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Introduction

In I of [4], Atiyah-Patodi-Singer show the following index theorem. Let X de
a Riemannian manifold with boundary Y, D an elliptic operator given near the
bhoundary by

D:a(%—I—A), on Yx[0, 1]CX,

where ¢ is a bundle isomorphism, # is the normal coordinate at Y and A is a first
order selfadjoint elliptic operator on ¥ which does not depend on #. Then, under
the boundary condition Pf(0, y)=0, P is the projection to the non-negative eigen-
spaces of A, D has the index and index D is given by

index D= JXa (x)dz __]"_+_;7<9)__

Here, «(x)dx is the differential form defined from D ([3], [4], [13]), A=dim. ker. A
and 7 is the »-function of A given by Zliespec.a, 140 (sign A)|2]75.

Although the above D has no singularities at the boundary, for example, on
some homogeneous symmetric domain, there exist invariant differential operators
which degenerate (or to have singularity) at the boundary (cf. [7]). Therefore, it
seems to have meaning to consider index of elliptic operator which degenerate (or
to have singularity) at the boundary. And this study may relate rescent works on
degenerate elliptic ([127],[167]) and parabolic ([117, [14], [157, [17], [197) operators.

In this paper, we consider the following type operators

D+,k=a(a%+ukA), D—,kza(uk(%—l-A), on Yx[0, 1]CX,

and assume X to be a real analytic Riemannian manifold. Then we have

h+1(0)

index D+,k:J a+, k(x)dx — ,
X 2

1) §§1-4 are appear in this issue, §§5-11 will appear in No,1, Vol 13,
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indexp D-,/e:J a-k (x)dx—-h—_l—v—(o)—, k<1,
x 2
indexo D-,% :JXa-,k (x)dx +~h—_—;7(0—), k=1,

with suitable differential forms «+,x(x)dy on X. Here indexz D-,z is the index with
the boundary condition given by Pf{0, %) =0, D-xf=0 and limu—so(I—P)u®flu, v))
=0, D-,r*f=0 and indexo D is the index with the O-boundary condition. For D+,
and D-,z, £<1, these index formulas are obtained as the limit of the index formulas
of D, ke=(0/ou+ @ +e)A) and D-,r,e=({u* +e)d/ou+A) with the boundary condition
Pf0, »)=0. But the index formula of D-,», k=1, is not the limit of the index
formula of D-,r,. with the boundary condition (I—P)f(0, v)=0. In fact, to denote
the index of D-,z,. with this boundary condition by index-D-,z., we have

lim index-D-, ks=indexoD-,r—(ht—hry), k=1,

e—Q

hr=dim Hk, hk*:dlm Hk*,
Hr={0} U{ fID-,rf=AS0, y)=0, f0, )%0},
Hpx={0}U S| D-k*f=Af0, 3)=0, f0, y)+#0}.

It is shown that, if D-,; is a real analytic coefficients operator, then Ar does not
depend on D-,r and hr, depends only on Z.

The method of the proof of these index formulas is same that of in I of [4].
But since our operators degenerate at the boundary, some analytic difficulty occurs.
The outline of the paper is as follows; First we construct and treat the properties
of the elementary solutions of Dux,; and D+,z* on YXR* (§§1-5). The properties of
the elementary solutions of D+,r, D-,z, <1 and D-,z, k=1, are different and the
elementary solution of D-,z exists under some 0-boundary condition. Set 4 1,4,r=
Da,r *Da,p and 4oy, =D+, Dx,r*, to construct the fundamental solutions of 8/0f-+
diye,k, 1=1,2, on YXR*xR*, we use the following lemma which is shown in §6.
Lemma. Let 8/ot +L be a parabolic operator on R* XD and has a fundamental
solution with kernel G(¢, x, &) such that G satisfies (i), G is real analytic in t if
>0, (i), limeo@/ot")G{t, x, &=0, x4£€, for all n=0. Then H, which give the
Jundamental solution of 8/ot+(L+K) in the form G-+G*H ([5]), is given as the
solution of

(1+iKHE, x, &§=—K.Glt, x, €),

if H is real analytic in t, t>0, and satisfies

1

H(t %, £)=0 implies ltma H(t x, €)=0 for all n=0.

lzm(l +Kx)( t” atn
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By virtue of this lemma, we can construct the fundamental solutions of 8/0¢+4i,4,,
i=1,2 and show that the fundamental solutions 9/9¢+4i,+,r,e, i=1, 2, converge to the
fundamental solutions of 8/8f+4i,+,r, i=1,2, in some function space. Here 41,+,r,
=D, kye*Daykye and doy,pe =D pye Do,y (§87-9). For 9/0t+4i,-,x, i=1,2, analy-
ticity is used in the definition of this function space and this is the reason to
assume X to be real analytic. We note that, the fundamental solution of related
operator of 8/8¢+4;,-r has been constructed by Gevrey ([8], cf. [8], [9]1). Then,
since on 3(, the double of X, 2;',1,;;, i=1,2 (Zl\i,i,k are the induced operators of
diyx,p ON 3\(), have parametrixes (AAi,—,k, i=1,2, have parametrixes only on spaces
of those functions which vanish on Y with suitable degree), we obtain the index
formulas (§12), together with the limit properties of index Dx,r, which are treated
in §§10-11. In §12, it is also noted for the operator D¢-r) given by ¢(0/du+u-*A)
on Yx[0, 1,] we have
h+7(0)

index D(—k):J ac-myx)dx ——————, k<1,
x 2

indEX—D(—k):JX ac-ky(x)dx +k277—(%, k=1,

with suitable ac-zy(x)dx.

The result of this paper seems to be poor than its method and it seems there
must exist other geometric quantities for the operators D,k especially for D-,p.
But at this stage, I can not clarify them.

I would like to thank Dr. Abe who give me the occasion to consider this

problem.

§1. Differential operators Di,z,z.

On the positive half line R* given by u#=0, we define differential operators
Ds,i,2 and D-,z,; by

1) +,2 D+,k,x(fz,k)Z%fz,k—}-luk,fx,k:g}, ieR, f1,x(0)=0, ifi=0, £>0,

Wk Dokl =wh—i fip t 2fa=2, R, [pal0)=0, if;Z0, £>0.
It is known that similar operator

i Dilf )= fitafi=g1, /il0)=0, 320,

has a fundamental solution
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@ 7o) =Qulg)= [ X o), 120,

o

=] etrgian, 1<,

with the properties that there exist constants Co and C: such that

@) HAl=Collgall, 11f2ll=Cillgall, 4740.

Here, [|f|| and [|f{|1 are the L®*-norm and Sobolev’s l-norm of f ([4]).

To construct fundamental solutions of (1):,z defined on some subspace of
CZ(R+), the space of compact support C”-functions on R+ (feCZ.(R+) may not be
Jf0)=0), we use

Lemma 1. For >0, ¢ >0, we have

H k4
4 limJ’ u‘se“(“'“”")dvzlimj' y-tyt-sea(u=c-v "0 dy = (yt+c-9),
u—0J g u—0/q
M M )
(4’ limj u"se”(”"”‘““”)dv:lim[ v-tul=5ea(0= =20y = Ou~9).
u®—0/ 4 w0/ y .

Proof., Since wu~Se®# ¢ -v=Oy-Sea(u==v=¢) < Ay=Sela+eXu=c-07) if 4 >V >0 for
some A>0 and ¢>0, we get the first inequality of (4). Then, since
1

2%
J u—sea(u-f—v-f) dv:J ul—seau-im—w—f)dw:
4} 0

:ui-—seau-f_l-fw e—au-ffé—hllcdf
¢y ’
we obtain (4) because e~2% ‘=g a4 ¢¢g-1"1/6=g=(a+du™¢ for some ¢ >0 on 1=E< oo,
Similarly, #-Se®(v™¢-u")=y=Sea(=c-u"0= Ay=Sela-Xv=e =49 if y>4>0 for some
A>0 and @>>¢>0, we get the first inequality of (4)'. Then we have (4)' because

-

M 1 %

J' u'-—sea(v—c-u%) dy = _«J u—seaE-—au"CE—l—l/cd5’

u Clpe

Kie®zeo e 1-1e = Kel®-9% for some Ki, K:>0 and 0 <e<a on

Me=&é=u".

Definition. We se Cetr=(RY)={f]feCc*(R)and f=0!), u—0} and set Ceqr
®(R*)=Ue>0 Corr+a1°(R*).

Definition. We define operators Qi,n and Q- by
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u A (Ukﬂ_ukﬂ)
@+ Quilg)l)=] 7 gilv)dv, 2=0,
0
oo - A : (pkri_gktny -
o g1o)dv, 2<0, HECERY),
iU
% A (ux—k_ux—k) -
(2)- Q1, —k(gx)(u):J v-kel =k gilv)dv, k#1, 220, g:&C_ (RY),

0
gOEC(:, (k'l)oo(R+) lf k>13
A (vl-k_ul—k)

=—J vke! TF aWdv, k-1, <0, HECLRY),

u

-1 Qua-ilga) (u):[:v_i(%)

gw)dv, =0, 8Ce (0)=(RY),

oo

:—Juv-l(%)xg;(v)dv, 2<0, g1eC(RY).

By definitions and lemma 1, we have

Lemma 2. @i, and Qi,-r are the fundamental solutions of ()+,k. They are
Ce—class on R* —{0} and Qir and Qi-1,2>0, are continuous on R+, Qi,-r(g2),
20, 1s continuous on R* if gie Coir1®(R*) and Qo,-r (80) is continuous if 0 <k=1
or go=Cerz-12(R*) if B >1. More precisely, we have

(n)+ Qa,-1(g2) () is C*—class on R* if and only if g1€Cenk-1°(R*) for 1>0,
()0 Qo,-2(g0) () is C*—class on R+ if and only if G0ECenrr-11°R+),
(n)- Q1,-1(g2) () is C"—class on R* if and only if g1€Cepn+1ye1(R?)

Jor 2<0.

Proof. We need only to show (n)+, (n)o and (#)-. These follows from lemma
1 because we obtain if g:(#)=0?), u—0,

)+ A Qurl@) ) =Olut+t=nk), 20,
ar — 1+t-k-n

(5)0 WQov—k(gO) () =0(u )s

(5)- : %7:7'Qb-k(gx)(u):0(ut'("”>k), 4<0.

Corollary. If Qi,-2(82) is C?—class on B*, then (d"/du™(@Q2,-1(£:))(0)=0, 0=<m
<n—1 and d™du™ Y Q;z,-#(g1) is unbounded near 0 if gi does not satisfy (n-+1).

Note 1. Since the fundamental solutions of the adjoint operators of {1)s,z are
obtained by the interchange of the variables of the kernels of Qi,+,,, we get same
results for adjoint operators.
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Note 2. We have

k+1
(O} Qualga)a)=Qulga U+ 1) T ((h+ 1) T T)w), w=e

k>0,

i-k
6 Qu-slg)=Qulgi {1—Rw)T=P)u), w="—p, 0k,

and to set

2

Q1-(g2) (u):J' et g(v)dy, A4=0,

=~J elv=gy(v)dv, 2<0,
¢
which is a fundamental solution of D, considered on R with the boundary condition
limu— - f2()=0, 2220, we also have

(6)-t Q1,-1(Z2) ()= -(ga(log w))(u), w=logu.

§2. Estimates of Qj,+,s.

In this §, we use the notations
M=M(g)=max{u|g(u)70}, m=m(g)=min{ulg(u)70},

and || fllcaw), |1/ Hata, etc., mean L?—norm and Sobolev’s u-th norm, efc., of f
on [a, b].

Lemma 8. There exist constants Cr, Cryr, C-kasr, 0<k <1/2 and C-rynpnr,
k=1/2, such that

(3)+ 1Quk(@)|=Crllgll, 20, 11Qo,k(@)|lorz=Crrrallel],
(3)-: 1@2-2(&) 100, L3=C-rnrz L2, o<k§%,
(8)-ii 11Q2,-1(2) 00, LIZC-omnro 1211 kgé, m(g)+0.

Proof. Since the kernel of @;,-% is continuous if # 50, v 520, we have (3)-,ii.
On the other hand, since [g({{1—k)w}¥-%2dy="{g(u)}2u-*du, g({1—kw}¥/(1~5)
e L(R*) if gECS(R“) and Qi,-x(g)sL?[0, L] if 0<k <1/2 by (5), we have (3)-,; by
(3) and (6)-. For 2>0, we get

Qur(@)=Z]g -+ 1Qusce+1x(g), 2540,
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because exp [ﬁi vk —yk+Y]<exp ]ﬁi(v—u)] if # =1, w=v and 2>0 or v=u

=1 and 2<0. Hence we obtain (3)+ by (3).
To get boundary estimate for @,-r, we use

Lemma 4. Let g(u) be a C**'—class function such that
(M g(0)=g'(0)="-.-=g""1(0)=0,

and assume g*1(0)s£0. Then to set

U

7
g CO(0uw), 0=0(u)=<1,

(8)n g(u)=

limu—o0(u)=1/(n+1), and this convergence is locally uniform in g by the C"*l—
topology.

Proof. By assumption, we may set

u11+1

m("”)(ﬁl(%)u)

un (n)
g(u) =& (0)+

e gO0(0)+0luug Dl A0 ).

Hence we get

1 g 01(u)u)

(9) 0 (“):n_—H 2 D00 0(w)n)B )ty

which shows the lemma.

Corollary 1. If glu) is a C*—class function and satisfies (T)n, then

(10) max|

and if g(u) is C**t—class and g**V (0)£0, then there exists a constant a=ala, g)
>0 such that
g(u)!

(10) max|g(u)|=n! max|> -
Isuse Isusa U

and this « is taken to be locally uniform in g by the C**'—lopology.

Proof. (10) follows from (8)x. Since #(u) is continuous near #=0 if g(*+1(0)
0, Ou)u, 0=u=a covers 0 =u =Zaa, «>0, by lemma 4. This shows (10)'. The local
uniformity of « also follows from lemma 4.
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Corollary 2. If g(u) is a C*—class function and satisfies (7)n, then theve exists
a constant Ci such that

|Ig(u)

(11) ”

o, a1 =Cal 1&g (@) [1n+1500, a3,

and if g(u) is a C***—class function and satisfies (T)a and g*1(0)£0, then there
exist constants Ce and B=pa, g) >1 such that
&(u)

U
e HU” Ba)s

Ly [1g (@) 0, a1=C2 |}

and this B is taken to be locally uniform in g by the C**‘—topology.

Proof. (11) follows from (10)'. (11) follows from the inequalities

o, ar=ComazE ) <n1Cy (max 189(W))=CullglImssionar,
0=u=a 0susa

Hg(u)
U

un

which are obtained by (10) and Sobolev inequality ([1]).

Lemma 5. (i). Let [k]' be —[—Fk] and g an element of Ceiry -1, then therve
exists a constant COF}; ., M=DM(g), such that

(12)+ [1Qa,-18llt0, £ = CY Y 1 11 ek o1,

(ii). If k is an integer, g satisfies (n) and assume @Qz,-1")0)#40. Then there exist
constants  Cj 1p 1 o, . Such that

(12), l]QZ)‘kl:g]Hﬂy[oyL]éczyﬂl, L,g,1 Hgllﬂk’ Z>O’
(12)'s NQo,-e[ gm0, 2= Chlar, 1 2,0l 18 Ineee,
(12)'- ”Ql;—kl:g]Hny[O, L]éc;ez,M, L&, 4 ||g”("+1)le+1, 2<0,

and these Cj 1 o ave locally uniform in g by Sobolev's (n+1)—topology and
uniform in A if |A| is large.

Proof. First we note that for an integer #n, Cerm®=/{{] fEC:, f satisfies (7)
a+1}. Hence we get (12) by (11). Because we know

2
u
|<*27> =1, 2>0, v=u or 2<0, v=u.

CA

2 k
[eT—F )|§1, >0, v=u or 2<0, v=u.
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Since we know ||u~5Q;,-x[ g1 |=ZCl1Qz,-r[v5g]|| for some C>0 by lemma 1, we have
[1Q2,- k[ g1 I5,00,0)=C| | Q1,- e[ &]| 0, a3=C5]| 8] |5+ k41

by (12), if g satisfies (s). Therefore we get (12)'. The local uniformity of Cfa; 1 42
in g follows from lemma 4. To show the uniformity in 1, we note that we have

Qa,-(g) 1) =(—1)" A" u~"*Qy,- (g Y1)+ O(X*~1u),
by (5) and

k1)

o 55t (=1
Qu-1(g) V= 3] V= m

o H(s—t—=1)1 "

u"k“t(g(s““1)~2Q1,—k(g)(5""1)).

Hence by (9), ¢ (u), determined by (8)x-1 for Qa,-2(g), is given by

1 Q1,~1(g)01(u)u)--O(A"1uk)

— )
Olu)= n Qu, -r(&)(0o(6(2)10) 02t )re) +O(A~ kY

On the other hand, the kernel of @;,.r tends to 0 if [2|—o. Hence we have the
uniformity in 2 for |4| is large by (2)- and (2)-,i.

Note. For the fundamental solutions of the adjoint operators of Dx+,z,, we have
same estimates,

§3. Extensions of D ;,; and @, 1.
By lemma 3 and lemma 5, we have

Lemma 6. (i). Qur, B0, is extended to a continuous map Qun : L2~ L2,
(ii). For any 0 <m <M, Qi-r is extended to a continuous map Qa,-1 : L¥m, M—L2.
(iii). Qu,-# is extended to a continuous map Qr-p + H(ry -1(%V*+1[0, L1—L20c. , k221,

(iv). Qa,-1 is extended to a continuous map Q-1 : Hen-1y"[0, L1—H%oc., if i>o.
Here Hisy' , s =n —1, means the Sobolev space with the boundary condition
(7)s.

Corollary. D,z and theire formal adjoints D, have closed extensions
-@i!kyl and —@i,kd-

Definition. We set di, +,k,0= D +,02" D 5,02 ad dayiyyi= D 4,002 D #,002%.
Since (on C=(R*)) Dx,r,2*are given by

] d ] d
D= ———+uk, Do pa*=—ut

— k-1
du du k142,

we have (on C*(R*))
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2
;’uz hAukt - 2z,

2
— B 222k Ay a gy = —

(13)“‘ Ali"’}k,X:“ du?

dZ
du?

(18)-  diymyeya= —uth——— Zkuzk“l—d[i — Akt 1422,

dyy- 2 = —u2k

2 d
_ k-1 % _ 2k-2 k-1 2
» 2ku p k(k—Vu Akut 1422,

By definition, Q2,:@Qzr* and @4,x*@u,k are defined on CL(R*) and they are the

fundamental solutions of 4i,+,r, and 4s,+,z, with the boundary conditions
(14), Fiun0)=0, 220, ~L1,4(0)=0, 20, for duu,
d P
fx,k(O):O, ﬂéo, sz,k(O):O, ﬂ>0, for Az,+,k,.

The boundary conditions for 4i,-,z,, £<1, i=1,2, are similar as (14)+ (cf.§11). But
since Oy,-1 @1,-r and Q- *Q-r are defined only on Cerzi*(R*) if £=1 and
therefore the boundary condition is

(14)- Ju,#(0)=0, for all A.
For the extensions of @4,+x@4,+2* and Q1,+£*@ 1,44, we have by lemma 3 and
lemma 4

Lemma 6'. (i), QirQir* and Qi,:*Quir arve extended lo a continuous maps
LZ”"Lzloc..
(ii). For any L, Q1,-2Qu-+* and Qi,-1*Qi-r are extended to a continuous maps
Hzry -0t 100, L]—LA0c..

§4. Continuation of D., z; and @), -, across 0.
I u <0, we define Di,k,; by

Diyioa :7‘i«+z<~u)k, D= (—u)k%ﬂ.

Hence for # <0, Di,k,a and 4d;,a,k,2, i=1,2, take the forms

Diyiya*= —Lquz(—u)k, Dop=—(—u) d

—y\e-1
y R,

az k- 2 k
—u—z—[»kl(—u) T4 (—M)2 ‘

d2
du?

Aty kst = —

_kz(__u)k—l +/12(“M)2/e,

AZ,+,/€M —_
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dZ
du?

By = —(— )P OB —ae)h 1 g )it 1,

d? d
pae — (g )Rk ek g 4N, \ek-2 k-1 32
dzy=y1y2 (—u) P 4 2k(—u) p Plle— 1) —u)2F-24 RR(—u)e—1+ 22,

The boundary conditions for #=0 are f,£(0)=0,2=<0 and the fundamental solutions
take the forms

0 RPN TRy 151
Qi k(82) ()= —J e 1T H g:(v)dv, 1=0,

2

Y Aokt (ke
=] e Y )y, >0,

0 A 1~k_ (.. 1-k
Qu-slgaw)=—] (=oyteTF T g ), 1<, ke,

/3

u k. ot~k __c_ yy—1k
J (—o) ke T=FCW =0T g )y, 20,

Quatgw=| v(%)igiw)do, 10,

ki3

:—Jimv—l(%>xgx(v)dv, >0,

Therefore, to set

0 T S PRV T3
Cona=(R)= (1€ CoR), [ 1" fo)a=0), 120,

i A yk+t

Coms=(R)=(f1fECTR), | eF4T"" floldv=0), 1<0,

0
Campa™(R)={FIFECIR), | e=4191 {1k} T=F)dv=0},

Cona™(R) = (/1€ CER), | e AU(L—H) 77 )do=0), 0<<, 20,

Quk and Qa,-r, 0<<k<1, are defined on Cer,2=(R) and Ce-#,2 »(R). Here CE(R)
means the space of compact support C~*—class functions on R. On the other hand,
Q1,-r, k=1, is defined on Cenrnyrye. Here, Ceqn+typy® means the space of com-
pact support functions with g(u)=0(u{#+1%*¢) »4—0, for some >0,

Since the above extended @4 have same properties as Qi,+% on R* and the
Lt—completions of Cera®(R), and Ce, -r,2° (R) 0<k<1, are 1-codimensional
subspaces of L%R), we obtain

Lemma 7. (1), di,+,p,2, 1=1,2, and diy-r,z, 0<k<1, i=1,2, have fundamental
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solutions across 0.
(). diy-,r,2, E=1, i=1,2, have fundémental solutions defined on Har 28+ [ —L,
L7 for any L>0,

Proof. By the definitions of @z,+k (and @,+r*), if £1€CG [a, b,] —c0<la<lh
oo, then the iterations @1,rQ1%*, Q1,2Q1k and @a-, kQ1,-k, * Qu,—£*Q1,-2, 0<E1,
are defined. Similarly, if g:€Cc,rze1® [a, b], (a<<0<b), then Qz,-1Q,-r* and
Q1,-4*Qz,-#, k=1, are defined. Hence we have the lemma.
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