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                              Imtreductien

   In the previous paper [I] with the same title we discussed the admissible multipli-

cations in cr-coefficient cohomology theories and we gave a suthcient condition for

existence of admissible multiplication in the case crEzr+le-i(Sr) satisfies lcAa==

(sri)crr(sr+le'tz) and t'W(skev)=o.

   This paper is the continuations of [I] and is devoted to the discussion of com-

mutativity and associativity of admissible multiplication pt. which is given by [I].

   In gl and g2, we discuss the associativity and commutativity of pt. in the

case lcAa=O. For the case lcAcr;O, we discuss in g3 to g5.

   We use all notations and notions defined in [I].

                    g1. Preparatiom for case lcAa==O.

   Let a be the homotopy class of a stable map g: S'"le-'-Sr (le>1) of order t.

Since the stable hQmotopy type of the mapping cone of g depends only on cr we

denote as

                          Ca ::= S' U gC(Sr+k "'i).

For simplicity we denote C==Ca.

   Now we consider the stable element crE{Sr'h"i, Sr} satisfying

(1.1) lcAev=O and 7(Ska)=O.
Then there exists a homotopy equivalence 6:CAC--M=SrCvSr"kC and let

C : M--->CAC be a homotopy inverse of g.

   Let

                       rr,-i : sr+kc-M
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and

                     io' : Na-SptC

be the inclusion and the map collapsing Sr"kC, respectively.

   Put

                  in ==c rcsi : sr+feceCAC

                  rr" == io'6: CAC---->src,

then we obtain the relations

(1.2) T"i"==O, x"(lcAi)=lsrc and (lcAT)i"=ls"kc.

   Then we see immediately

   Lewama Z. 1. (lcArt)*, (lcAi)*, z"* and i"* are monomorPhic and we have

following direct sum decomPositions ;

(i) {VV, CAC}=(lcAi),{VV, SrC} Oit'.{pv, sr+kc},
(ii) {CAC, VV}=(lcArc)*{Sr+leC, VV} (D zn*{SrC, W}

for any VV, and in Particular

(iii) {CAC, CAC}=(lcAi)*(lcAff)*{Sr+hC, SrC} O (lcAi),x"*{SrC, SrC}

                 O i",(lcAn)*{Sr+leC, Sr+leC} O i"*rrn*{src, sr+fec}.

   From Lemma 1.1 and Lemma 2.2 of [I],

   Corollary 1. 2. We have the following direct sum decomPosition

     {Sr+kC, CAC}=(lcAi),{sr+kc, src} e in.{sr+hc, sr+lec}

                ={tiAi}+{i"}+{i"(inAlsr+k)} + finite grouP

                or Z+Z+Z+finite grouP

and the relations

         i"(sr+ki)=4o, in(sr+k(7T))(sr+hi)=o and (tiAi) (Sr+lei)=7Ai.

   In this section, we consider only the element rdi{Sr'leC, CAC} satisfying

following relations

(L 3) (lcArr)r =: (-1)r+lelsr+lec,

(1. 4) (lcArr)Tr= lsr+lec

and

(1. s) T(lcAi)+(-1)r+k(lcAi)

      .=(-1)k(r÷fe)r(Sr+hi)(srx)+112{(-1)r+(-1)r+le}(itAi)+(iAi)g(Srrc)

for some gGGfe!(va) (see Proposition 2.9 of [I]) and T:=T(C,C).

   By Corollary 1.2, we can put

the

the
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(*) r=(lcAi)ai+i"a2
with aicii{Sr"hC, SrC} and a2Eii{S"kC, Sr'kC}. Compose (lcAT) on both sides of

(*) from the left, then we get

                     (-1)r+klsr+kc=::(lcAz)r by (1.3)
                                =(lcArr)i"a2=a2 by (1.2).

   Maklng use of Lemma 2.8 of [I] and the fact that eoi" ==O, we have

            (lcAT)Ti":=(-1)"'fe(lcAre)i"-n'(i-tArc)i"+(-1)r(r+k)(Sr+lei)6oi"

                    :=(-1)r'lelsr+kc-n'(itAlsr+k) by (1.2),

and

                   (lcAz)T(lcAi)=(-1)r(r+le)(sr+ki)(srrc).

Now compose (lcArr)T on (*) from the left. Using the above remarks, we have

      lsr+fec==(lcAn)Tr

            ==(1cAn)T(1cAi)ai+(1cArr)Ti"a2

            ..:<-1)r(r+k) (Sr+ki) <S,'rc)ai+lsr+kc-(-1)r'kn'(itAlsr+k).

Thus,

               (-1)r(r+k)(sr+ki)(Srrt)ai=(-1)r+kn'(itAlsr+k).

since (Sr+fei), : {Sr+leC, SrASr'k}----,x{Sr'kC, CASr'h} is an isomorphism into, we

have

                   (Srrc)al==(-1)(r+1)(r,le)n'(tAlsr+k). .

If 7(Skcr)=O, then, from (2. 3) of [I], there exists an element a of {SkC, C} satisfying

the relation

                          (srrc) (sr6) ==sr+kli.

Thus we have

                   (Srrr)ai==(-1)(r+i)(r+fe)nt(srrr)(sr6).

Therefore we can put

            ai=(-1)(r+i)(r+le)nt(Srs) mod (Sri).{Sr+kc, S2r}

     (or ai==(-1)("i)("k)n'(Srti)+(S"i)g, for some g,E{Sr'kC, S2'})

where {Sr"leC, S2'} is torsion group.,

   Propositiom 1.3. Assume that 7(Slea)=O. Let rE{Sr'leC, CAC} be an element

satis.11ying (1.3) and (1.4). Then there holds the relation

(1.6) r=(-1)r+hi"+(-1)(r+i)(r+k)n'(6Ai)+(iAi)g,

for some g,E{Sr+feC,S2r}.
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   Let r be an element satisfying (1. 3) and (1. 4). By Lemma 1. 1, we can put

(**) Tr-- (lc Ai)bi + inb2
with bt E{Sr+kC, S'C} and b2 E{Sr'kC, Sr'kC}. Compose lcAT on both sides of

(**) from the teft, then, by (1.4) and (1. 2), we get

                          b2==lsr+fec.

Compose (lcArr)T from the left, then by the similary caluculation as in Proposi-

tion 1.3 we have

           bl=(-1)r+k(-1)(r+i)(r+le)n'(srs) mod (sri),{sr+kc,s2r}.

Thus, from Proposition 1.3, we obtain

   Proposition 1.4. Assume that 7(Ska)=O. Let r be an element satis.11ying (1.3)

and (1.4). Then

                  (-1)r+ieTr==:r mod (iAi),{sr+fec, s2r}

where T=T(C, C).

   Lemma 1.5. Let r be an element of {Sr"feC, CAC} satis.fiying (1.3). Then we

have

       (-1)r'le(lcAr) (rAlsr+k) =(rAlc) (lcAT') (rAlsr+k) mod G

where G= (lcAcAi)*{S2r'2feC, CACASpt} and T'=T(C, Sr+fe).

   Proof. By (1.3) and lcAc=lcAlc,

             (-1)"k(lcAcArc) (lcAr) (rAlsr+k)==rAlsr+k.

Compose (lcAcArc) on the right hand side from the left, we have

     (lcAcAr)(rAlc) (lcAT') (rAlsr+k)

           ==(rAlsr+k) (lcAsr+kAT)(lcAT') (rAlsr+k)

            =(rAlsr+k) (lcAT(Sr'k, Sr"k)) (lcATAIsr+k)(rAlsr+k)

            ==rAlsr+k by (1. 3).
                                                     IcAcAi
   From the exact sequence associated with cofibration CACAS" -o CACAC
lcAcArt
     . CACAsr+k ･
                 '
                                                   (lcAcAT)"                          (lcAcAi)"
     --,･ {s2r+2kC, cACASr} --> {S2r+2hC, CACAC} -.
                                         {S2r+2feC, CACASr+le}o

we obtain the result. q. e. d.
   Lemarna 1. 6. Let r be an element of {Sr"kC, CAC} satis.f2ying (1. 3) and (1. 4).

Then we have
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       (-1)"ie(lcAr) (rAlsr+k)=(rAlc) (lcAT') (rAlsr+k) mod G'

where G'==(lcAiAlc),{S2r'2kC, CAS'AC} and T'=T(C, Sr+le).

  Proof. We put T=T(C, C). We have

    (-1)r"h(lcATAIc) (lcAr) (rAlsr+k)

          =(-1)"k(lcAT') (lcAcAn) (lcAT) (lcAr) (rAlsr+k)

          =(-1)r"le(lcAT') (lcA(lcArr)Tr) (rAlsr+k)

          =(-1)'"k(lcAT')(rAlsr+k). by (L4).
On the other hand, by (1. 3),

          (lcAzAlc)(rAlc) (lcAT') (rAlsr+k)

               =((lcAz)(rAlc) (lcAT')(rAlsr+k)
               =(-1)"le (lcAT') (rAlsr+k).
                                             IcAiAlc
   From the exact sequence associated with cofibration CASrAC -> CACAC

lcAzAlc
     - CASr+kAC ;

                                          (lcArrAlc)*                    (lcAiAlc)"
   -{S2r+2leC, CASrAC} - {S2r+2kC, CACAC} -
                                   {S2r+2leC, CASr+leAC}-

we obtain Lemma. q. e. d.
   Propositiom 1.7. Letr be an element of {Sr'kC, CAC} satis.fiying (1.3) and

(1.4). Then we have

       (-1)r'le(lcAr) (rAlsr+k)=(rAlc)(lcAT') (rAlsr+k) mod G"

where G"==(lcAiAi)*{S2"'hC, CASrASr} and T':=T(C, Sr+k).

   Proo£ For simplicity we put a=(-1)"ie(lcAr) (rAlsr+k) and b=:(rAlc)
(lcAT') (rAlsr"k).

   From Lemmas 1. 5 and 1. 6,

                   a-b== (lcAlcAi)c
                       =:(1cAiA1c)c'

for some cE{S2r'2leC, CACASr} and c'ff{S2r+2leC, CASrAC}.

   Thus we have

          O=(lcATAIc) (lcAiAlc)c'=(lcAzAlc) (lcAlcAi)c

          =(lcAlsr+kAi)(lcAzAlsr)c.

Since (lcAlsr+kAi)* : {S2"2feC, CAS"kASr}-{S2r+2feC, CASr+kAC} is an iso-

morphism into, we have

                     (lcAxAlsr)c :O.
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Thus, from the hornotopy exact sequence associated with cofibration CASrAS'

lcAiAlsr lcArcAlsr
       -, CACAS' -> CASr'kASr, there exists an element c"E{S2r'2kC,

CAS'ASr} such that (lcAiAlsr)c"=c.

   Hence we obtain that

                  a-b=(lcAlcAi)c

                     =(lcAlcAi) (lcAiAlsr)c"

                      =(lcAiAi)c". q. e. d.

           g2. Commu£ativity and associativity for case lcAcr=O.
   Hereafter, we use the following convention:for each xEEfii(X; a) which is the

same as ht""k(XAC) by definintion, we denote x as I when we consider it as an

element of hA"i+r+le(xAc).

   Let ge be the associative and commutative multiplication in the reduced general-

ized cohomology theory {hN',a} defined on the category of finite CW-complexes and

{'hW"( ; a), acr} be the a-coetfLcient cohomology theory associated {h'`'",if} defined in [I].

   Making use of an element rE{S"kC,CAC, } we define a map

(2. 1) p. : %i (X; a) (g)%"(Y; cr) - hNi 'd(XA Y] a)

as the composition

           pt.=(-1)i(r'k)a-("k)(lxAyAr)* (lxAT"Alc)'pt

where T"=T(Y, C).

   For any element B={g} of {A, B}, P"":hN*(XAB) -} hA'"(XAA) is denoted by

P**=a""(1xAg)*an.

   Propositien 2. 1. If re{Sr'leC, CAC} satis.flyies

(2. 2) (Tr)** == (-1)r+kr**
in %" then the relation
    '
                     Ti'pt.(xopy) = (-1)"pt.(yXx)

laolds for xEh'(X; ev) and yEh'(Yi ev), where T==T(C, C) and Ti==T(Y, X).

   Proof. On ht(X;cr)(g>h'(Ma), we have

     Ti"pt.(xopy)=(-1)i(r'le)(TiAlc)*a-(r"k)(lxAyAr)"(lxAT"Alc)'pt(-topJ,)

     =(-1)i(r+fe)6-(r+h) (TiAlcAlsr+k)*(lxAyAr)*(lxAT"Alc)*ptrx<g)i)

     =(-1)i("le)a"(r"le) (lyAxAr)*(TiAlcAc)" (lxAT"Alc) "pt(Iil(E9I)

     =(-1)i(r+le)+r+fea-(r+le) (lyAxAr)*(lyAx AT)*(TiAlcAc) *(lxAT"Alc) *pt(I(E95Jl)

                                                        by (2. 2)

     =(-1)t(r+h)+r+feor"(r+le)(lyAxAr)*(lyAT(X,C)Alc)*T(YAC,XAC)"pt(xopy)

     =(-1),(r+k)+t]am(r+le)(lyAxAr)*(lyAT(X,C)Alc)"pt(y<g)x)
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                                               by commutativity of ps

      =(-1)t]pt.(y(2)x). q. e. d.
    As a consequence of Propositions 1.4, 2.1 and Theorem 3.3 of [I], we obtain

 the following Theorem.

    TheoTem 2.2 Assume that an elenzent aEzr+fe-i(S") satiskes (1. 1) and t=2 if

 k is even. if E"":=O in h* for any EEii{Sr'kC, S2'}, then there exists a commutative

 admissible multiplication in h""*( ; ev).

    Proposition 2. 3. IL7C rE{Sr"kC, CAC} satisies the relation

 (2. 3) (-1)"le(lcAr) (rAlsr÷k))'"=((rAlc) (lcAT') (rAlsr+k))*"

in h""" where T'=:T(C,Sr'le), then the maP pt. of (2. 1) satishes

                          pta(gecr(E91) =r ptcr(1(21>pta)-

    Proof. Put W=XAYAZ, the map U: TIZACACAC-XACAYACAZAC is
 given by permutation of factors as U(x, y, z, p, p', p")=(x, p, y, pi, z, p't).

       tN. evt A-    On h'(X) a) (E9h'(Z a)Xhi(Z; a), by the definition of pt. and a simple calculations,

 we obtain that

    ptcr(pta(E91)

      ==(-1),('+k)a-"(r'le)(lwAr)'(lxAyAT(Z,C)Alc)'

                            pt(a-(r'le) (lxAyAr)'(lxAT(Y, C)Alc)"ptXl)

      .=(-1)i'(r+k)a-2(r+le)(rAlsr+k)*"T(C,Sr"le)*'(rAlc)*"U"pt(ge(E91)

 and

    Fta(1(Eli)Ftcr)

      ..(-1)(iw')(r+le)a"(r'k)(1rvAr)'(lxAT(YAZ,C)Alc)'

                            pt(1(29a"(r'k)(lyAzAr)" (lyAT(Z, C)Alc)*pt)

      =(-o(j+i)(r+k)a"2("h)(rAlsr÷k)"(lcAr)"*U"pt(1(El)pt)･

 Thus, from the associativity of pt and (2. 3), it follows that

                          pacr(pt.(291) :=pt.(1<g>ps.). q.e.d.

    From Propositions 1. 7, 2. 3 and Theorem 3. 3 of [I], we obtain

    Theorem 2. 4. Let cr be an element of ffr+le-i(S') satisflying (1. 1) and t=2 if

le is even. I17C E"'=O in 7i" for any sE{S2r'2leC, S2rC}, then there exists an associa-

 tive admissible mzaltiplication in h'( ; cr).

    Let v be the stable homotopy class of Hopf map S3 - S2 and rp2==v(Srp) be a

generator of stable homotopy group {S'"2, S'}E:th. Then rp2 satisfy (1.1). From

 Theorem 3.3 of [I], there exists the admissible multiplication pt,2 in %"( ;rp2).
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   From Puppe's exact sequence associated with a cofibration

                             irr
                                   - Sr+3,                          Sr e Cn2

we obtain that

(2. 4) {s3c"2, sr} == {o2T}+{v}
                                  Ex th+k4

where v is the generator of stable homotopy group {Sr'3,Sr}I!th4 and v is defined

by v(S3i) ==v.

   Since rp2o2T==O and n2v==O, it follows that rr* : {S6Cop2, Cv2}-{S6Cv2, Sr"3} is

an epimorphisrn. Thus we have

   Corollary 2. 5. if s'" =O in h' for any Ecii{S6Cn2, Cn2}, then there exists a com-

mutative and associative admissible multiPlication in hN"( ;o2).

                  g3. Stable iiowaotopy ef some complexes

   In this section, Iet ct be the element of scr+k-i(S') satisfying

(3.1) lcAa==(S'i)a'(Sr'kT)IO and 7(Slea)==O

for some non-trivial element cr' of n2r+2le-i(S2r) and the integert such that ta=O

and t:==2 if le is even (cL Lemma 2.3 of [I]).

   We put ArLv::(S2rVS2r'fe)Ue2r'2le, where e2r"2k is attached to S2'VS2r'h by a

map represented by sum of a' and Sr"lea. Let Q be the mapping cone of a', i. e. ,

(?=S2rue2r+2k. Let i' : S2r-Q and T' :Q-S2"2k be the inclusion and the map

collapsing S2r respectively. Then we have a cofibration

                           lcAi' lcAT'
(3.2) CAS2r -> CAQ .CAS2r+2le.
   From Puppe's exact sequence associated with (3. 2) and Lemma 2. 2 of [I], we

obtain

   LemrrRa 3. Z. The grouPs {CAQ, CAS2r'j} are isomorPhic to the corresPonding

grouPs in the following table;

{CA(?, CAS2r--le}

{CAQ, cAs2r}

{CAQ, CAS2r+k}

{CAQ, CAS2r+2k}

{CAQ, CAS2r+3le}

{CAQ, CAs2r+1}

Z+finite grouP

Z+Z+finite group

Z+Z+finite gromp

Z+Z+finite gromp

Z

generators of free Part

u, v

6Ant, tv

YnArrl, lcAzt

(S2r+3ki)(rrAnt)

inite grotip fbr d;-k, O, le, 2fe, 3le.
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The elements za, v and w are de}17ned by za(lcAi')=tilc, v(lcAi')=t2trr and

w(lcAi')== t3(S2"ki)(S2rff) where ti, t2 and t3 are order of elements lcAcr', tbertAec'

and (lcAa')(Sfei)rr resPectively.

   Lemma 3. 2.

     {CA(?,CAQ}={tzAIQ}+{lcAQ} -i- {(lcAi')u}+{(lcAi')v}+ .17nite gromp

              =i Z+Z+Z+Z+finite grouP.

   Since the complex CAC is homotopically equivalent with the complex MUi,ev

e2r'le in stable range, we shall see that

           CACAC or CA(MUi,ae2"le) =Jt (CAAIL,)ufC(S2r+k-iC),

where f=lcAiocr. From the complex structure of M, ioct' is homotopic to iicr.

Thus we have

           f=lcAi,a==(lcAi,) (S2ri) (Srcr') (s2r+le-iT)

                   =(iAi,a') (S2r+ie-i.)

 ' =(iAi,cr) (S2r+h-i.)
             ' =(lcAi,) (S2r'lei) (S2r+fecr) (s2r+h-i.)

                   =o.

   Consider the cofibration

                       il Zl
                 s2r+le -Ai}, - Q,

we have

         CAAJL, )t CA(S2r+huan,C(S-iQ)) t (CAS2r+k)ugC(CAS-iQ),

where

           g=lcAcrrc'=(S2r+lei) (Sr+kcrr) (S2r+2le-in) (lcAS-izt)

                   .. (S2r+ki) (rtAarrc,)

                   =o.

Thus, we obtain

   Lemmaa 3.3. The comPlex CACAC is homotoPically equivalent with (S2'""leC)V

(CAQ)V(S2r'feC) in stable range.

   Then, from above Lemma, it foilows that

   Propositiom 3. 4.

      {CAQ, CACAC} =- {CAQ, S2r+leC}e{CAQ, CAQ}O{CAQ, s2r+iec}

                   f iEZ+Z+Z+Z+Z+Z+Z+Z+finite groztP.

   The following two lemmas will be used in the later sections.
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   Lemmaa 3. 5. PVle can choose an element P,E{CAQ, MASr'le} satis.f]ying the

relations'
      '
(3. 3) P,(lcAi')=(i,Alsr+k) (nAls2r),

(3. 4) (rc,Alsr+k)P, == lcAz'

and

(3. 5) (ff,Alsr+k)P,=(IQAT)T for T=T(C,Q).
   Proof. Since Ncr is the reduced mapplng cone of the map a'(Sr+h-irr) : Sr+h-iC

      (ioAlsr+k) (rrAls2r) (lcAa')=(ioAlsr+k) (cr'Alsr÷k) (TAIs2r+2k-i)

                           ==Sr+k(i,ctt(sr+k--1rc))

                           =o.

   From the Puppe's exact sequence

                         (lcAT')*                                              (lcAi')*
     -{cAs2r+2k,AiL,Asr+k} --- - {CAQ, AIdASr+fe} -･
                                                       (lcAa')"
                                        {CAS2r, MAS,'+le} -

associated to (3. 2), it follows that there exists an element P,"E{CAQ, MAS"le}

such that

           P,"(lcAi')=(i,Alsr+k) (nAls2r)

                  = (i,Alsr+k)T(Sr"le, S2r) (TAIs2r).

   Consider the Puppe's exact sequence

                     (lcAT')*                                          (lcAi')*
  -{CAS2r+2k,QASr+k} -> {CAQ, QASr+fe} ---)F {CAS2r, QASr+k}.

Since

     (lcAi')*(IQAz)T(C, Q)=(IQAz)T(C, Q) (lcAi')

                      =(ffiAlsr+k) (i,Alsr+k)T(S""k, S2') (xAls2r)

                      == (rtiAlsr÷k)P,"(lcAi')

                      =(1cAi)*((n,A1sr+k)P,"),

it follows from the exactness of the above sequence that

      (TiAlsr+k)P,"-(IQAz)T(C, Q)ei(lcArc')*{CAS2r+2le, QAsr÷k}.

Since (TiAlsr+k)* : {CAS2r"2fe, MASr'k} - {CAS2"2k, QASr+le} is an epimor-

phism, we have

           (rriA lsr'k)P,"m (IQAz) T(C, Q) = (T,Alsr+k)d(lcA rr')

for some dE{CAS2r+2h, ATlrAsr+le}.
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   Now we put

                         Po' [= Po"- d(lcAn').

Then P,' satisfy (3. 3) and (3. 5).

   Discussing the Puppe's exact sequence associated with the cofibration (3. 2),

have

             (lcAT')* : {CAS2r+2le, CAS2r+2k}t-):{CAQ,CAs2r+2le}.

Thus from Lemma 2.2of [I] we can put

(*) (T,Alsr+k)Po'=a(lcArr') -i- (iAls2r+2k)e(lcAz')

for some eE{CAS2"2k, SrAS2r'2h} and some integer a. Composing TAIs2r+2k

both sides of (*) from left, we heve

             (ffAls2r+2k) (zoAlsr+k)Po':= (x'Alsr+k) (rc'Alsr+k)Po'

                                 =(rr'Alsr+k) (IQAn)T(C, Q)

                                 ::=TArr'

and

             (rcAls2r+2k) (a(lcArc')+(iAls2r+2k) e (lcArr'))=a(rcArr').

Thus we see that a==1.

   For iAlsr+k== rreii'

             (T,Alsr+k)P,'=lcAT'+(TeAlsr+k) (iiAlsr+k) e (lcArr').

Now we put

                      Po=Po'-(iiAlsr+k)e(lcAx').

Then we can see that P, satisfy the relations (3. 3)-(3. 5).

   Lemma 3.6. For any P'E{Na･, CAC} satis.flying (lcArc)P'=rc,, there exists

element rc==mB,E{CAO, CAM} such that

(3. 6) (lcAn,)rc=(P'Alsr+k)P, and (lcATDrc==lcAQ.

   Proof. From Lemma 3.5, we have

       (lcA(S'cr')z) (P'Alsr+k)P,=(lcASiev') (lcArrAlsr+k) (P'Alsr+h)P,

                            =(lcASiev') (T,Als""k)Po

                           =(lcAS'a') (lcAre')

                           =o.

Thus from the exact sequence

                (lcArce)*   {cAQ,cAM} ----- --, {cAQ, cAcAsr+ie} (ICA(Sicr')rr2/-" {cAQ,cAs2r+i}

 it follows that there exists an element rc'E{CAQ, CAAiLv} such that
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                        (lcAz,)rc'==(P'Alsr+k)P,.

Now

        (lcArr') ((lcATi)rc'-lcAQ) =:= (lcAzAlsr+k) (lcAT,)rc'-lcAz'

                              := (lcAnAlsr+k) (P'Alsr+k)P,-lcArr'

                              =(rc,Alsr+k)P,-lcAT' by assumption

                              =O by (3. 4).
Thus, for some element xE{CAQ, CAS2r},

                   (lcArri)rc'-lcAQ=(lcAi')x

                                 =(lcArci) (lcAi,)x,

because i'=:niiG. Put '
                         m = rc'-(lcAie)x,

then

                (lcArcDrc =(lcAffDrc'-(lcArcD (lcAio)x == lcAQ

and
                                           '
                   (lcArr,) :== (lcArc,)ig'-(lcArr,) (lcAi,)x

                         =(P'Alsr+k)P,. q. e. d.

               g4. Cowamutativity of pt. for tke case lcAev7LO.

   From Propositions 2. 11 and 2. 12 of [I], there exists an element P of {M, CAC}

which satisfies

(4. 1) (lcArc)/3 =(-1)'"ferc,,

(4. 2) (lcAn) TP == n,

and

(4. 3) T(lcAi)+(-1)r'k(lcAi)

          -=(-1)k(r+le)Pii(Srrc)+112{(-1)r+(-1)r+le}(i-tAi)+(iAi)g(Srrr)

for some gEiiGfe, where T=:T(C, C).

   Composing T=T(C, C) on both sides (4. 3) from the left, it foltows that

(4.4) TPii-(-1)r+lePii=(-1)k(r+k){(-1)r+k+(-1)r+i>(iAi>g,

since (SrT)* : {S2r"le, CAC} ----. {CAS', CAC} is an isomorphism into.

   From (4. 1) and (4. 2), there exists an element of P, of {AJLv, S'C} such that

(4. 5) TP-(-1),'+kP =- (lcAi)P,.
Thus, it follows from (4.4) and (4.5) that
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                   '
          (lcAi)Piii-(TP-(-1)r+leP)ii

                  ..{(-1)(r+le)(k+i)+(-1)(le+i)(r+i)}(iAi)g

                  .. {(- 1)k+i+1} (iAi) } g.

Since (lcAi)* : {S2"k, CASr}-{S2r"fe, CAC} is an isomorphism into, we obtain

that

(4. 6) Piii =: {(-1)k"'+1} (iAlsr)gt

   Paticularly, if fe is even, then Piii[=O. Thus, from the exactness of Puppe's

sequence

                        rr1* il*
                           , {M, SrC} - {S2r+h, src}               {Q, src}

we obtain

   Propositiem 4. 1. LIC le is even, then

(4. 7) TP -(-1)r+lePG (lcAi) {Q, SrC} rr,,

   If fe is odd, we put

                   p=(-1)(r+!)(k+i)no(6Ai)T,+(-1)r(r+le)g7'

and if k is even, we put

                   P=(-1)r(1-no) (6Ai)Te+(-1)'"(r"le)Cl'

(c. f., Propositions 2. 11 and 2. 12 of [I]).

Then this element satisfies (4. 1), (4. 2) and (4. 3).

   Proposition 4. 2. For ordinary homology maPs induced by (-1)"kP and TP, we

have

                   (Tp),==(-1)r+kP, if le is even

and

                   (Tp),x(-1)r+kP, if fe is odd.

   Proof. Let

               (ilt',}lgk.,,) (S:",klxi,er"le"er)

be generators systems of groups H*(IVLv) and H*(CAC) respectively, where eiAsj

and eiAej are generators of H}'+j(M) and Hi+j(CAC) respectively.

   For ordinary homology maps (Ctl')* and (6Ai)*T,* inducecl by C7' and (6Ai)rr,, we
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               (cj),( ii.A",l.･rge,, ) - (ii;,S.,'x,+,ne.+kAe.)

and

                (6Ai)*rce*(kit,IA'r+,le.,, ) "= (ter+kOoAer)

   For the ordinary homology map T*:ca(CAC)-H*(CAC) induced by a
switching map T: CAC-CAC, we have

     T,(e.A,ee;JI+,",;,ee[;+,kAer)=( (mi)lllliil3,".e,',.,                             (-1)r(r+le)er+kAer, (-1)'('"k)erAer+k )

Computing (TP)* and (-1)"leP,t,, we obtain the results. ' q. e. d.

   Consider the Puppe's exact sequence

                     zt* it* crl*     -{s2r+2k, SrC} -m, {Q,SrC} .- {S2r,                                              - {s2r+2k-i, S,'C}                                         src}
                            it T'
associated to the fibration S2r . Q - S2r'2le. From this exact sequence and

Lemma 2.1 of [I], it follows that

(4. 8) {Q,SrC}E.l:{cr,}+{S2r+2k, SrC}z,
                            El:Z+Lfinite grouP,

where Iet t' be the order of (Sri)ev' and ai is defined by aii'=t'(Sri).

   For the ordinary homology map ai* : thr(Q)-thr(S'C) induced by ai which

is the generator of free part of {Q, SrC} we have the following relation

(4. 9) ai*(e'2r)=t'erAsr (t'#O)
where e'2r and erAsr are generators of thr(Q) and lhr(SrC) respectively.

   Theorem 4. 3. ifkis even, then .

                      Tp.=(-1)r+kP+(lcAi)sT'rri

for some sE{S2r"2le, SrC}, where {S2r'2le, SrC} is torsion grouP.

   Preof. From Proposition 4. 1 and (4. 8), we can put

(*) TP-(-1)r'leP:=a(lcAi)crpti+b(lcAi)Err'ni

for some integers a and b.

   From (*), we obtain the identity

                    (Tp).ww(-1)r+kP.=a(lcAi)*ai*Ti*
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of ordinary homology map. Thus, from Proposition 4.2 and (4.9), we see that

   Let y be the associative and commutative multiplication in h" and ge. an admi-

ssible multiplication in h"( ; cr) constructed in ss 3 of [I] (assuming that a'*"=O and

fixing an element P such that satisfies (4. 1)-(4. 3)).

          N. "-v.   For xEiiht(X; a) and yciih'(}i ev), we put

(4.lo) pt.(xopy)=(-1)t(r+fe)a-(r+k)grv(lwAP)*(lxAT'Alc)*pt(x<21>y)

then ps. is an admissible multiplication in %"( ; cr), where W==XAY, T':=:T(Y, C) and

9w is defined on (3. 7) of [I].

   Put

                      rt'.(x(2i)y)==(-1)"T""tt.(yCili)x)

for T"=T(X, Y). pt'. is also an admissible multiplication in h*( ;a). In factby rou-

tine calculations making use of the commutativity of p and the naturality of 9ur

(Lemma 3.5 of [I]) etc., we see that

      pt,.(xxy)=(-1)i(r+le)o-(r+k)gva(1vaA(-1)r+le7119)*(lxAT'Alc)*pt(xopy)

where T=T(C,C). Thus we have

   Tkeorem 4.4, Let pt be the associative and commutative multiPlication in %* and

assume that a'**=O in %". ILf there exists an element P of {M, CAC} satisjZying (4. 1)

-(4. 3) and the relation

                           (-1)r+le(Tp)**-p*"

in %*, then the admissible multiPlication y. zvhich is given by (4. 10) is commutative.

   Corol!ary 4. 5. SuPPose that le is even. Assume that crEzr+fe--i(Sr) satiskes lcAa

:= (Sri)a'(Sr+h"in)tO, ta==O andt==2. Let pt be the commutative and associative

multiPlication in Zi". ILf a'"":=O and E"*=O in h""" for any EE{S2r'2le, S'C}, then there

exists a commutative admissible multiPlication pt. in h*( ;a).

   Let v be the stable homotopy class of Hopf map S3-,S2 and Cv==:S'ue"2 be

the mapping cone of rp. Then we have

(4. 11) lc,Arp=(Sri) (3v) (Sr+iz) and A2' rp:=O

where v is the generator of stable homotopy group {S'"3, Sr}{IIk4

   Since {S"`, Cv}=O, we obtain

   Corollary 4. 6. (See Zlheorem 1. 5 of [5]). Let ps be lhe commzatative and associalive

multiPlication in 'Wh". ILf (3v)""=O, then there exists a commutative adozissible multi-

plication in h"(;v).



96 NoBumRo lsmKAwA and HIDEyuKI KAcm

               g5. Associativity of ps. for the case lcAaikO.

   Under the assumption of ev'""=O in %", the exact sequence of h""" associated to

the cofibration

                        1vaAi' lwArr'
                 WAS2r -WAQ -WAs2r+2h

breaks into the following short exact sequence

                                         (1urAi')" --                        (lwArr')*
(5.1) O--->nM(ViVAS2r÷2k) - -> fi"t(WAQ) --hM(VVAS2r)-O

for any Wand integer m In paticular, for VV=:SO andm=2r, we can shoose an

element 9iE'hW2r(Q) such that

                             i'*9i == a2r(1).

   Put

(5. 2) 9o =: rri"9i･
Then epe satisfies the relations

                      ie"9e ;= a2r(1) and ii'9o == O.

   Then the multipiication rt. constructed by making use above tpo=zi*9i and

PE{M, CAC} satisfying (4.1)-(4.3) is admissible from Theorem 3.9 of [I]. Now

we discuss the associativity of such a multiplication ps..

   For xEhM(VVA(?), we have

            (lvyAit)*(x-pt(a--2r(lwAir)*x(g)ep,)

                   =(1vaAi')"x-pt(a"2r(lwAi')"xopi''9i)

                   = o.

By (5.i), (1rvArr')" is isomorphism into. Thus we can define a homomorphism

                   ijw : %M(WA(?)-"h-M(VVAS2r+2le)

by the formula

(5. 3) Vw(x) == (lwAT')*-" (x-,tt (a-2"(1vaAi')"xCD9i))

for any VPi and xE%M(WAQ).

   Similarly as in Lemma 3.5 in [I], we see

   Lemama 5. 1. (D A9" ur is a left inverse of (lpvArc')', i. e., 9'Uw(1vaAT')"== an identity

maP; hence the seqaence of (5.1) sP(its:

               hNm<wAQ)=%"t(vvAs2r)ohNm(wAs2r+rfe).

(ii) Tw is natural in the sense that
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                (.Lix 1s 2r+2h) * gNo w == glJ w(.LA, 1Q)*

where f : MZ' --" W.

(iii) p'S" . is compatible with the susPension in the sense that

                      N"v di              (1rvATD*a9pm=9vrAsi(lwAT2)"a

where Ti:=T(Si,S2r"2k) and T2=T(Si,(?). -
   Lemma 5.2. For the element PoG{CAQ, MASr'h} ofLemma 3.5 there holds

the relation

                 pa pp'Ac(1 vvrAPo)* [ : a"hp vea-(r+k)

where 9rv is detlSned on (3. 7) of [I].

   Proof. For any xEhNM(WAMASr'h) we have

     (1rvAcArc')*ar'le9pvah(r+k)(x)

     =(lvvAcAz')*a'"fe(1urAzo)"-i(a-(r'le)x-pt(a-2'(1rvAi,)"a-(r'k)xXgo))

     =(lpvrAcAT')"(1rvAS"'hzo)*"i(x-a"'kpt(a-2r(lpvAi,)"a-(r"k)x(8]>9o))

     =(lvvAP,)*x-(1rvAP,)"a'"kpt(a-2'(1rvAi,)"a"(r+k)xopffi*9i) by (3. 4).

Now

  (1rvAPe)'a"'lept(a-2r(lwAio)"a-("'le)x(El>nci*opD

     =(lwAPe)"(lwAffiAlsr+k)"ar'lept(a-2r(1vaAi,)*a-(r"k)xXopi)

     =(lwAPo)"(lwATiAlsr+k)'ar"fept(am(r'k)a-2r(1rvASr+ki,)*xopgi)

     =(lwAP,)"(1vaAniAlsr+k)"(1vaATb)",u(a-2'(1urASr"lei,)"x(E99i)

                                              where Ts=T(Q,S'+le)

     =(lnrATAIQ)"pt(am2'(lpvAS"'lei,)'x(2g)qt) by (3. 5)
     ..ps(a-2r(1vaAS2rrc)*(lwAS"ki,)"x(:ii)Pi)

     =p(a-2r(lvvAcAi')"(lwAP,)"x(Eb9i) by (3. 3).

Thus we have

    (1rvAcAff')"a""k9wa-(r"'le)x==(lzrAPo)"x-pt(a-2r(lwAcAi')"(1rvAP,)"xX9i)

                         =:=(1urAcAT')"9pvAc((lwAPo)"X)･

Since (1rvAcAx')" is monomorphic, we have the result

   Lemma 5.3, For P'E{ATLv, CAC} and rc=op,E{CAQ, CAIVLv} of Lemma 3.6,

there holds the relation

              9pv(lpvAP')"a-(r'le)9pvrAc:=a-("le)DptAc(lwAx)*.

   Proof. For xe%M(WACAM), we put

              x' == pt(a"'2'(1rvAcAi,) "x(29qi) Eii il"(VVACAQ).
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Then we have

(5.4) (lvvrAcArro)"9wAcx=x-pt(a-2'(1vaAcAio)"x(Eli)rri*9i)

                         =:x-(lwAcArt1)*x'

and

(5. 5) (lvrprAcAi')"x'= pt(a-2r(lwAcAi,) "xopi'"PD

                     = a-2rp((lpvAcAio)"x(E9i'"Pi)

                     =(lvTrAcAio)"x by i'*9i :== a2r(1).

Thus we obtain

(s. 6) g'VvvAcxt == avvAcArct)*-i(xt-pt (a-2r awAcAi')*x'opg,))

                 =(1rvAcAT')*-i(x'-pt(am2r(1rvAcAi,)"x(g)9i)) by (5,5)

                 == o.

Now

     9w(lvvAcAP')*a-("k)9wAcx=9wa-("le)(lwAP'Alsr+k)*9wAcx

           =a-(r'le)9"VwAc(1pmAP,)*(1vaAP'Alsr+k)"¢urAcx by Lemma 5.2

           ==a-(r'le)ipNwAc(1vaArc)*(lpvAcArro)*9urAcx by Lemma 3.6

           =a-'(r'le)9vaAc(lpvArc)'(x-(lpvAcAn,)"x') by (5.4)

           =a-(r"k)9NvrAc((1pmArc)"x-x') by Lemma 3.6
           =ff-("+k)VvaA.(lwArc)*x by (5.6).
                                                         q. e. d.

   For any element tuG{CAQ, CACAC} we define a triple Product

                 N- fv+ N Ni-(5. 7) Tto : hi (X; a) (El}hj(g a) ophi(.Z a) -ht"i"i( VV; cr)

as composition

    T. ..(-1)i(r+fe)a-2(r+k)pe･wAc(lmA(o)*U*pt(1<Ei),a) :

        %i (X] a) X%"(Z a) (E9%i(Z; a) ==%i"' fe (XAC) (E9%i-"'le (YA C) (Eli)fii"'k(ZA C)

        lh.".ht+1+l+3(r+le)(XACAYACAZAC)

        -hNi+i+l+3(r+k)(VVACACAC)

           -Ut -        H-H-),ht+1+l+3(r+k)(WACAQ)

           n-- -        -,ht+1+l+3(r+h)(VPXACAS2r+2fe)

           rV- - "-t -        -ht+J+l+r+k(vvAc) ..ht+J+l(W: at)

where VIZ==XAYAZ and U: WACACAC-XACAYACAZAC is the map given
by a permutation of factors as U(x, y, z, ci, c2, c3)=(x, ci, y, c2, z, c3). ro is defined

for all (i, 1', l) and natural with respect to three variable X, Yand Z ra):=Tto, if

and only if they are equal as natural transformations for all (i, 7', l). Clerly
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                       Ta)+a)' = Tto+Ttu'

   Let PE{Arlr, CAC} be an element satisfying (4. 1)-(4. 3) and ,a. be the multipli-

cation in h"( ;av) defined by (3. 8) of [I] by making use of this P and 9o of (5. 2).

Let rco be the element which satisfy (3.6) for po=(-1)r'kp.

   LeTyirna 5.4･. pt.(1oppt.)=Ttoo for oo=(lcAP)mo.

   Proof. By definition,

 Fta(1 op Ftcr) (X op Y (El> 2)

   ..(-1)i(r+k)ff-(r+le)g.(lwAP)*(lxAT2Alc)"

             peCtop(-1)"(r"le)a"(r'k)9xAy(lxAyAP)"(lxATiAlc('pt(5]'op2))

                                    for Ti := T(Z, C) and T2 == T( YA Z, C)

   =(-1)o"+i)(r+k)a-(r+k)g.(lwAp)*a-(r"k)gveAc(1vaAcAP)"U"pt(7iioppt(5JopT2))

                                                by Lemma 3.5 of [I]
   =:: (- 1) j'( 'J 'k)a-2('" le )9 wAc(lwArce) "(1rvAcAP) *U" pt(1 op y) (X CDY op Z)

                                                     by Lemma 5.3
   =rtoo(x op y op z) ,

        N- AJ- Nwhere xEht(X; cr), yEh'(Y; at) and zEhi(Z] cr). q. e. d.
   Let rci be the element which satisfy (3. 6) for TP where T=T(C,C).

   Lernma 5.5. pt.(pt.op1) == Tto, for toi=T'(lcAP)rci,

where T'=T(C, CAC).

                       tw N- tV   Proof. By definition, on ht(X;a)(g)h'(Y;a)(E9hi(Z;a) we have

 pta(ptcrQ1)

    =(-1)i'(r+k)a-(r+h)gw(1rvAP)*(lxAyATiAlc)*pt(a-(r+h)9xAy(lxAT2Alc)ge<g)1)

                                      for Ti == T(Z, C) and T2 == T(Y, C)

   =(-ly'(r+le)a"(r+k)pw(lpvAP)*(1opAT)*a-(r'le)PwAc(lwAcAP)"(lpvAT')"U"pt(1(El>pt)

                              by Lemma 3. 5 of [I] and associativity of pt

   ==(-1)j(r+le)ff-2(r+fe)9wAc(1vaAre,)*(1pmAcAP)*(1urATt)*U*pt(1Xpt)

                                                     by Lemrna 5. 3

   From above Lemmas, rato-rtoi==(-1)i("h)a-2("le)epwAc{(lwArce)}"(lwAcAP)"

-(lwArct)*(1vaAcAP)"(1vaAT')"}U"ps(1<29y), then we have

   Theorema 5. 6. Let pt be a commutative and associative multiPlication in h", and

assume that ev""=O in %". Sumpose that there exists an eiement P satis.12ying (4. 1)-

(4. 3). Let rce and rct be the elements of Lemma 3. 5 for (-1)r'kP and TP resPectively.

ILf P, rco and rct satistv the relation
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(5. 8) (T' (lcAP) rcD*"= ((lcAP) rce)**

in %', then the admissible multiPlication pt. (deYfned by (3. 8) in [I] by mafeing zase of

P and epo (5. 2)) is associative.

   By Lemmas 3. 1, 3.2 and Proposition 3.4, we obtain that if to"=tu'" as ordinary

homology maps forNca, tu'e{CAQ, CACAC} then to-ca' is an element of finite order.

Put tu'=T'(lcAP)Me and we=(lcAP)mo. Since toe'= tu'" in ordinary homology, we obtain

                          roo - ro' =: Te

for some 8'G{CAQ, CACAC} which is an element of finite order.

   Ifkis even, making use of Theorem 4.3, Lemma 3,5 and Lemma 3.6, we

(5. 9) (lcArre)rci ==(TPAIsr+k)P,

                   == ((-1)r+kPAIsr÷h)P, -i- (lcAi)sT'rtiAlsr+k)Po

                   =((-1)"'kPAIsr+k)P,+((lcAi)s(Sr'kx)rreAlsr+k)P,

                   := acArr,)rc,+acAsr+ki) (sr+les) (TA.,).

And, we obtain

     g5vvAc(lwArci)"==iilrvAc(lwAmi)"(lpvAcAxo)'PwAc

                                            by (5.4), (5.6) and Lemma 3.6

     =ijwAc{(lpvArce)"(lmAcATo)"+(lwArrArc')'(1pmASr"lee)"(lpvAcAS"ki)*}9wAc

                                                               by (5. 9)

     =amA.(1vaArc,)*+gveA.(1vaArArrt)*amAsr÷ks)*(lpvAsr+fei,)*

                                              by (v) of Lemma 3.5 of [I].

   Then

     T., = r.,+(-1)i(r+le)ff-2(r+k)9NpvAc(TArri)**s**i,**(lpvAP)*(1vaAT')*U*ge(1 (g) pt).

Thus we have the following theorem as a corollary of Theorem 5.6.

   Theorerri 5. 7. Szampose that k is even. Assume thataErrr+k-s(Sr) satishes lcAev

.. (sri)evt(Sr+k"irr)40, ta=O and t=2. Let p be the commutative and associative

multiPlication in h". lf a'""=O, s"*==O and E'*"=O in h" for any EEg.{S2r'2fe, S"C}

and E'efinite grouP of {CAQ, CACAC}, then there exists a commutative and asso-

ciative multiPlication pt. in fi"( ;a).

   Put a=rp. Then we have {Sr"4, Cn} :=O and Tor {CoAQ, CrpACiACv}=O. Thus

we have

   Corollary 5. 8 (See Theorem 1. 6 of [5]). Let pt be the commutative and associative

multiPlication in -h"'. ,ILIC (3v)"=:O, then there exists an associative admissible multiPli-

cation in hN"(;ev). '
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