On a non compact simple Lie group $F_{4,1}$ of type F_{4}

By Ichiro Yokota
Department of Mathematics, Faculty of Science, Shinshu University
(Received October 8.1975)

In this paper, we investigate some properties of a non compact simple Lie group $F_{4,1}$ which is the invariance group of

$$
\langle X, Y\rangle=\xi_{1} \eta_{1}+\xi_{2} \eta_{2}+\xi_{3} \eta_{3}+2\left(x_{1}, y_{1}\right)-2\left(x_{2}, y_{2}\right)-2\left(x_{3}, y_{3}\right)
$$

To do this we consider a Freudenthal's perspective mapping $\psi:\{A \in \Pi \mid\langle A, A\rangle \neq$ $0\} \rightarrow F_{4,1}[2]\left(\phi(A)=\frac{2}{\langle A, A\rangle} \Pi_{A, \widehat{A}}^{-1}\right)$ such that $A, X ; \hat{A} \times(A \times X), \phi(A) X$ are harmonic in the octavian projective plane $I I$. Throughout this paper, we refer to the definitions and notations in Freudenthal [1]. This group $F_{4,1}=F_{4(-20)}$ is also considered in [4] using a hyperbolic polarity in the plane Π.

1. Preliminaries [1], [5], [6]

Let $₫$, be the alternative field of octaves over real numbers \boldsymbol{R} and $\mathscr{\mathcal { S }}=\mathfrak{F}(3$, (E) be the Jordan algebra consisting of all 3×3 Hermitian matrices X with components in ${ }^{6}$

$$
X=\left(\begin{array}{lll}
\xi_{1} & x_{3} & \bar{x}_{2} \\
\bar{x}_{3} & \xi_{2} & x_{1} \\
x_{2} & \bar{x}_{1} & \xi_{3}
\end{array}\right), \quad \xi_{i} \in R, \quad x_{i} \in \mathbb{C},
$$

with respect to the composition

$$
X \circ Y=\frac{1}{2}(X Y+Y X)
$$

In \mathfrak{F} we define another multiplication

$$
X \times Y=\frac{1}{2}(2 X \circ Y-\operatorname{tr}(X) Y-\operatorname{tr}(Y) X+(\operatorname{tr}(X) \operatorname{tr}(Y)-\operatorname{tr}(X \circ Y)) E)
$$

(where E is the 3×3 unit matrix) and a positive definite symmetric inner product (,) and a symmetric trilinear product (, ,) by

$$
\begin{gathered}
(X, Y)=\operatorname{tr}(X \circ Y) \\
(X, Y, Z)=(X \times Y, Z)=(X, Y \times Z)
\end{gathered}
$$

Especially

$$
\begin{aligned}
(X, X, X) & =3 \operatorname{det} X \\
& =3\left(\xi_{1} \xi_{2} \xi_{8}+2 \operatorname{Re}\left(x_{1} x_{2} x_{3}\right)-\xi_{1}\left|x_{1}\right|^{2}-\xi_{2}\left|x_{2}\right|^{2}-\xi_{8}\left|x_{3}\right|^{2}\right)
\end{aligned}
$$

The group $E_{6}=E_{6,0, *}$ consisting of all linear isomorphisms of \Im which preserve (X, Y, Z):

$$
\begin{aligned}
E_{6} & =\left\{\alpha \in \operatorname{Iso}_{R}(\Im, \Im) \mid(\alpha X, \alpha Y, \alpha Z)=\langle X, Y, Z)\right\} \\
& =\left\{\alpha \in \operatorname{Iso}_{R}(\Im, \Im) \mid \operatorname{det}(\alpha X)=\operatorname{det} X\right\}
\end{aligned}
$$

is a simply connected simple Lie group and a non compact real form of type E_{6}. And the automorphism group F_{4} of \varsubsetneqq :

$$
\begin{aligned}
F_{4} & =\left\{\alpha \in \operatorname{Iso}_{R}(\Im, \Im) \mid \alpha X \circ \alpha Y=\alpha(X \circ Y)\right\} \\
& =\left\{\alpha \in E_{6} \mid \alpha E=E\right\} \\
& =\left\{\alpha \in E_{6} \mid(\alpha X, \alpha Y)=(X, Y)\right\}
\end{aligned}
$$

is a simply connected compact simple Lie group of type F_{4} and has a subgroup $\operatorname{Spin}(9)$ which a universal covering group of rotation group $S O(9)$:

$$
\operatorname{Spin}(9)=\left\{\alpha \in F_{4} \mid \alpha E_{1}=E_{1}\right\}, \quad E_{1}=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

Any element α of E_{6} is uniquely represented by the form

$$
\alpha=\beta \exp \widetilde{A}, \quad \beta \in F_{4}, \quad A \in \Im, \quad \operatorname{tr}(A)=0
$$

where \widetilde{A} is the endomorphism of \widetilde{S} which is defined by $\widetilde{A} X=A \circ X$. From this we see that E_{6} is homeomorphic to the product space of F_{4} and euclidean space \boldsymbol{R}^{26} :

$$
E_{0} \simeq F_{4} \times R^{26}
$$

The octavian projective plane Π is defined by

This space Π can be embedded into the group F_{4} by a mapping $\varphi: \Pi \rightarrow F_{4}[5]$

$$
\varphi(A) X=16 A \times(A \times X)+4 A^{\circ} X-3 X
$$

$$
=X-4 A \circ X+4(A, X) A \quad \text { (cf. } \S 2 \text { formula }(\mathrm{I}))
$$

and φ has the following properties.

$$
\begin{aligned}
& \Pi=\left\{A \in \mathfrak{F} \mid A^{2}=A, \quad \operatorname{tr}(A)=1\right\} \\
& =\{A \in \Im \mid A \times A=0, \quad \operatorname{tr}(A)=1\} \\
& =\left\{\begin{array}{l|l}
A \in \mathfrak{J} \mid & \begin{array}{l}
\alpha_{2} \alpha_{3}=\left|a_{1}\right|^{2}, \\
a_{3} \alpha_{1}=\left|a_{2}\right|^{2}, \\
a_{2} a_{3}=\alpha_{1} \alpha_{2}=\left|a_{3}\right|^{2}, \\
\alpha_{1}+\alpha_{2}+a_{3}=1
\end{array} \\
\alpha_{1} \alpha_{2} \bar{a}_{2}, & a_{1} a_{2}=\alpha_{3} \bar{a}_{3}
\end{array}\right\}
\end{aligned}
$$

Proposition 1. For $A \in I I$ we have
(1) $\varphi(A) A=A$
(2) $\varphi(A)^{2}=1 \quad(1$ is the identity mapping of $\Im)$
(3) $\alpha \varphi(A) \alpha^{-1}=\varphi(\alpha, A), \quad \alpha \in F_{4}$
(4) $\varphi: \Pi \rightarrow F_{4}$ is injective.

The feact that the group F_{4} is simple is well known. However using this mapping φ, we shall give another proof.

Theorem 2. The group F_{4} is simple and is generated by $\{\varphi(A) \mid A \in \Pi\}$.
Proof As is well known the Lie algebra of F_{4} is simple, hence the group F_{4} is simple as Lie group, that is, F_{4} has only discrete normal subgroups. Since F_{4} is connected, any discrete normal subgroup of F_{4} is central. Now, if α is an element of center of F_{4} then $\alpha \varphi(A) \alpha^{-1}=\varphi(A)$, hence $\varphi(\alpha A)=\varphi(A)$. Since φ is injective we have

$$
\alpha A=A \quad \text { for all } \quad A \in \Pi
$$

Especially $\alpha E_{1}=E_{1}$. Hence $\alpha \in \operatorname{Spin}(9)$ and α is an element of center of $\operatorname{Spin}(9)$. The center of $\operatorname{Spin}(9)$ consists of two elements $\{1, \gamma\}$ and

$$
\gamma A=\left(\begin{array}{rrr}
\alpha_{1} & -a_{3} & -\bar{a}_{2} \\
-\bar{a}_{3} & \alpha_{2} & a_{1} \\
-a_{2} & \bar{a}_{1} & \alpha_{3}
\end{array}\right) \neq\left(\begin{array}{lll}
\alpha_{1} & a_{3} & \bar{a}_{2} \\
\bar{a}_{3} & \alpha_{2} & a_{1} \\
a_{2} & \bar{a}_{1} & \alpha_{3}
\end{array}\right)=A \text { for some } A \in \Pi
$$

Hence we have $\alpha=1$ and prove the simplicity of F_{4}. The remainder of the theorem is obvious because the subgroup generated by $\{\varphi(A) \mid A \in \Pi\}$ is a normal subgroup of F_{4} by proposition 1 (3).

2. Construction of elements of \boldsymbol{E}_{6}

For elements $A, B \in \Pi$ such that $(A, B) \neq 0$, we shall construct an element $\phi(A, B)$ of E_{6}. Define a mapping $\psi:\{(A, B) \in I I \times I \mid(A, B) \neq 0\} \rightarrow E_{6}$ by

$$
\psi(A, B) X=\frac{1}{(A, B)}(8 B \times(A \times X)+2(B, X) A-(A, B) X)
$$

and also define

$$
\phi(r A, s B)=\phi(A, B) \quad r, s \in \boldsymbol{R}-\{0\}
$$

In order to show that $\psi(A, B)$ belongs to E_{6} we need the following formulae (I), (II).
(I) $A \times(Y \times(A \times X))=\frac{1}{4}(A, Y) A \times X, \quad A \in \Pi, X, Y \in \Im$
(II) $\quad X \times(Y \times(X \times X))=\frac{1}{12}(X, X, X) Y+\frac{1}{4}(X, Y) X \times X, \quad X, Y \in \mathcal{F}$
(III) $\quad A \times(A \times X)=\frac{1}{4}(X-2 A \circ X+(A, X) A), \quad A \in \Pi, \quad X \in \Im$

To prove these formulae, we may assume that $A=E_{1}$ in (I), (III) and X is diagonal in (II) respectively by means of the transformation of some element of F_{4} [1]. Then these formulae are easily obtained by the straightforward calculations.

Propostion 3. $\psi(A, B)^{2}=1$. Especially $\psi(A, B)$ is a linear isomorphism of \mathfrak{F} : $\phi(A, B) \in \mathrm{Iso}_{\boldsymbol{R}}(\mathfrak{\Im}, \mathfrak{\Im})$.

Proof $\psi(A, B)^{2} X=\frac{1}{(A, B)^{2}}(8 B \times(8 B \times(A \times X)+2(B, X) A-(A, B) X))$

$$
+2(B, 8 B \times(A \times X)+2(B, X) A-(A, B) X) A
$$

$$
-(A, B)(8 B \times(A \times X)+2(B, X) A-(A, B) X))
$$

using $A \times A=B \times B=0$ and the formula (I)

$$
\begin{aligned}
& \begin{aligned}
= & \frac{1}{(A, B)^{2}}(16(B, A) B \times(A \times X)-8(A, B) B \times(A \times X)+4(B, X)(B, A) A \\
& \quad-2(A, B)(B, X) A-8(A, B) B \times(A \times X) \\
= & \left.\quad-2(A, B)(B, X) A+(A, B)^{2} X\right)
\end{aligned} \\
&
\end{aligned}
$$

Theorem 4. For $A, B \in I I$ such that $(A, B) \neq 0$ we have $\psi(A, B) \in E_{6}$, that is, $\phi(A, B)$ satisfies

$$
\operatorname{det}(\psi(A, B) X)=\operatorname{det} X
$$

Proof Put $\phi^{\prime}(A, B) X=8 B \times(A \times X)+2(B, X) A-(A, B) X=P+Q+R$, then we must show

$$
\left(\phi^{\prime}(A, B) X, \phi^{\prime}(A, B) X, \psi^{\prime}(A, B) X\right)=(A, B)^{3}(X, X, X)
$$

Now, $\left(\phi^{\prime}(A, B) X, \phi^{\prime}(A, B) X, \phi^{\prime}(A, B) X\right)=(P, P, P)+(Q, Q, Q)+(R, R, R)+3(P, P, Q)$

$$
\begin{aligned}
+3(P, P, R) & +3(Q, Q, P)+3(Q, Q, R)+3(R, R, P)+3(R, R, Q)+6(P, Q, R) \\
(P, P, P) & =8^{8}(B \times(A \times X), B \times(A \times X), B \times(A \times X)) \\
& =8^{3}(A \times X, B \times((B \times(A \times X)) \times(B \times(A \times X))) \\
& =2.8^{8}(B, B \times(A \times X)(A \times X, B \times(A \times X)) \quad(\text { by (I) }) \\
& =0 \quad(\text { since } \quad B \times B=0) \quad \\
(Q, Q, P) & =(Q, Q, Q)=(Q, Q, R)=0 \quad(\text { since } \quad A \times A=0) \\
(R, R, R) & =-(A, B))^{3}(X, X, X) \\
3(P, P, Q) & =3.8^{2} .2(B, X)(B \times(A \times X), B \times(A \times X), A) \\
& =3.8^{2} .2(B, X)(A \times X, B \times(A \times(B \times(A \times X))) \\
& =3.8 .4(B, X)(B, A)(A \times X, B \times(A \times X)) \quad(\mathrm{by}(\mathrm{I})) \\
& =3.8 .4(B, X)(B, A)(X, A \times(B \times(A \times X)))
\end{aligned}
$$

$$
\begin{aligned}
& =24(B, X)(A, B)^{2}(X, A \times X) \quad \text { (by (I)) } \\
3(P, P, R) & =-12(B, X)(A, B)^{2}(X, A \times X) \quad \text { as, similar to the above } \\
3(R, R, P) & =3.8(A, B)^{2}(X, X, B \times(A \times X)) \\
& =24(A, B)^{2}(A, X \times(B \times(X \times X))) \\
& =2(A, B)^{3}(X, X, X)+6(A, B)^{2}(X, B)(A, X \times X) \quad \text { (by (II)) } \\
3(R, R, Q) & =6(B, X)(A, B)^{2}(X, X, A) \\
6(P, Q, R) & =-6.8 .2(B, X)(A, B)(B \times(A \times X), A, X) \\
& =-6.8 .2(B, X)(A, B)(A \times(B \times(A \times X)), X) \\
& \left.=-24(B, X)(A, B)^{2}(A \times X, X) \quad \text { (by (I) }\right)
\end{aligned}
$$

Adding these formulae, we have the required result.
For $\alpha \in E_{6}$, we denote by $t_{\alpha \in E_{6}}$ the transpose of α relative to $(X, Y):(\alpha X, Y)$ $=\left(X,{ }^{t} \alpha Y\right)$. Then we have

$$
\alpha(X \times Y)=t_{\alpha}^{-1} X \times{ }^{t} \alpha^{-1} Y, \quad X, Y \in \Im
$$

Proposition 5. (1) $\phi(A, B) A=A$
(2) ${ }^{t} \psi(A, B)=\psi(B, A)$
(3) $\alpha \psi(A, B) \alpha^{-1}=\psi\left(\alpha A,{ }^{t} \alpha^{-1} B\right), \quad \alpha \in E_{6}$

Proof (1) is easy.
(2) $(\psi(A, B) X, Y)=\frac{1}{(A, B)^{2}}(8(A \times X, B \times Y)+2(B, X)(A, Y)-(A, B)(X, Y))$

$$
=(X, \phi(B, A) Y)
$$

(3) First, note $\alpha A / \operatorname{tr}(\alpha A) \in I$ because of $\alpha A \times \alpha A=t^{-1}(A \times A)=0, \operatorname{tr}(\alpha A / \operatorname{tr}(\alpha A))$ $=1$ and also ${ }^{t} \alpha^{-1} B / \operatorname{tr}\left({ }^{t} \alpha^{-1} B\right) \in I I$. Hence $\psi\left(\alpha A / \operatorname{tr}(\alpha A),{ }^{t} \alpha^{-1} B / \operatorname{tr}\left({ }^{\left.\left(t \alpha^{-1} B\right)\right)}\right.\right.$ is defined and is equal to $\psi\left(\alpha A,{ }^{t} \alpha^{-1} B\right)$. Now

$$
\begin{aligned}
\alpha \psi(\mathrm{A}, \mathrm{~B}) \alpha^{-1} X & \left.=\frac{1}{(A, B)} \alpha\left(8 B \times\left(A \times \alpha^{-1} X\right)+2\left(B, \alpha^{-1} X\right) A-(A, B) \alpha^{-1} X\right)\right) \\
& =\frac{1}{\left(\alpha A, t \alpha^{-1} B\right)}\left(8 \alpha^{t} \alpha^{-1} B \times(\alpha A \times X)+\left({ }^{t} \alpha^{-1} B, X\right) A-\left(\alpha A,{ }^{t} \alpha^{-1} B\right) X\right) \\
& =\phi\left(\alpha A,{ }^{t} \alpha^{-1} B\right) X
\end{aligned}
$$

Proposition 6. If $\psi(A, B)$ belongs to F_{4}, then $A=B$ and $\phi(A, A)$ coincides with $\varphi(A)$.

Proof The condition $\psi(A, B) \in F_{4}$ imples

$$
\phi(A, B)=\phi(A, B)^{-1}=t \phi(A, B)=\phi(B, A)
$$

That is, $\psi(A, B) X=\psi(B, A) X$ holds for all $X \in \mathcal{F}$. Put $X=A$, then we hawe

$$
A=\frac{1}{(A, B)}(8 A \times(B \times A)+2(A, A) B-(B, A) A)
$$

$$
=\frac{1}{(A, B)}(2 B-4 A \circ B+2(A, B) A+2 B-(B, A) A) \quad(\mathrm{by}(\mathrm{III}))
$$

From this we have $B=A \circ B$. Similarly put $X=B$, then $A=B \circ A$. Therefore $A=B$. Then

$$
\begin{aligned}
\mu(A, A) X & =\frac{1}{(A, A)}(8 A \times(A \times X)+2(A, X) A-(A, A) X) \\
& =2 X-4 A \circ X+2(A, X) A+2(A, X) A-X \quad(\text { by (III) }) \\
& =X-4 A \circ X+4(A, X) A=\varphi(A) X
\end{aligned}
$$

N. Jacobson [3] proved that the simplicity of group E_{6} using the properties of elations in the projective plane Π. From Proposition $5(3)$, the subgroup generated by $\{\psi(A, B) \mid A, B \in \Pi,(A, B) \neq 0\}$ is a normal subgroup of E_{6}. Therefore we have the following

Theorem 7. E_{6} is a simple group generated by $\{\psi(A, B) \mid A, B \in \Pi,(A, B) \neq 0\}$.
3. Group $F_{4,1}$ and its polar decomposition

In \Im we define a symmetric inner product $\langle,>$ by

$$
\langle X, Y\rangle=(X, \gamma Y)
$$

where $r Y$ (denoted also by \widehat{Y} later) is

$$
\gamma\left(\begin{array}{lll}
\eta_{1} & y_{3} & \bar{y}_{2} \\
\bar{y}_{3} & \eta_{2} & y_{1} \\
y_{2} & \bar{y}_{1} & \eta_{3}
\end{array}\right)=\left(\begin{array}{rrr}
\eta_{1} & -y_{3} & -\bar{y}_{2} \\
-\bar{y}_{3} & \eta_{2} & y_{1} \\
-y_{2} & \bar{y}_{1} & \eta_{3}
\end{array}\right)
$$

$\left(\gamma=\varphi\left(E_{1}\right)\right.$ is an element of center of $\operatorname{Spin}(9)$ (cf. Theorem 2)). Let $F_{4,1}$ be the invariance subgroup of E_{6} of this inner product:

$$
F_{4,1}=\left\{\alpha \in E_{6} \mid\langle\alpha X, \alpha Y\rangle=\langle X, Y\rangle\right\}
$$

Using the notation of the transpose t_{α} of $\alpha \in E_{6}$, then the necessary and sufficient condition that an element $\alpha \in E_{6}$ belongs to $F_{4,1}$ is

$$
t_{\alpha} \gamma \alpha=\gamma
$$

We shall give a polar decmposition of $F_{4,1}$ into a compact subgroup and a euclidean space.

Theorem 8. The group $F_{4,1}$ contains the group Spin(9) as the isotropy subgroup of E_{1} :

$$
\operatorname{Spin}(9)=\left\{\alpha \in F_{4,1} \mid \alpha E_{1}=E_{1}\right\}
$$

and any element α of $F_{4,1}$ is uniquely represented by the form

$$
\alpha=\beta \exp \widetilde{A}, \quad \beta \in \operatorname{Spin}(9), \quad A=\left(\begin{array}{ccc}
0 & a_{3} & \bar{a}_{2} \\
\bar{a}_{3} & 0 & 0 \\
a_{2} & 0 & 0
\end{array}\right)
$$

Therefore Spin (9) is a maximal compact subgroup of $F_{4,1}$ and the space $F_{4,1}$ is homeomorphic to the product space of $\operatorname{Spin}(9)$ and euclidean space \boldsymbol{R}^{16} :

$$
F_{4,1} \simeq S \operatorname{Sin}(9) \times R^{16}
$$

Especially $F_{4,1}$ is a simply connected Lie group.
Proof Represent an element α of $F_{4,1}$ as an element of E_{6} in the form

$$
\alpha=\beta \exp \widetilde{A}, \quad \beta \in F_{4}, \quad A \in \Im, \operatorname{tr}(A)=0
$$

Since $\beta \in F_{4}$ and $A \in \mathcal{J}$ we have $t \beta=\beta^{-1}$ and $t(\exp \widetilde{A})=\exp \widetilde{A}$ respectively. Now, the condition of $\alpha \in F_{4,1}$ is $t \alpha \gamma \alpha=\gamma$, from which $t(\beta \exp \widetilde{A}) \gamma(\exp \widetilde{A})=\gamma,(\exp \widetilde{A})$ $\left(\beta^{-1} \gamma \beta\right)(\exp \widetilde{A})=\gamma$ and hence

$$
\left(\beta^{-1} \gamma \beta\right) \exp \widetilde{A}=(\exp (-\widetilde{A})) \gamma=\gamma \exp (-\widetilde{\gamma})
$$

(using the formula $\delta(\exp \widetilde{A}) \delta^{-1}=\exp (\delta \widetilde{A})$ for $\delta \in F_{4}$). By the uniqueness of the representation of an element of E_{6} by the above form we have

$$
\beta^{-1} \gamma \beta=\gamma, \quad \mathrm{A}=-\gamma \mathrm{A}
$$

The first condition is $\beta \varphi\left(E_{1}\right) \beta^{-1}=\varphi\left(E_{1}\right)$, hence $\varphi\left(\beta E_{1}\right)=\varphi\left(E_{1}\right)$. Since φ is injective we have $\beta E_{1}=E_{1}$, therefore $\beta \in \operatorname{Spin}(9)$. The second condition $A=-\gamma A$ is equivalent to $\alpha_{1}=\alpha_{2}=\alpha_{3}=a_{1}=0$. Next we shall prove the remainder of the theorem. If an element α of $F_{4,1}, \alpha=\beta \exp A, \beta \in \operatorname{Spin}(9), A$ is the form in the theorem, satisfies the condition $\alpha E_{1}=E_{1}$, then

$$
(\exp \widetilde{A}) E_{1}=\beta^{-1} E_{1}=E_{1}
$$

Note $\widetilde{A} E_{1}=\frac{1}{2} A$ and hence $\widetilde{A}^{n} E_{1}=\frac{1}{2} A^{n}$, then the above condition gives

$$
E_{1}+\frac{1}{2}\left(A+A^{2} / 2!+A^{3} / 3!+A^{4} / 4!+\cdots\right)=E_{1}
$$

form which $\exp A=E$, hence $A=0$, therefore we have $\alpha=\beta \in \operatorname{Spin}(9)$.

4. Element $\psi(\boldsymbol{A})$ and simplicity of $\boldsymbol{F}_{4,1}$

To investigate some algebraic properties of the group $F_{4,1}$, we shall construct an element $\psi(\mathrm{A})$ of $F_{4,1}$ for $A \in I$ such that $\langle A, A\rangle \neq 0$ as the specification of $\psi(A, B)$ of E_{6}. Define a mapping $\psi:\{A \in \Pi \mid\langle A, A\rangle \neq 0\} \rightarrow F_{4,1}$ by

$$
\phi(A) X=\frac{1}{\langle A, A\rangle}(8 \widehat{A} \times(A \times X)+2\langle A, X\rangle A-\langle A, A\rangle X)
$$

and also define

$$
\psi(r A)=\psi(A), \quad r \in R-\{0\}
$$

Frist of all, we must show $\psi(A) \in F_{4,1}$, that is,
Theorem 9. For $A \in I,\langle A, A\rangle \neq 0$, we have $\psi(A) \in F_{4,1}$.
Proof First, note that $\phi(\mathrm{A})$ belongs to E_{6}, because of $\psi(A)=\psi(A, \hat{A}) \in E_{6}$ by Theorem 4. Next

$$
\langle\psi(A) X, \phi(A) Y\rangle=(\psi(A) X, \gamma \psi(A) Y)=(\psi(A, \hat{A}) X, \gamma \psi(A, \hat{A}) Y)
$$

Since, as is easily seen, we have $\gamma \phi(A, \hat{A}) Y=\psi(\hat{A}, A) \hat{Y}$ (note that $\gamma \in F_{4}$)

$$
\begin{aligned}
& =(\psi(A, \hat{A}) X, \psi(\hat{A}, A) \hat{Y}) \\
& \left.=\left(X, \phi(\hat{A}, A)^{2} \hat{Y}\right) \quad \text { (by Proposition } 5(2)\right) \\
& =(X, \hat{Y}) \quad \text { (by Proposition 3) } \\
& =\langle X, Y\rangle \quad
\end{aligned}
$$

As similar to the properties of φ in Proposition 1 the mapping ϕ has the following properties.

Proposition 10. For $A \in \Pi$ such that $\langle A, A\rangle \neq 0$ we have
(1) $\psi(A) A=A$
(2) $\phi(A)^{2}=1$
(3) $\alpha \psi(A) \alpha^{-1}=\psi(\alpha A), \quad \alpha \in F_{4,1}$
(4) $\psi:\{A \in \Pi \mid\langle A, A\rangle \neq 0\} \rightarrow F_{4,1} \quad$ is injective.

Proof (1), (2) are obvious by Proposition 5(1), Proposition 3 respectively.
(3) $\alpha \phi(A) \alpha^{-1}=\alpha \phi(A, \widehat{A}) \alpha^{-1}=\psi\left(\alpha A, t_{\alpha}^{-1} \widehat{A}\right) \quad$ (by Proposition 5 (3))

Since $t_{\alpha}{ }^{-1} \widehat{A}=t_{\alpha^{-1}}{ }^{-1} \gamma=\gamma \alpha A=\widehat{\alpha A}$ from the condition $\alpha \in F_{4,1}$

$$
=\phi(\alpha A, \widehat{\alpha A})=\psi(\alpha A)
$$

(4) We must show that

$$
\phi(A) X=\psi(B) X \text { for all } X \in \mathfrak{J} \text { follows } A=B
$$

Now, putting $X=E_{1}$, then

$$
\frac{1}{\left(1-2 \alpha_{1}\right)^{2}}\left(\begin{array}{ccc}
1 & 2 a_{3} & 2 \bar{a}_{2} \tag{i}\\
2 \bar{a}_{3} & 4 \alpha_{1} \alpha_{2} & 4 \alpha_{1} a_{1} \\
2 a_{2} & 4 \alpha_{1} \bar{a}_{1} & 4 \alpha_{1} \alpha_{3}
\end{array}\right)=\frac{1}{\left(1-2 \beta_{1}\right)^{2}}\left(\begin{array}{ccc}
1 & 2 b_{3} & 2 \bar{b}_{2} \\
2 \bar{b}_{3} & 4 \beta_{1} \beta_{2} & 4 \beta_{1} b_{1} \\
2 b_{2} & 4 \beta_{1} \bar{b}_{1} & 4 \beta_{1} \beta_{3}
\end{array}\right)
$$

From this we have

$$
\begin{equation*}
\langle A, A\rangle=\left(1-2 \alpha_{1}\right)^{2}=\left(1-2 \beta_{1}\right)^{2}=\langle B, B\rangle \text { and } a_{2}=b_{2}, a_{3}=b_{3} \tag{ii}
\end{equation*}
$$

Then the condition $\phi(A) X=\phi(B) X$ is reduced to

$$
4 \hat{A} \times(A \times X)+(\hat{A}, X) A=4 \hat{B} \times(B \times X)+(\hat{B}, X) A
$$

Put $X=\left(\begin{array}{ccc}0 & 0 & 0 \\ 0 & 0 & x \\ 0 & \bar{x} & 0\end{array}\right)$ and compare (2,3)-entries, then

$$
-\left|a_{2}\right|^{2} x-\left|a_{3}\right|^{2} x+\alpha_{1}{ }^{2} x+4\left(a_{1}, x\right) a_{1}=-\left|b_{2}\right|^{2} x-\left|b_{3}\right|^{2} x+\beta_{1}{ }^{2} x+4\left(b_{1}, x\right) b_{1}
$$

Hence from (ii)

$$
\alpha_{1}^{2} x+4\left(a_{1}, x\right) a_{1}=\beta_{1}^{2} x+4\left(b_{1}, x\right) b_{1}
$$

holds for all $x \in \mathbb{C}$. Therefore $\alpha_{1}{ }^{2}=\beta_{1}{ }^{2}$, hence $\alpha_{1}=\beta_{1}$. If $\alpha_{1}=\beta_{1} \neq 0$, then $\alpha_{2}=\beta_{2}$, $\alpha_{3}=\beta_{3}, a_{1}=b_{1}$ from (i), therefore we have the required result $A=B$. In the case of $\alpha_{1}=\beta_{1}=0, A=\widehat{A}$ and $B=\widehat{B}$, hence $\varphi(A)=\varphi(A, \widehat{A})=\psi(B, \widehat{B})=\varphi(B)$. Since φ is injective we have also $A=B$.

Using these properties of this mapping ψ we can show that the group $F_{4,1}$ is simple.

Theorem 11. The group $F_{4,1}$ is simple and is generated by $\{\phi(A) \mid A \in \Pi,\langle A, A\rangle$ $\neq 0\}$.

Proof As is easily seen, the complexification of Lie algebra of $F_{4,1}$ is isomorphic to the complexification of the Lie algebra of F_{4} (which is simple). Hence $F_{4,1}$ is simple as Lie group. The rest of the proof of this theorem is quite analogous to that of Theorem 2.
5. Space $F_{4,1} / \operatorname{Spin}(9)$

We shall consider the subspace Int I of the plane $I l$ consisting of all elements whose (1,1)-components are greater that $1 / 2$:

$$
\text { Int } \Gamma=\left\{A \in \Pi \mid\left(A, E_{1}\right)>1 / 2\right\}
$$

and call this space Int Γ the interior of the quadratic curve $\Gamma=\{A \in \Pi \mid\langle A, A\rangle=0\}$.
Lemma 12. For $\alpha \in F_{4,1}$ and $A \in \operatorname{Int} \Gamma$ we have $\alpha A / \operatorname{tr}(\alpha A) \in \operatorname{Int} \Gamma$.
Proof. First note that $\alpha A / \operatorname{tr}(\alpha A) \in I I$. Now, since $F_{4,1}$ is connected (Theorem 8) there exists a path $\alpha(t), 0 \leqq t \leqq 1$, connecting α to 1 in $F_{4,1}$. Then, since

$$
\left\langle\operatorname{tr}(\alpha(t) A)-2\left(\alpha(t) A, E_{1}\right)\right\rangle^{2}=\langle\alpha(t) A, \alpha(t\rangle A\rangle=\langle A, A\rangle=\left\langle 1-2 \alpha_{1}\right)^{2} \neq 0
$$

and $\operatorname{tr}(\alpha(t) A)-2\left(\alpha(t) A, E_{1}\right)$ is continuous with respect to $t, \operatorname{tr}(\alpha(t) A)-2\left(\alpha(t) A, E_{1}\right)$ has the constant sign. Hence $\operatorname{tr}(\alpha A)-2\left(\alpha A, E_{1}\right)$ has the same sign as $\operatorname{tr}(A)-2(A$, $\left.E_{1}\right)=1-2 \alpha_{1}<0$. Therefore we have $\operatorname{tr}(\alpha A)-2\left(\alpha A, E_{1}\right)<0$. This is the required result $\left(\alpha A / \operatorname{tr}(\alpha A), E_{1}\right)>1 / 2$, that is, $\alpha A / \operatorname{tr}(\alpha A) \in \operatorname{Int} \Gamma$.

Theorem 13. ([4] Théorème 6.8). The group $F_{4,1}$ acts transitively on $\operatorname{Int} \Gamma$ and the isotropy subgroup of E_{1} is Spin(9). Therefore the homogeneous space $F_{4,1} / \operatorname{Spin}(9)$ is homeomorphic to $\operatorname{Int} \Gamma$:

$$
F_{4,1} / \operatorname{Spin}(9) \simeq \operatorname{Int} \Gamma
$$

Proof From Lemma 12 we see that the group $F_{4,1}$ acts on Int Γ by a mapping

$$
\mu: F_{\natural, 1} \times \operatorname{Int} \Gamma \rightarrow \operatorname{Int} \Gamma, \mu(\alpha, A)=\alpha A / \operatorname{tr}(\alpha A)
$$

We shall show that this action is transitive. For $B \in \Pi$ such that $\left.\beta_{1}=\left(B, E_{1}\right)\right\rangle$ $1 / 2$, construct an element A of \Im with the following components

$$
\begin{array}{ll}
\alpha_{1}=\frac{\sqrt{\beta_{1}}+\sqrt{2 \beta_{1}-1}}{2 \sqrt{\beta_{1}}}, & a_{1}=\frac{b_{1}}{2 \sqrt{\beta_{1}\left(\sqrt{\beta_{1}}+\sqrt{2 \beta_{1}-1}\right)}}, \\
\alpha_{2}=\frac{\beta_{2}}{2 \sqrt{\beta_{1}\left(\sqrt{\beta_{1}}+\sqrt{2 \beta_{1}-1}\right)},} & a_{2}=\frac{b_{2}}{2 \beta_{1}}, \\
\alpha_{8}=\frac{\beta_{3}}{2 \sqrt{\beta_{1}}\left(\sqrt{\beta_{1}}+\sqrt{2 \beta_{1}-1}\right)}, & a_{3}=\frac{b_{3}}{2 \beta_{1}},
\end{array}
$$

then $A \in \Pi,\langle A, A\rangle \neq 0$ and $\psi(A) E_{1}=B$. This shows the transitivity of the action μ. The fact that theisotropy subgroup of E_{1} is $\operatorname{Spin}(9)$ is in Theorrem 8. Thus the theorem is proved.

References

[1] H. Freudential ; Oktaven, Ausnahmengruppen und Oktavengeometrie, Math. Inst. Rijks. te Utrecht, 1951 (mimeographed).
[2] -; Beziehungen der E_{7} und E_{8} zur Oktavenebene. IV. Indag. Math. 16 (1954), 218-230.
[3] N. Jacobson ; Some groups of transformations defined by Jordan algebras III, Jour. Reine Angew. Math. 207, $61-85$ (1961).
[4] J. Tirs; Le plan projectif des octaves et les groupes de Lie exceptionnels, Bull. Acad. Roy. Belg. Sci., 39 (1953), 309-329.
[5] I. Yокота; Embeddings of projective spaces into elliptic projective Lie groups, Proc. Japan Acad., 35 (1959), 291-283.
[6] ; Exceptional Lie Group F_{4} and its Representation Rings, Jour. Fac. Sci. Shinshu Univ., Vol. 2 (1968), 35-60.

