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It is known that there exist three simple Lie groups of type F4 up to local
isomorphism, one of them is compact and the others are non-compact. The compact
simple Lie group Fi= Fu-s52) of type F¢ is obtained as the automorphism group
Aut(y) of the exceptional Jordan algebra J = (3, €) over the Cayley algebra €
and it is a connected, simply connected, simple (in the sense of the center z (Fy)
=1) Lie group. One of the non-compact Lie groups of type Fs (which is named
F4,1= Fu-20) is obtained as the non-Euclidean projective transformation group of
the Cayley projective plane GP: (Fs,1 = {& € Eac-20y] (e X, a¥> = <X, ¥>}) and it is
a connected, simply connected, simple (in the sense of the center z(Fs 1) =1) Lie
group [5]. In this paper, we investigate the other non-compact simple Lie group
Fi,2 of type Fs. The results are as follows. The connected comporient group
Fu,2 = Auto(Y') of the automorphism group Aut(y) of the exceptional Jordan algebra
X' = (3, @) over the split Cayley algebra &' is homeomorphic to (S* x SP(3))/Z2 X
R2 and a simple (in the sense of the center 2z(F4z2) =1) Lie group, and hence the
center z(F42) of the non-compact simply connected simple Lie group Fez= Fus of
type Fa is Zo.

1. Split Cayley algebra ¢’

Let @ be the split Cayley algebra over the real numbers R [6]. This algebra
@' is defined as follows. If in 6 = H® He, where H is the field of quaternions,
we define a multiplication by ' ' ‘

(a + be)(c + de) = (ac + db) + (bc + da)e

then @' becomes an 8-dim. (non-commutative non-associative) algebra over R with
the conjugation @ -+ be = a — be. And the inner product (x, 3)' in @ is defined by

(a + be, ¢ + de)’ =(a, ¢) — (b, d)

2. Jordan algebra &' and groﬁp Fy 2 ‘
Let &' = J(3, @) be the Jordan algebra consisting of all 3 x 3 Hermitian matrices
X with components in ¢’ - ' ’
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E1 X3 %o

X=XE&x)=| % & 1 | &ER, xiel@
X2 X1 &

with respect to the composition
1
XoY = —Z'(XY +YX)

In ¢" we adopt the following notations.

1 0 0 0 0 0 0 0 0
Ei={0 0 0|, E:=|0 1 0|, Es=1{0 0 0],

0 0 0 0 0 0 0 0 1

0 0 0 0 0 % 0 x 0

Fi® =10 0 x|, Felx)=10 0 0, Fe(x) =[x 0 0

0 ¥ 0 x 0 0 0 0 0

Then these elements generate {' additively and the multiplications among them are
given as follows.

EicEi = Ei, EpE:i =0, j+i

EioFi(x) =0, 2EjoFi(x) = Fi(%), j+i

Fi(x)oFi(y) = (%, 3)(Ei+1 + Ei+2), 2Fi(x)oFi+1(y) = Fisa(x)
where the indexes are considered as mod 3.

In & we define the inner product (X, Y¥)' and the trilinear inner product
tr(X, Y, Z)' respectively by

(X, ¥Y = tr(XoY) = 33 (6% -+ 2055, 37)
(X, ¥, Z) = (Xo¥, ZV=(X, Yoz)

Where X = X(S, x), Y — Y(v, y)'
The group Fy4,:2 is dgﬁqed by
Fyo={a €Is0,(J, I)|a(XoY) = aXeay, tr(aX) = tr(X)}
={ae ISOR(“', X a(X oY) =aXoaYy, (@X, oY) =(X, 7))
= {a elso, (&, llax, aY)' = (X, YV)', tr(aX, a¥, aZ) =tr(X, YV, Z)'}

Remark. The auther does not know if the condition a(XoY) =aXoeay implies
the condition tr(eX) =tr(X) and if Aut(J) = {a &lsop,(y, I)|a(XoY) = aXoaY}
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is connected. However it is true that the connected component group Autd(J) of
Aut(y) is Fy s In the case of the compact group F4= Aut(y), the condition
a(X oY) = aXoaY implies the condition tr{eX) = tr(X) [4].

Since the field H of quaternions is a subfield of ' regarding ¢ € H as a - Oe
e, I =233, H) (consisting of all 3 x 3 Hermitian matrices X g with components
in H) is a subalgebra of &', and any element X € ' can be described as

&1 a3 Gy 0 bs  —bs
X =\|as & a1 |+|—0bs 0 bile, &R, ai,bic H
as ar & b2 —h 0

We denote this element X by
X = Xu -+ F(be)

where Xm € Ja, b = (b1, be, bs) & H.

3. Automorphism group Aut(3#H)
Before we consider the group Fs,2, we shall investigate the relation between
the automorphism group Aut(3m) of Jm:

Aut(3n) = {a € Iso, (S, Ja)| (X °Y) = aXcaY'}
= {a € Is0,(Jm, Jm)| a(XoY) = aXoaY, tr(aX) = tr(X)}
(cf. Remark of §2) and the symplectic group
SP3) ={A e M3, H)|AA* = E}

Proposition 1. The group Aut(Im) is isomorphic to the group Sp(3)/Zs, where
Z»={E, —E}.

Proof We define a mapping £ : Sp(3) — Aut(3a) by
FAX = AXA*, X Eelu

Obviously 7 is well-defined and homomorphic. We shall show f is onto. For a
given « < Aut(Qm), consider «F;, i =1, 2, 3. Since aF; satisfies the conditions
(aE)N* = aE;, (@E;)? =aFE;, trieE;) =1, we can choose a vector b; =

b1 bibi  bibz  bibs
bs | = HS, ||bi|] =1 such that aFE; =/ bab1  bebe  bebs | (Remember tha «FE; is
bs bsbr  Dsbz  bsbs

an element of the quaternionic projective plane HP:). If we construct a matrix
B = (b1, be, bs), then B € SH(3) because aE;oa¢E; =0, i+ j, and B satisfies
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BE:B*=¢aFEi, i=1,2,3
Therefore 8 = fF(B)-'a satisties
fEi=Ei, i=1,2,3

If we operate B on EioFi(@) =0, 2EjFila) = F:@)(j+{), then we see that S
induces linear transformations 8; of H such that

Bri(@) = F:i(Bila), i=1,2,3
and f; is orthogonal :
(Bila), i) =(a, b), a,beH

from Fi(@)oFi(b) = (a, b)(Ei+1 + Ei+s). Furthermore pi, fe, fs are combined with
the relation

Bi(@)Ba(b) = Bslad), a, b= H

from 2F1i(a)oFa(b) =Fs(ab). Put p = pi(1), ¢ = Pa(1), then |p| =1, |¢] =1 and Ba(a) =
PBila)q, PBs(@) = Bi(@)q. Furthermore put fi(@) = po(a), then o satisfies o(ab) = o(@)a(b),
i.e. ¢ is an automorphism of H. Therefore there exists 7 € H, |] =1 such that

o{a)=ra?¥. Hence

Bila) = prar, Pula) =rarq, Pila) = @arh, a € H

ar 0 0
Now, construct a matrix C={0 pr 0|, then C e Sp(3) and
0o 0 r

CXC* = BX, X e3n

Therefore aX = B(CXC*)B* = f(BC)X, hence f is onto. Finally Kerf={E, —E}
is easily obtained. T‘hus the proof is completed.

4. Compact subgi‘oup (Fe,2)ic of Fuye
We shall consider the following subgroup (F4,2)x of Fe

(F4)2)K - {a & F4,2](X(SH) = SH}

Since g and J'He = {F(ae)la € H3} are orthogonal with respect to the inner
product (X, V), as(Fu2)x also satisfies a(J' me) = I He.
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Proposition 2. The group (Fuie)g is isomorphic to the group (5% x Sp(3)/Ze,
where Z2= {(1, E), (—1, —E)}.

Proof Let S* = {p < H||p| =1} and define a mapping ¢ : S3x Sp(3) - (Fa2)g by

o(p, AXm + Flae) = AXuA* + F((paA¥e)

In order to show a=9(p, A) & (Fu2)x, since the conditions a(Jm) = Jm, tr(aX)
=tr(X) are obviously satisfied, we must prove

a(XoY) =aXeay, X, Y EY

To do this, it is sufficient to show that
(1) aEicaFi{ae) =0
(2) 2aEjaFi(ae) = aFi(ae), i+
(38) aFi(ae)oaF;(be) = (ae, be)' (@Eis1 + aEi+e)
(3) aFi(ae)oaFi(h) =0
) 2aFi(ae)oaFin(be) = aF;(ae)(be))

(4) 2aFilae)eal’ i+}(b) = aF;+z((aq)b)
where a, b € H. Put A=(ai)i, =1,
Proof of (1) 2aEioaF1(ae)
= 2(|an|2Es + |@ei2Ee + |@s]2Es + Filaeds) + Falanan) + Fa(@naa):

o(Fi(( paan)e) + Fal( paas)e) + Faol( paas)e)

= Fi(laatl® + |asi|9){ paan)e + ((paaz)e)(anan) -+ (anau)(paasi)e))
+ Fa(x) -+ Fa(¥),

= Fil(|azi|2 + |asi|2)(paai)e — (paasiazian)e — ( paasianas)e)
+ Falx) 4+ Fs(*)

= F1((]d21!2 + |asi|2 — ]azﬂé — |as1|2) ( paaun)e) 4+ Fa(+) + Fa(*\
= F1{0) + F2(0) + Fs(0) =0

Proof of (4) 2uF1{ae)oaFa(be)

= 2(Fi(( paaii)e) + Fal( paasie) + Fa(( paasi)e))
o F1(( pbaiz)e) + Fa({ pba—zé)e) + Fa(( pb?z?z)e))'
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= 9((paa)e, (pbais)e)(E: + Es) + 2((paaz)e, (pbazs)e)(Es+ E1)
+ 2(( paasi)e, (pbase)e)(E1+ Ez)

+ Fi({(paaw)e)(( pbas)e) + (pbawe)(( paasie) + Fa(x) + Fa(x)
= (—2(aau, baw) — 2aas,, ban)Er+ *Ex + +Es
*+ Fil(asnap)( pbass + (asbp)( paass)) + Fa(+) + Fa(+)
= (—2(ba, aznaz + asnas) E1 + +E2 + *Es
+ Filasiabass + assbaas) + Fa(x) + Fa(*)
= 2(ba, arau)E1+ «E2 -+ «Es
+ Fi(aziabass + ambaas) + Fa(x) + Fa(x)
= 2((@e)(be), anar)E1+ +E2 + *Es
+ Filaai(ae)(be) an + anlae)(be)as) + Fa(+) + Fs(*)

= afis((ae)(be))

The other formulae are also proved by calculations similar to the above. Obviously
¢ is a homorphism. Next we shall prove ¢ is onto.

For a given a € (F4,2)g, consider the restiction @|J3m of « to Jm. Since «|Im
is an automorphism of Jm, there exists an element A € SPH(3) such that

aXu=AXHA* XHEJIH

by Proposition 1. Put g = (1, A)-'«, then B|Jm = 1. In particular B satisfies BE;
=Fi, i=1, 2, 3, hence B induces linear transformations #; of J" such that

BFilx) = Fi(Bilx)), i=1,2,3
(the proof is the same as Proposition 1). Furthermore f; satisfies
(Biw), @) =0, (Biw), filv)) = (w, v)', e H, u,vE He

from Fi(w)oFi(a) =0, Fi(u)oF:(v) = (u, v)'(Ei+1 -+ Ei+2) respectively. Hence 8; induces
an orthogonal transformation of He. And from 2Fs(a)oFi{u) = —Fa{au) we get

apr(u) = Pelau), ac H, u & He
Put @ =1, then we have i = Pz, similarly pi1 = s (= B'). Therefore §' satisfies

flaw)y =apf(u), ac H, uec He
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Set B'le) =pe, p= H, then |p| =1 and

B'(ae) = af'(e) = a(pe) = (paje, a € H
Therefore
BX = p(Xu + Flae) = Xu + F(baj) = ¢(p, E)X, X €Y
Hence a = ¢(1, A)P(p, E)=¢(p, A), i.e. ¢ is onto. Finally Ker® = {(1, E), (—1,
—E)} is easily obtained. Thus the proof of Proposition 2 is completed.
Remark. The compact Lie group F:= Aut(J) also contains a subgroup (F4)r

which is isomorphic to (S3 X Sp(3))/Zz by a mapping ¢ : 53 X SPp(3) — F4,

P(p, A X H+ Flae) = AXaA* 4 F((paA*)e)

5. Lie algebra fs,2 of Iy,2
We consider the Lie algebra fs,2 of F4,2:
fa2 = {¢ € Hom (Y, J)[s{XoY) =¢X oV + XosY, tr(sX) = 0}

X, Y) + (X,8Y) =0 }

= ¢ € Hom (&', &
{ &S )tr(S‘X, Y, Z)V+tr(X,sY, ZV +ir(X, Y, sZ) =0

= {s € Hom (¥, $)s(X0Y) = sXoY + XosY)

(the last equality is proved in Remark of Proposition 6). The structure of the Lie
algebra f4,2 is analogous to the Lie algebra f+ of the compact Lie group Fi=Aut(3)
[1], [4]. However we give an outline of the proof of Proposition 6.

Let M'- be the vector space over R consisting of all 3 x 3 skew-Hermitian
matrices A ; A* = —A with components in &,. Any element A € M'- induces a

linear transformation A of ' by
AX =AX — XA, Xe¥

Lemma 3 ((1]). If A M'-, tr(4) =0, then A S, ie. A satisfies
1) (AX, Y) + (X, AY) =0
2 tr(dX,Y, 2) +tr(X, AY, Z) + tr(X, Y, AZ) =0

We adopt the following notations in M'-.
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Then Ai(r) & fs,2 and the following formulae are hold.

AE: =0, A\ Filx) = 26, 2)(Eie — Eivs),
A Eis1 = —Fi(t),  Ai)Fisi(x) = Fiea(F%),
A7) Eive = Filr), A7) Fisa(x) = — Fis(37) ‘

where the indexes are considered mod 3.
Let o'(€")- be the Lie algebra

0(4, 4) =v'(€") = {D & Hom (€', €)|(Dx, ¥)' + (x, DY) =0}

of the Lorentz group O(4, 4) = 0'(€") = {0 € Iso, (€', ")|(ox, 09)' = (x, J)'}.

Lemma 4 (Principle of the infinitesimal triality in o'(¢’) [1], [31). For any
element D1 € 0'(§'), there exist Dz, Ds € 0'(8') uniquely such that

Dix)y 4+ xD2(Y) = Ds(xY), x, Ve

Lemma 5 ([17). The Lie algebra o' = {6 €5l 8Ei = 0, 1 =1, 2, 3}.is isomorphic
to the Lie algebra o'(§') by the correspondence

D1 €0'(§") =5 =8(D1, D2, Ds) €0'¢r

& X3 X 0 Dsxs  Daxe
ol X & x| = | Dsxs 0 Dix1
X2 X1 &3 Dexs  Dixi 0

where Ds, Ds are elements of 0o'(§') determined by Principle of the infinitesimal
triality in o'(S").

Proposition 6. Any element s of the Lie algebra fs,3 = {s &€ Hom, (@', €')|s(X0Y)
=¢XoY + Xos¥Y} is uniquely ?eqresented by the form
¢ =94 ;T, devy, Ae M’_', diag A =0
where diag A = 0 means that all diagonal elements of A are 0. »
Proof From EioEi=FEi, Ei°Ej=0, j+i, we have 2FisE: =SEi, SEioEj

+ oEjosEj=0. Hence ¢E;, i =1, 2, 3, have the following form

o0 —rs P o0 0\ 0y 0 —7
SE1=| —7s 0 0 |, SEx=| s 0 -7 |, SE3 = 0. 0 -~ 7n
re 0/ O '» 0 -7 0 —7rs 71 0
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6] ¥3s —72 :
Construct a matrix A= —7s 0 71|, then A € M'-, diag A =0 and A satisfies
¥a —¥1 0

AEi=SEi, i=1,23

sothat 6 =5 — A & v'g’. Hence s =6+ fT, dev, A€ M'-, diag A =0. To prove
the uniqueness, it sufficient to show

o+ A=0 scoy, AeM- dagA=0=28=0 A=0

However it is easily obtained if we operate d -+ Aon Ei, i=1,2 8.

' Remark. Any element ¢ of the Lie algebra fs2={s& HomR(%’, INe(X oY) =
§XoY -+ XosY} satisfies the condition tr(sX)=0. In fact, for s=d+ A E fas,
tr(6X) = 0 is satisfied trivially and tr(AX) = Re(tr(4X)) = Re(tr(4AX — X A)) = Re(Y]

1,7
a;jxg; — oo %ijaj;) = yIRelaijxj; — xjiaif) =0 for A ={aij)i, j=t,%3 X = (%if)i, =1, 2.
2,7 J

- 6. Polar decomposition of Fy,z
To give a polar decomposition of Fs, 2z we use the following

Lemma 7 ((2] p. 345). Let G be a real algebraic subgroup of the general linear
group GL(n, R) such that the condition A & G .implies tA e G. Then G is homeo-
morphic to the topological product of GNO®) (which is a maximal compact subgroup
of G) and a Euclidean space R% :

G~ (GNOM) x R4, d = dim(snHm)

where Q) is the orthogonal subgroup of GL, R), § the Lie algebra of G and
Yn) the vector space of all real symmetric matrices of degree n.

To use the above lemma, we define the positive definite inner products (x, )
in ¢’ and (X, V) in & respectively by " '

@, 9 =(a, )+ (b, d)
(X, V) = Zil(sml- + o, 91)

for x=at+be, Yy=c+de and X=X(& x), Y=Y y). Two inner products
(X,Y), (X, V) in § are combined with the following relations

X, V)=(X.77), (X,Y)=(X,7Y)

where 7 = ¢(~1, E). We denote by ‘a the transpose of a & Iso,(J', &) with respect
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to (X, Y):(@X,Y)=(X, taY).

Lemma 8. Fs,2 is a real algebraic subgroup of the general linear group GIL
(27, R) =Iso,(S', &) and satisfies the condition a € Fi,» implies ta € Fu,s.

Proof Since (X, 1Y)=(X,Y) = (aX, aY) = (aX, 7aY) = (X, taraY) for a <
Fa,2, we have 7 =tfar7a. Hence ta =7a-7¥ € F4,2 It is trivial that Fs, 2 is real
algebraic, because F4,: is defined by the algebraic relations a(XoY)=aXoaY,
trieX) = tr(X).

Let O(S') be the orthogonal subgroup of Ison(S', )

0(27) = 0Q) = {a € Is0,(Y, YllaX, a¥) = (X, Y)}

Then o & Fg,2NO(X) induces a linear transformation of Im. In fact, (@Xm, Y)=
—(@XmY) = —(XH, a'Y) = —(Xu, a-1Y)= —(aXn, Y) for Xasln, Y X ue,
therefore (@¢XH, ¥)=0 and aXm < Ju. Hence we have

F4, 2N O(Q) = (Fs,2) ¢ =(S® X SH(3))/ Z2

by Proposition 2. Next we shall determine the Euclidean part fe2NH(Q) of Fy,e,

where

H27)=Y(¥)={seHom (', J(X, ¥) = (X, sY)}
Let s € fe,2NH(Y). Represent ¢ in the form
¢ =38+ A1) + Asxlra) -+ As(rs)

where § = 8(D1, D2, Ds) €0'gr, ¥; €@'. Since ¢ satisfies (SEi+1, Fi(x))=(E+1, SFi(%x),
we have

60+ 33 AfrEes, Filo) = (B, 6+ él Ar)Fi®)
(—Fi(ri) + Fisalriva), Fi(%))
= (Ei+1, FilDi%) + 2(ri, 2)(Eis1 — Ei+2) — Fiva(¥7i+1) + Fiv1(¥i+2%))
Hence we have
—{ri, ) = (ri, x), x€@

From this we get »; € He, i=1, 2, 3. Next, from the condition ((Fi(x), Fi(¥))
= (Fi(x), sFi(¥), we have

(Fi{D1x) + 2(r1, x)'(Ez — E3) — Fs(xrs) + Fa(rsx), Fi())
= (F1(x), Fi(D1Y) + 2(r1, ¥)'(Ee — Es) — Fs(Jrs) + Fa(rs)))
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Hence we have

(Dix, ¥) = (x, D1Y), x, Y€

Since D1 also satisfies (Dix, ¥)' + (%, D1¥)' =0, D1 induces a linear transformation
Di|H : H— He. Conversely

~

3 ,
6(D1, Dz, Ds) + 23 Ailri),  DilH € Homp(H, He), 7i & He
=
is an element of fs,2NH(Q’). Hence
dim(f,eNHQJN =4 X 4+ 4 X 3 =28

Thus we have the following

Theorem 9. The group Fs, 2 is homeomor phic to the lopological product of the
group (S3 X SPp(8)/Zz and a 28-dim. Euclidean space R :

Fa2 = (83 X Sp(3)/Z2 x R

In particular, Fa,: is a connected (but not simply connected) Lie group.
7. Simplicity of F4,z
Lemma 10. The Lie algebva fs,2 0f F4,2 iS simple,

Proof The complexification fs,2C of the Lie algebra fs, 2 is isomorphic to the
complexification f«¢ of the Lie algebra s+ = {¢ € Hom (3, J)Is(X oY) = sXoY + Xos¥'}
of the compact Lie group Fi= Aut(y), because the complexification 6'C of @' is
isomorphic to the one € of the Cayley algebra €. As is well known {4€ is simple,
so that fs,2€ is so, hence fs, 2 is also simple.

Since [F4,2 is a connected group from Theorem 9 and a simple group as Lie
group from Lemma 10, any normal subgroup of F42 is contained in the center
2(F4,2) of Fee. We shall show z(Fs,2) = 1.

Let a=z(F4,2). First we show that « induces a linear transformation of (Jm :
ac (Fy9g. In fact, put aXm =Y nm + Flae) for Xm € 3m, then the commutativity
condition ¢(—1, E)a = a®(—1, E), we have

YH+ F(—aeé) = ¢(—1, EXYHu -+ Flae) = ¢(—1, E)aXn

=aP(—1, EYXn =aXu =Yg+ Flae)

Therefore Flae) =0 and e Xy =Yy €3n. Hence there exists an element (p, A)
€ 8% x Sp(3) such that «=¢(p, A) by Proposition 2. Furthermore from the com-
mutativity condition a®(q, E) = ¢(¢, E)a, a¥(l, B) = (1, B)a, we have
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Pa=4qp for all g 83

AB = BA

so that p = 41, A= 4 E. Hence a=¢(1, E) or a =¢(—1, E).

for all B € $p(3)

We shall show that

o(—1, E) is not an element of the center z(F4,2) using the following

Lemma 11. The following wmapping 8:3 — ¥,
Y, y):

BX=Y, X=X x), Y=

= 61

72 = (e, %1)' sinh 2 + §Z_§_53} cosh 2 + &2 —ZF &

73 = —(e, ¥1)' sinh 2 — & ; & cosh 2 + .Ei:—&
= x1 — 2ele, x1)' sinh2]1 — 6(52—2_53) sinh 2

Y2 = Xacosh 1 — xsesinh 1

Y3 = xscosh 1+ exasinh 1
is an element of Fa,s.

Proof This mapping B is exp fi(e), Aile) € a2, hence B e Fye.

?(—1, E) does not commute with f, because ?(—1, E)Fa(e) = ¢(—1, E)(Fa(sinh 1)
+ Felecosh 1)) = Fs(sinh 1) — Fe(e cosh 1) and B¥(—1, E)Fale) = B(F:(e)) = — Fs(sinh 1)
—Fe(ecosh1). Thus we have the following

. Theorem 12. The group F,2 1S a simple (in the algebraic sense) Lie group.
Since the fundamental group of Fg2 is Zz from Theorem 9 and Fy,2 is a simple

group, we have the following

Theorem 18, The center z(Fu, s) of the non-compact simply connected Lie group
Fa,2 = Fuw of type Fua is Za.
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