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In this paper, we investigate some properties of a non compact simple Lie
group Fu: which is the invariance group of

X, YD =&+ Eame + Eams + 2xy, Vi) — 2Axg, Vo) — 2xs, V)

To do this we consider a Freudenthal's perspective mapping ¢ : {Ac[{A, A) #
0} For 2] (HA) = 1, ) such that 4, X ; 4 x (4 x X), fA)X are
(A, &> a7

harmonic in the octavian projective plane II. Throughout this paper, we refer
to the definitions and notations in Freudenthal [1]. This group Fu:= Fy-20) 18
also considered in [4] using a hyperbolic polarity in the plane /7.

1. Preliminaries {17, [5], [6]

Let & be the alternative field of octaves over real numbers R and I = J(3,
§) be the Jordan algebra consisting of all 3 x 3 Hermitian matrices X with
components in §

&1 Xy Xy
X =% & x|, &eR, xe@
Xs X1 &s

with respect to the composition
1
XoY = E(XY + Y X)
In & we define another multiplication
XxY = %(ZXoY— tr( XYY — tr(V)X + (tr(X )tr(Y) — tr(X-Y ) E)

(where E is the 3 X 3 unit matrix)and a positive definite symmetric inner product
( , )and a symmetric trilinear product ( , , ) by

(X, V)= tr(XoV)
(X,Y, Z)=(XxY, Z)=(X, ¥ x Z)
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Especially

(X, X, X)=23detX
= 3(€:6265 + 2Re(x1x0x,) — &1[%1|? — ol x| — &4 x5]?)

The group Es = Eg,+ consisting of all linear isomorphisms of ¥ which pre-
serve (X, Y, Z):

Es ={aclsopd, IleX, eV, aZ)=(X, Y, Z)}
= {QEISOR(S) :\C\S‘)}det(aX) = det X}

is a simply connected simple Lie group and a non compact real form of type Es.
And the automorphism group Fy of J:

Fy = {aclsoy(3, FlaXoay =a(XoY )}
= {a’EEs l aF = E}
={ackEsl@X, aV)=(X, V)}

is a simply connected compact simple Lie group of type Fy, and has a subgroup
Spin(9) which a universal covering group of rotation group SO(9):

100
Spin(9) ={eeF,|aE1=E}, Ei=|0 0 0
0 00

Any element « of Ej is uniquely represented by the form
a=pexp A, peF, A3, tr(4)=0

where A is the endomorphism of & which is defined by AX = AoX. From this
we see that Es is homeomorphic to the product space.of Fy and euclidean space
RZB .
E¢2 Fy x R*®
The octavian projective plane I/ is defined by
I ={Ae3|A*= A, tr(d4)=1}
={AeI|A X A=0, rla)=1}
oty = |&|2, aaty = |@]%, s = |ag)*
=(AeI Qa3 = aly, a3y = gy, 10y = Oglly
ay + oy tag=1

‘This space I can be embedded into the group F, by a mapping ¢ : [ — Fs [5]

o(A)X =164 X (A X X)+ 44X —3X
=X —4A0X + 44, X)A {(cf. §2 formula (1)

and ¢ has the following properties.
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Proposition 1. For Acll we have

1) oA)A=A

(2) plAR = (1 is the identity mapping of J)

(3) ap(A)at =oplad), acF,

4y @: 11— Fyis injective,

The feact that the group F, is simple is well known. However using this

mapping ¥, we shall give another proof.

Theorem 2. The group F, is simple and is generated by {P(A) A}
Proof As is well known the Lie algebra of Fy is simple, hence the group F,

is simple as Lie group, that is, F. has only discrete normal subgroups. Since Fi

is connected, any discrete normal subgroup of Fy is central. Now, if « is an
element of center of F. then ap(A)x~!= ¢(A), hence ¢laAd)=p(A4). Since ¢ is
injective we have

A=A for all Aejl

Especially «E; = E;. Hence ac=Spin(9) and « is an element of center of Spin(9).
The center of Spin(9) consists of two elements {1, 7} and

@ —aQy —a @ ay G
TA = |—a, ay ay| # |Gy ay a| = A for some Ae]]
— Qy ﬁl 24 as ﬁl g

Hence we have @ =1 and prove the simplicity of F. The remainder of the

theorem is obvious because the subgroup generated by {¥A)|lA=I} is a normal
subgroup of F; by proposition 1(3).

2. Construction of elements of Ey
For elements A, BEIl such that (A4, B)# 0, we shall construct an element

(A, B) of Es. Define a mapping ¢ : {(4, B)eIl X II|(A, B)# 0}~ Es by

A, BYX =

A4 B)(8B x (A x X)+ 2«AB, X)A— (4, B)X)

and also define

g(rA, sB)y=¢A, B) r,seR—{0}

In order to show that ¢(A, B) belongs to Es we need the following formulae (I),

(1),

(1) Ax(Y x(AxX))z»;ll—(A, YIAx X, A€, X, YES

(1) Xx(Yx(XxX)):llz(X, X, X)Y+—i~(x, VXxX, X, ves
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ML) Ax(AxX)=—(X — 24X +(4, X)A), AEll, XEJ

N

To prove these formulae, we may assume that 4= E; in (I), (III) and X is
diagonal in (IT) respectively by means of the transformation of some element of
Fy [1]. Then these formulae are easily obtained by the straightforward calcula-
tions.

Propostion 8. ¢(A4, B =1. Especially ¢(A, B) is a linear isomorphism of I :
H(A, B)elsop(J, J).

1
(A, B}

+ 2B, 8BxX({AxX)+ 2B, X)A— (A, BX)A
— (A, B8Bx(AxX)+ 2B, X)A— (A4, B)X))

using AXA=BxB=0 and the formula (I)

Proof ¢(A, BEX = (BBx(8Bx(AXX)+ 2B, X)A— (A4, B)YX))

1
~ (4, By
—2(A, BY\B, X)A—8(A, B Bx{AxX)
—2A, BB, X)A+(A4, BrX)

(16(B, A)B x(A x X)—8(A, B)Bx(Ax X)+4(B, X\B, A)A

=X

Theorem 4. For A, Be]] such that (A, B)# 0 we have (A, B)eEs, that is,
¢(A, B) satisfies

det(¢(A, B)X)=det X

Proof Put ¢/(4, B) X =8Bx(AxX)+ 2B, X)A—(A4, B\ X = P+@Q+R, then
we must show

(9'(4, B)X, ¢'(A,B)X, ¢'(A, B)X)=(4, B}X, X, X)
Now, (¢'(4, B)X, ¢'(A, B)X, ¢'(A, B)X)=(P, P, P)+(Q,Q, Q)+(R, R, R)+3(P, P, Q)
+3(P, P, R)+3(Q, Q, P)+3(Q, Q, R)+3R, R, P)+3(R, R, @)+6(P,Q, R)
(P, P, P)=8Bx(AXX), BXx(AXX), BX(AxX))
=8AXX, BX(BX{AXX)xX(BXx(AXX))

=2.8(B, BX(AXXNAx X, Bx(AxX)) (by (I)
=0 (since BXB=0)
(@,Q,P)=(Q,9,Q)=(Q,Q, R)=0 (since AxA=0)

(R, R,R)=—(A,B}X, X, X)

(P, P, Q)=3.8%. 2B, X\Bx(AX X), BXx{AX X), A)
=3.8% 2AB, X Ax X, BXx(Ax(Bx{AxX))
=3, 8. 4(B, X(B AYAX X, Bx(Ax X)) by (1))
=3,8. 4B, XB, A\ X, AX(Bx{AX X))
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=24(B, X4, BHX,Ax X) (by (I))
3P, P, R)=—12B, XA, B{X, AxXX) as similar to the above
3R, R, P)=3.8(4, BHX, X, Bx(Ax X))

=24(A, BHA, X X(BX(X xX)))

=2A, BAX, X, X)+6(A4, BXX, BA, X x X) (by (II))
3R, R, Q)=6(B, XA, BAX, X, A)
6(P,Q, R)=—6.8.2(B, XA, BXBx(Ax X), A, X)

=—6.8. 2B, XA, B{AX(Bx(Ax X)), X)

=—24(B, XXA, BXAX X, X) (by (D))

Adding these formulae, we have the required result.
For a= s, we denote by tae Eg the transpose of « relative to (X,Y): {(eX,Y)
=(X,tay). Then we have

A X XY)=ta1X xta"lY, X, ved

Proposition 5. (1) ¢(4, B)A=A
(2) tH(A, B)= (B, A)
(3) ag(Ad, Bt = ¢glaA, ta~'B), ac Eg

Proof (1) is easy.
1
(A, BP
= (X, ¢(B, A)Y)
(38) First, note aA/trlaA)= T because of adxaA=ta"{Ax A)=0, tr(cA/tr(cA))
=1 and also a !'B/tr(ta~*B)e[]. Hence gb(aA/tr(aA ta-lB/tr(ta~ B)) is defined and
is equal to ¢(aA, ‘a”'B). Now

(2) (¢4, B)X,Y)= (8Ax X, BxY)+ 2AB, XXA, Y)— (4, B{X, V)

ag(A, Bl X =

@, B) 8B x(Axa X))+ 2B, a1 X)A — (4, B tX))

= o )
= A, ta'B)X
Proposition 6. If ¢(A, B) belongs to F,, then A= B and (A, A) coincides with
PA).
Proof The condition ¢(A, B)eF, imples

(8taBx(@A X X) + (la'B, X)A — (@4, ta™'B)X)

(A, B)=¢(A, By* =t(A, B)=¢(B, A)
That is, ¢4, B)X = ¢(B, A)X holds for all XeJ. Put X = A, then we hawe

1

A= B

BAX(Bx A) + 24, AB— (B, A)A)
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1 e B
@ B)(ZB 4A°B + %A, B)JA +2B — (B, A)4)  (by (IlI))

From this we have B = AoB. Similarly put X = B, then A = BoA. Therefore
A= B. Then

.
(4, 4)
=2X — 440X + 2AA, X)A+ 24, X)A— X (by (III))

=X — 44X + 44, X)A =HA)X
N. Jacobson [3] proved that the simplicity of group Eg using the properties

A, A)X = (BAX(AXX)+ 2A, X)A (4, A)X)

of elations in the projective plane II. From Proposition 5(3), the subgroup gene-
rated by {¢(A4, B)A, Bell, (A, B)=* 0} is a normal subgroup of Es Therefore
we have the following

Theorem 7. E; is a simple group generated by {J(A, B)A, BEIl, (A, B) 0}

3. Group £, ; and its polar decomposition

In ¥ we define a symmetric inner product { , > by

(X, Y>=(X,7Y)

where 1Y (denoted also by /I} later) is

7 Vs Ye 7o —Ys —
T ¥ 72 Yi|l=1|—Ds 72 M1
Yo Y1 73 — Y M 73

(r = ¢lE:) is an element of center of Spin(9) (cf. Theorem 2). Let Fy1 be the
invariance subgroup of Eg of this inner product :

Fyi={acEs<aX, a¥> =<X, Y>3}

Using the notation of the transpose {a of e E;, then the necessary and sufficient

condition that an element ae E¢ belongs to Fy: is
tafoae =7

We shall give a polar decmposition of F,; into a compact subgroup and a
euclidean space.

Theorem 8. The group F, . contains the group Spin(9) as the isotropy subgroup
Of E1 :

Spin(9) = {ac Fy 1|aE; = E;}

and any element o of Fy: is uniquely represented by the form
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0 a a,
a=pexpA, BsSpin(9), A=la 0 0
a 0 0

Therefore Spin(9) is a maximal compact subgroup of Fy. and the space F,; is
homeomorphic to the product space of Spin\9) and euclidean space R'® :

Fy,1 7= Spin(9) x R

Especially Fy ; is a simply connected Lie group.
Proof Represent an element « of F,; as an element of Eg in the form

a=pexpA, peF, A€, tr(4)=0

Since peF, and A=Y we have tg= 8! and #expA)=expA respectively. Now,
the condition of aeF,; is fafa=7, from which t(,@epo)T(epo)=T, (epo)

~

(8~ rB)Yexp A) =7 and hence
(8178 exp A = (exp(—A)r = 7 exp(—TA)

(using the formula slexp 71)5‘1 = exp(ﬁz) for € Fy). By the uniqueness of the repre-
sentation of an element of E; by the above form we have

BUp=7, A=-TA

The first condition is PPE:)S™' = HE,), hence YBE,)=¢E,). Since ¢ is injective
we have BE, = Ei, therefore f=Spin(9). The second condition A = —7A is equi-
valent to @; = ay = a3 = @; = 0, Next we shall prove the remainder of the theorem.
If an element @ of Fy:, «=pfexp A, BsSpin9), A is the form in the theorem,
satisfies the condition aFy = E;, then

(EXPZ)EH =p'E,=E;

Note ZEl = %A and hence Z"E1 = —;—An, then the above condition gives

B+ (A4 -+ A2l + AY3! + AYf4l + )= By

form which exp A = E, hence A =0, therefore we have a = B=Spin(9).

4. Element ¢(A4) and simplicity of Fy

To investigate some algebraic properties of the group Fs,;, we shall construct
an element ¢(A) of F.: for A€l such that <A, A>+# 0 as the specification of
¢(A, B) of Ee. Define a mapping ¢ : {A€ITIKA, Ay # 0} — F4,1 by

1

:<—A’*A—>(8AX(A><X)+2<A,X>A”<A,A>X)

HAX
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and also define
$rA) = ¢(A), reR — {0}

Frist of all, we must show J(A)EF,,1, that is,

Theorem 9. For AEH, (A, A># 0, we have $(A)EF, 1.

Proof First, note that ¢(A) belongs to Es, because of ¢(A4)= (A4, IQI\)EEES by
Theorem 4. Next

(HAX, HAYY = (HAX, THAY) = (¢4, A)X,THA, DY)

I\

Since, as is easily seen, we have 7¢(4, A)Y = gb(;i,A))Af (note that reF.)
= (@A, DX, §(A,AT)

=(X ,Q/J(ﬁ,A)zl/}) (by Proposition 5 (2))
—(X,7) (by Proposition 3)
=<L{X,Y>

As similar to the properties of ¢ in Proposition 1 the mapping ¢ has the
following properties.

Proposition 10, For A€l such that (A, A> = 0 we have

1) HAA=A

(2) ¢glAF=1

3) “(P(A)ﬂrl = ¢laA), acFy

4) ¢:{A€IIKA, A> # 0} — Fu1 i injective.

Proof (1), (2) are obvious by Proposition 5(1), Proposition 3 respectively.

() ag(Al = ag(A, At = ¢lad,ta'4)  (by Proposition 5 (3)
Since ‘fa A =ta A =TaA = c@l from the condition aeFy

= glaA, &A) = glad)
(4) We must show that

HAX =¢B)X forall XeJ follows A=2B

Now, putting X = E,, then

1

m 2&3 4oty 4(1101
- 1

1 2 24, )

1 1 2bg 2bs
= A=257 25 4P1Bs 4By ()
24, 4(3(1ﬁ1 46(16(3

2by  4Pihr  4B10s
From this we have

CAA> = (1 — 2w =(1— 28,2 =<B, B> and ay= by, a3 = by (ii)

Then the condition ¢(4)X = ¢(B)X is reduced to

AAX(AXX) + (A, X)A = 4Bx(Bx X) + (B, X)A
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0 0 0
Put X={0 0 x| and compare (2, 3)-entries, then
0 x 0 ' ‘

— % —|ag|*x + ar®x + Alay, £)a = —|bel*x — |bs]*% + 1% - 4bs, X)ba
Hence from (ii)
Ollzx + 4(“1, x)al = 1912x + 4(b1, x)bl

holds for all x@. Therefore a;? = 8:%, hence a;y = 1. If a; = ;5% 0, then ay=_>,,
@y = s, @y =p from (i), therefore we have the required result A= B. In the
case of ey =4 =0, A =/21 and B z/g’, hence ¢(A4)=¢(A, 2) = B, §) = ¢(B).
Since ¢ is injective we have also A4 = B.

Using these properties of this mapping ¢ we can show that the group Fy . is
simple.

Theorem 11. The group Fy . is simple and is generated by {H(A)A<SI, {A, A>
# 01,

Proof As is easily seen, the complexification of Lie algebra of Fy : is isomor-
phic to the complexification of the Lie algebra of F. (which is simple). Hence
Fy1 is simple as Lie group. The rest of the proof of this theorem is quite
analogous to that of Theorem 2,

5. Space F 1/Spin(9)

We shall consider the subspace Int [ of the plane I7 consisting of all elements
whose (1, 1}-components are greater that 1/2:

IntI' ={A€T (A, E)>1/2}

and call this space Int I" the interior of the quadratic curve '={Ac ]I |<{A, A>=01},
Lemma 12. For aeFy; and AcInt ' we have aAltrleA)sInt I,
Proof  First note that aA/trleA)ell. Now, since Fy: is connected (Theorem
8) there exists a path af¢), 0=<{¢<1, connecting « to 1 in Fy: Then, since

(tr(a(f)A) — 2Aal)A, E1)f = {alt)A, al)A> = <A, A>=(1 — 20, £ 0

and tr{(H)A) — 2{t)A, E:1) is continuous with respect to ¢, trla(H)A) — 2Aa(t)4, Ey)
has the constant sign. Hence tr{eA) — 2(eA, E1) has the same sign as tr(4) —2(A4,
E) =1— 2q; <0. Therefore we have tr{@A)— 2(aA, E1})<0. This is the required
result (@A/treA), E)) > 1/2, that is, ed/trled)eInt .

Theorem 13, ([4] Théoréme 6.8). The group F. acts transitively on Int ' and
the isotropy subgroup of Ei is Spin(9). Therefore the homogeneous space F, /S pin(9)
is homeomor phic to Int [ :

F4, 1/Spln(9) ~Int!I"
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Proof From Lemma 12 we see that the group F,: actson Int " by a mapping
piFyoxIntl—-Intl7, e, A) = aAltrieA)

We shall show that this action is transitive. For BeIl such that By =(B,E)>
1/2, construct an element A of § with the following components

o VEAENVIBT _ b
o/ B ’ 2/Bil/Bi + /2B~ 1)
_ B2 _ b2
VIV e B
oy — Bs bs

NNV s S E

then Ae]l, {A, A>+0 and ¢{A)E; = B. This shows the transitivity of the action
p. The fact that theisotropy subgroup of E; is Spin (9) is in Theorrem 8 Thus
the theorem is proved.
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