Indexes of Some Degenerate Operators ${ }^{1}$

By Akira Asada
Department of Mathematics, Faculty of Science
Shinshu University
(Received July 13, 1977)

Introduction

In I of [4], Atiyah-Patodi-Singer show the following index theorem. Let X de a Riemannian manifold with boundary Y, D an elliptic operator given near the boundary by

$$
D=\sigma\left(\frac{\partial}{\partial u}+A\right), \text { on } Y \times[0,1] \subset X
$$

where σ is a bundle isomorphism, u is the normal coordinate at Y and A is a first order selfadjoint elliptic operator on Y which does not depend on u. Then, under the boundary condition $\operatorname{Pf}(0, y)=0, P$ is the projection to the non-negative eigenspaces of A, D has the index and index D is given by

$$
\text { index } D=\int_{X} \alpha(x) d z-\frac{h+\eta(0)}{2}
$$

Here, $\alpha(x) d x$ is the differential form defined from $D([3],[4],[13]), h=\operatorname{dim}$. ker. A and η is the η-function of A given by $\sum_{\lambda \in S p e c, A, \lambda \neq 0}(\operatorname{sign} \lambda)|\lambda|^{-s}$.

Although the above D has no singularities at the boundary, for example, on some homogeneous symmetric domain, there exist invariant differential operators which degenerate (or to have singularity) at the boundary (cf. [7]). Therefore, it seems to have meaning to consider index of elliptic operator which degenerate (or to have singularity) at the boundary. And this study may relate rescent works on degenerate elliptic ([12], [16]) and parabolic ([11], [14], [15], [17], [19]) operators.

In this paper, we consider the following type operators

$$
D_{+, k}=\sigma\left(\frac{\partial}{\partial u}+u^{k} A\right), \mathrm{D}_{-, k}=\sigma\left(u^{k} \frac{\partial}{\partial u}+A\right), \text { on } Y \times[0,1] \subset X
$$

and assume X to be a real analytic Riemannian manifold. Then we have

$$
\text { index } D_{+}, k=\int_{X}{ }^{\alpha+}, k(x) d x-\frac{h+\eta(0)}{2}
$$

[^0]\[

$$
\begin{aligned}
& \text { index }_{k} \mathrm{D}_{-, k}=\int_{X} \alpha-, k(x) d x-\frac{h+\eta(0)}{2}, k<1, \\
& \text { index } 0 D_{-, k}=\int_{X} \alpha-, k(x) d x+\frac{h-\eta(0)}{2}, k \geqq 1,
\end{aligned}
$$
\]

with suitable differential forms $\alpha_{ \pm, k}(x) d y$ on X. Here index ${ }_{k} D_{-, k}$ is the index with the boundary condition given by $P f(0, y)=0, \quad D-, k=0$ and $\lim _{u \rightarrow 0}(I-P)\left(u^{k} f(u, y)\right)$ $=0, D_{-, k^{*}} f=0$ and index. D is the index with the 0 -boundary condition. For $D_{+, k}$ and $D_{-, k}, k<1$, these index formulas are obtained as the limit of the index formulas of $D_{+, k, \varepsilon}=\left\langle\partial / \partial u+\left(u^{k}+\varepsilon\right) A\right)$ and $D_{-, k, \varepsilon}=\left\langle\left(u^{k}+\varepsilon\right\rangle \partial / \partial u+A\right)$ with the boundary condition $P f(0, y)=0$. But the index formula of $D_{-, k}, k \geqq 1$, is not the limit of the index formula of $D_{-, k, \varepsilon}$ with the boundary condition $(I-P) f(0, y)=0$. In fact, to denote the index of $D_{-, k, \varepsilon}$ with this boundary condition by index- $D_{-, k, s}$, we have

$$
\begin{aligned}
& \lim _{k \rightarrow 0} \operatorname{index}-D_{-}, k_{, s}=\operatorname{index}{ }_{0} D_{-, k}-\left(h_{k}-h_{k *}\right), k \geqq 1, \\
& h_{k}=\operatorname{dim} H_{k}, h_{k_{*}}=\operatorname{dim} H_{k *}, \\
& H_{k}=\{0\} \cup\left\{f \mid D_{-, k} f=A f(0, y)=0, f(0, y) \neq 0\right\}, \\
& \left.H_{k_{*}}=\{0\} \cup f \mid D-, k^{*} f=A f(0, y)=0, \quad f(0, y) \neq 0\right\} .
\end{aligned}
$$

It is shown that, if $D_{-, k}$ is a real analytic coefficients operator, then h_{k} does not depend on $D-, k$ and $h_{k_{*}}$ depends only on k.

The method of the proof of these index formulas is same that of in I of [4]. But since our operators degenerate at the boundary, some analytic difficulty occurs. The outline of the paper is as follows; First we construct and treat the properties of the elementary solutions of $D_{ \pm, k}$ and $D_{ \pm, k^{*}}$ on $Y \times \mathbf{R}^{+}(\S \$ 1-5)$. The properties of the elementary solutions of $D_{+, k}, D_{-, k}, k<1$ and $D_{-, k}, k \geqq 1$, are different and the elementary solution of $D_{-, k}$ exists under some 0 -boundary condition. Set $\Delta_{1, \pm, k}=$ $D_{ \pm, k}{ }^{*} D_{ \pm, k}$ and $A_{2, \pm, k}=D_{ \pm, k} D_{ \pm, k^{*}}$, to construct the fundamental solutions of $\partial / \partial t+$ $\Delta_{i, \pm, k}, i=1,2$, on $Y \times \mathbb{R}^{+} \times \mathbb{R}^{+}$, we use the following lemma which is shown in $\S 6$. Lemma. Let $\partial / \partial t+L$ be a parabolic operator on $\mathbb{R}^{+} \times D$ and has a fundamental solution with kernel $G(t, x, \xi)$ such that G satisfies (i), G is real analytic in t if $t>0$, (ii), $\lim _{t \rightarrow 0}\left(\partial^{n} / \partial t^{n}\right) G(t, x, \xi)=0, x \neq \xi$, for all $n \geqq 0$. Then H, which give the fundamental solution of $\partial / \partial t+(L+K)$ in the form $G+G^{*} H$ ([5]), is given as the solution of

$$
\left(1+t K_{x}\right) H(t, x, \xi)=-K_{x} G(t, x, \xi),
$$

if H is real analytic in $t, \mathrm{t}>0$, and satisfies

$$
\lim _{t \rightarrow 0}\left(1+K_{x}\right)\left(\frac{\partial^{n} H}{\partial t^{n}}(t, x, \xi)\right)=0 \text { implies } \lim _{t \rightarrow 0} \frac{\partial^{n} H}{\partial t^{n}}(t, x, \xi)=0 \text { for all } n \geqq 0 .
$$

By virtue of this lemma, we can construct the fundamental solutions of $\partial / \partial t+A_{i, \pm, k}$, $i=1,2$ and show that the fundamental solutions $\partial / \partial t+\Delta_{i, \pm, k, \varepsilon}, i=1,2$, converge to the fundamental solutions of $\partial / \partial t+\Delta_{i, \pm, k}, i=1,2$, in some function space. Here $\Delta_{1, \pm, k, s}$ $=D_{ \pm, k, \varepsilon}{ }^{*} D_{ \pm, k, \varepsilon}$ and $\Delta_{2, \pm, k, \varepsilon}=D_{ \pm, k, \varepsilon} D_{ \pm, k, \varepsilon} *$ ($\left.\S \S 7-9\right)$. For $\partial / \partial t+\Delta_{i,-, k}, i=1,2$, analyticity is used in the definition of this function space and this is the reason to assume X to be real analytic. We note that, the fundamental solution of related operator of $\partial / \partial t+\Delta_{i,-k}$ has been constructed by Gevrey ([8], cf. [8]', [9]). Then, since on \hat{X}, the double of $X, \widehat{A}_{i, \pm, k}, i=1,2\left(\widehat{A}_{i, \pm, k}\right.$ are the induced operators of $A_{i, \pm, k}$ on \widehat{X}), have parametrixes ($\widehat{J_{i},-, k}, i=1,2$, have parametrixes only on spaces of those functions which vanish on Y with suitable degree), we obtain the index formulas ($\$ 12$), together with the limit properties of index $D_{ \pm, k, \varepsilon}$ which are treated in $\S \S 10-11$. In $\S 12$, it is also noted for the operator $D_{(-k)}$ given by $\sigma\left(\partial / \partial u+u^{-k} \mathrm{~A}\right)$ on $Y \times[0,1$,$] we have$

$$
\begin{aligned}
& \text { index } D_{(-k)}=\int_{X} \alpha_{(-k)}(x) d x-\frac{h+\eta(0)}{2}, k<1, \\
& \text { index- } D_{(-k)}=\int_{X}{ }^{\alpha_{(-k)}(x) d x+\frac{h-\eta(0)}{2}, k \geqq 1,}
\end{aligned}
$$

with suitable $\alpha_{(-k)}(x) d x$.
The result of this paper seems to be poor than its method and it seems there must exist other geometric quantities for the operators $D_{ \pm, k}$, especially for $D-, k$. But at this stage, I can not clarify them.

I would like to thank Dr. Abe who give me the occasion to consider this problem.

§1. Differential operators $\boldsymbol{D}_{ \pm, k, 2}$.

On the positive half line R^{+}given by $u \geqq 0$, we define differential operators $D_{+, k, \lambda}$ and $D_{-, k, \lambda}$ by
(1) $)_{+, k} \quad D_{+, k, \lambda}\left(f_{\lambda, k}\right)=\frac{d}{d u} f_{\lambda, k}+\lambda u^{k} f_{\lambda, k}=g_{\lambda}, \quad \lambda \in \mathbb{R}, \quad f_{\lambda, k}(0)=0, \quad i f \lambda \geqq 0, k>0$,
(1)-,k $\quad D_{-, k, \lambda}\left(f_{\lambda, k}\right)=u^{k} \frac{d}{d u} f_{\lambda, k}+\lambda f_{\lambda, k}=g_{\lambda}, \quad \lambda \in \mathbf{R}, \quad f_{\lambda, k}(0)=0, \quad i f_{\lambda} \geqq 0, k>0$.

It is known that similar operator

$$
\begin{equation*}
D_{\lambda}\left(f_{\lambda}\right)=\frac{d}{d u} f_{\lambda}+\lambda f_{\lambda}=g_{\lambda}, \quad f_{\lambda}(0)=0, \quad \lambda \geqq 0, \tag{1}
\end{equation*}
$$

has a fundamental solution

$$
\begin{align*}
f_{\lambda}(u)=Q_{\lambda}\left(\mathrm{g}_{\lambda}\right)(u) & =\int_{0}^{u} \mathrm{e}^{\lambda(v-u)} \mathrm{g}_{\lambda}(v) d v, \quad \lambda \geqq 0 \tag{2}\\
& =-\int_{u}^{\infty} \mathrm{e}^{\lambda(v-u)} \mathrm{g}_{\lambda}(v) d v, \quad \lambda<0,
\end{align*}
$$

with the properties that there exist constants C_{0} and C_{1} such that

$$
\begin{equation*}
\left\|f_{\lambda}\right\| \leqq C_{0}\left\|g_{\lambda}\right\|, \quad\left\|f_{\lambda}\right\| \leqq C_{1}\left\|g_{\lambda}\right\|, \lambda \neq 0 \tag{3}
\end{equation*}
$$

Here, $\|f\|$ and $\|f\|_{1}$ are the L^{2}-norm and Sobolev's 1 -norm of $f([4])$.
To construct fundamental solutions of $(1)_{ \pm}, k$ defined on some subspace of $C_{C}^{\infty}\left(\mathbf{R}^{+}\right)$, the space of compact support C^{∞}-functions on $\mathbf{R}^{+}\left(f_{\epsilon} C_{C}^{\infty}\left(\mathbf{R}^{+}\right)\right.$may not be $f(0)=0$), we use

Lemma 1. For $a>0, c>0$, we have

$$
\begin{align*}
& \lim _{u \rightarrow 0} \int_{0}^{u} u^{-s} \mathrm{e}^{a\left(u^{-c-v-c}\right)} d v=\lim _{u \rightarrow 0} \int_{0}^{u} v^{-t} u^{t-s} \mathrm{e}^{a\left(u^{-c}-v-c\right)} d v=O\left(u^{1+c-s}\right), \tag{4}\\
& \lim _{u \rightarrow 0} \int_{u}^{M} u^{-s} \mathrm{e}^{a\left(v-c-u^{-c}\right)} d v=\lim _{u \rightarrow 0} \int_{u}^{M} v^{-t} u^{t-s} \mathrm{e}^{a\left(v-s-u^{-c}\right)} d v=O\left(u^{-s}\right) . \tag{4}
\end{align*}
$$

Proof. Since $u^{-s} \mathrm{e}^{a\left(u^{-c-v-c}\right)} \leqq v^{-s} \mathrm{e}^{a\left(u^{-c-v-c}\right)} \leqq A u^{-s} \mathrm{e}^{(a+\varepsilon)\left(u^{-c-v-c)}\right.}$ if $u \geqq V>0$ for some $A>0$ and $\varepsilon>0$, we get the first inequality of (4). Then, since

$$
\begin{aligned}
& \int_{0}^{u} u^{-s} \mathrm{e}^{a\left(u^{-c-v-c}\right)} d v=\int_{0}^{1} u^{1-s} \mathrm{e}^{a u^{-c(1-w-c}} d w= \\
&=u^{1-s} \mathrm{e}^{a u-c} \frac{1}{c} \int_{1}^{\infty} \mathrm{e}^{-a u-c \xi \xi-1-1 / c} d \xi,
\end{aligned}
$$

we obtain (4) because $\mathrm{e}^{-a u^{-c}} \geqq \mathrm{e}^{-a u^{-c} \xi} \xi^{-1-1 / c} \geqq \mathrm{e}^{-(a+c) u^{-c}}$ for some $\varepsilon>0$ on $1 \leq \xi<\infty$.
Similarly, $u^{-s} \mathrm{e}^{a\left(\nu-c-u^{-c}\right)} \geqq v^{-s} \mathrm{e}^{a\left(\nu^{-c-u-c)}\right.} \geq A u^{-s} \mathrm{e}^{(a-\varepsilon)\left(v^{-c-u-c)}\right)}$ if $v \geqq u>0$ for some $A>0$ and $a>\varepsilon>0$, we get the first inequality of (4)'. Then we have (4)' because

$$
\begin{aligned}
& \left.\int_{u}^{M} u^{-s} \mathrm{e}^{a\left(v-c_{-u}-c\right.}\right) d v=\frac{1}{c} \int_{M^{-c}}^{u^{-c}} u^{-s} \mathrm{e}^{a \xi-a u-c} \xi^{-1-1 / c} d \xi, \\
& K_{1} \mathrm{e}^{a \varepsilon} \geqq \mathrm{e}^{a \varepsilon \xi^{-1-1 / c} \geqq K_{2} \mathrm{e}^{(a-\varepsilon) \xi}} \text { for some } K_{1}, K_{2}>0 \text { and } 0<\varepsilon<a \text { on }
\end{aligned}
$$

$$
M^{-c} \leqq \xi \leqq u^{-c}
$$

Definition. We se $C_{c, \tau_{t} t^{\infty}}\left(\mathbf{R}^{+}\right)=\left\{f \mid f \in C_{c}{ }^{\infty}\left(\mathbf{R}^{+}\right)\right.$and $\left.f=O\left(u^{t}\right), u \rightarrow 0\right\}$ and set $C_{c,(t)}$ ${ }^{\infty}\left(\mathbf{R}^{+}\right)=U_{\epsilon>0} C_{c,[t+\varepsilon]^{\infty}}\left(\mathbf{R}^{+}\right)$.

Definition. We define operators $Q_{\lambda, k}$ and $Q_{\lambda,-k}$ by
(2) + $\quad Q_{\lambda, k}\left(g_{\lambda}\right)(u)=\int_{0}^{u} \mathrm{e}^{\frac{\lambda}{k+1}\left(v^{k+1}-u^{k+1}\right)} g_{\lambda}(v) d v, \lambda \geqq 0$,

$$
=-\int_{u}^{\infty} \mathrm{e}^{\frac{\lambda}{k+1}\left(v^{k+1}-u^{k+1}\right)} g_{\lambda}(v) d v, \quad \lambda<0, \quad g_{\lambda} \in C_{C}^{\infty}\left(\mathbf{R}^{+}\right)
$$

(2)-

$$
\begin{aligned}
& \text { (2)- } \quad \begin{aligned}
Q_{\lambda},-k\left(g_{\lambda}\right)(u) & =\int_{0}^{u} v^{-k} \mathrm{e}^{\frac{\lambda}{1-k}\left(u^{1-k}-u^{1-k}\right)} g_{\lambda}(v) d v, \quad k \neq 1, \lambda \geqq 0, \quad g_{\lambda} \in C_{C}^{\infty}\left(R^{+}\right), \\
& =-\int_{u}^{\infty} v^{-k} \mathrm{e}^{\frac{\lambda}{1-k}\left(v^{1-k}-u^{1-k}\right)} g_{\lambda}(v) d v, \quad k \neq 1, \quad \lambda<0, \quad g_{\lambda} \in C_{C}^{\infty}\left(\mathbf{R}^{+}\right), \\
(2)-, 1 \quad \quad Q_{\lambda,-1}\left(g_{\lambda}\right)(u) & =\int_{0}^{u} v^{-1}\left(\frac{v}{u}\right)^{\lambda} g_{\lambda}(v) d v, \lambda \geqq 0, g_{0} \in C_{c}, \quad(0)^{\infty}\left(\mathbf{R}^{+}\right), \\
& =-\int_{u}^{\infty} v^{-1}\left(\frac{v}{u}\right)^{\lambda} g_{\lambda}(v) d v, \lambda<0, \quad g_{\lambda} \in C_{c}^{\infty}\left(\mathbf{R}^{+}\right) .
\end{aligned}
\end{aligned}
$$

By definitions and lemma 1, we have
Lemma 2. $Q_{\lambda, k}$ and $Q_{\lambda,-k}$ are the fundamental solutions of $(1)_{ \pm, k}$. They are C^{∞}-class on $\mathbf{R}^{+}-\{0\}$ and $Q_{\lambda, k}$ and $Q_{\lambda,-h}, \lambda>0$, are continuous on \mathbf{R}^{+}. $Q_{\lambda,-k}\left(g_{\lambda}\right)$, $\lambda<0$, is continuous on \mathbf{R}^{+}if $g_{\lambda \in} C_{c,[k]^{\infty}}\left(\mathbf{R}^{+}\right)$and $Q_{0,-k}\left(g_{0}\right)$ is continuous if $0<k \leqq 1$

$(n)_{+} \quad Q_{\lambda,-k}\left(g_{\lambda}\right) \cdot(u)$ is $C^{n}-$ class on \mathbf{R}^{+}if and only if $g_{\lambda} \in C_{c,[n k-1]^{\infty}}\left(\mathbf{R}^{+}\right)$for $\lambda>0$,
(n) $)_{0} \quad Q_{0,-k}\left(g_{0}\right)(u)$ is C^{n}-class on \mathbf{R}^{+}if and only if $g_{0} \in C_{c,[n+k-1]^{\infty}}\left(\mathbf{R}_{+}\right)$,
(n)- $\quad Q_{\lambda,-k}\left(g_{\lambda}\right)(u)$ is C^{n}-class on \mathbf{R}^{+}if and only if $\left.g_{\lambda} \in C_{c,[(n+1) k}\right]^{\infty}\left(\mathbf{R}^{+}\right)$

$$
\text { for } \lambda<0
$$

Proof. We need only to show $(n)_{+},(n)_{0}$ and (n)-. These follows from lemma 1 because we obtain if $g_{\lambda}(u)=O\left(u^{t}\right), u \rightarrow 0$,

$$
\begin{equation*}
\frac{d^{n}}{d u^{n}} Q_{\lambda,-k}\left(g_{\lambda}\right)(u)=O\left(u^{1+t-n k}\right), \quad \lambda>0 \tag{5}
\end{equation*}
$$

(5) 0

$$
\frac{d^{n}}{d u^{n}} Q_{0,-k}\left(g_{0}\right) \quad(u)=O\left(u^{1+t-k-n}\right),
$$

(5)-

$$
\frac{d^{n}}{d u^{n}} Q_{\lambda,-k}\left(g_{\lambda}\right)(u)=O\left(u^{t-(n+1) k}\right), \quad \lambda<0
$$

Corollary. If $Q_{\lambda,-k}\left(g_{\lambda}\right)$ is C^{n}-class on \mathbf{R}^{+}, then $\left(d^{m} / d u^{m}\left(Q_{\lambda,-k}\left(g_{\lambda}\right)\right)(0)=0,0 \leqq m\right.$ $\leqq n-1$ and $d^{m+1} / d u^{m+1}\left(Q_{\lambda,-k}\left(g_{\lambda}\right)\right)$ is unbounded near 0 if g_{λ} does not satisfy $(n+1)$.

Note 1. Since the fundamental solutions of the adjoint operators of $\langle 1)_{ \pm, k}$ are obtained by the interchange of the variables of the kernels of $\mathrm{Q}_{\lambda, \pm, k}$, we get same results for adjoint operators.

Note 2. We have
(6)+ $\quad Q_{\lambda, k}\left(g_{\lambda}\right)(u)=Q_{\lambda}\left(g_{\lambda}\{(k+1) w\}^{\frac{1}{k+1}}\{(k+1) w\}^{\left.-\frac{1}{k+1}\right)(u), w=\frac{u^{k+1}}{k+1}, k>0, ~}\right.$
(6)- $\quad Q_{\lambda,-k}\left(g_{\lambda}\right)(u)=Q_{\lambda}\left(g_{\lambda}\left(\{(1-k) w\}^{\frac{1}{1-k}}\right)(u), \quad w=\frac{u^{1-k}}{1-k}, \quad 0<k<1\right.$,
and to set

$$
\begin{aligned}
Q_{\lambda},-\left(g_{\lambda}\right)(u) & =\int_{-\infty}^{u} \mathrm{e}^{\lambda(v-u)} g_{\lambda}(v) d v, \lambda \geqq 0, \\
& =-\int_{u}^{\infty} \mathrm{e}^{\lambda(v-u)} g_{\lambda}(v) d v, \quad \lambda<0,
\end{aligned}
$$

which is a fundamental solution of D_{λ} considered on \mathbf{R} with the boundary condition $\lim _{u \rightarrow-\infty} f_{\lambda}(u)=0, \lambda \geqq 0$, we also have
(6)-,1
$Q_{\lambda,-1}\left(g_{\lambda}\right)(u)=Q_{\lambda,-}\left(g_{\lambda}(\log w)\right)(u), w=\log u$.
§2. Estimates of $Q_{\lambda, \pm, k}$.
In this §, we use the notations

$$
M=M(g)=\max \{u \mid g(u) \neq 0\}, \quad m=m(g)=\min \{u \mid g(u) \neq 0\},
$$

and $\|f\|_{\{a, b]},\|f\|_{n,[a, b]}$, etc., mean L^{2}-norm and Sobolev's n-th norm, etc., of f on $[a, b]$.

Lemma 3. There exist constants $C_{k}, C_{k, L}, C_{-k, M, L}, 0<k<1 / 2$ and $C_{-k, m, V, L}$, $k \geqq 1 / 2$, such that
(3) +
$\left\|Q_{\lambda, k}(g)\right\| \leqq C_{k}\|g\|, \quad \lambda \neq 0, \quad\left\|Q_{0, k}(g)\right\|\left\|_{0, L} \leqq C_{[k, L)}\right\| g \|$,
(3)-,i
$\left\|Q_{\lambda,-k}(g)\right\|\left[(0, L] \leqq C-k, M, L\|g\|, \quad 0<k \leq \frac{1}{2}\right.$,
(3)-, ii
$\left\|Q_{\lambda,-k}(g)\right\|_{(0, L]} \leqq C-k, m, M, L\|g\|, \quad k \geqq \frac{1}{2}, \quad m(g) \neq 0$.
Proof. Since the kernel of $Q_{\lambda,-k}$ is continuous if $u \neq 0, v \neq 0$, we have (3)-,ii. On the other hand, since $\left[g\left(\{(1-k) w\}^{1 /(1-k) 2} d w=\{g(u)\}^{2} u^{-k} d u, g(\{1-k) w\}^{1 /(1-k)}\right)\right.$ $\in L^{2}\left(\boldsymbol{R}^{+}\right)$if $g \in C_{C}^{\infty}\left(\mathbf{R}^{+}\right)$and $Q_{\lambda,-k}(g) \in L^{2}[0, L]$ if $0<k<1 / 2$ by (5), we have (3)-,i by (3) and (6).. For $k>0$, we get

$$
\left\|Q_{\lambda, k}(g)\right\| \leqq\|g\|+\left\|Q_{\lambda /(k+1)}(g)\right\|, \lambda \neq 0,
$$

because $\exp \left[\frac{\lambda}{k+1}\left(v^{k+1}-u^{k+1}\right)\right] \leqq \exp \left[\frac{\lambda}{k+1}(v-u)\right]$ if $u \geqq 1, u \geqq v$ and $\lambda>0$ or $v \geqq u$ $\geqq 1$ and $\lambda<0$. Hence we obtain (3) $)_{+}$by (3).

To get boundary estimate for $Q_{2,-k}$, we use
Lemma 4. Let $g(u)$ be a C^{n+1}-class function such that
(7) n

$$
g(0)=g^{\prime}(0)=\cdots=g^{(n-1)}(0)=0,
$$

and assume $g^{(n+1)}(0) \neq 0$. Then to set
$(8)_{n}$

$$
g(u)=\frac{u^{n}}{n!} g^{(n)}(\theta(u) u), \quad 0 \leqq \theta(u) \leqq 1
$$

$\lim _{u \rightarrow 0} \theta(u)=1 /(n+1)$, and this convergence is locally uniform in g by the $C^{n+1}-$ topology.

Proof. By assumption, we may set

$$
\begin{aligned}
g(u) & =\frac{u^{n}}{n!} g^{(n)}(0)+{\frac{u^{n+1}}{(n+1)!g}}^{(n+1)}\left(\theta_{1}(u) u\right) \\
& =\frac{u^{n}}{n!} g^{(n)}(0)+\theta(u) u g^{(n+1)}\left(\theta_{0}(\theta(u) u) \theta(u) u\right) .
\end{aligned}
$$

Hence we get

$$
\begin{equation*}
\theta(u)=\frac{1}{n+1} \frac{g^{(n+1)}\left(\theta_{1}(u) u\right)}{g^{(n+1)}\left(\theta_{0}(\theta(u) u) \theta(u) u\right)} ; \tag{9}
\end{equation*}
$$

which shows the lemma.
Corollary 1. If $g(u)$ is a C^{n}-class function and satisfies $(7)_{n}$, then

$$
\begin{equation*}
\left.\max _{0 \leqq u \leqq a} \frac{g(u)}{u^{n}}\left|\leqq \frac{1}{n!} \max _{0 \leqq u \leqq a}\right| g^{(n)}(u) \right\rvert\, \tag{10}
\end{equation*}
$$

and if $g(u)$ is C^{n+1}-class and $g^{(n+1)}(0) \neq 0$, then there exists a constant $\alpha=\alpha(a, g)$ >0 such that

$$
\begin{equation*}
\max _{0 \leqq u \leqq a}\left|g^{(n)}(u)\right| \leqq n!\max _{0 \leqq a \leqq a}\left|\frac{g(u)}{u^{n}}\right| \tag{10}
\end{equation*}
$$

and this α is taken to be locally uniform in g by the C^{n+1}-topology.
Proof. (10) follows from (8) n. Since $\theta(u)$ is continuous near $u=0$ if $g^{(n+1)}(0)$ $\neq 0, \theta(u) u, 0 \leqq u \leqq a$ covers $0 \leqq u \leqq \alpha a, \alpha>0$, by lemma 4. This shows (10)'. The local uniformity of α also follows from lemma 4.

Corollary 2. If $g(u)$ is a C^{n}-class function and satisfies $(7)_{n}$, then there exists a constant C_{1} such that

$$
\begin{equation*}
\left\|\frac{g(u)}{u^{n}}\right\|_{[0, a]} \leqq C_{1}\|g(u)\|_{n+1,[0, a]} \tag{11}
\end{equation*}
$$

and if $g(u)$ is a C^{n+1}-class function and satisfies $(7)_{n}$ and $g^{(n+1)}(0) \neq 0$, then there exist constants C_{2} and $\beta=\beta(a, g)>1$ such that

$$
\begin{equation*}
\|g(u)\|_{n,[0, a]} \leqq C_{2}\left\|\frac{g(u)}{u^{n}}\right\|_{[0, \beta a]} \tag{11}
\end{equation*}
$$

and this β is taken to be locally uniform in g by the C^{n+1}-topology.
Proof. (11)' follows from (10)'. (11) follows from the inequalities

$$
\left.\left\|\frac{g(u)}{u^{n}}\right\|_{[0, a]} \leqq C_{0} \max _{0 \leqq u \leqq a}\left|\frac{g(u)}{u^{n}}\right| \leqq n!C_{0} \max _{0 \leqq u \leqq a}|g(n)(u)|\right) \leqq C_{1}| | g \|_{n+1,[0, a]}
$$

which are obtained by (10) and Sobolev inequality ([1]).
Lemma 5. (i). Let $[k]^{\prime}$ be $-[-k]$ and g an element of $C_{c,[k]^{\prime}-1^{\infty} \text {, then there }}$ exists a constant $C_{k, M, L}^{(k]^{\prime}}, \quad M=M(g)$, such that

$$
\begin{equation*}
\left\|Q_{\lambda,-k} g\right\|_{[0, L]} \leqq C_{k, M, L}^{[k]^{\prime}}\|g\|_{[k]^{\prime}+1} \tag{12}
\end{equation*}
$$

(ii). If k is an integer, g satisfies (n) and assume $Q_{\lambda,-k}^{(n)}(0) \neq 0$. Then there exist constants $C_{k, M, L, g, \lambda}^{n}$ such that

$$
\begin{equation*}
\left\|Q_{\lambda,-k[g]}\right\|_{n,[0, L]} \leqq C_{k, M, L, g, \lambda}^{n}\|g\|_{n k}, \quad \lambda>0 \tag{12}
\end{equation*}
$$

$(12)^{\prime}{ }_{0}$

$$
\left\|Q_{0,-k}[g]\right\|\left\|_{n,[0, L]} \leqq C_{k, M, L, g, 0}^{n}\right\| g \|_{n+k}
$$

$$
\begin{equation*}
\left\|Q_{\lambda,-k}[g]\right\|_{n,[0, L]} \leqq C_{k, M, L, g, \lambda}^{n}\|g\|_{(n+1) k+1}, \quad \lambda<0 \tag{12}
\end{equation*}
$$

and these $C_{k, M, L, g, \lambda}^{n}$ are locally uniform in g by Sobolev's $(n+1)$-topology and uniform in λ if $|\lambda|$ is large.

Proof. First we note that for an integer $n, C_{c,[n]^{\infty}=\{ } \mathrm{f} \mid \mathrm{f} \in C_{C}^{\infty}, f$ satisfies (7) $n+1\}$. Hence we get (12) by (11). Because we know

$$
\begin{aligned}
& \left|\left(\frac{u}{v}\right)^{\lambda}\right| \leqq 1, \lambda>0, v \leqq u \text { or } \lambda<0, v \geqq u \\
& \left|\mathrm{e}^{\frac{\lambda}{1-k}\left(v^{1-k}-u^{1-k}\right)}\right| \leqq 1, \quad \lambda>0, \quad v \leqq u \text { or } \lambda<0, \quad v \geqq u
\end{aligned}
$$

Since we know $\left\|u^{-s} Q_{\lambda,-k}[g]\right\| \leqq C| | Q_{2,-k}\left[v^{-s} g\right] \|$ for some $C>0$ by lemma 1, we have

$$
\left\|Q_{\lambda,-k}[g]\right\|\left\|_{s,[0, a]} \leqq C_{2}\right\| u^{-s} Q_{\lambda,-k}[g]\left\|[\mathfrak{0}, a] \leqq C_{3}\right\| g \|_{s+k+1}
$$

by (12), if g satisfies (s). Therefore we get (12)'. The local uniformity of $C_{k, M, L, g, \lambda}^{n}$ in g follows from lemma 4. To show the uniformity in λ, we note that we have

$$
Q_{\lambda,-k}(g)^{(n)}(u)=(-1)^{n} \lambda^{n} u^{-n k} Q_{\lambda,-k}(g)(u)+O\left(\lambda^{n-1} u^{k}\right)
$$

by (5) and

$$
Q_{\lambda,-k}(g)^{(s)}=\sum_{t=0}^{S-1} \frac{(s-1)!}{t!(s-t-1)!}(-1)^{t} \frac{(k+t)}{(k)} u^{-k-t}\left(g^{(s-t-1)}-\lambda Q_{\lambda,-k}(g)^{(s-t-1)}\right)
$$

Hence by (9), $\theta(u)$, determined by $(8)_{n-1}$ for $Q_{\lambda,-k}(g)$, is given by

$$
\theta(u)=\frac{1}{n} \frac{Q_{\lambda,-k}(g)\left(\theta_{1}(u) u\right)+O\left(\lambda^{-1} u^{k}\right)}{Q_{\lambda,-k}(g)\left(\theta_{0}(\theta(u) u) \theta(u) u\right)+O\left(\lambda^{-1} u^{k}\right)}
$$

On the other hand, the kernel of $Q_{\lambda,-k}$ tends to 0 if $|\lambda| \rightarrow \infty$. Hence we have the uniformity in λ for $|\lambda|$ is large by (2)- and (2)-, 1 .

Note. For the fundamental solutions of the adjoint operators of $D_{ \pm, k}$, we have same estimates.

§3. Extensions of $\boldsymbol{D}_{ \pm, k, \lambda}$ and $\boldsymbol{Q}_{\lambda, \pm k}$.

By lemma 3 and lemma 5, we have
Lemma 6. (i). $Q_{\lambda, k}, k>0$, is extended to a continuous map $\widetilde{Q}_{\lambda, k}: L^{2} \rightarrow L^{2}{ }_{l o c, .}$. (ii). For any $0<m<M, Q_{\lambda,-k}$ is extended to a continuous map $\widetilde{Q}_{\lambda,-k}: L^{2} m, M \rightarrow L^{2}$. (iii). $Q_{\lambda,-k}$ is extended to a continuous map $\widetilde{Q}_{\lambda,-k}: H^{(}[k]^{\prime}-1^{[k]^{\prime+1}}[0, L] \rightarrow L^{2} l o c ., k \geqq 1$.
(iv). $Q_{\lambda,-1}$ is extended to a continuous map $\widetilde{Q}_{\lambda,-1}: H_{(n-1)^{n}}[0, L] \rightarrow H^{n}{ }_{\text {loc., }}$ if $\lambda>0$.

Here $H_{(s)^{n}}, s \leqq n-1$, means the Sobolev space with the boundary condition (7)s.

Corollary. $D_{ \pm, k, \lambda}$ and theire formal adjoints $D_{ \pm, k, \lambda^{*}}$ have closed extensions $\mathscr{D}_{ \pm, k, \lambda}$ and $\mathscr{V}_{ \pm, k, \lambda .}$.

Definition. We set $\Delta_{1}, \pm, k, \lambda=\mathscr{D}_{ \pm, k, \lambda^{*}} \mathscr{D}_{ \pm, k, \lambda}$ and $\Delta_{2, \pm, k, \lambda}=\mathscr{D}_{ \pm, k, \lambda} \mathscr{D} \pm, k, \lambda^{*}$.
Since (on $C^{\infty}\left(\mathbb{R}^{+}\right)$) $D_{ \pm, k, R^{*}}{ }^{*}$ are given by

$$
D_{+, k, \lambda^{*}}=-\frac{d}{d u}+\lambda u^{k}, \quad D_{-, k,,^{*}}=-u^{k} \frac{d}{d u}-k u^{k-1}+\lambda,
$$

we have (on $C^{\infty}\left(\mathbb{R}^{+}\right)$)
(13)+ $\quad \Delta_{1,+, k, \lambda}=-\frac{d^{2}}{d u^{2}}-k \lambda u^{k-1}+\lambda^{2} u^{2 k}, \Delta_{2,+, k, \lambda}=-\frac{d^{2}}{d u^{2}}+k \lambda u^{k-1}+\lambda^{2} u^{2 k}$,

$$
\begin{align*}
& \Delta_{1,-, k, \lambda}=-u^{2 k} \frac{d^{2}}{d u^{2}}-2 k u^{2 k-1} \frac{d}{d u}-\lambda k u^{k-1}+\lambda^{2}, \tag{13}\\
& \Delta_{2,-, k, \lambda}=-u^{2 k} \frac{d^{2}}{d u^{2}}-2 k u^{2 k-1} \frac{d}{d u}-k(k-1) u^{2 k-2}-\lambda k u^{k-1}+\lambda^{2} .
\end{align*}
$$

By definition, $Q_{\lambda, k} Q_{\lambda, k^{*}}$ and $Q_{\lambda, k}{ }^{*} Q_{\lambda, k}$ are defined on $C_{C}^{\infty}\left(\mathbf{R}^{+}\right)$and they are the fundamental solutions of $\Delta_{1,+, k}$, and $\Delta_{2,+, k}$, with the boundary conditions
(14)+

$$
\begin{aligned}
& f_{\lambda, k}(0)=0, \lambda \geqq 0, \frac{d}{d u} f_{\lambda, k}(0)=0, \lambda<0, \text { for } \Delta_{1,+, k}, \\
& f_{\lambda, k}(0)=0, \lambda \leqq 0, \frac{d}{d u} f_{\lambda, k}(0)=0, \lambda>0, \text { for } \Delta_{2,+, k}
\end{aligned}
$$

The boundary conditions for $\Delta_{i,-, k,}, k<1, i=1,2$, are similar as (14)+ (cf. § 11). But since $O_{\lambda,-k} Q_{\lambda,-k}$ and $Q_{\lambda,-k} * Q_{\lambda,-k}$ are defined only on $C_{c,[2 k]^{\infty}}\left(\mathbf{R}^{+}\right)$if $k \geqq 1$ and therefore the boundary condition is

$$
\begin{equation*}
f_{\lambda, k}(0)=0, \text { for all } \lambda . \tag{14}
\end{equation*}
$$

For the extensions of $Q_{\lambda, \pm k} Q_{\lambda, \pm k^{*}}$ and $Q_{\lambda, \pm k}{ }^{*} Q_{\lambda, \pm k}$, we have by lemma 3 and lemma 4

Lemma 6^{\prime}. (i). $Q_{\lambda, k} Q_{\lambda, k}{ }^{*}$ and $Q_{\lambda, k^{*}} Q_{\lambda, k}$ are extended to a continuous maps $L^{2} \rightarrow L^{2}$ loc. .
(ii). For any $L, Q_{\lambda,-k} Q_{\lambda,-k}{ }^{*}$ and $Q_{\lambda,-k} Q_{\lambda,-k}$ are extended to a continuous maps $H_{\left([2 k\}^{\prime}-1\right)}{ }^{[2 k] 1+1}[0, L] \rightarrow L^{2}$ ioc. .

§4. Continuation of $D_{ \pm, k, \lambda}$ and $Q_{\lambda, \pm k}$ across 0 .

If $u<0$, we define $D_{ \pm, k, \lambda}$ by

$$
D_{+, k, \lambda}=\frac{d}{d u}+\lambda(-u)^{k}, \quad D_{-, k, \lambda}=(-u)^{k} \frac{d}{d u}+\lambda .
$$

Hence for $u<0, D_{ \pm, k, \lambda}$ and $\Delta_{i, \pm, k, \lambda}, i=1,2$, take the forms

$$
\begin{aligned}
& D_{+, k, \lambda^{*}}=-\frac{d}{d u}+\lambda(-u)^{k}, \quad D-, k, \lambda^{*}=-(-u)^{k} \frac{d}{d u}+k(-u)^{k-1}+\lambda, \\
& \Delta_{1,+, k, \lambda}=-\frac{d^{2}}{d u^{2}}+k \lambda(-u)^{k-1}+\lambda^{2}(-u)^{2 k} \\
& A_{2,+, k, \lambda}=-\frac{d^{2}}{d u^{2}}-k \lambda(-u)^{k-1}+\lambda^{2}(-u)^{2 k}
\end{aligned}
$$

$$
\begin{aligned}
& \Delta_{1,-, k, \lambda}=-(-u)^{2 k} \frac{d^{2}}{d u^{2}}+2 k(-u)^{2 k-1} \frac{d}{d u}+\lambda k(-u)^{k-1}+\lambda^{2}, \\
& \Delta_{2,-, k, \lambda}=-(-u)^{2 k} \frac{d l^{2}}{d u^{2}}+2 k(-u)^{2 k-1} \frac{d}{d u}-k(k-1)(-u)^{2 k-2}+\lambda k(-u)^{k-1}+\lambda^{2} .
\end{aligned}
$$

The boundary conditions for $u \leqq 0$ are $f_{\lambda, k}(0)=0, \lambda \leqq 0$ and the fundamental solutions take the forms

$$
\begin{aligned}
Q_{\lambda, k}\left(g_{\lambda}\right)(u) & =-\int_{u}^{0} \mathrm{e}^{\frac{\lambda}{k+1}\left((-u)^{k+1}-(-v)^{k+1}\right)} g_{\lambda}(v) d v, \lambda \leqq 0, \\
& =\int_{-\infty}^{u} \mathrm{e}^{\frac{\lambda}{k+1}\left(\left(u u^{k+1}-(-v)^{k+1}\right)\right.} \mathrm{g}_{\lambda}(v) d v, \lambda>0, \\
\mathrm{Q}_{\lambda,-k}\left(g_{\lambda}\right)(u) & =-\int_{u}^{0}(-v)^{-k} \mathrm{e}^{\frac{\lambda}{1-k}\left((u)^{1-k}-(-v)^{1-k}\right)} g_{\lambda}(v) d v, \lambda \leqq 0, \quad k \neq 1, \\
& =\int_{-\infty}^{u}(-v)^{-k} \mathrm{e}^{\frac{\lambda}{1-k}\left((-u)^{1-k}-(-v)^{-1 k}\right)} g_{\lambda}(v) d v, \lambda>0, \\
\mathrm{Q}_{\lambda,-1}\left(g_{\lambda}\right)(u) & =\int_{u}^{0} v^{-1}\left(\frac{u}{v}\right)^{\lambda} g_{\lambda}(v) d v, \lambda \leqq 0, \\
& =-\int_{-\infty}^{u} v^{-1}\left(\frac{u}{v}\right)^{\lambda} g_{\lambda}(v) d v, \lambda>0 .
\end{aligned}
$$

Therefore, to set

$$
\begin{aligned}
& C_{c, k, \lambda^{\infty}(\mathbb{R})=\left\{f \mid f \in C_{C}^{\infty}(\mathbb{R}), \int_{-\infty}^{0} \mathrm{e}^{-\frac{\lambda}{k+1}|v|^{k+1}} \mathrm{f}(v) d v=0\right\}, \lambda \geqq 0,}^{C_{c, k, \lambda^{\infty}(\mathbb{R})}=\left\{f \mid f \in C_{C}^{\infty}(\mathbf{R}), \int_{0}^{\infty} \mathrm{e}^{\frac{\lambda}{k+1} v^{k+1}} f(v) d v=0\right\}, \quad \lambda<0,} \\
& C_{c,-k, \lambda^{\infty}}(\mathbf{R})=\left\{f \mid f \in C_{C}^{\infty}(\mathbf{R}), \int_{-\infty}^{0} \mathrm{e}^{\left.-\lambda|v| f\left(\{(1-k) v\} \frac{1}{1-k}\right) d v=0\right\},}\right. \\
& C_{c, k, \lambda^{\infty}(\mathbb{R})}=\left\{f \mid f \in C_{C}^{\infty}(\mathbb{R}), \int_{0}^{\infty} \mathrm{e}^{\lambda v} f\left(\{(1-k) v\}^{\frac{1}{1-k}}\right) d v=0\right\}, \quad 0<k<1, \quad \lambda<0,
\end{aligned}
$$

$Q_{\lambda, k}$ and $Q_{\lambda,-k}, 0<k<1$, are defined on $C_{c, k, \lambda^{\infty}}(\mathbb{R})$ and $C_{c,-k, \lambda} \infty(\mathbb{R})$. Here $C_{C}^{\infty}(\mathbb{R})$ means the space of compact support C^{∞}-class functions on \mathbb{R}. On the other hand,
 pact support functions with $g(u)=O\left(u^{(n+1) k+\varepsilon}\right), u \rightarrow 0$, for some $\varepsilon>0$.

Since the above extended $Q_{\lambda, \pm k}$ have same properties as $Q_{\lambda, \pm k}$ on \mathbb{R}^{+}and the L^{2}-completions of $C_{c, k, \lambda^{\infty}}(\mathbb{R})$, and $C_{c,-k}, \lambda^{\infty}(\mathbb{R}) 0<k<1$, are 1-codimensional subspaces of $L^{2}(\mathbf{R})$, we obtain

Lemma 7. (i). $\Delta_{i,+, k, \lambda}, i=1,2$, and $\Delta_{i,-k, \lambda}, \quad 0<\mathrm{k}<1, i=1,2$, have fundamental
solutions across 0 .
 $L]$ for any $L>0$.

Proof. By the definitions of $Q_{\lambda, \pm k}$ (and $Q_{\lambda, \pm k^{*}}$), if $g_{\lambda} \in C_{C}^{\infty}[a, b]-,\infty<a<b$
 are defined. Similarly, if $g_{\lambda} \in C_{C},\left[[2 k]^{\prime}\right]^{\infty}[a, b], \quad(a<0<b)$, then $Q_{\lambda,-k} Q_{\lambda,-k^{*}}$ and $\mathrm{Q}_{\lambda,-k} \mathrm{Q}_{2,-k}, k \geq 1$, are defined. Hence we have the lemma.

References

[1]. Adams, R.A.: Sobolev Spaces, New York, 1975.
[2]. Asada, A. : Borel transformation in non-analytic category, J. Fac. Sci. Shinshu Univ., 12 (1977).
[3]. Atiyah, M.F. - Воtt,R. -Patodi, V.K. : On the heat equation and the index theorem, Inv. math., 19(1973), 279-330, 28 (1975), 277-280.
[4]. Atiyah, M.F. -Patodi, V.K.-Singer, I, M. : Spectral asymmetry and Riemannian geometry, I, II, III. Math. Proc. Camb. Phil. Soc., 77 (1975), 43-69, 78 (1975), 405-432, 79 (1976), 71-99.
[4]'. Atiyah, M.F. -Patodi, V.K. -Singer, I. M. : Spectral asymmetry and Riemannian geometry, Bull. London Math. Soc., 5 (1973), 229-234.
[5]. Friedmann, A. : Partial Differential Equations of Parabolic Type, London, 1964.
[6]. Gatesoupe, M. : Sur les transformes de Fourier radiales, Bull. soc. math. France, Mémoire 28 (1971).
[7]. Gel'fand, I.M.-Graev, M.I.-Pyatetski-Shapiro, I.I. : Representation Theory and Automorphic Functions, Moscow, 1966, English trans1., Philadelphia, 1969.
[8]. Gevrey, m. : Sur les équations aux dérivées partielles du type parabolique, Journ. de Math. (6e série), $9(1913), 305-475,10(1914), 105-148$.
[8]'. Gevrey, m. : Sur certaines équations aux dérivees partielles du type parabolique, C.R.Acad. Sci, 154(1912), 1785-1788.
[9]. Kepinski, S. : Über die Differentialgleichung $\frac{\partial^{2} z}{\partial x^{2}}+\frac{m+1}{x} \frac{\partial z}{\partial x}-\frac{n}{x} \frac{\partial z}{\partial \mathrm{t}}=0$, Math. Ann., 61 (1905), 397-405.
[10]. Kummer, E.E. : Sur 1'integration générale de l'equation de Riccati par des intégrales définis, Journ. fûr die reine und angew. Math., 12 (1834), 144-147.
[11]. Matsuzawa, T. : On some degenerate parabolic equations, I, II. Nagoya Math. J., 51 (1973), 57-77, 52 (1973), 61-84.
[12]. Oleinik, O.A. -Radkevic, E.V. : Second Order Equations with Nonnegative Characteristic Form, Moscow, 1971, English transl. Providence, 1973.
[13]. Seeley, R.T. : Complex powers of an elliptic operator, Proc. Sympos. Pure Math., 10, A.M.S., 288-307, 1967.
[14]. Shinkat, K. : On symbois of fundamental solutions of parabolic systems, Proc. Japan Acad., 50 (1974), 337-341.
[15]. Shinkai, K. : On the fundamental solution of a degenerate parabolic system, Proc.

Japan Acad., 51(1975), 737-739.
[16]. Taniguchi, K. : On the hypoellipticity and the global analytic-hypoellipticity of pseudo-differential operators, Osaka J. Math., 11(1974), 221-238.
[17]. Tsutsumi, C. : The fundamental solution for a parabolic pseudo-differential operator and parametrices for degenerate operators, Proc. Japan Acad., 51(1975), 103-108.
[18]. Watson, G.N. : A Treaties on the Theory of Bessel Functions, Cambridge, 1944.
[19]. Shlnifai, K. : The Symbol calculus for the Fundamental solution of a degenerate porabolic system with applications, Osaka. J. Math, 14 (1977), 55-84.
(To be continued in No.1, Vol. 13)

[^0]: 1) $\S \S 1-4$ are appear in this issue, $\S \S 5-11$ will appear in No. 1, Vol 13.
