A Note on Submodules of a Galois Extension of a Ring with a Cyclic Galois Group of Order p^{e}

By Kazuo Kishimoto
Department of Mathematics, Faculty of Science, Shinshu University (Recieved November, 16, 1976)

Let B be an algebra over $G F(p)$ with $1, A$ an extension ring of B. If a group G acts on A as a group of B-automorphisms, then $D_{\sigma}=\sigma-1$ becomes a σ-derivation in A for each $\sigma \in G$, i. e., $D_{\sigma}(x+y)=D_{\sigma}(x)+D_{\sigma}(y)$ and $D_{\sigma}(x y)=\sigma(x) D_{\sigma}(y)$ $+D_{\sigma}(x) y$ for each $x, y \in A$. If we set $D_{\sigma^{0}}=1$, then the $D_{o}{ }^{k}$-constant $A(k)=$ $\left\{a \in A \mid D_{\sigma}{ }^{k}(a)=0\right\}$ is a right B submodule of A for each non negative integer k, and if $k=p f, A(k)$ coincides with the fixed subring A^{η} with $\eta=\sigma^{k}$ since $D o^{k}=$ $\sigma^{k}-1$. Hence, if G is a cyclic group of order p^{e} with a generator σ and A / B is a G-cyclic extension with $A_{B} \oplus>B_{B}$, then the $D_{o}{ }^{k}$-constant $A(k)$ is a free right (as well as left) B-module with a basis $\left\{x_{i} \mid i=1,2, \cdots, k\right\}$ by [2] if $k=p f$. In this note, we shall show that $A(n)$ is also a free right B-module with a basis $\left\{w_{i} \mid i=1,2, \cdots, n\right\}$ for each $1 \leqq n \leqq p^{e}$ and some related results. These are obtained in [1] when A is a division ring.

Now, we shall begin our study from the following
Lemma 1. Let $D=D_{\sigma}$ for some $\sigma(\neq 1) \in G$.
(1) $D^{n}(x y)=\sum_{i=0}^{n}\binom{n}{i} \sigma^{i} D^{n-i}(x) D^{i}(y)$ for each $x, y \in A$.
(2) If $D(y)=1$ then $D^{k}(y k)=k$!.

Proof. We shall prove the assertions by the induction on n.
(1) Since $D(x y)=\sigma(x) D(y)+D(x) y$, we assume that $D^{k}(x y)=\sum_{i=0}^{k}\binom{k}{i} \sigma^{i} D^{k-i}(x)$ $D^{i}(y)$ for $k \geqq 1$. Then,

$$
\begin{aligned}
D^{k+1}(x y) & =D\left(\sum_{i=0}^{k}\binom{k}{i} \sigma^{i} D^{k-i}(x) D^{i}(y)\right) \\
& =\sum_{i=0}^{k}\binom{k}{i}\left[\sigma^{i+1} D^{k-i}(x) D^{i+1}(y)+\sigma^{i} D^{k+1-i}(x) D^{i}(y)\right] \\
& =D^{k+1}(x) y+\sum_{i=1}^{k}\left(\binom{k}{i-1} \sigma^{i} D^{k-(i-1)}(x) D^{i}(y)\right. \\
& \left.+\binom{k}{i} \sigma^{i} D^{k+1-i}(x) D^{i}(y)\right)+\sigma^{k+1}(x) D^{k+1}(y) \\
& =\sum_{i=0}^{k+1}\binom{k+1}{i} \sigma^{i} D^{k+1-i}(x) D^{i}(y) .
\end{aligned}
$$

(2) Since $D(y)=1$, we assume that $D^{k}(y k)=k$!. Then

$$
\begin{aligned}
D^{k+1}\left(\begin{array}{l}
k+1
\end{array}\right) & =D\left(D^{k}\left(\begin{array}{l}
k
\end{array}\right) y\right)=D\left(\sum_{i=0}^{k}\binom{k}{i} \sigma^{i} D^{k-i}(y k) D^{i}(y)\right) \\
& =D\left(k!y+k \sigma D^{k-1(y k))}\right. \\
& =k!+k k!=(k+1)!.
\end{aligned}
$$

In all that follows, we assume that G is a cyclic group of order p^{e} with a generator $\sigma, A / B$ is a G-cyclic extension with $A_{B} \oplus>B_{B}, D=D_{\sigma}$ and $A(k)$ is the D^{k}-constant of A for each $0 \leqq k \leqq p^{e}$. Further, we put $m=p^{n}, m^{\prime}=p^{n+1}$ and $\eta=\sigma^{m}$. Then $A\left(m^{\prime}\right) / A(m)$ is a $(\eta) /(\eta p)$-cyclic extension with $A\left(m^{\prime}\right)_{A(m)} \oplus>A(m)_{A}(m)$. Therefore there exists an $A(m)$-basis $\left\{1, y_{n+1}, y_{n+1^{2}}, \cdots, y_{n+1}^{p-1}\right\}$ for $A\left(m^{\prime}\right)$ such that $D^{m}\left(y_{n+1}\right)=1$ by [2]. Since $\eta\left(D\left(y_{n+1}\right)\right)=D\left(\eta\left(y_{n+1}\right)\right)=D\left(D^{m\left(y_{n+1}\right)}+y_{n+1}\right)=D\left(y_{n+1}\right)$, we have $D\left(y_{n+1}\right) \in \dot{A}(m)$.

By $\left\{1, y_{n+1}, y_{n+1^{2}}, \cdots, y_{n+1} p-1\right\}$, we denote an $A(m)$-basis for $A\left(m^{\prime}\right)$ such that $D\left(y_{n+1}\right) \in A(m)$ and $D^{m}\left(y_{n+1}\right)=1$. Hence, if we put $E=D^{m}$, then $E^{j}\left(y_{n+1}{ }^{i}\right)=$ $\left\{\begin{array}{l}i \text { ! if } \quad i=j \\ 0 \text {. if } i<j\end{array}\right.$ by Lemma 1 (2).

Lemma 2. $D^{k-1}(A(k))$ coincides with B for each $1 \leqq k \leqq p$.
Proof. Since $A(1)=B=D^{0}(A(1))$, we assume that $D^{k-1}(A(k))=B$ for $k \geqq 1$.
Let $k=a p^{n}+\sum_{i=0}^{n-1} a_{i} p^{i}$ be a p-expansion of k with $a \neq 0$ and $y=y_{n+1}$.
(i) case $k+1=p^{n+1}\left(=m^{\prime}\right): A(k+1)=A\left(m^{\prime}\right)=A(m) \oplus y A(m) \oplus y^{2} A(m) \oplus \cdots \oplus$ $y^{p-1} A(m)$. Hence $E^{p-1}(A(k+1))=A(m)$ yields $D^{k}\left(A\left(m^{\prime}\right)\right)=D^{m-1} E^{p-1}(A(k+1))=$ $D^{m-1}(A(m))=B$ by the induction hypothesis.
(ii) case $k+1=a p^{n}+\cdots+\left(a_{j}+1\right) p^{j}$ for some $j<n$: For any $i<p^{n}, E(x)$ $=0$ for each $x \in A(i)$ shows that $E^{a}(y a x)=a!x$. Hence $D^{k+1}(y a A(k+1-a p n))=$ $D^{k+1-a p^{n}} E^{a}\left(y^{a} A\left(k+1-a p^{n}\right)\right)=D^{k+1-a p^{n}}\left(A\left(k+1-a p^{n}\right)\right)=0$. Thus $A(k+1)$ contains $y^{a} A\left(k+1-a p^{n}\right)$, and hence $D^{k}(A(k+1)) \supseteq D^{k}\left(y^{a} A\left(k+1-a p^{n}\right)\right)=D^{k-a p^{n}} E^{a} A(k+$ $\left.\left.1-a p^{n}\right)\right)=D^{k-a p^{n}}\left(A\left(k+1-a p^{n}\right)\right)=B$ by the induction hypothesis. On the other hand, $B=A(1) \supseteqq D^{k}(A(k+1))$ is clear. Therefore $D^{k}(A(k+1))=B$.

This Lemma enable us to prove the following
Theorem. (1) $D(A(k))$ coincides with $A(k-1)$ for each $1 \leqq k \leqq p e$. In particular, if $A(k)$ is a free right B-module with a basis $\left\{x_{1}=1, x_{2}, \cdots, x_{k} ; k>1\right\}$ then $A(k-1)$ is a free right B-module with a basis $\left\{D\left(x_{2}\right), D\left(x_{3}\right), \cdots, D\left(x_{k}\right)\right\}$.
(2) There exists an element x_{k} in $A(k)$ such that $D^{k-1}\left(x_{k}\right)=1$ and $\left\{D^{i}\left(x_{k}\right) ; i=\right.$ $0,1, \cdots, k-1\}$ is a free right B-basis for $A(k)$.

Proof. (1) Since $D(A(k+1)) \subseteq A(k)$, it suffices to prove $D(A(k+1)) \supseteqq A(k)$. Now $0=A(0) \subseteq D(A(1))$ is clear, and hence, we assume that $D(A(k)) \supseteqq A(k-1)$
for $k \geqq 1$. Let x be an element of $A(k)$. Then $D^{k-1}(x)=D^{k}(y)$ for some $y \in A(k+1)$ by Lemma 2. Hence $D(y)-x \in \operatorname{Ker} D^{k-1}=A(k-1)$, and hence, $x \in D(A(k+1))$ $+A(k-1) \cong D(A(k+1))+D(A(k))=D(A(k+1))$.

If $A(k)=\sum_{i=1}^{k} \oplus x_{i} B$ then $A(k-1)=D(A(k))=\sum_{i=2}^{k} D\left(x_{i}\right) B$. Moreover, if $\Sigma_{i=2}^{k} D\left(x_{i}\right) b_{i}=0$ then $0=\sum_{i=2}^{k} D\left(x_{i} b_{i}\right)$ implies $\sum_{i=2}^{k} x_{i} b_{i} \in A(1)=B$. Consequently $b_{i}=0$ for $i=2,3, \cdots, k$.
(2) Noting that $A(p) / B$ is a $(\sigma) /\left(\sigma^{p}\right)$-cyclic extension with $A(p)_{B} \oplus>B_{B}, A(p)$ $=B \oplus y_{1} B \oplus \cdots \oplus y_{1} p^{-1} B$ with $D\left(y_{1}\right)=1$. Hence $A(2) \supseteq B \oplus y_{1} B$. On the other hand, if $a \in A(2) \subseteq A(p), \quad a=\sum_{i=0}^{b-1} y_{1} b_{i}$. But $D^{2}(a)=0$ shows that $a=b_{0}+y_{1} b_{1}$ by Lemma 1 (2). Consequently, $A(2)=B \oplus y_{1} B$ and $D\left(y_{1}\right)=1$ is a B-basis for $A(1)=B$. Hence, assume that x_{k} has been choosen as desired in $A(k)$. Since $D(A(k+1))=A(k)$, there exists an element $x_{k+1} \in A(k+1)$ with $D\left(x_{k+1}\right)=x_{k}$. Then $\left\{D^{i}\left(x_{k}\right), x_{k+1} ; i=0,1, \cdots, k-1\right\}$ is right linearly independent over B.

Let $T=A(k) \oplus x_{k+1} B$. Then $T \subseteq A(k+1)$ and $D(T)=D(A(k))+x_{k} B=\Sigma_{i=0}^{k-1}$ $\oplus D^{i}\left(x_{k}\right) B=A(k)=D(A(k+1))$. Hence, for any $\mathrm{a} \in A(k+1)$, there exists an element $t \in T$ such that $D(a)=D(t)$. Consequently $a-t \in \operatorname{Ker} D=B$, and this means that $a \in T+B=T$. Thus we have $T=A(k+1)$.

As immediate consequences of Theorem, we have the following
Corollary 1. There exists an element $x \in A$ such that
(1) $A=\Sigma_{i=0}^{p^{e}-1} \oplus D^{i}(x) B$
(2) $A=\Sigma_{i=0}^{b^{e}-1} \oplus \sigma^{i}(x) B$, i.e., A possesses a G-normal basis.

Proof. (1) is clear.
(2) It is clear that $\sum_{i=0}^{k} \oplus D^{i}(x) B=\Sigma_{i=0}^{k} \sigma^{i}(x) B$ for each $0 \leqq k \leqq p^{e}-1$. Let $x b+\sigma(x) c=0$ for $b, c \in B$. Then $-x c=x b+(\sigma(x)-x) c=x b+D(x) c$ shows that $c=b=0$. Hence we assume that $\Sigma_{i=0}^{k} \oplus D^{i}(x) B=\Sigma_{i=0}^{k} \oplus \sigma^{i}(x) B$ for $k \geqq 0$. If $k+1<p^{e}-1$ and $\sigma^{k+1}(x) b \in \sum_{i=0}^{k} \oplus \sigma^{i}(x) B$ for some $b(\neq 0) \in B$, we have a cont radiction $D^{k+1}(x) b \in \sum_{i=0}^{k} \oplus D^{i}(x) B$ since $D^{k+1}=(\sigma-1)^{k+1}=\sum_{i=0}^{k+1}\left({ }_{i}^{k+1}\right)(-1)^{i} \sigma^{k+1-i}$. Thus $A=\sum_{i=0}^{p^{c}-1} \oplus \sigma^{i}(x) B$.

Corollary 2. If M is a right B-submodule of A satisfying $D(M) \subseteq M$ and $D^{k}(M)=B$ for some $k \geqq 0$, then $M=A(k+1)$.

Proof. If a right B-submodule M of A satisfies $D(M) \supseteq M$ and $D^{0}(M)=B$, then $M=B=A(1)$. Hence we assume that $M=A(k)$ if $D(M) \subseteq M$ and $D^{k-1}(M)$

$=B$ for $k \geqq 1$.

Let $D(M) \subseteq M$ and $D^{k}(M)=B$ for some right B-submodule M. Then D^{k-1} $(D(M))=B . \quad$ Noting that $D(D(M)) \subseteq D(M), \quad D(M)=A(k)=D(A(k+1))$ by the induction hypothesis. Thus $A(k+1)=M+\operatorname{Ker} D=M+B=M$.

References

[1] A. S. Amitsur : Non-commutative cyclic fields, Duke Math. Jour. vol. 21 (1954), 87105.
[2] K. Kishimoto: On abelian extensions of rings I, Math. Jour. Okayama Univ., vol. 14 (1970), 150-174.

