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   In this paper, we investigate some properties of a non comPact sirnple Lie

group F4,i which is the invariance group of

         <X, Y> == e,rpi + 62rp2 + eBrp, + 2(x,, Y,) - 2(x2, Y2) - 2(x,, Y,)

To do this we consider a Freudenthal's perspective mapping ip : {AEil]F[<A, A>#

O} - F4,i [2] (¢(A) = <A ,2 A> IIZIA ) such that A, x ; A" × (A × x), gb(A)x are

harmonic in the octavian projective plane fl. Throughout this paper, we refer

to the definitions and notations in Freudenthal [1]. This group F4,i = F4(.-2e) is

also considered in [4] using a hyperbolic polarity in the plane ll.

   1. Prelimimaries [1], [5], [6]

   Let E be the alternative field of octaves over real numbers R and 5=5(3,

C) be the Jordan algebra consisting of a!1 3×3 Hermitian matrices X with
components in E

                   x= (i} g-i ti":,), 6iER, xiGng

                                        'with respect to the composition

                   XoY=i(XY+YX)

In S we define another multiplication

     x × Y = !L (2XoY- tr(X)Y- tr(Y)X +(tr(X)tr(Y)- tr(XoY))E)
              2

(where E is the 3 × 3 unit matrix) and a positive definite symmetric inner product

( , )and a symmetric trilinear product( , , )by '

    tt        ' (X, Y) == tr(XoY)
                   (X, Y, Z)m(X × Y, Z) == (X, Y×Z)
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Especially

            (X, X, X) == 3detX

                      = 3(e,e,6, + 2Re(x,x,x,) - e,lx,12 - e,lx,]2 - 6,]x,i2)

    The group E6 == E6,o,* conslsting of all linear isornorphisms of ,3 which pre-

serve (X, Y, Z):

            E6 =- {crEIso.(5, 3)I(crX, aY, aZ)-(X, Y, Z)}

               = {aEiilso.<Ei}, gY)ldet(aX) m- det X}

is a simply connected simple Lie group and a non compact real form of type E6.

And the automorphism group F4 of 3 :

                    F4 == {aEIsoR(S, S)]crXoaY = a(XoY)}

                      == {aEE6 l crE == E}

                      =: {aEE6I(aX, aY)= (X, Y )}

               '                              'is a simply connected compact simple Lie group of type F4 and has a subgrogp

SPin(9) which a universal covering group of rotation group SO(9) :

                spin(g) == {aEF,fcrE, == E,}, E,.. (8 8 'gi

                                                 No o of

   Any element a of E6 is uniquely represented by the form

                ct,.,pexpA'V, pEIiF,, AffS, tr(A)=O

where A'-' is the endomorphism of S which is defined by A-L' x =:: Aox. From this

we see that E6 is homeomorphic to the product space of F4 and euclidean space

R26 :

                           E6 [): F4 × R26

   The octavian projective plane fl is defined by

            IT = {A E! £i} IA2 = A, tr(A) == 1}

               == {AG5 IA × A = O, tr(A) = 1}
                                                     tt                                                   '                 f ct2ctB -- Iail2, ct3ai =: Ia2]2, aia2 = la312)

              ･== IAGSY ,:lal?-:l2al:ai,B :l3all = a2d2, ala2 =a3d3 j

This ,space IJ can be embedded into the group F4 by a mapping g:ll - F4 [5]

            ep(A)X == 16A × (A × X)+4AoX - 3X

                  -=X-4AoX+4(A, X)A (cf. ss2formula (I))

and g has the following properties.
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   ?lgOPopO(trt)iA'n..lhFor AEll we h.ve

   (2) g(A)2 =1 (1 is the identity maPPing of 5)

   (3) ag(A)crvi=g(aA), aEF4
                                                                     '   (4) 9 : ll . F4 is inj'ective.

'' The feact that the group F4 is simple is well known. However using this

mapping 9, we shall give another proof.

   The6rema 2. The grouP F4 is simPle and is generated by {9(A)IAefl}.

   Proof As is well known the Lie algebra of l74 is simple, hence the group F4

is simple as Lie group, that is, F4 has only discrete normal subgroups. Since F4

is connected, any discrete normal subgroup of F4 is central. Now, if a is an

element of center of F4 then ag(A)a-'= w(A), hence g(aA)=ep(A). Since g is

jnjective we have

                       aA =A for all AEff

Especially aEi == Ei. Hence crESPin(9) and a is an element of center of SPin(9).

The center of SPin(9) consists of two elements {1, r} and

         rA=(I'cr.l Mi.i2 -i'i,)f(Ea.i Zua.:, l'l) -Afor some AEll

Hence we have a=:1 and prove the simplicity of F4. The remainder of the

theorem is obvious because the subgroup generated by {9(A)IAEEU} is a normal

subgroup of F4 by proposition 1(3).

    2. ComstructioR of elements of E6

    For elements A, BGU such that (A, B) 74 O, we shall construct an element

¢(A, B) of E6. Define a mapping ip : {(A, B)Ell × Ul(A, B)lO}- E6 by

                          1
             ip(A, B)X ==･ (A, B)(8B × (A × X) + 2(B, X)A -(A, B)X)

and also define

                    ¢(rA, sB) == ¢(A, B) r, seR-{O}

(I:I).order to show that ¢(A, B) belongs to E6 we need the following formulae (I),

    (I) A×(Y ×(A × X)) = -i- (A, Y)A × X, AE ll, X, Ye$

                            11
    (II) X × (Y × (X xX)) = i7t (X, X, X)Y + -4.- (X, Y)X xX, X, YG3
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  (III) A× (AxX) =:= t(X - 2AoX +(A, X)A), AE ll, XE3

  To prove these formulae, we may assume that A=Ei in (I), (III) and X is

diagonal in (II) respectively by means of the transformation of some element of

F4 [1]. , Then these formulae are easily obtained by the straightforward calcula-

tions.

  Propostion 3. ¢(A, B)Z == 1. EsPecially di(A, B) is a linear isomorPhism of 5:

¢(A, B)elso.(S, S).

               1  Proof ip(A, B)2X=                  (8B×(8B ×(A × X) + 2(B, X)A - (A, B)X))             (A, B)2
                + 2(B, 8B×(A×X) + 2(B, X)A - (A, B)X)A
                - (A, B)(8B×(A×X) + 2(B, X)A -(A, B)X))

using AxA= BxB=o and the formula (I)

           1        = (A, B), (16(B, A)B × (A × X)-8(A, B)B ×(A × X)+4(B, xXB, A)A

            -2(A, B)(B, X)A-8(A, B)B ×(A × X)
            -2(A, B)(B, X)A+(A, B)2X)

        -=X
  Theorem.4. For A, Be!ll such that (A, B)74O we have ip(A, B)GE6, that is,

ip(A, B) satisfies

                det (ip(A, B)X) - det X

  Proof Put ¢'(A, B)X := 8B ×(A × X) + 2(B, X)A-(A, B)X = P+Q+R, then
we must show

       (¢t(A,B)X, ¢,(A,B)X, ¢t(A,B)X)=(A,B)3(X,X,X)
Now, (¢,(A, B)X, ¢,(A, B)X, ¢,(A, B)X)-(P, P, P)+(Q, Q, Q)+(R, R, R)+3(P, P, O)

     +3(P, P, R)+3(Q, Q, P)+3(Q, O, R)+3(R, R, P)+3(R, R, Q)+6(P, Q, R)

       (P, P, P) ==83(B×(A×X), B×(A×X), B×(A×X))

            -= 83(A × X, B× ((B × (A × X)) × (B × (A × X)))

            -2. 82(B,B×(A×X))(A×X, B×(A×X)) (by (I>)
            =:O (since BxB==O)
       (Q,(?,P)==((?,(?,Q)::-(Q,Q,R)==O (since AxA-O)
       (R, R, R)=-(A, B)3(X, X, X)

       3(P, P, Q)=3. 82. 2(B, X)(B ×(A × X), B × (A × X), A)

            == 3. 82. 2(B, X)(A × X, B × (A × (B × (A × X)))

            ==3. 8. 4(B, X)(B, A)(A×X, B×(A xX)) .Lby (I))

            =3, 8. 4(B, X>(B, AXX, A×(B ×(A ×X)))

/
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            =24(B, X)(A, B)2(X,AxX) (by (I))

       3(P,P,R)=-12(B,X)(A,B)2(X,A×X) as similar to the above
                              t
       3(R, R, P)=3. 8(A, B)2(X, X, B×(A × X))

            == 24(A, B)2(A, X × (B × (X × X)))

            =2(A, B)3(X, X, X)+6(A, B)2(X, B)(A, XxX) (by (II))
       3(R, R, Q) :== 6(B, X)(A, B)2(X, X, A)

       6(P, Q, R) == -6. 8. 2(B, X)(A, B)(B × (A × X), A, X)-

            = -6. 8. 2(B, X)<A, B)(A × (B ×(A × X)), X)

            = -24(B, XXA, B)2(AxX, X) (by (I))

Adding these formulae, we have the required result.

  For aEE6, we denote by taEE6 the transpose of a relative to (X,Y):(aX,Y)

==(X,taY). Then we have

            a(xxY')=ta-iXxta-iY, X,YES

  Proposition 5. (1) ip(A, B)A=A

  (2) tdi(A, B)-¢(B, A)

  (3) a¢(A, B)a" = ip(atA, ta-!B), aGE6

  Proof (1) is easy.

                1
                  (8(AXX, B×Y) + 2(B, X)(A, Y)- (A, B)(X, Y))  (2) (¢(A, B)X, Y)-              (A, B)2
            - (X, ip(B, A)Y)
  (3) First, note aAltr(aA)Gll because of evAxa2<L=ta-i(AxA)==O, tr(atAltr(aA))

=1 and also ta-'B!tr(ta-iB)ell. Hence ¢(aAltr(crA), ta"tBltr(ta-iB)) is defined and

is equal to ip(aA, ta-'B). Now

              1.
                a(8B×(Axa-iX) + 2(B, a-iX)A - (A, B)at-iX))   a¢(A, B)ec-iX =            (A, B)

               1                  (8ta-iB×(aA ×X) + (ta-iB, X)A - (aA, ta-iB)X)            (aA, ta-iB)

           = ip(aA, ta-iB)X

  Proposition 6. 111C ¢(A, B) belongs to F4, then A == B and ip(A, A) coincides with

9(A).

  Proof The condition ¢(A, B)GF4 imples

          di(A, B) - ¢(A, B)"i - t¢(A; B) - ¢(B, A)

That is, ip(A, B)X == ¢(B,A)X holds for all XES. Put X == A, then we hawe

            1
              (8A×(B×A) + 2(A, A)B - (B, A)A)        A==           (A, B)
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                 1             = (A, B) (2B - 4AoB + 2(A, B)A + 2B - (B, A)A) (by (III))

From this we have B=AoB. Similarly put X = B, then A== BoA. Therefore

A=B. Then

                        1            ip(A, A)X =:                            (8A×(A×X) + 2(A, X)A - (A, A)X)                      (A, A)

                    = 2X - 4AoX + 2(A, X)A + 2(A, X)A -X (by (III))

                    === X - 4AoX + 4(A, X)A = 9(A)X

   N. Jacobson [3] proved that the simplicity of group E6 using the properties

of elations in the projective plane ll. From Proposition 5(3), the subgroup gene-

rated by {¢(A, B)IA, BEfl, (A, B)lO} is a normal subgroup of E6. Therefore

we have the following '
   Theorem 7. E6 is a simPle grouP generated by {¢(A, B)IA, BEll, (A, B)XO}.
   3. Group ]iU,i and its polar decornpositien

   In 5 we define a symmetric inner product < , > by

                         <x, y> - (x, ry)

                       Awhere rY (denoted also by Y later) is

                   r(i:, /lj, l':･)-(iii: nd,ls, -i:･)

(r == g(Ei) is an element of center of SPin(9) (cf. Theorem 2)). Let F" be the

invariance subgroup of E6 of this inner product:

                   F`,i == {crEE61<aX, aY> = <X, Y>}

Using the notation of the transpose ta of aEE6, then the necessary and suMcient

condition that an element aE!!E6 belongs to F4,i is

                             tarcr =:: r

                                                        '
   We shall give a polar decmposition of Fsi into a compact subgroup and a

euclidean space. . .
   Theorem 8. The grouP F4,i contains the grouP SPin(9) as the isotropy subgroup

of E, :

                      Spin(9) = {aEF4,ilaEi == Ei}

                               '                          '
and anpt element a of F4,i is uniqnely rePresented by the form
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            a= pexp Z, pe spin(g), A ,. (tzO, ao3 a-o2)

                                             xa2 o of

Therefbre Spin(9) is a maximal comPact subgrouP of E4,i and the sPace .F4,i is

homeomozPhic to the Prodact sPace of Spin <9) and euclidean space Ri6 :

                           F4,i z SPin(9) × Ri6

EsPecially F4,i is a simPly connected Lie group.

   Proof Represent an element a of F4,i as an element of E6 in the form

                a == Pexp ], PE .Fl`, AES, tr(A) == O

Since PEF4 and AES we have tP :P'i and t(exp2i)=exp?i respectively. Now,

                                                     tV AJ Nthe condition of crEF4,i is tcrra==r, from which t(PexpA)r(expA)= r, (expA)

(p-irpXexp A'S") == r and hence

                            -- nv tsw                   (P-irP) exp A = (exp(-A))r == rexp(-rA)

(using the formula s(exp Z)6-i == exp(6AA" ) for 6GFd). By the uniqueness of the repre-

sentation of an element of E6 by the above form we have

                         p-irp == r, A =-rA

The first condition is PP(Ei)P-' =:: 9(Ei), hence 9(PEi) = P(Ei). Since 9 is injective

we have PEi == Ei, therefore PESPin(9). The second condition A= -rA is equi-

valent to ai == a2 = a3 = ai = O, Next we shall prove the remainder of the theorem.

If an element aof F4,i, ct=PexpA, PESPin(9), A is the form in the theorem,

satisfies the condition crEi == Ei, then

                       (exp -A")Ei = P'iEi = Ei

Note AA"Ei == -ll-A and hence 2(nEi = -ll-An, then the above condition gives

                                                   '
                                                     '
                Ei + rlll- (A + A212! + A313! + A`/4! + ''') = Ei

form which expA== E, hence A :O, therefore we have a= PESPin(9).

   4. Element ip(A) and simplicity of liT4,i

   To investigate some algebraic properties of the group F4,i, we shall construct

an element ¢(A) of F4,i for AEll such that <A,A>7! O as the specification of

¢(A,B) of E6. Define a mapping ¢: {AEllI<A,A> 74 O"f-Fgi by

            ¢(A)X-= <A,1 A> (s 21×(A×x) + 2<A, x>A - <A, A>x)
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and also define

                       ¢(rA) = ip(A), rGR - {O}

Frist of all, we must show ¢(A)EF4,i, that is,

   Theorem 9. For AEU, <A,A>ikO, we have ip(A)EF4,i.
                                                             A
   Proof First, note that ip(A) belongs to E6, because of ¢(A)= ip(A,A)eiE6

Theorem 4. Next

          <¢(A)X, ¢(A)y> - (ip(A)x, r¢(A)y) - (ip(A, A)x, r¢(A, A")y)

                                  A AASince, as is easily seen, we h ftve rip(A.,A)Y.-- ¢(A,A)Y (note that rEF4)

                   - (di(A,A)X, ¢(A,A)Y)
                          AA
                   =(X,¢(A,A)2Y) ' (by Proposition5(2))
                        A                   :=: (X, Y) (by Proposition 3)

                   - <X, Y>

    As similar to the properties of 9 in Proposition 1 'the mapping ¢ has
following properties.

    Proposition 10. .For AEU such that <A,A> 74 O we have

    (1) ¢(A)A-A
    (2) ip(A)2 == 1

    (3) evip(A)cr-i = ¢(aA), crEF4,t

    (4) ip : {AE ll1<A, A> l O} -+ F4, i is inl'e ctive.

    Proof (i), (2) are obvious by Proposition 5(1), Proposition 3 respectively.

                     AA    (3> a¢(A)a-i == aip(A,A)a-` ;:= ¢(evA,ta-iA) (by Proposition 5 (3))

          AASince ta-iA =ta-irA = ratA == aA from the condition aEiEF4 i
                                                   '                                 A
                          = ¢(orA,aA) -= ¢(orA>

    (4) We must show that

            ¢(A)X = ip(B)X for all X Eiii5 follows A = B

Now, putting X == Ei, then

            1 tl 2a3 2aU21 1 (1 2b3 25,X
         (i-2evi)2ki:: 2:l:i 2.ai.a:1 =(i-2p,)2L;2: 2,P;2,2 g,P:,b:1 `i)

From this we have

         <A, A> = (1 - 2ai)2 ==(1- 2Bi)2 = <B, B> and a2 == b2, a3 = b3 (ii)

Then the condition ¢(A)X == ip(B)X is reduced to

              A AA A            4A × (A × X) + (A, X)A == 4B ×(B × X) + (B, X)A

by

the
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p.t x., (g g 2) ,hd ,,thp5r61(2, 3)iehtries, then .' .

         XO I OI

       -la2i2x -Ia312x + cri2x -i- 4(ai, x)ai = -]b212x -lb312x + Pi2x -i- 4(bi, x)bi

Hence from (ii)

                    ai2x + 4(ai, x)ai == Pi2x + 4(bi, x)bi

holds for all xci!ag. Therefore cri2=Pi hence ai == Pi. If ai =PiXO, then a2=P2,

a3 == P3, ai=bi from (i), therefore we have the required result A=B In the

                       AA AAcase of evi == Pi ==O, A=A and B= B, hence 9(A)=¢(A, A)==¢(B, B)== P(B).
Since ep is injective we have also A == B.

    Using these properties of this mapping ¢ we can show that the group F4 i is
                                                                      '
simple.

    Theorem 11. The grouP F4,i is simPle and is generated by {ip(A)IAell, <A, A>

x o}.

    Preof As is easily seen, the cornplexification of Lie algebra of F4,i is isomor-

phic to the complexification of the Lie algebra of F4 (which is simple). Hence

F4,iis simple as Lie group. The rest of the proof of this theorem is quite

analogous to that of Theorem 2.

    5. Space L,i!Spin(9)

    We shall consider the subspace Int r of the plane ll consisting of all elements

whose (1, 1)-components are greater that 112 :

                    Int P = {AEll 1 (A, Ei)> 112}

 and call this space Int r the interior of the quadratic curve P= {AEll l <A,A>=o}.

    Lemxma me. For evEF4,i and Aelntr we have aAltr(crA)GIntL

    Proof- First note that crAltr(aA)EU. Now, since F4,i is connected (Theorem

s) there exists a path cr(t), O$tS1, connecting cr to 1 in F4,t. Then, since

         (tr(a(t)A) - 2(cr(t)A, Ei>)2 :=: <cr<t)A, a<t)A> = <A, A> H- (1 - 2or!)2 74 O

and tr(a(t)A)-2(a(t)A, Ei) is continuous with respect to t, tr(cr(t)A)-2(cr(t)A, Et)

has the constant sign. Hence tr(evA)-2(aA,Ei) has the same sign as tr(A)-2(A,

ED =: 1 - 2cri < O. Therefore we have tr(atA) - 2(aA, Ei) < O. This is the required

result (aAltr(evA), Ei)>112, that is, aAltr(aA)EIntL

    Theerem 13. ([4] Theorbme 6. 8). The grouP F4,i acts transitively on Intr and

 the isotropy subgroup of Et is SPin(9). Therefore the homogeneoz{s space F4,iASpin(9)

is homeomorPhic to Int P:

                           F4, ilSPin(9) =t Int P
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   Proof From Lemma 12 we see that the group F`,i acts on Intr by a mapping

                pt : F4,i×Int r- Int r, pt(a, A) == aA/tr(aA)

We shall show that this action is transitive. For BGll such that Pi=(B,Ei)>

1!2, construct an element A of $ with the following components

             VPi + V2fi, - 1                                                 bi
                    nd e al == -H )         al=
                                         2VPi (VPi + V2P, - 1 )                 2VPi

                      P2                                         b2
         a2 = 2,.iP, (,.i ff, + ,.i2p, - 1 j a2 "= 2Pi '

                      P3                                         b3
         ev8= 2vp,(vp,+v2p,-1s "3== 2p,'

then AGIT, <A,A>lO and ip(A)Ei == B. This shows the transitivity of the action

pt. The fact that theisotropy subgroup of Ei is SPin (9) is in Theorrem 8. Thus

the theorem is proved.
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