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   It is known that there exist two simple Lie group of type G2 up to local

isomorphism, one of them is compact and the other is non-compact. The compact

simple Lie group G2= G2(-i4) of type G2 is obtained as the automorphism group

Aut(G) of the Cayley algebra E and it is a connected, simply connected, simple

(in the sense of the center 2(G2) =:1) Lie group. It is also known that the Lie

algebra g2' of the non-compact simple Lie group G2(2) of type G2 is obtained as

the derivation Lie algebra of the split Cayley algebra G' and the maximal compact

subgroup of G2(2) has the 'type of AteAi. In this paper, we investigate some

global properties of the automorphism group G2'= Aut(E') of the split Cayley

algebra G'. The results are as follows. The group G2' is homeomorphic to SO(4)

× R8 and a simple (in the sense of the center z(G2') = 1) Lie group. And hence the
center x(a2') of the non-compact simply connected simpie Lie group a'2== G2(2) of

type G2 is Z2.

   1. Split Cayley algebra G'

   Let as' be the split Cayley algebra over the real numbers R. This algebra E'

is defined as follows. Let H={a==ai+a2i+a3j'+a4lelaiGR} be the field of

quaternions, In E' == HO He, if we define a multiplication by

                    (a + be) (c + de) == (ac + db) + (bc + du)e

then E' becomes an 8-dim. (non-commutative non-associative) algebra over R with

the conjugation a + be = a - be.

   The Q-norm Q(x) and the inner product (x, Y)' in as' are definedrespectively by

                      Q(a + be) = [a12 - Ib]2

                    (a + be, c+ de)' = (a, c) - (b, d)

The Q-norm has the following properties.

                Q(x) =: xx = xx, Q(xY) == Q(x)Q(Y), x, Y E E'
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   Remark. In the usual Cayley algebra 6= ff+ ffe, the multiplication is defined

                                              tt                      '
               (a + be) (c + de) = (ac - db) + (bc + dti)e

   2. Definition of group G2'

   We denote the automorphism group Aut(e') .of the split Cayley algebra G' by

G2', i. e. '
               G2' == {cr E IsoR(Q', G')1at(xY) = a(x)a(Y)}

tt. ..                        tt     '
Obviously a(1)i.=1 holds for aE!G2'. We shall show that the group G2' is contained

                                                              '        t ttt               tt   '                                                     'in the Lorentz group O'(E'), where , . , .. ,
                                                       '                                                      '                                                                  '
 ' ' ' O(4, 4)=O'(G')={aEIso.(ng', ts')IQ(ct(x)) -= Q(x)} -

                         == {a E IsoR(G', G')l(ev(x), a(y))t = (x, y),}

   Lemma 1. For atGG2' anaxGG', we have ' ''

,,, (1) if xx = -1 then Q(a (x)) =1 and cr (x) = -a(x) .

   (2) if xx = 1, x Qt R ,then.Q(a(x)) = -1 and ec(x) = -cr(x) .,

   Proof (15 From xx=-1 we have a(x)a(x) = -1, so (Q(a(x)))2=1, 'i.e.' Q(a(x))

=±L Assume Q(a(x)) == -1, then .'' .
            ev(x) = -Q(ev(x))ev(x) = -(a(x)ev(x))ev(x) = -cr(x) (a(x)cv(x)) ,

               = -cr(x)(-1) ･= ev(x)

(AIthough 6' is not associative, (x--x)Y=I(xY) is always valid). This means'  ev(x) is

a real number a, therefore a(x) ==:a==a(a). Since,a is injective, x=a is real and
xx = -1. This is a contradiction. Hence Q(cr(x)) == 1' tind we get iEI(-x) = -cr(x) by a

calculation similar tolthe above. (2) is analogously obtained. ' ' '' '

                                                           /tt t
   Proposition 2. The grouP Ga' is f subgromp of the Loren(.z gromp o'(as').

                            '
.i..P.r.OtO,f..tgStaiG,gtkfyCthhO.OS,e..adibti.S.iS, .ii tig,{llink'ie,' ie･ 7'e･ lee in Q'･ then these

                         tt t. t /. ti.J .11 t. / t .t
               i2 =j2 ==: k2 = -1, e2 = (ie)2 == (1'e)2 ::= (ke)2=1

                                              t tt/ t                                  ttt/ t tlTherefore, for these elements x we have a(x) = -av(x) = cr(Hx). And since a(1) = 1

=ev(1), we get ev(x) =a(I) for ahy element',x of s'. Now ･ ･(. 1･
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         Q(ev(x)) == cr(x)a(x) = av(I)at(x) = a('Ix) == cr(Q(x)) :-Q(x), x a G'

                                                        '                       ･ ･,. 1 .･                                     'This means evEO'(G'). '
                                   tt ttt                                               '
   3. Compact subgroup (G2')fy of G2' .

   We shall consider the subgroup (G2')K of G2":

                    (G2')K == {a ciE G2'lev(ff) == ff}

Since ff and iie are orthogonal with respect to the inner product (x, y)', aG (Gi)K

also satisfies cr(,Ne) ::ffe. ' / ' ･ '.,1' ' ' '

   To determine this group (G2')K, we shall give some remarks on the rotation

group SO(n) of lower dimensions.

                                  '                       tt tt     '            '
                SO(4) = {aGIso.(ff, ll)1[a(x)l == Ixl, deta:=1}

                SO(3) - {a ESO(4)la(1) = 1}

                     = {a E Iso.(II, ff)lo(xY) == a(x)a(Y)} == Aut(II)

      . S3 == {PG"I,IPI=1}
                   '
                       '
ln the topological product of S3 and SO(3), if we give a multiplication by

 ' (q, T)(P, o) == (qr(P), ra)

then S3 × SO(3) becomes a group. We denote this group by S3･SO(3).

                                  '
   Lemrna 3. The rotation grouP SO(4) is isomorPhic to the grouP S3･SO(3).

    Proof Define a mapping f:S3･SO(3)-SO(4) by

                           f(P, a) = Lpa

                                                  '              '                                            '
fWhiseraenft.sPoEmoSrOpt4i)smiS. defined bY Lp(x) =Px, xG HL Then it is easy to verify that

                                                           '                                                                       ttt
                                                                       '    Proposition 4. The grouP (G2')K is isonzorPhic to the rotation grouP SO(4).

                                                 '
    Proof Define a mapping 9 : S3･SO (3) . (G2')K bY '

                    9(P, a) (a + be) =a(a) + (Pa (b))e, a, bG ,[I '

                                                                      '
Firsit we must show P(P, a) G (G2')K. However it is easy ; in fact, 9(P, a)(R) = ll

             (p(P, o) (a + be))(g(P, 'a)(c /l+ de))
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               = (o(a) + (Pa(b)>e>(.a(c) + (Po(d))e)

               = (a(a)a(c) + Po(d)Pa(b)) + (Pa(b)a(c) + Pa(d)a(a))e

               = o(ac + db) + (Pa(bc + da))e

               = 9(P, a)((ac + db) + (bc + dtz)e) == 9(P, a)((a + bc)(c + de))

 9 is a homomorphism because

             ep(q, T)(P(P, a)(a + be)) =- 9(q, T)(a(a) + (Po(b))e)

               = ro(a) + (qr(Pa(b))e = w(a) + (qT(P)ra(b))e

               :=:go(qT(P), ra)(a + be) = 9((P, T)(P, a))(a + be)

 Next we shall show that 9 is onto. For a given a Ei (G2')K, consider the restriction

･ a=evIff of a to ff, then ctEAut(ll) =SO(3). Put P= cr9(1, 6)-t, then Plff=1. Set

 P(e) =:Pe, PG ff, then IPI =1 and

          P(a + be) =a+ bP(e) == a+b(Pe) =a+ (Pb)e == op(P, 1)(a + be)

 i.e. P=P(P, 1). Hence a=P9(1, a) == 9(P, 1)9(1, o) == P(P, a), so that 9 is onto.

 Obviously 9 is one-to-one. Thus the proof is completed.

    Remark The compact Lie group G2=:Aut(as) also contains a subgroup (G2)K

 which is isomorphic to SO(4) by a mapping 9 : S3･SO(3) - G2,

                     9(P, o)(a + be) =a(a) + (Pa(b))e

    4. Polar decornpsition of G2' ･
    To give a polar decorriposition of G2' we use the following

    Lemma 5 ([1] P. 345). Let G be a real algebraic subgrouP of the general linear

 grouP GL(n, R) such that the condition A E G imPlies tAe G. Then G is homeomor-

 Phic to the toPological Product of Gno(n) (which is a maximalcompact subgroup･ of

 G) and a Euclidean space Rd :

                     G= (G nO(n)) × Rd, d = dim (g n lj (n))

 where O(n) is the orthogonal subgrouP of GL(n, R), g the Lie algebra of G and

 b(n) the vector sPace of all reat symmetric matrices of degree n.

    To use the above lemma, we define a positive definite inner product (x, Y) in

 6' by

                     (a + be, c + de) =,(a, c) + (b, d)
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Two inner products (x, Y), (x, Y)' in G' are combihed with the following relations

                    (x, N) :== (x, r(y))', (x, y)' =:= (x, r(y))

whcre r=9(-1, 1). We denote by tav the transpose of cr Ei IsoR(g', 6') with respect

to (x, Y):(av(x), y)=(x, tcr(y)). . .
                                             '
   LeTvtma 6. G2' is a real aigebraic sttbgrouP of GL(8, R) ==IsoR(G', E') and

satis.lies the condi.tion av E G2' imPlies ta Ei G2'.

   Proof Since (x, r(Y)) == (x, Y)' =(ct(x), ec(Y))' = (ev(x), rcr(y)) = (x, tev7tct(y)) for cr ei

G2', we have r= tara. Hence ta == ra-ir E G2'. It is trivial that G2' is real algebraic

because it is defined by the algebraic relation ev(xy)=ev(x)a(y). '

, Let o(Q') be the orthogonal subgroup of IsoR(S', 6'):

             O(s) = O(E') = {ev Ei Iso.(G', S')](a(x), ev(Y)) = (x, Y)}

                                                                     '
Then evEC2'nO(E') induces a linear transformation of ZiL In fact, (a(a), u)=

-(a(a), u)t == -(a, ct-1(u))l = -                          (a, ec-i(u)) = -(cr(a), u), for a cl ff, uE ffe,' therefore

(a(a), u)=o and av(a)Gff Hence we have . / .

                       G2t n･O(St) = (G2')K :il SO(4)
 '
                                             '
by Proposition 4. Next we shall determine the Euclidian part g2'nb(G') of G2',

where

              92' = {9 E HoMR(g', 6')I9(XY) = 9(x)Y + X9(Y)}

            b(8) = lj(S') = {g G Hom.(6t, 6')1(g(x, Y) =- (x, g(Y))}

Since 92' is a Lie subalgebra of the Lie algebra o(4, 4) =D'(6') == {g ci HomR(6', G')l

(g(x), y)' + (x,-g(Y))' = O}, g E g2' nb(G') induces a Iinear transformation 9iff : ,ff --> Ue

and gl,ffe =t(glR). Put

                    g(i) =Pe, g( 1') = qe, P, qE ff

then g(le) is determined by g(h) = g(i]') = g(i)y' + ig(y')=(Pe) ]' ÷ i(qe) = (-Py' + qi)e and

obviously g(1)=O. Conversely two elements P, qGff determine s Qf g2tnb(G').

                                        '
                                                                     '               . dim (g2' nb(G')) =4+ 4.= 8

                 t /t                 '
Thus we have the following '

   Tkeorem 7. The grouP G2' is homeomorPhic to the toPological Product of the

rotation grouP SO(4) and an s-dim. Eztclidean sPace Rs : '
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                          G2' =t SO(4) × R8

in Particular, G2' is a connected (but not simPly connected) Lie grouP.

   5. Simgelicity of G,t

   Lernma 8. The Lie algebra g2' of G2' is simPle.

   Proof The complexification g2'C of the Lie algebra g2' is isomorphic to the

cornplexification g2C of the derivation Lie algebra g2 of the Cayley algebra as, because

the complexification 6'C of 6' is isomorphic to the one asC of 6. As is well known

g2a is simple, so that g2'C is so, hence asi is also simple.

   Since G2' is a connected group from Theorern 7 and a sirnple group as Lie

group from Lemma 8, any normal subgroup of G2' is contained in the center z(G2')

of G2'. We shall show z(G2') =: 1.

   Let aEz(G2'). First we show that a induces a linear transformation of .if:

aE(G2')K. In fact, put a(a)=c+de for aGif, then from the commutativity
condition ep (-1, 1)a =:= ev9(-1, 1), we have

     c- de =9(-1, 1)(c + de) =9(-1, 1)a(a) = cr9(-1, 1)(a) = ev(a) =c+ de

Therefore de =O and a(a) = cE ,ffL Hence there exists an element (P, ff)(iiS3･SO(3)

such that a==9(P, ff) by Proposition 4. Furthermore from the commutativity condition

cv9o(q, 1) :: 90(q, 1)ev, crSO(1, a) :=; 90(1, T)ev, we have

                   Pq=qP for all qes3

                   ar == ra for allTEi SO(3)

so that P=:±1, a=L Hence a=9(1, 1) or a=9(-1, 1). We shalt show that
ep(-1, 1) is not an element of the center z(G2') using the following P. Let P be a

linear transformation of G' satisfying

               P(1) - 1, fi (i) - ie, P( 1') = je, P(le) - le,

               P(e) ::: e, P(ie) - i, P(de) -f', P(lee) ==: he

then PE G2' and P(-1, 1) does not commute with P because 9(-1, 1)P(i) == 9(-1,

1)(ie) -- -ie and P9(-1, 1)(i) =:P(i) == ie. Thus we have the following

   Theorem 9. The grouP G2' is simPle (in the aigebraic sense) Lie group.

   Since the fundamental group of G2' is Z2 from Theorem 7 and G2' is a simple

group, we have the following

   Theorem 10. The center z(&2') of the non-comPact simply connected Lie group
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G2' = G2(2) of tyPe G2 is Z2.

   6. Some subgroups of G2' ･

･ I. We shall investigate the structures of subgroups of G2' under which some

elememts of the basis 1, i, 1' , k, e, ie, ]'e, lee of as' are invariant. ･

    (1) The group G2'(i) == {aEG2'la(i) =i} is isomorphic to the group

               SU(1, 2) -= {AGM(3, C)]AJA'= f, detA=1}

where C is the complex numbers, A' the conjugate transposed matrix of A and

1==

(g -gt -i) And G2'(i) is homeomorphic to

                          G2'(i) = U(2) × R4

where U(2) is the unitary group.

   (2) The group G2'(e) ==: {aEG2'[a(e) == e} is isomorphic to the group

               SU(3, a) == {A EM(3, a)IAA" =E, detA =- 1}

where a is the algebra a == {a + bcla, b E R, e2 = 1} with the conjugation a + bt =

a - be and A" is the conjugate transposedmatrix of A. And G2'(e) is homeomorphic

to

                          G2'(e) =i SO(3) × R5

   (3) The group Gi(i, 7', k) = {aGG2']cr(i) =i, at(1')= j, a(le) =le} is isomorphic

to the group S3.

   (4) The group G2'(i, e, ie) = {aEG2'la(i) = i, ct(e) =e, ev(ie) =ie} is isomorphic

to the general linear group GL(2, R), hence G2'(i, e, ie) is homeomorphic to Si ×

   II. Let Mm,n be the manifold defined by

                                           ?Tl fjll-n     Min,n=={(Xt, ''', Xm, Xm+1, ''', Xm+n) ERM+n[ = Xi2- Z] Xj2==1}
                                          t=1 j==7n+1

Then we have the following homogeneous spaces.

               G27G2t(i) ] M3,4, G2'(i)IG2'(i, 1', le) :M2,4,

               G2'IG2e(e) [r M4, 3, G2'(e)IG2'(i, e, ie) r M3,3
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