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Recently, R, Couture and M. Lavoie [1] proved that any ring whose left
modules have free bases is a division ring. In this note, we shall prove the same
more briefly by giving some reasonable equivalent conditions.

Theorem. [f R 40 is a ring then the following are equivalent :

1) R is a division ring. |

2) For every left ideal I of R, R/I has a free R-basis.

3) Every left ideal of R is a direct summand of pR and every non-zero left
ideal of R contains a left regular element,

4) R is the sum of minimal left ideals and every nom-zero left ideal of R
contains a left regular element,

5) R is a left s-unital ring (acRa for any ac<R) such that every maximal left
ideal is a divect summand of rR and every non-zero lefi ideal contains a left
regular element.

6) R is a left s-unital ving such that every maximal left ideal is a left annihi-
lator and every non-zero left ideal contains a left regular element.

2"y~ 6') The left-right analogues of 2)-6).

Proof. Any division ring satisfies the conditions 2)-6), and moreover the
equivalence of 3) and 4) is well known.

2)=3) In fact, I is a direct summand of R, and isomorphic to R/I' for some
left ideal I',

4)=1) Let I be an arbitrary minimal left ideal of K. Then, I contains a left
regular element a. Since I=Ra, there exists an element ¢ such that e=ea. Evid-
ently, ¢ is a right identity element of R. Hence, R is left Artinian, whence it
follows Ra=R, namely, R is the unique minimal left ideal of R. As is well known,
R is then a division ring.

5)=>4) By [3, Lemma 1], R is the sum of minimal left ideals.

6)=>4) Since R is semiprime, R is the sum of minimal left ideals by [2,
Theorem].
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