A Note on Submodules of a Galois Extension of a Ring with a Cyclic Galois Group of Order p^e

By KAZUO KISHIMOTO

Department of Mathematics, Faculty of Science, Shinshu University (Recieved November, 16, 1976)

Let B be an algebra over GF(p) with 1, A an extension ring of B. If a group G acts on A as a group of B-automorphisms, then $D_{\sigma} = \sigma - 1$ becomes a σ -derivation in A for each $\sigma \in G$, i.e., $D_{\sigma}(x + y) = D_{\sigma}(x) + D_{\sigma}(y)$ and $D_{\sigma}(xy) = \sigma(x)D_{\sigma}(y) + D_{\sigma}(x)y$ for each $x, y \in A$. If we set $D_{\sigma^0} = 1$, then the D_{σ^k} -constant $A(k) = \{a \in A \mid D_{\sigma^k}(a) = 0\}$ is a right B-submodule of A for each non negative integer k, and if $k = p^f$, A(k) coincides with the fixed subring A^{η} with $\eta = \sigma^k$ since $D_{\sigma^k} = \sigma^k - 1$. Hence, if G is a cyclic group of order p^e with a generator σ and A/B is a G-cyclic extension with $A_B \oplus > B_B$, then the D_{σ^k} -constant A(k) is a free right (as well as left) B-module with a basis $\{x_i \mid i = 1, 2, \dots, k\}$ by [2] if $k = p^f$. In this note, we shall show that A(n) is also a free right B-module with a basis $\{w_i \mid i = 1, 2, \dots, n\}$ for each $1 \leq n \leq p^e$ and some related results. These are obtained in [1] when A is a division ring.

Now, we shall begin our study from the following

Lemma 1. Let $D = D\sigma$ for some $\sigma(\neq 1) \in G$.

- (1) $D^n(xy) = \sum_{i=0}^n {n \choose i} \sigma^i D^{n-i}(x) D^i(y)$ for each $x, y \in A$.
- (2) If D(y) = 1 then $D^k(y^k) = k!$.

Proof. We shall prove the assertions by the induction on n.

(1) Since $D(xy) = \sigma(x)D(y) + D(x)y$, we assume that $D^k(xy) = \sum_{i=0}^k {k \choose i} \sigma^i D^{k-i}(x)$ $D^i(y)$ for $k \ge 1$. Then,

$$D^{k+1}(xy) = D(\sum_{i=0}^{k} {k \choose i} \sigma^{i} D^{k-i}(x) D^{i}(y))$$

= $\sum_{i=0}^{k} {k \choose i} [\sigma^{i+1} D^{k-i}(x) D^{i+1}(y) + \sigma^{i} D^{k+1-i}(x) D^{i}(y)]$
= $D^{k+1}(x)y + \sum_{i=1}^{k} {k \choose i-1} \sigma^{i} D^{k-(i-1)}(x) D^{i}(y)$
+ ${k \choose i} \sigma^{i} D^{k+1-i}(x) D^{i}(y)$ + $\sigma^{k+1}(x) D^{k+1}(y)$
= $\sum_{i=0}^{k+1} {k+1 \choose i} \sigma^{i} D^{k+1-i}(x) D^{i}(y).$

(2) Since D(y) = 1, we assume that $D^{k}(y^{k}) = k!$. Then $D^{k+1}(y^{k+1}) = D(D^{k}(y^{k})y) = D(\sum_{i=0}^{k} {k \choose i} \sigma^{i} D^{k-i}(y^{k}) D^{i}(y))$ $= D(k!y + k\sigma D^{k-1}(y^{k}))$ = k! + kk! = (k+1)!.

In all that follows, we assume that G is a cyclic group of order p^e with a generator σ , A/B is a G-cyclic extension with $A_B \oplus > B_B$, $D = D_{\sigma}$ and A(k) is the D^k -constant of A for each $0 \leq k \leq p^e$. Further, we put $m = p^n$, $m' = p^{n+1}$ and $\eta = \sigma^m$. Then A(m')/A(m) is a $(\eta)/(\eta p)$ -cyclic extension with $A(m')_{A(m)} \oplus > A(m)_{A(m)}$. Therefore there exists an A(m)-basis $\{1, y_{n+1}, y_{n+1}^2, \dots, y_{n+1}^{p-1}\}$ for A(m') such that $D^m(y_{n+1}) = 1$ by [2]. Since $\eta(D(y_{n+1})) = D(\eta(y_{n+1})) = D(D^m(y_{n+1}) + y_{n+1}) = D(y_{n+1})$, we have $D(y_{n+1}) \in A(m)$.

By $\{1, y_{n+1}, y_{n+1^2}, \dots, y_{n+1^{j-1}}\}$, we denote an A(m)-basis for A(m') such that $D(y_{n+1}) \in A(m)$ and $D^m(y_{n+1}) = 1$. Hence, if we put $E = D^m$, then $E^j(y_{n+1^i}) = \begin{cases} i! & \text{if } i = j \\ 0 & \text{if } i < j \end{cases}$ by Lemma 1 (2).

Lemma 2. $D^{k-1}(A(k))$ coincides with B for each $1 \leq k \leq p^e$.

Proof. Since $A(1) = B = D^0(A(1))$, we assume that $D^{k-1}(A(k)) = B$ for $k \ge 1$. Let $k = ap^n + \sum_{i=0}^{n-1} a_i p^i$ be a *p*-expansion of k with $a \ne 0$ and $y = y_{n+1}$.

(i) case $k + 1 = p^{n+1}(=m') : A(k+1) = A(m') = A(m) \oplus yA(m) \oplus y^2A(m) \oplus \cdots \oplus y^{p-1}A(m)$. Hence $E^{p-1}(A(k+1)) = A(m)$ yields $D^k(A(m')) = D^{m-1}E^{p-1}(A(k+1)) = D^{m-1}(A(m)) = B$ by the induction hypothesis.

(ii) case $k+1 = ap^n + \dots + (a_j+1)p^j$ for some j < n: For any $i < p^n$, E(x) = 0 for each $x \in A(i)$ shows that $E^a(y^ax) = a!x$. Hence $D^{k+1}(y^aA(k+1-ap^n)) = D^{k+1-ap^n}E^a(y^aA(k+1-ap^n)) = D^{k+1-ap^n}(A(k+1-ap^n)) = 0$. Thus A(k+1) contains $y^aA(k+1-ap^n)$, and hence $D^k(A(k+1)) \supseteq D^k(y^aA(k+1-ap^n)) = D^{k-ap^n}E^aA(k+1-ap^n)) = D^{k-ap^n}(A(k+1-ap^n)) = B$ by the induction hypothesis. On the other hand, $B = A(1) \supseteq D^k(A(k+1))$ is clear. Therefore $D^k(A(k+1)) = B$.

This Lemma enable us to prove the following

Theorem. (1) D(A(k)) coincides with A(k-1) for each $1 \le k \le p^e$. In particular, if A(k) is a free right B-module with a basis $\{x_1 = 1, x_2, \dots, x_k ; k > 1\}$ then A(k-1) is a free right B-module with a basis $\{D(x_2), D(x_3), \dots, D(x_k)\}$.

(2) There exists an element x_k in A(k) such that $D^{k-1}(x_k) = 1$ and $\{D^i(x_k) ; i = 0, 1, \dots, k-1\}$ is a free right B-basis for A(k).

Proof. (1) Since $D(A(k+1)) \subseteq A(k)$, it suffices to prove $D(A(k+1)) \supseteq A(k)$. Now $0 = A(0) \subseteq D(A(1))$ is clear, and hence, we assume that $D(A(k)) \supseteq A(k-1)$

38

for $k \ge 1$. Let x be an element of A(k). Then $D^{k-1}(x) = D^k(y)$ for some $y \in A(k+1)$ by Lemma 2. Hence $D(y) - x \in Ker \ D^{k-1} = A(k-1)$, and hence, $x \in D(A(k+1)) + A(k-1) \subseteq D(A(k+1)) + D(A(k)) = D(A(k+1))$.

If $A(k) = \sum_{i=1}^{k} \bigoplus x_i B$ then $A(k-1) = D(A(k)) = \sum_{i=2}^{k} D(x_i) B$. Moreover, if $\sum_{i=2}^{k} D(x_i) b_i = 0$ then $0 = \sum_{i=2}^{k} D(x_i b_i)$ implies $\sum_{i=2}^{k} x_i b_i \in A(1) = B$. Consequently $b_i = 0$ for $i = 2, 3, \dots, k$.

(2) Noting that A(p)/B is a $(\sigma)/(\sigma^p)$ -cyclic extension with $A(p)_B \oplus > B_B$, $A(p) = B \oplus y_1 B \oplus \cdots \oplus y_1 p^{-1} B$ with $D(y_1) = 1$. Hence $A(2) \supseteq B \oplus y_1 B$. On the other hand, if $a \in A(2) \subseteq A(p)$, $a = \sum_{i=0}^{p-1} y_1 i b_i$. But $D^2(a) = 0$ shows that $a = b_0 + y_1 b_1$ by Lemma 1 (2). Consequently, $A(2) = B \oplus y_1 B$ and $D(y_1) = 1$ is a *B*-basis for A(1) = B. Hence, assume that x_k has been choosen as desired in A(k). Since D(A(k+1)) = A(k), there exists an element $x_{k+1} \in A(k+1)$ with $D(x_{k+1}) = x_k$. Then $\{D^i(x_k), x_{k+1}; i = 0, 1, \dots, k-1\}$ is right linearly independent over B.

Let $T = A(k) \oplus x_{k+1}B$. Then $T \subseteq A(k+1)$ and $D(T) = D(A(k)) + x_k B = \sum_{i=0}^{k-1} (D^i(x_k)B = A(k) = D(A(k+1))$. Hence, for any $a \in A(k+1)$, there exists an element $t \in T$ such that D(a) = D(t). Consequently $a - t \in Ker D = B$, and this means that $a \in T + B = T$. Thus we have T = A(k+1).

As immediate consequences of Theorem, we have the following

Corollary 1. There exists an element $x \in A$ such that

- (1) $A = \sum_{i=0}^{p^e-1} \bigoplus D^i(x)B$
- (2) $A = \sum_{i=0}^{p^e-1} \oplus \sigma^i(x)B$, *i.e.*, *A* possesses a *G*-normal basis.

Proof. (1) is clear.

(2) It is clear that $\sum_{i=0}^{k} \oplus D^{i}(x)B = \sum_{i=0}^{k} \sigma^{i}(x)B$ for each $0 \leq k \leq p^{e} - 1$. Let $xb + \sigma(x)c = 0$ for $b, c \in B$. Then $-xc = xb + (\sigma(x) - x)c = xb + D(x)c$ shows that c = b = 0. Hence we assume that $\sum_{i=0}^{k} \oplus D^{i}(x)B = \sum_{i=0}^{k} \oplus \sigma^{i}(x)B$ for $k \geq 0$. If $k+1 < p^{e}-1$ and $\sigma^{k+1}(x)b \in \sum_{i=0}^{k} \oplus \sigma^{i}(x)B$ for some $b(\neq 0) \in B$, we have a contradiction $D^{k+1}(x)b \in \sum_{i=0}^{k} \oplus D^{i}(x)B$ since $D^{k+1} = (\sigma - 1)^{k+1} = \sum_{i=0}^{k+1} {k+1 \choose i} (-1)^{i}\sigma^{k+1-i}$. Thus $A = \sum_{i=0}^{p^{e}-1} \oplus \sigma^{i}(x)B$.

Corollary 2. If M is a right B-submodule of A satisfying $D(M) \subseteq M$ and $D^{k}(M) = B$ for some $k \geq 0$, then M = A(k + 1).

Proof. If a right B-submodule M of A satisfies $D(M) \supseteq M$ and $D^0(M) = B$, then M = B = A(1). Hence we assume that M = A(k) if $D(M) \subseteq M$ and $D^{k-1}(M)$

KAZUO KISHIMOTO

= B for $k \ge 1$.

Let $D(M) \subseteq M$ and $D^k(M) = B$ for some right *B*-submodule *M*. Then $D^{k-1}(D(M)) = B$. Noting that $D(D(M)) \subseteq D(M)$, D(M) = A(k) = D(A(k+1)) by the induction hypothesis. Thus A(k+1) = M + Ker D = M + B = M.

References

- [1] A. S. AMITSUR: Non-commutative cyclic fields, Duke Math. Jour. vol. 21 (1954), 87-105.
- [2] K. KISHIMOTO: On abelian extensions of rings I, Math. Jour. Okayama Univ., vol. 14 (1970), 150-174.

40