JOUR, FAC, SCI,, SHINSHU UNIVERSITY, Vol, 12, No,1 June, 1977

Non-compact Simple Lie Group G, of Type G,

By IcHIRO YOKOTA

Department of Mathematics, Faculty of Science Shinshu University
(Received March 15, 1977)

It is known that there exist two simple Lie group of type Gz up to local
isomorphism, one of them is compact and the other is non-compact. The compact
simple Lie group Gz = Gac-19) of type Gz is obtained as the automorphism group
Aut(@) of the Cayley algebra € and it is a connected, simply connected, simple
(in the sense of the center z(Gq) =1) Lie group. It is also known that the Lie
algebra g2’ of the non-compact simple Lie group Gaey of type Ge is obtained as
the derivation Lie algebra of the split Cayley algebra ¢' and the maximal compact
subgroup of Gy has the type of Ai1@® A:. In this paper, we investigate some
global properties of the automorphism group G2 = Aut(@’) of the split Cayley
algebra @¢'. The results are as follows., The group G is homeomorphic to SO(4)
X R® and a simple (in the sense of the center z(G:') = 1) Lie group. And hence the
center z(éz’) of the non-compact simply connected simple Lie group G's= Gaay of
type Ga is Zo.

1. Split Cayley algebra ¢’

Let @' be the split Cayley algebra over the real numbers R. This algebra ¢’
is defined as follows. Let H = {@¢ = a1+ as + asj + askla; € R} be the field of
quaternions. In ¢' = H® He, if we define a multiplication by

(a + be)(c + de) = (ac + db) + (bc + da)e

then @' becomes an 8-dim. (non-commutative non-associative) algebra over R with
the conjugation @ + be = a — be.
The @-norm Q(x) and the inner product (x, ¥)' in ¢ are defined respectively by

Q(a -+ be) = lalz — |b]2
(@ + be, ¢ + de)' = (a, ¢) — (b, d)

The @-norm has the following properties.

Q) = xx = xx, Q(xY) =QX)QY), ¥ YEE
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Remark. In the usual Cayley algebra € = H -+ He, the multiplication is defined
by

(@ + be)(c + de) = (ac — db) + (bc - da)e

2. Definition of group G2
We denote the automorphism group Aut(¢’) of the split Cayley algebra @' by
G2, i.e.

Ge' = {a € Is0,(', 6)|a(xy) = a(x)a(y))
Obviously a(l);l holds for a=Gs. We shall .show that the group G2 is contained
in the Lorentz group O'(¢'), where

- 0l4, ) = 0'(6) = {a € Iso, (¢, 6)Q(alx) = Q(x))
= {a € Iso, (@', ¢)|(a(x), a(¥))' = (¥, J)'}

Lenima 1. For ae G and x = @', we have
(1) if xx=—1 then Qa(x)) =1 and a(x) = —a(x)

2 if xx=1, x & R then Qa(x)) = —1 and alx) = —a(x) |

Proof (1) From xx = —1 we have a(x)a(r) = —1, so (Q@®))z=1, de Qlalx)
= 4+ 1. Assume Q{a(x)) = —1, then ’

alx) = —Q(alx))a(x) = — (a(Ra(x))alx) = —alF(a(H)a(x)

(Although G’ is not associative, (¥%)¥ = %(xY) is always valid). This means a(x) is
a real number a, therefore «a(x) =a = a(@). Since.« is injective, ¥ =a is real and

xx = —1. This is a contradiction. Hence Qla(x)) = 1 and we get a(x) = —a(x) by a
calculation similar to.the above. (2) is analogously obtained. ’ '

Proposition 2. The group Go is a subgroup of the Loventz group O'(G").

Proof Let @ € G'. Choose a basis 1, ¢, 7, k, e, ie, je, ke in @', then these
elements except 1 satisfy the conditions of Lemma 1:

72 = jz =kt=—1, e= (ie)2‘: (]‘g)z = (/ée)‘d =1

Therefore, for these elements x we have‘ alx) = —a(x) = a(x). And since a(l) =1

= (1), we get a(x) = ax) for any elementx of ¢'. Now
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Qlalx)) = alx)a(x) = a(x)a(x) = alxx) = «(Q(¥)=Q(), x & ¢

This means « € O'(@).

3. Compact subgroup (G2 K of G2
We shall consider the subgroup (G2')x of Gs:

(G = {a € G2'|a(H) = H }

Since H and He are orthogonal with respect to the inner product (%, %), @« < (G2')x
also satisfies a(He) = He. B

To determine this group (G¢')g, we shall give some remarks on the rotation
group SO®) of lower dimensions. '

SOoW) = {o e IsoR(H, H)llo(x)] = |x|, deto =1}
SO(8) = {¢ €S04 |0(1) = 1}
= {o €lsop,(H, H)|o(xy) = o(x)o(¥)} = Aut(H)
st={peH|lpl=1}
In the topological product’of S$3 and SO(3), if we give a multiplication by
(4, 7)(b, o) = (qz(D), 7o)
then S3 X SO(3) becomes a group. We denote this group by S3-SO(3).
Lemma 3. The rotation group SO(4) is isomorphic to the group S3-SO(3).

Proof Define a mapping £ : S$*-SO(3) — SO4) by

f{p, o) = Lyo

where Lp € SO(4) is defined by Ls(x) = px, « & H. Then it is easy to verify that
f is an isomorphism. :

Proposition 4. The group (Go')x is isomorphic to the rolation group SO(4).
Proof Define a mapping ¢ : $3-SO(3) — (G2 by
(b, o)a + be) = ol@) + (polb)e, @, be H

First we must show ?(p, o) € (Gs)x. However it is easy ; in fact, ¢(p, o)(H)=H
is trivial and '

(D, o)la+ be)(P(D, o)c'+ de))
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= (o{a) + (pob)e)le(c) + (Dold))e)
= (o(@)a(c) + bald)pa (b)) + (Po(b)o(c) + po(d)ola))e
= glac + db) + (pa(bc + da)le

= ¢(p, o)(lac + db) + (bc + da)e) = (b, o)((a + be)(c + de))
¢ is a homomorphism because

P, 7)(P(b, o)(a + be)) = 94, 7)(ola) + (Da(b)le)
= ro(a) + (dc(po(b))e = ro(a) + (qr(p)ra(b))e
=¢(qr(p), vo)(a + be) = ¢((p, ©)(p, 0))(a + be)
Next we shall show that ¢ is onto. For a given a & (G:')g, consider the restriction

.o=a|H of a to H, then a € Aut (H) = SO(3). Put g = a®(1, ¢)-1, then B|H =1. Set
Ble) =pe, p= H, then |p| =1 and

Bla + be) = a + ble) = a + b(pe) = a + (pble = (b, 1){a -+ be)

i.e. B=9(p, 1). Hence a = pP(1, ) = ¢(p, 1)?(1, o) = @(p, ¢), so that ¢ is onto.
Obviously ¢ is one-to-one. Thus the proof is completed.

Remark, The compact Lie group G:z= Aut(@) also contains a subgroup (G2)x
which is isomorphic to SO{4) by a mapping ¢ : S3-SO(3) — G,

P(b, o)(a + be) = o(a) + (Do(b))e

4. Polar decompsition of G2’
To give a polar decomposition of G2 we use the following

Lemma & (1] p. 345). Let G be a real algebraic subgroup of the general linear
group GLn, R) such that the condition A € G implies tAc G. Then G is homeomor -
Dphic to the topological product of GNOWm) (which is a maximal compact subgroup of
G) and a Euclidean space R4 :

G=({GNom) x R4, d=dim(@nyx)

where On) is the orthogonal subgroup of GL#, R), 6 the Lie algebra of G and
H(») the vector space of all real symmetric matrices of degvee n,

To use the above lemma, we define a positive definite inner product (x, ¥) in
¢ by

(@ + be, ¢ + de) = (a, ¢) + (b, d)
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Two inner products (x, ¥), (x, ¥) in @ are combined with the following relations
(x, ) =(x, 1700)), (%, ))' = (x, 7(¥)
where 7= ¢(—1, 1). We denote by ‘a the transpose of a €Iso,(¢', ¢') with respect

to (x, J) : (ax), 3) = (¥, ta(3)).

Lemma 6. G2 is a real algebraic subgroup of GL(8, R) =Iso,(®', ¢) and
_satisfies the condition a« € Go' implies ta = G2'.

Proof Since (x, 7(%) = (¥, )" = (a(x), a(¥)) = (a(x), 7a(d)) = (x, tara(y)) for a &
G2', we have 7 =‘ara. Hence ‘a =7Ta-17 € G¢. It is trivial that G’ is real algebraic
because it is defined by the algebraic relation a(x¥) = a(x)a(y).

Let O(&') be the orthogonal subgroup of Iso, (€', €'):

0(8) = 0(6") = (a & Iso (', ©)](alx), a(3) = (x, )}

Then a e G2'NOE") induces a linear transformation of H. In fact, (x(a), #) =
—(ala), u) = —(a, a-1(u) = —(a, a-tu)) = —(al@), u), for ¢ & H, u € He, therefore
{a(a), u) = 0 and a(e) = H. Hence we have

G2 OE©) = (G )x = SO4)
by Proposition 4. Next we shall determine the Euclidian part bgz’m)(@') of G¢,
where '
g2’ = {¢ € Hom (€', &)[s(x)) = s(x)y -+ x5(3)}
H(8) = H(E') = {s € Hom (€', &")|(s(x, ¥) = (x, s(3)}
Since 02’ is a Lie subalgebra of the Lie algebra o4, 4) =0'(¢') = {s € Homy(¢', ¢')|

($(x), »)' + (x,-s(¥) =0}, s 62’ NHE) induces a linear transformation s|H : H — He
and s|He = t(s|H). Put »

s@) =pe, s(j)=4qe, P, 9€ H
then (k) is determined by s(k) = s(ij) = s(@)j + is(j)=(pe)j + i(qe) = (—pj + di)e and

obviously ¢(1) =0. Conversely two elements p, ¢ € H determine ¢ of 82'NH{E").
Hence '

dim(@'NHE)=4+4=8

Thus we have the following

Theorem 7. The group Go' is homeomorphic to the topological product of the
rotation group SO(4) and an 8dim. Euclidean space RS :
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Ge¢' =2 SO(4) x R
In particular, G is a connected (but not simply connected) Lie group.

5. Simplicity of G2’
Lemma 8. The Lie algebra 82 of Gs' is simple.

Proof The complexification 82'C of the Lie algebra 0s' is isomorphic to the
complexification 20 of the derivation Lie algebra @2 of the Cayley algebra ¢, because
the complexification ¢'C of @' is isomorphic to the one €€ of €. As is well known
g2C is simple, so that 82'C is so, hence ©:' is also simple.

Since Ge' is a connected group from Theorem 7 and a simple group as Lie
group from Lemma 8, any normal subgroup of G2’ is contained in the center z(G2')
of G2'. We shall show z(G¢') = 1.

Let @ = 2(G2'). First we show that « induces a linear transformation of H:
a e (G)g. In fact, put ealg) =c+de for a € H, then from the commutativity
condition ¢ (—1, 1)a = a®(—1, 1), we have

c —de =9¢(—1, 1){c + de) = 9(—1, Nala) = a®(—1, 1)(a) = ala) =c + de

Therefore de =0 and «(a) =c € H. Hence there exists an element (p, ¢)&S53-SO(3)
such that a=%(p, ¢) by Proposition 4. Furthermore from the commutativity condition
ap(q, 1) = ¢(q, Da, a®(l, ¢) = ¢(1, ©)¢, we have
pa=4gp for all g = S8
0T =70 for all = € SO(3)
so that p= 11, o =1. Hence a=9¢(1, 1) or a=9¢(—1, 1). We shall show that
?(—1, 1) is not an element of the center z(G?) using the following B. Let B be a
linear transformation of ¢ satisfying
B =1, BG) =ie, B(j)=je, Bk) =k,
Ble) =e, Blie)=1, Pp(je)=j, PBlke)=rFe
then p € G2 and ¥(—1, 1) does not commute with B because ¢(—1, 1) () = ¢(—1,
1)(le) = —ie and BP(—1, 1){{) = B({) =ie. Thus we have the following

Theorem 9. The group G is simple (in the algebraic sense) Lie group.
Since the fundamental group of Gg' is Z= from Theorem 7 and Ge' is a simple
group, we have the following

Theorem 10. The center z(Gs') of the non-compact simply connected Lie group
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Go = Ga) of type Ga is Zs.

6. Some subgroups of G2’

I. We shall investigate the structures of subgroups of Ge' under which some
elememts of the basis 1, 7, 7, &, ¢, ie, je, ke of ¢ are invariant.

(1) The group Ge'(i) = {a¢ € G2'|ai) =4} is isomorphic to the group

SU, 2)={Ae M3, O)|AJA* =], det 4 =1}

where C is the complex numbers, A* the conjugate transposed matrix of A and

1 0 0
J=10 —1 0 |. And G2() is homeomorphic to
0 0 —1

Go'(i) = U(2) x R*

where U(2) is the unitary group.
(2) The group G2'(e) = {@ € G2'|ale) = ¢} is isomorphic to the group

SU@B, a)={A€ M@, a)|AA* = E, detA =1}

where a is the algebra a = {a + bla, b€ R, ¢ =1} with the conjugation @ + b =
a — b and A* is the conjugate transposed matrix of 4. And G'(¢) is homeomorphic
to

Ga'(e) = SO(3) X R®

{3) The group G¢'(, j, k) = {e¢ € Go'lald) =i, «(j) =7, a(k) =k} is isomorphic
to the group S8

(4) The group G2'(i, e, ie) = {&x € Go'|ali) =i, ale) =e, «lie) =ie} is isomorphic
to the general linear group GL(2, R), hence G2'(i, e, i¢) is homeomorphic to S! X
Rz

II. Let Mm, » be the manifold defined by

n m4-n

Mm, n:{(xl, ooy Xy, Xmv1, o0, xm+n) = R"Hﬂl >V a2 — 2 X2 = 1}
i=] J=m41

Then we have the following homogeneous spaces.

G2 |G () = M3, 4, G2 (§)/G2'(i, 7, k) == M2, 4,
G2 [Go'(e) = M, s, G2'(e)/Ge'(i, e, i€) ~ Ms, s
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