ is the reduced mapping cone of the map $\alpha'(S^{r+k-1}\pi): S^{r+k-1}C \longrightarrow S^{2r}$, we have

$$\begin{aligned} (i_0 \wedge 1_{S^{r+k}}) &(\pi \wedge 1_{S^{2r}}) (1_C \wedge \alpha') = (i_0 \wedge 1_{S^{r+k}}) (\alpha' \wedge 1_{S^{r+k}}) (\pi \wedge 1_{S^{2r+2k-1}}) \\ &= S^{r+k} (i_0 \alpha' (S^{r+k-1} \pi)) \\ &= 0. \end{aligned}$$

From the Puppe's exact sequence

$$\longrightarrow \{C \wedge S^{2r+2k}, N \alpha \wedge S^{r+k}\} \xrightarrow{(1_C \wedge \pi')^*} \{C \wedge Q, N_\alpha \wedge S^{r+k}\} \xrightarrow{(1_C \wedge i')^*} \{C \wedge S^{2r}, N_\alpha \wedge S^{r+k}\} \xrightarrow{(1_C \wedge \alpha')^*} \{C \wedge S^{2r}, N_\alpha \wedge S^{r+k}\} \xrightarrow{(1_C \wedge \alpha')^*} \{C \wedge S^{2r}, N_\alpha \wedge S^{r+k}\} \xrightarrow{(1_C \wedge \alpha')^*} \{C \wedge S^{2r}, N_\alpha \wedge S^{r+k}\} \xrightarrow{(1_C \wedge \alpha')^*} \{C \wedge S^{2r}, N_\alpha \wedge S^{r+k}\} \xrightarrow{(1_C \wedge \alpha')^*} \{C \wedge S^{2r}, N_\alpha \wedge S^{r+k}\} \xrightarrow{(1_C \wedge \alpha')^*} \{C \wedge S^{2r}, N_\alpha \wedge S^{r+k}\} \xrightarrow{(1_C \wedge \alpha')^*} \{C \wedge S^{2r}, N_\alpha \wedge S^{r+k}\} \xrightarrow{(1_C \wedge \alpha')^*} \{C \wedge S^{2r}, N_\alpha \wedge S^{r+k}\} \xrightarrow{(1_C \wedge \alpha')^*} \{C \wedge S^{2r}, N_\alpha \wedge S^{r+k}\} \xrightarrow{(1_C \wedge \alpha')^*} \{C \wedge S^{2r}, N_\alpha \wedge S^{r+k}\} \xrightarrow{(1_C \wedge \alpha')^*} \{C \wedge S^{2r}, N_\alpha \wedge S^{r+k}\} \xrightarrow{(1_C \wedge \alpha')^*} \{C \wedge S^{2r}, N_\alpha \wedge S^{r+k}\} \xrightarrow{(1_C \wedge \alpha')^*} \{C \wedge S^{2r}, N_\alpha \wedge S^{r+k}\} \xrightarrow{(1_C \wedge \alpha')^*} \{C \wedge S^{2r}, N_\alpha \wedge S^{r+k}\} \xrightarrow{(1_C \wedge \alpha')^*} \{C \wedge S^{2r}, N_\alpha \wedge S^{r+k}\} \xrightarrow{(1_C \wedge \alpha')^*} \{C \wedge S^{2r}, N_\alpha \wedge S^{r+k}\} \xrightarrow{(1_C \wedge \alpha')^*} \{C \wedge S^{2r}, N_\alpha \wedge S^{r+k}\} \xrightarrow{(1_C \wedge \alpha')^*} \{C \wedge S^{2r}, N_\alpha \wedge S^{r+k}\} \xrightarrow{(1_C \wedge \alpha')^*} \{C \wedge S^{2r}, N_\alpha \wedge S^{r+k}\} \xrightarrow{(1_C \wedge \alpha')^*} \{C \wedge S^{2r}, N_\alpha \wedge S^{r+k}\}$$

associated to (3.2), it follows that there exists an element $p_0'' \in \{C \land Q, N_{\alpha} \land S^{r+k}\}$ such that

$$p_0''(1_C \wedge i') = (i_0 \wedge 1_S r^{r+k}) (\pi \wedge 1_S r^{2r})$$

= $(i_0 \wedge 1_S r^{r+k}) T(S^{r+k}, S^{2r}) (\pi \wedge 1_S r^{2r}).$

Consider the Puppe's exact sequence

$$\longrightarrow \{C \land S^{2r+2k}, Q \land S^{r+k}\} \xrightarrow{(1_C \land \pi')^*} \{C \land Q, Q \land S^{r+k}\} \xrightarrow{(1_C \land i')^*} \{C \land S^{2r}, Q \land S^{r+k}\}.$$

Since

$$(1_{C} \wedge i')^{*}(1_{Q} \wedge \pi)T(C, Q) = (1_{Q} \wedge \pi)T(C, Q) (1_{C} \wedge i')$$

= $(\pi_{1} \wedge 1_{S^{r+k}}) (i_{0} \wedge 1_{S^{r+k}})T(S^{r+k}, S^{2r}) (\pi \wedge 1_{S^{2r}})$
= $(\pi_{1} \wedge 1_{S^{r+k}})p_{0}''(1_{C} \wedge i')$
= $(1_{C} \wedge i)^{*}((\pi_{1} \wedge 1_{S^{r+k}})p_{0}''),$

it follows from the exactness of the above sequence that

$$(\pi_1 \wedge 1_{S^{r+k}}) p_0'' - (1_Q \wedge \pi) T(C, Q) \in (1_C \wedge \pi')^* \{C \wedge S^{2r+2k}, Q \wedge S^{r+k}\}.$$

Since $(\pi_1 \wedge 1_{S^{r+k}})_* : \{C \wedge S^{2r+2k}, N_{\alpha} \wedge S^{r+k}\} \longrightarrow \{C \wedge S^{2r+2k}, Q \wedge S^{r+k}\}$ is an epimorphism, we have

$$(\pi_1 \wedge 1_S r^{+k}) p_0'' - (1_Q \wedge \pi) T(C, Q) = (\pi_1 \wedge 1_S r^{+k}) d(1_C \wedge \pi')$$

for some $d \in \{C \land S^{2r+2k}, N_{\alpha} \land S^{r+k}\}$.

Now we put

$$p_{0}' = p_{0}'' - d(1_{C} \wedge \pi').$$

Then p_0' satisfy (3.3) and (3.5).

Discussing the Puppe's exact sequence associated with the cofibration (3.2), we have

$$(1_{\mathcal{C}}\wedge\pi')^*:\{\mathcal{C}\wedge S^{2r+2k},\ \mathcal{C}\wedge S^{2r+2k}\}\cong\{\mathcal{C}\wedge Q,\mathcal{C}\wedge S^{2r+2k}\}.$$

Thus from Lemma 2.2 of [I] we can put

(*)
$$(\pi_0 \wedge 1_S r^{*k}) p_0' = a(1_C \wedge \pi') + (i \wedge 1_S r^{*k}) e(1_C \wedge \pi')$$

for some $e \in \{C \land S^{2r+2k}, S^r \land S^{2r+2k}\}$ and some integer *a*. Composing $\pi \land 1_{S^{2r+2k}}$ on both sides of (*) from left, we have

$$(\pi \wedge 1_S^{2r+2k}) (\pi_0 \wedge 1_S^{r+k}) p_0' = (\pi' \wedge 1_S^{r+k}) (\pi' \wedge 1_S^{r+k}) p_0'$$
$$= (\pi' \wedge 1_S^{r+k}) (1_Q \wedge \pi) T(C, Q)$$
$$= \pi \wedge \pi'$$

and

$$(\pi \wedge 1_{S^{2r+2k}})$$
 $(a(1_C \wedge \pi') + (i \wedge 1_{S^{2r+2k}}) e (1_C \wedge \pi')) = a(\pi \wedge \pi')$

Thus we see that a=1.

For $i \wedge 1_{S^{r+k}} = \pi_0 i_1'$

$$(\pi_0 \wedge 1_{S^{r+k}}) p_0' = 1_C \wedge \pi' + (\pi_0 \wedge 1_{S^{r+k}}) (i_1 \wedge 1_{S^{r+k}}) e (1_C \wedge \pi').$$

Now we put

$$p_0 = p_0' - (i_1 \wedge 1_S r^{+k}) e(1_C \wedge \pi').$$

Then we can see that p_0 satisfy the relations (3, 3) - (3, 5).

Lemma 3.6. For any $\beta' \in \{N_{\alpha}, C \land C\}$ satisfying $(1_C \land \pi)\beta' = \pi_0$, there exists an element $\kappa = \kappa_{\beta}, \in \{C \land Q, C \land N_{\alpha}\}$ such that

$$(3.6) \qquad (1_C \wedge \pi_0) \kappa = (\beta' \wedge 1_S r^{+k}) p_0 \text{ and } (1_C \wedge \pi_1) \kappa = 1_{C \wedge Q}.$$

Proof. From Lemma 3.5, we have

$$(\mathbf{1}_{C} \wedge (S^{\mathbf{i}} \alpha') \pi) (\beta' \wedge \mathbf{1}_{S}^{r+k}) p_{0} = (\mathbf{1}_{C} \wedge S^{\mathbf{i}} \alpha') (\mathbf{1}_{C} \wedge \pi \wedge \mathbf{1}_{S}^{r+k}) (\beta' \wedge \mathbf{1}_{S}^{r+k}) p_{0}$$
$$= (\mathbf{1}_{C} \wedge S^{\mathbf{i}} \alpha') (\pi_{0} \wedge \mathbf{1}_{S}^{r+k}) p_{0}$$
$$= (\mathbf{1}_{C} \wedge S^{\mathbf{i}} \alpha') (\mathbf{1}_{C} \wedge \pi')$$
$$= 0.$$

Thus from the exact sequence

$$\{C \land Q, C \land N_{\alpha}\} \xrightarrow{(1_{C} \land \pi_{0})_{*}} \{C \land Q, C \land C \land S^{r+k}\} \xrightarrow{(1_{C} \land (S^{1}\alpha')\pi)_{*}} \{C \land Q, C \land S^{2r+1}\}$$

it follows that there exists an element $\kappa' \in \{C \land Q, C \land N\alpha\}$ such that

$$(1_C \wedge \pi_0) \kappa' = (\beta' \wedge 1_S r^{+k}) p_0.$$

Now

Thus, for some element $x \in \{C \land Q, C \land S^{2r}\},\$

$$(1_C \wedge \pi_1) \kappa' - 1_{C \wedge Q} = (1_C \wedge i') x$$
$$= (1_C \wedge \pi_1) (1_C \wedge i_0) x,$$

because $i' = \pi_1 i_0$. Put

$$\kappa = \kappa' - (1_C \wedge i_0) x,$$

then

$$(1_C \wedge \pi_1)\kappa = (1_C \wedge \pi_1)\kappa' - (1_C \wedge \pi_1)(1_C \wedge i_0)\kappa = 1_{C \wedge Q}$$

and

$$\begin{aligned} (\mathbf{1}_C \wedge \pi_0) &= (\mathbf{1}_C \wedge \pi_0) \kappa' - (\mathbf{1}_C \wedge \pi_0) (\mathbf{1}_C \wedge i_0) x \\ &= (\beta' \wedge \mathbf{1}_S r^{r+k}) p_0. \end{aligned} \qquad \qquad \mathbf{q. e. d}. \end{aligned}$$

§ 4. Commutativity of μ_{α} for the case $1_C \wedge \alpha \neq 0$.

From Propositions 2.11 and 2.12 of [I], there exists an element β of $\{N_{\alpha}, C \land C\}$ which satisfies

(4.1)
$$(1_C \wedge \pi)\beta = (-1)^{r+k}\pi_0,$$

$$(4.2) \quad (1_C \wedge \pi) T\beta = \pi_0$$

and

(4.3)
$$T(1_{C} \wedge i) + (-1)^{r+k} (1_{C} \wedge i)$$

= $(-1)^{k(r+k)} \beta i_1(S^r \pi) + 1/2 \{(-1)^r + (-1)^{r+k}\} (i\overline{t} \wedge i) + (i \wedge i)g(S^r \pi)$

for some $g \in G_k$, where T = T(C, C).

Composing T = T(C, C) on both sides (4.3) from the left, it follows that

$$(4.4) T\beta i_1 - (-1)^{r+k}\beta i_1 = (-1)^{k(r+k)} \{(-1)^{r+k} + (-1)^{r+1}\} (i \wedge i)g,$$

since $(S^r\pi)^*$: $\{S^{2^r+k}, C \land C\} \longrightarrow \{C \land S^r, C \land C\}$ is an isomorphism into.

From (4.1) and (4.2), there exists an element of β_1 of $\{N\alpha, S^rC\}$ such that

(4.5)
$$T\beta - (-1)^{r+k}\beta = (1_C \wedge i)\beta_1.$$

Thus, it follows from (4.4) and (4.5) that

$$(1_{C} \wedge i)\beta_{1}i_{1} = (T\beta - (-1)^{r+k}\beta)i_{1}$$

= {(-1)^{(r+k)(k+1)} + (-1)^{(k+1)(r+1)}}(i \wedge i)g
= {(-1)^{k+1} + 1}(i \wedge i) g.

Since $(1_C \wedge i)_* : \{S^{2r+k}, C \wedge S^r\} \longrightarrow \{S^{2r+k}, C \wedge C\}$ is an isomorphism into, we obtain that

(4.6)
$$\beta_1 i_1 = \{(-1)^{k+1} + 1\} (i \wedge 1_S r) g.$$

Paticularly, if k is even, then $\beta_1 i_1 = 0$. Thus, from the exactness of Puppe's sequence

$$\{Q, S^rC\} \xrightarrow{\pi_1^*} \{N_{\alpha}, S^rC\} \xrightarrow{i_1^*} \{S^{2r+k}, S^rC\}$$

we obtain

Proposition 4.1. If k is even, then

$$(4.7) T\beta - (-1)^{r+k}\beta \in (1_C \wedge i) \{Q, S^r C\} \pi_1$$

If k is odd, we put

$$\beta = (-1)^{(r+1)(k+1)} n_0(\delta \wedge i) \pi_0 + (-1)^{r(r+k)} \zeta j$$

and if k is even, we put

$$\beta = (-1)^r (1 - n_0) (\delta \wedge i) \pi_0 + (-1)^{r(r+k)} \zeta j$$

(c. f., Propositions 2.11 and 2.12 of [I]).

Then this element satisfies (4.1), (4.2) and (4.3).

Proposition 4.2. For ordinary homology maps induced by $(-1)^{r+k}\beta$ and $T\beta$, we have

 $(T\beta)_* = (-1)^{r+k}\beta_*$ if k is even

and

 $(T\beta)_* \neq (-1)^{r+k}\beta_*$ if k is odd.

Proof. Let

$$\begin{pmatrix} e_r \wedge S_r \\ e_r \wedge S_{r+k} \\ e_{r+k} \wedge S_{r+k} \end{pmatrix} \qquad \begin{pmatrix} e_r \wedge e_r \\ e_r \wedge e_{r+k}, e_{r+k} \wedge e_r \\ e_{r+k} \wedge e_{r+k} \end{pmatrix}$$

be generators systems of groups $H_*(N\alpha)$ and $H_*(C \wedge C)$ respectively, where $e_i \wedge s_j$ and $e_i \wedge e_j$ are generators of $H_{i+j}(N\alpha)$ and $H_{i+j}(C \wedge C)$ respectively.

For ordinary homology maps $(\zeta j)_*$ and $(\delta \wedge i)_* \pi_{0*}$ induced by ζj and $(\delta \wedge i) \pi_0$, we have

NOBUHIRO ISHIKAWA and HIDEYUKI KACHI

$$(\zeta j)_* \left(\begin{array}{c} e_r \wedge s_r \\ e_r \wedge s_{r+k} \\ e_{r+k} \wedge s_{r+k} \end{array} \right) = \left(\begin{array}{c} e_r \wedge e_r \\ e_r \wedge e_{r+k} + ne_{r+k} \wedge e_r \\ e_{r+k} \wedge e_{r+k} \end{array} \right)$$

and

$$(\delta \wedge i)_* \pi_{0*} \begin{pmatrix} e_r \wedge s_r \\ e_r \wedge s_{r+k} \\ e_{r+k} \wedge s_{r+k} \end{pmatrix} = \begin{pmatrix} 0 \\ te_{r+k} \wedge e_r \\ 0 \end{pmatrix}.$$

For the ordinary homology map $T_*: H_*(C \wedge C) \longrightarrow H_*(C \wedge C)$ induced by a switching map $T: C \wedge C \longrightarrow C \wedge C$, we have

$$T_* \begin{pmatrix} e_r \wedge e_r \\ e_r \wedge e_{r+k}, e_{r+k} \wedge e_r \\ e_{r+k} \wedge e_{r+k} \end{pmatrix} = \begin{pmatrix} (-1)^r e_r \wedge e_r \\ (-1)^{r(r+k)} e_{r+k} \wedge e_r, (-1)^{r(r+k)} e_r \wedge e_{r+k} \\ (-1)^{r+k} e_{r+k} \wedge e_{r+k} \end{pmatrix}$$

Computing $(T\beta)_*$ and $(-1)^{r+k}\beta_*$, we obtain the results. q. e. d.

Consider the Puppe's exact sequence

$$\longrightarrow \{S^{2r+2k}, S^rC\} \xrightarrow{\pi'^*} \{Q, S^rC\} \xrightarrow{i'^*} \{S^{2r}, S^rC\} \xrightarrow{\alpha'^*} \{S^{2r+2k-1}, S^rC\}$$

associated to the fibration $S^{2r} \xrightarrow{\iota} Q \xrightarrow{\pi} S^{2r+2k}$. From this exact sequence and Lemma 2.1 of [I], it follows that

(4.8)
$$\{Q, S^{r}C\} \cong \{\alpha_{1}\} + \{S^{2r+2k}, S^{r}C\}\pi'$$
$$\cong Z + finite \ group,$$

where let t' be the order of $(S^r i)\alpha'$ and α_1 is defined by $\alpha_1 i' = t'(S^r i)$.

For the ordinary homology map $\alpha_{1*}: H_{2r}(Q) \longrightarrow H_{2r}(S^rC)$ induced by α_1 which is the generator of free part of $\{Q, S^rC\}$ we have the following relation

$$(4.9) \qquad \qquad \alpha_{1*}(e_{2r}) = t'e_r \wedge s_r \qquad (t' \neq 0)$$

where e'_{2r} and $e_r \wedge s_r$ are generators of $H_{2r}(Q)$ and $H_{2r}(S^rC)$ respectively.

Theorem 4.3. If k is even, then

$$T\beta = (-1)^{r+k}\beta + (1_C \wedge i)\varepsilon \pi' \pi_1$$

for some $\varepsilon \in \{S^{2r+2k}, S^rC\}$, where $\{S^{2r+2k}, S^rC\}$ is torsion group.

Proof. From Proposition 4.1 and (4.8), we can put

(*)
$$T\beta - (-1)^{r+k}\beta = a(1_C \wedge i)\alpha_1\pi_1 + b(1_C \wedge i)\varepsilon\pi'\pi_1$$

for some integers a and b.

From (*), we obtain the identity

$$(T\beta)_{*} - (-1)^{r+k}\beta_{*} = a(1_{C} \wedge i)_{*}\alpha_{1*}\pi_{1*}$$

of ordinary homology map. Thus, from Proposition 4.2 and (4.9), we see that a=0. q. e. d.

Let μ be the associative and commutative multiplication in \tilde{h}^* and μ_{α} an admissible multiplication in $\tilde{h}^*(;\alpha)$ constructed in §3 of [I] (assuming that $\alpha'^{**}=0$ and fixing an element β such that satisfies (4.1)-(4.3)).

For $x \in \widetilde{h}^i(X; \alpha)$ and $y \in \widetilde{h}^j(Y; \alpha)$, we put

(4.10)
$$\mu_{\alpha}(x \otimes y) = (-1)^{i(r+k)} \sigma^{-(r+k)} \varphi_{W}(1_{W} \wedge \beta)^{*} (1_{X} \wedge \mathrm{T}' \wedge 1_{C})^{*} \mu(\overline{x} \otimes \overline{y})$$

then μ_{α} is an admissible multiplication in $\tilde{h}^*(; \alpha)$, where $W = X \wedge Y$, T' = T(Y, C) and φ_W is defined on (3.7) of [I].

Put

$$\mu'_{\alpha}(x \otimes y) = (-1)^{ij} T''^* \mu_{\alpha}(y \otimes x)$$

for T'' = T(X, Y). μ'_{α} is also an admissible multiplication in $\tilde{h}^*(; \alpha)$. In fact by routine calculations making use of the commutativity of μ and the naturality of φ_W (Lemma 3.5 of [I]) etc., we see that

$$\mu'_{\alpha}(x\otimes y) = (-1)^{i(r+k)} \sigma^{-(r+k)} \varphi_{W}(1_{W} \wedge (-1)^{r+k} T\beta)^{*} (1_{X} \wedge T' \wedge 1_{C})^{*} \mu(\overline{x} \otimes \overline{y})$$

where T = T(C, C). Thus we have

Theorem 4.4. Let μ be the associative and commutative multiplication in \tilde{h}^* and assume that $\alpha'^{**}=0$ in \tilde{h}^* . If there exists an element β of $\{N_{\alpha}, C \land C\}$ satisfying (4.1) -(4,3) and the relation

$$(-1)^{r+k}(T\beta)^{**} = \beta^{**}$$

in \tilde{h}^* , then the admissible multiplication μ_{α} which is given by (4.10) is commutative.

Corollary 4.5. Suppose that k is even. Assume that $\alpha \in \pi_{r+k-1}(S^r)$ satisfies $1_C \wedge \alpha = (S^r i)\alpha'(S^{r+k-1}\pi) \neq 0$, $\tilde{t}\alpha = 0$ and t = 2. Let μ be the commutative and associative multiplication in \tilde{h}^* . If $\alpha'^{**} = 0$ and $\varepsilon^{**} = 0$ in \tilde{h}^* for any $\varepsilon \in \{S^{2r+2k}, S^rC\}$, then there exists a commutative admissible multiplication μ_{α} in $\tilde{h}^*(; \alpha)$.

Let η be the stable homotopy class of Hopf map $S^3 \longrightarrow S^2$ and $C_{\eta} = S^r \cup e^{r+2}$ be the mapping cone of η . Then we have

(4.11)
$$1_{C_{\eta}} \wedge \eta = (S^{r}i) (3v) (S^{r+1}\pi) \text{ and } 2\eta = 0$$

where v is the generator of stable homotopy group $\{S^{r+3}, S^r\}\cong Z_{24}$

Since $\{S^{r+4}, C_{\eta}\}=0$, we obtain

Corollary 4.6. (See Theorem 1.5 of [5]). Let μ be the commutative and associative multiplication in \tilde{h}^* . If $(3\upsilon)^{**}=0$, then there exists a commutative admissible multiplication in $\tilde{h}^*(; \eta)$.

§ 5. Associativity of μ_{α} for the case $1_C \land \alpha \neq 0$.

Under the assumption of $\alpha'^{**}=0$ in \tilde{h}^* , the exact sequence of \tilde{h}^* associated to the cofibration

$$W \wedge S^{2r} \xrightarrow{1_W \wedge i'} W \wedge Q \xrightarrow{1_W \wedge \pi'} W \wedge S^{2r+2k}$$

breaks into the following short exact sequence

$$(5.1) \qquad 0 \longrightarrow \widetilde{h}^m(W \wedge S^{2r+2k}) \xrightarrow{(1_W \wedge \pi')^*} \widetilde{h}^m(W \wedge Q) \xrightarrow{(1_W \wedge i')^*} \widetilde{h}^m(W \wedge S^{2r}) \longrightarrow 0$$

for any W and integer m. In paticular, for $W=S^0$ and m=2r, we can shoose an element $\varphi_1 \in \tilde{h}^{2r}(Q)$ such that

$$i'^*\varphi_1 = \sigma^{2r}(1).$$

Put

(5.2) $\varphi_0 = \pi_1^* \varphi_1.$

Then φ_0 satisfies the relations

 $i_0^* \varphi_0 = \sigma^{2r}(1)$ and $i_1^* \varphi_0 = 0$.

Then the multiplication μ_{α} constructed by making use above $\varphi_0 = \pi_1^* \varphi_1$ and $\beta \in \{N_{\alpha}, C \land C\}$ satisfying (4, 1)-(4, 3) is admissible from Theorem 3.9 of [I]. Now we discuss the associativity of such a multiplication μ_{α} .

For $x \in \widetilde{h}^m(W \wedge Q)$, we have

$$(1_{W} \wedge i')^{*} (x - \mu (\sigma^{-2r} (1_{W} \wedge i')^{*} x \otimes \varphi_{1})$$

= $(1_{W} \wedge i')^{*} x - \mu (\sigma^{-2r} (1_{W} \wedge i')^{*} x \otimes i'^{*} \varphi_{1})$
= 0.

By (5.1), $(1_W \land \pi')^*$ is isomorphism into. Thus we can define a homomorphism

$$\widetilde{\varphi}_W: \widetilde{h}^m(W \wedge Q) \longrightarrow \widetilde{h}^m(W \wedge S^{2r+2k})$$

by the formula

(5.3)
$$\widetilde{\varphi}_W(x) = (1_W \wedge \pi')^{*-1} (x - \mu (\sigma^{-2r} (1_W \wedge i')^* x \otimes \varphi_1))$$

for any W and $x \in \widetilde{h}^m(W \wedge Q)$.

Similarly as in Lemma 3.5 in [I], we see

Lemma 5.1. (i) $\widetilde{\varphi}_W$ is a left inverse of $(1_W \wedge \pi')^*$, i.e., $\widetilde{\varphi}_W (1_W \wedge \pi')^* = an$ identity map; hence the sequence of (5.1) splits:

$$\widetilde{h}^m(W \wedge Q) = \widetilde{h}^m(W \wedge S^{2r}) \oplus \widetilde{h}^m(W \wedge S^{2r+rk}).$$

(ii) $\widetilde{\varphi}_W$ is natural in the sense that

$$(f \wedge 1_{S^{2r+2k}})^* \widetilde{\varphi}_W = \widetilde{\varphi}_W (f \wedge 1_Q)^*$$

where $f: W' \longrightarrow W$.

(iii) $\widetilde{\varphi}_W$ is compatible with the suspension in the sense that

$$(1_W \wedge T_1)^* \sigma \widetilde{\varphi}_W = \widetilde{\varphi}_{W \wedge S^1} (1_W \wedge T_2)^* \sigma$$

where $T_1 = T(S^1, S^{2r+2k})$ and $T_2 = T(S^1, Q)$.

Lemma 5.2. For the element $p_0 \in \{C \land Q, N_{\alpha} \land S^{r+k}\}$ of Lemma 3.5 there holds the relation

$$\widetilde{\varphi}_{W\wedge C}(1_W\wedge p_0)^* = \sigma^{r+k}\varphi_W\sigma^{-(r+k)}$$

where φ_W is defined on (3.7) of [I].

Proof. For any $x \in \widetilde{h}^m(W \wedge N_\alpha \wedge S^{r+k})$ we have

$$\begin{aligned} (1_{W\wedge C} \wedge \pi')^* \sigma^{r+k} \varphi_W \sigma^{-(r+k)}(x) \\ &= (1_{W\wedge C} \wedge \pi')^* \sigma^{r+k} (1_W \wedge \pi_0)^{*-1} (\sigma^{-(r+k)} x - \mu (\sigma^{-2r} (1_W \wedge i_0)^* \sigma^{-(r+k)} x \otimes \varphi_0)) \\ &= (1_{W\wedge C} \wedge \pi')^* (1_W \wedge S^{r+k} \pi_0)^{*-1} (x - \sigma^{r+k} \mu (\sigma^{-2r} (1_W \wedge i_0)^* \sigma^{-(r+k)} x \otimes \varphi_0)) \\ &= (1_W \wedge p_0)^* x - (1_W \wedge p_0)^* \sigma^{r+k} \mu (\sigma^{-2r} (1_W \wedge i_0)^* \sigma^{-(r+k)} x \otimes \pi_1^* \varphi_1) \end{aligned}$$
 by (3.4)

Now

Thus we have

$$(1_{W\wedge C}\wedge \pi')^* \sigma^{r+k} \varphi_W \sigma^{-(r+k)} x = (1_W \wedge p_0)^* x - \mu (\sigma^{-2r} (1_{W\wedge C} \wedge i')^* (1_W \wedge p_0)^* x \otimes \varphi_1)$$
$$= (1_{W\wedge C} \wedge \pi')^* \widetilde{\varphi}_{W\wedge C} ((1_W \wedge p_0)^* x).$$

Since $(1_{W \wedge C} \wedge \pi')^*$ is monomorphic, we have the result

Lemma 5.3. For $\beta' \in \{N\alpha, C \land C\}$ and $\kappa = \kappa_{\beta'} \in \{C \land Q, C \land N_\alpha\}$ of Lemma 3.6, there holds the relation

$$\varphi_W(1_W \wedge \beta')^* \sigma^{-(r+k)} \varphi_{W \wedge C} = \sigma^{-(r+k)} \varphi_{W \wedge C}(1_W \wedge \kappa)^*.$$

Proof. For $x \in \widetilde{h}^m(W \wedge C \wedge N_\alpha)$, we put

$$x' = \mu(\sigma^{-2r}(1_{W \wedge C} \wedge i_0)^* x \otimes \varphi_1) \in h^*(W \wedge C \wedge Q).$$

Then we have

(5.4)
$$(1_{W\wedge C} \wedge \pi_0)^* \varphi_{W\wedge C} x = x - \mu (\sigma^{-2r} (1_{W\wedge C} \wedge i_0)^* x \otimes \pi_1^* \varphi_1)$$
$$= x - (1_{W\wedge C} \wedge \pi_1)^* x'$$

and

(5.5)
$$(1_{W\wedge C}\wedge i')^*x' = \mu(\sigma^{-2r}(1_{W\wedge C}\wedge i_0)^*x\otimes i'^*\varphi_1)$$
$$= \sigma^{-2r}\mu((1_{W\wedge C}\wedge i_0)^*x\otimes i'^*\varphi_1)$$
$$= (1_{W\wedge C}\wedge i_0)^*x \qquad \text{by } i'^*\varphi_1 = \sigma^{2r}(1).$$

Thus we obtain

(5.6)
$$\widetilde{\varphi}_{W\wedge C} x' = (1_{W\wedge C} \wedge \pi')^{*-1} (x' - \mu (\sigma^{-2r} (1_{W\wedge C} \wedge i')^* x' \otimes \varphi_1))$$
$$= (1_{W\wedge C} \wedge \pi')^{*-1} (x' - \mu (\sigma^{-2r} (1_{W\wedge C} \wedge i_0)^* x \otimes \varphi_1)) \qquad \text{by (5.5)}$$
$$= 0.$$

 $\mathbf{N}\mathbf{o}\mathbf{w}$

$$\begin{split} \varphi_{W}(\mathbf{1}_{W\wedge C}\wedge\beta')^{*}\sigma^{-(r+k)}\varphi_{W\wedge C}x &= \varphi_{W}\sigma^{-(r+k)}(\mathbf{1}_{W}\wedge\beta'\wedge\mathbf{1}_{S}{}^{r+k})^{*}\varphi_{W\wedge C}x \\ &= \sigma^{-(r+k)}\widetilde{\varphi}_{W\wedge C}(\mathbf{1}_{W}\wedge\beta_{0})^{*}(\mathbf{1}_{W}\wedge\beta'\wedge\mathbf{1}_{S}{}^{r+k})^{*}\phi_{W\wedge C}x \qquad \text{by Lemma 5.2} \\ &= \sigma^{-(r+k)}\widetilde{\varphi}_{W\wedge C}(\mathbf{1}_{W}\wedge\kappa)^{*}(\mathbf{1}_{W\wedge C}\wedge\pi_{0})^{*}\varphi_{W\wedge C}x \qquad \text{by Lemma 3.6} \\ &= \sigma^{-(r+k)}\widetilde{\varphi}_{W\wedge C}(\mathbf{1}_{W}\wedge\kappa)^{*}(x-(\mathbf{1}_{W\wedge C}\wedge\pi_{1})^{*}x') \qquad \text{by (5.4)} \\ &= \sigma^{-(r+k)}\widetilde{\varphi}_{W\wedge C}(\mathbf{1}_{W}\wedge\kappa)^{*}x-x') \qquad \text{by Lemma 3.6} \\ &= \sigma^{-(r+k)}\widetilde{\varphi}_{W\wedge C}(\mathbf{1}_{W}\wedge\kappa)^{*}x \qquad \text{by (5.6).} \\ \end{aligned}$$

For any element $\omega \in \{C \land Q, C \land C \land C\}$ we define a triple *product*

(5.7)
$$\tau_{\omega}: \widetilde{h}^{i}(X; \alpha) \otimes \widetilde{h}^{j}(Y; \alpha) \otimes \widetilde{h}^{l}(Z; \alpha) \longrightarrow \widetilde{h}^{i+j+l}(W; \alpha)$$

as composition

$$\begin{aligned} \tau_{\omega} &= (-1)^{j(r+k)} \sigma^{-2(r+k)} \widetilde{\varphi}_{W \wedge C} (1_{W} \wedge \omega)^{*} U^{*} \mu (1 \otimes \mu) : \\ \widetilde{h}^{i}(X; \alpha) \otimes \widetilde{h}^{j}(Y; \alpha) \otimes \widetilde{h}^{l}(Z; \alpha) &= \widetilde{h}^{i+r+k} (X \wedge C) \otimes \widetilde{h}^{j+r+k} (Y \wedge C) \otimes \widetilde{h}^{l+r+k} (Z \wedge C) \\ & \longrightarrow \widetilde{h}^{i+j+l+3(r+k)} (X \wedge C \wedge Y \wedge C \wedge Z \wedge C) \\ & \longrightarrow \widetilde{h}^{i+j+l+3(r+k)} (W \wedge C \wedge C \wedge C) \\ & \longrightarrow \widetilde{h}^{i+j+l+3(r+k)} (W \wedge C \wedge S^{2r+2k}) \\ & \longrightarrow \widetilde{h}^{i+j+l+r+k} (W \wedge C) = \widetilde{h}^{i+j+l} (W : \alpha) \end{aligned}$$

where $W=X\wedge Y\wedge Z$ and $U: W\wedge C\wedge C\wedge C \longrightarrow X\wedge C\wedge Y\wedge C\wedge Z\wedge C$ is the map given by a permutation of factors as $U(x, y, z, c_1, c_2, c_3) = (x, c_1, y, c_2, z, c_3)$. τ_{ω} is defined for all (i, j, l) and natural with respect to three variable X, Y and Z. $\tau_{\omega}=\tau_{\omega'}$ if and only if they are equal as natural transformations for all (i, j, l). Clerly

$$\tau_{\omega+\omega'}=\tau_\omega+\tau_{\omega'}$$

Let $\beta \in \{N_{\alpha}, C \land C\}$ be an element satisfying (4, 1)-(4, 3) and μ_{α} be the multiplication in $\tilde{h}^*(; \alpha)$ defined by (3, 8) of [I] by making use of this β and φ_0 of (5, 2). Let κ_0 be the element which satisfy (3, 6) for $\beta_0 = (-1)^{r+k}\beta$.

Lemma 5.4. $\mu_{\alpha}(1 \otimes \mu_{\alpha}) = \tau_{\omega_0}$ for $\omega_0 = (1_C \wedge \beta)\kappa_0$.

Proof. By definition,

 $= \tau_{\omega_0}(x \otimes y \otimes z),$

where $x \in \widetilde{h}^i(X; \alpha)$, $y \in \widetilde{h}^j(Y; \alpha)$ and $z \in \widetilde{h}^l(Z; \alpha)$. q. e. d.

Let κ_1 be the element which satisfy (3.6) for $T\beta$ where T = T(C, C).

Lemma 5.5. $\mu_{\alpha}(\mu_{\alpha}\otimes 1) = \tau_{\omega_1}$ for $\omega_1 = T'(1_C \wedge \beta)\kappa_1$, where $T' = T(C, C \wedge C)$.

Proof. By definition, on $\tilde{h}^i(X; \alpha) \otimes \tilde{h}^j(Y; \alpha) \otimes \tilde{h}^l(Z; \alpha)$ we have

 $= \tau_{\omega_1}$

From above Lemmas, $\tau_{\omega_0} - \tau_{\omega_1} = (-1)^{j(r+k)} \sigma^{-2(r+k)} \varphi_{W \wedge C} \{(1_W \wedge \kappa_0)\}^* (1_{W \wedge C} \wedge \beta)^* - (1_W \wedge \kappa_1)^* (1_{W \wedge C} \wedge \beta)^* (1_W \wedge T')^* \} U^* \mu (1 \otimes \mu)$, then we have

Theorem 5.6. Let μ be a commutative and associative multiplication in \tilde{h}^* , and assume that $\alpha'^{**}=0$ in \tilde{h}^* . Suppose that there exists an element β satisfying (4, 1)–(4, 3). Let κ_0 and κ_1 be the elements of Lemma 3.5 for $(-1)^{r+k}\beta$ and $T\beta$ respectively. If β , κ_0 and κ_1 satisfy the relation

99

q. e. d.

NOBUHIRO ISHIKAWA and HIDEYUKI KACHI

(5.8) $(T'(1_C \wedge \beta)\kappa_1)^{**} = ((1_C \wedge \beta)\kappa_0)^{**}$

in \tilde{h}^* , then the admissible multiplication μ_{α} (defined by (3.8) in [I] by making use of β and φ_0 (5.2)) is associative.

By Lemmas 3.1, 3.2 and Proposition 3.4, we obtain that if $\omega^* = \omega'^*$ as ordinary homology maps for $\omega, \omega' \in \{C \land Q, C \land C \land C\}$ then $\omega - \omega'$ is an element of finite order. Put $\omega' = T'(1_C \land \beta)\kappa_0$ and $\omega_0 = (1_C \land \beta)\kappa_0$. Since $\omega_0^* = \omega'^*$ in ordinary homology, we obtain

$$\tau_{\omega_0} - \tau_{\omega'} = \tau_\varepsilon$$

for some $\varepsilon' \in \{C \land Q, C \land C \land C\}$ which is an element of finite order.

If k is even, making use of Theorem 4.3, Lemma 3.5 and Lemma 3.6, we have

(5.9)
$$(1_C \wedge \pi_0) \kappa_1 = (T\beta \wedge 1_S r^{+k}) p_0$$
$$= ((-1)^{r+k} \beta \wedge 1_S r^{+k}) p_0 + (1_C \wedge i) \varepsilon \pi' \pi_1 \wedge 1_S r^{+k}) p_0$$
$$= ((-1)^{r+k} \beta \wedge 1_S r^{+k}) p_0 + ((1_C \wedge i) \varepsilon (S^{r+k} \pi) \pi_0 \wedge 1_S r^{+k}) p_0$$
$$= (1_C \wedge \pi_0) \kappa_0 + (1_C \wedge S^{r+k} i) (S^{r+k} \varepsilon) (\pi \wedge \pi').$$

And, we obtain

$$\widetilde{\varphi}_{W\wedge C}(1_{W}\wedge\kappa_{1})^{*} = \widetilde{\varphi}_{W\wedge C}(1_{W}\wedge\kappa_{1})^{*}(1_{W\wedge C}\wedge\pi_{0})^{*}\varphi_{W\wedge C}$$

by (5.4), (5.6) and Lemma 3.6
$$=\widetilde{\varphi}_{W\wedge C}\{(1_{W}\wedge\kappa_{0})^{*}(1_{W\wedge C}\wedge\pi_{0})^{*}+(1_{W}\wedge\pi\wedge\pi')^{*}(1_{W}\wedge S^{r+k}\varepsilon)^{*}(1_{W\wedge C}\wedge S^{r+k}i)^{*}\}\varphi_{W\wedge C}$$

by (5.9)
$$=\widetilde{\varphi}_{W\wedge C}(1_{W}\wedge\kappa_{0})^{*}+\varphi_{W\wedge C}(1_{W}\wedge\pi\wedge\pi')^{*}(1_{W}\wedge S^{r+k}\varepsilon)^{*}(1_{W}\wedge S^{r+k}i_{1})^{*}$$

by (v) of Lemma 3.5 of [I].

Then

$$\tau_{\omega_1} = \tau_{\omega'} + (-1)^{j(r+k)} \sigma^{-2(r+k)} \widetilde{\varphi}_{W \wedge \mathcal{C}}(\pi \wedge \pi')^{**} \varepsilon^{**} i_1^{**} (1_W \wedge \beta)^* (1_W \wedge T')^* U^* \mu(1 \otimes \mu).$$

Thus we have the following theorem as a corollary of Theorem 5.6.

Theorem 5.7. Suppose that k is even. Assume that $\alpha \in \pi_{r+k-1}(S^r)$ satisfies $1_C \wedge \alpha = (S^r i)\alpha'(S^{r+k-1}\pi) \neq 0$, $\tilde{t}\alpha = 0$ and t=2. Let μ be the commutative and associative multiplication in \tilde{h}^* . If $\alpha'^{**}=0$, $\varepsilon^{**}=0$ and $\varepsilon'^{**}=0$ in \tilde{h}^* for any $\varepsilon \in \{S^{2r+2k}, S^rC\}$ and $\varepsilon' \in finite group of <math>\{C \wedge Q, C \wedge C \wedge C\}$, then there exists a commutative and associative multiplication μ_{α} in $\tilde{h}^*(; \alpha)$.

Put $\alpha = \eta$. Then we have $\{S^{r+4}, C_{\eta}\}=0$ and Tor $\{C_{\eta} \land Q, C_{\eta} \land C_{\eta} \land C_{\eta}\}=0$. Thus we have

Corollary 5.8 (See Theorem 1.6 of [5]). Let μ be the commutative and associative multiplication in \tilde{h}^* . If $(3\upsilon)^{**}=0$, then there exists an associative admissible multiplication in $\tilde{h}^*(;\alpha)$.

101

References

- S. ARAKI and H. TODA, Multiplicative structures in mod q cohomology theories I, and II, Osaka J. Math., 2(1965), 71-115, and 3(1966), 81-120.
- [2]. N. ISHIKAWA, Multiplications in cohomology theories with coefficient maps, J. Math. Soc. Japan, 22(1970), 456-489.
- [3]. , Existence of admissible multiplication in η^2 -coefficient cohomology theories, Math. Rep. College General Education Kyushu Univ., vol. VIII (1971), 1–9.
- [4]. H. TODA, Composition methods in homotopy groups of spheres, Ann. of Math. Studies., No. 49, Princeton, 1962.
- [5]. N. ISHIKAWA, On commutativity and associativity of multiplications in η-coefficient cohomology theories, Math. Rep. College General Education Kyushu Univ., VIII (1972), 29-42.
- [I]. ——— and H. KACHI. On the admissible multiplication in α-coefficient cohomology theories, J. Fac. of Sci. Shinshu Univ., 11 (1976), 1-17.