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Introduction.

In this note, we give some extensions of Borel transformation.

Borel transformation is defined by

. Aiyy oy i .
TP = 23 F G Lain,
i1y in Byl
where ¢(z Za“,. o in 21 812,70 is a germ of holomorphic functions at the origin.

To denote the ring of germs of holomorphic functions at the origin by s, <%
gives a ring isomorphism of 7" and Exp(C"), where Exp(C”) is the ring of finite
exponential type functions on C* with the multiplication f#g, where

d 4
(fheC) = Ejo AC — Dgle)de.

Since the algebraic closure . 7 n of the qtotient field of #7, is the field of (con-

vergence) Puiseux series, . is extended to a map of 7 n if we define <7 [2,/7].
This is done to define <% [z1/?] = (1/I'(1+1/p)C,1/2, because we get

rla + ) + 1)

G = p 4 )

La+b,

But, since some elements of the quotient field of Exp(C#) is not a function, we
define <7 on _#7 n to satisfy <7 [¢] to be a function. Then, the solution of
Cauchy problem P (8/80) f = 0, akf]0%Li|s,=0 = Gr,1 € Exp(C*™Y), k= 0,1,-, m—1,
P (Z) =z o Py (2o, 0, 2p) 2g71 o4 P (22, R Zn) is given by

&) = = [Z Z} (L — 2100 (227, -+, 2u7Y) ~0igiy 0 (22, -, Zu)] (),

i 1=pi=ri
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Pz) = (2, — ai(zs, -, 20", 20 2 chy mloitepi, o) = 7 ~'[ek],
N ¥

7 1

where ¢k, »; is given by (1 — x)=0i = > 1 Ck, o; ¥H(§ 1).
Moreover, since we get

et

tn
2 (log)#n =

ot is Euler’s comstant,
= ul a7

to define

2% [logz] (L) = log { + 7,

we can extend Borel transformation for the functions which involve log z (Ap-
pendix).

In §2, we consider topological extension of Borel transformation. In fact, if
F(D) is a function space on D (C R) such that I'(D) contains Exp(C”) (by the
restriction map), Exp(C") is dense in F(D) and if {fw}, fm € Exp(C") converges
uniformly to f on C” (in wider sense), then {f»} converges to f by the topology
of F(D), then we can construct the largest subspace F(D)s of F(D) such that
Cauchy problem is solved and well posed for the data in F(D)s and the smallest
space F(D)S such that there is a homomorphism from F(D)S onto F(D) and for
given operator, Cauchy problem is solvable and well posed for the data in F(D)s,
and Borel transformation is extended to have F(D)s (or F(D)®) to be its image and
the solution of the Cauchy problem is written explicitly by this extended Borel
transformation.

§0 Review of the properties of Borel transformation

1. In this §, we review the definition and properties of Borel transfor-
mation.

Definition. Let ¢(z) be a germ of holomorphic function at the origin of C", the
n -dimensional complex euclidean space, given by ¢(z) =
Zn, in @iy, ooy iy 21 P12y in, then its Borel transformation <7 [¢1(£) is a power
series in & = ({y,++, Cu) given by

W) P10 = 3 T i,

By definition, Borel transformation has the following properties.
(1. If o(z) converges on {z| |z;| < s}, then
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(@) 7 o] (C):_}—:J J L egso(Z)dzl--dzn
( (2ra/ — D)zl =ey lznl=en &1 Zn ’
b, LG
z oz Zn

(). =2 {1 is a finite exponential type function on C» and if f(() is a finite
exponential type function on C", then there is unique germ of holomorphic
Junction ¢(z) at the origin of C" such that f(£)= <7 [¢1(Q).

(iii). If ¢, Ware gems and a,b are constants, then

(3) o [ap +b¢]=az o]l + bz [¢]
(3)ii o Lol = 0 lelkss o],

where fig is given by

on [ Cn
(4) (f#g) (C) = mjo J’O f(C1 T, Y Cn — T}z)g(fly M) T") dTl"'dTn-

(iv). To define oW (21, -+, Zum) = @ (21, =, Z20) ¥ (Znyy, -, Znam), €tc., we have
(5) B [oQU ] = (< [¢]) x (<5 [¢]) .

(v). For any i, we get

o
6y a‘c}w Lp](C) = <7 [z ') 1) ,
(3 . B
(7) | 2 [0t = 7 Laig)©)
Here for (z) = Z‘,“:mm:j Aiyyoony iy By 112y I, b, means
<8) ¢+(Z) = Z aily sy in 41 il...zn in .

1120, -, 1220

(vi). For any i, we get

9) Lico [ol2)](€) = 27 [zipl2) + 21

By (ii) and (iii), to denote " the ring over C of germs of holomorphic
functions of C* at the origin with the usual addition and multiplication and by
Exp (C") the ring over C of finite exponential type functions on C* with the usual
addition and the # -product, we get a ring isomorphism <% over C by
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o7 &n—Exp(C"), # [¢] is the Borel transformation of ¢.
2. As usual, we denote by 5 r»/, the space of compact carrier distributions
on R”. For T € & gr», we define a map ¢, « = (&, -, an) & C", is fixed, by

1 1

(10) ta (T)(2) = Crv=1) T, I:(l_a1C121)"'(1_anann)]

We note that to define (7)(w) by

(T aw) = — [(T)(L... 1>, wi— L

Wi Wy * CY121’ ’CYnZn ®iZ;
that is, «T)(w) = 1/2r/ —1)"- T [1/(w, — L))---(wn —Ln)], We get

(11) T[f]=1lim

— D oeitton T(x
El,"',51t—>0(27r'\/_l)nJR"(UL‘:O,EUn:O( ) !( )( o

(= D)o /ey, vy S 4 (= Dony/=Te) f sy, -, ) diiooodin

if fe &ri(4], [9], [10]).

By the definitions of <#Zand ¢,, if we take a = — 2z4/ —1 (=(—2m/—1, -+,

— 2za/—1)), we have

(12) F T = [emam/—(T)],

Where .7~ is the Fourier transformation of 7. In other word, we have the
following commutative diagram.

t—gmy/ =]
& r! >

\% |\ &
F Exp(C?) .

Note. We denote by Az and %» the spaces of real analytic functions on E»
and entire functions on C” with the normally convergence topology. Then, since
& rr D A" D", we have & re! C A" A", where A" and A" are the dual
spaces of A" and W%, and ¢, is defined on A" and A*. Moreover, we know ([5],

L7,
(1) (W = Py

and the duality between 7, and A" is éiven by
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| | Lz, - 2a)
7T Gr = 1 e N enizn 2
1 1 ¥ i
S0<~,"‘»*)d21,"'dzn , few, e O,
21 Zn

if ¢ is holomorphic on {z| |z;| <&}
§1 Algebraic extension of Borel transformation

3. In this §, we extend Borel transformation to be a map from the algebraic
closure (of the quotient field) of 7, to the algebraic closure (of the quotient field)
of Exp(Ch).

First we note that the algebraic closure _7 » of _77 », the quotient field of
7 n, 1s the {convergence) Puiseux series field of n-variables over C, that is

~ ——n——
(14) Gal (v///n/e////wn) = Q/Z @@ Q/Z:
(14)! = A (B BB, e 2B e 22 e 212 e 2D ).

This can be show'n by algebraic method (cf. [6]). But here we give an analytic
proof. For this purpose, we use

Lemma 1. [f f(2) is holomorphic on {z| |z:| < a;}, then there exist 0 <& e
=a;, i=1n such that f(z) £0 if & <|z:| e, unless f(2) is identically
equal to 0.

Proof. Since the lemma is true for # =1, we use induction and assume the
lemma is true for (# — 1)-variables functions. Then to set f(z) =z, kh(2), (0, zs,
.-+, 2} is not identically equal to 0, there exist a; >0, (=2, ---,%, such that 7 (0,
Zs, -+, Zn) does not vanish on T = {z| z; =0, |z;|=a;, i =2} Then, since min, e
|k (2)| =20, there exists &' >0 such that k(z) 20 if |21 <e), |2i| =i, i =2. This
shows the lemma,

Corollary. If g(z) € _# », then g(z) is expressed as

1m0, oy fypmon

(15) gla) = > Ay eoeyin &0 2n ing g < 25| o' .

i1=—00, =, iy==00

Note. Since g{z) is meromorphic, although there may by sup — limip—o |G;,,
<+ in | 20, there exists an integer M such that

(16) Qi oty in :O, Zf 7:1 e Zn <M .

Proof of (14). If w is algebraic over .. », then by lemma 1, w has no
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singularity or branching point on I" = {z] & <|zi] <e&i' for some 0 <& < &'}

N 2N
Then, since (') = Z@--@ Z and the Riemann surface I of w over I’ covers
I" only finite times, there exist integers #; = 1,:--, #» = 1 such that to set G()
the subgroup of =;(I') generated by 7€y, -, ¥nn, €i,--+, €, are the generator of

y (I), T')G(¥) covers r , where [" is the universal covering space of ['. Then, since

F/G(r) and its projection p : ]N”/G(r) — I" are given by

FIG) = [y riv/er <|vil <rin/eli'},
p((yl, tthy y”)) = (yl 1’1, vy Y 1’")5 oY Yi = Zj 1/1/,', Z = 1! ) n »
w can be expressed as a Puiseux series by (15), that is

i1=00, -1, ip=co
(15) W= Z Qiyy oy in 21 il/“"'zﬂ in/7n ’

i1=—00, iy=—oco

iyy oy in="0, if {1+-+in <M for some M .

By (14) (and (3); and (5)), to extend Borel transformation on _», it is suffici-
ent to define Borel transformation of z;172 for any ¢ and p.
4. Lemma 2. If Re.a >—1, Re.b >—1, then

@+ )1 +1),

I
17y Lot b= Tla+b+1) G

at+b |

Here, in the definition of § — product, integral is taken along the path {I{, 0 <t
<1%.
Proof. By definition, we get

(af b= ijc (C — 1) arbdr = _d_Jol Ca+b+1(1 — 0‘) adg (o0 =

atl, Pia )

]

Mla+1)I(+1)

=@+b+1)Ble+1,b+ 1)l = @b+ 1) La+b |
Corollary. For any natuval number p, we have
e 1
(18) (Qu/p) #0 = QUnl BOU/D = {F(E + 1)32¢,
Proof. By (17), we get
2 1) (2 2 q)..p(2=1
(/oD — {p(l+1>}p(]9+1) (P+1)F(P+1) F( P —1—1) .
b p 1 N

(Z41)-(Z4a)r (2 41)r (25241) rea
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?
1
g
{ P >
Since #C-D £ (C) = df (9)/dS by (6), we have by (17)

Fla+1I0b+1)

Jaftld = Ca+h
(17) S ﬁs l—‘(a i b T 1) o R
P va dnle CaBF e dn+m
Gl = "ot LM =
dn
Caffl-a-» = ["la + L) [ (—a—n _}_1)3@7’

where @ and b are not negative integers.

By (1'4), (18) and (17), the algebraic closure $254(C") of the quotient field &+
(C™") of Exp(C") is generated by {{i#1-+-Ln o2, py, -+, pn Gre rvational numbers and none
of pi is a negative integer} and {{;, #1-+-{;, omdmttnk/ol; m 9Lk B>1, R+ m
=n, {i, i} U L{d, o, gmt = {1, -, %} and none of p;, i € {ji, -, jm} is a negative
integer} as a C—module.

We denote by %%(C”)J, the submodule of ?;;'\: AC") consisted by those elements
that are realized by (some multi-valued) function. That is, the element of 2?7/
(C™) whose (any) Puiseux expansion does not involve the term which involves 9%/
{:% for some i and k. By definition there is a projection =, (as a C—module) from
BE7HC") onto EPHCH),.

Note. By definition, wehave

EHC, N AT = Exp(C”)

N - . - . o~
and the integral closure Exp (C") (in z£##(C™) is contained in gw4C"),.
Since Borel transformation &7 gives an isomorphism from 7, onto Exp (C*),

it is extended to an isomorphism (% : # n == ES’V/(C"). By (18) (and (17)), expli-

citly, 7 is given by

1 n
> T T NEA 5 [z .
(1()> % [Zi l/jlu| — r (%+1>Ci1//) , < [Zi ),1] = .

To fix the above /;f’, we define
Definition. The Borel transjformation <% of A is the map from A onto

& (CM), given by

&

(20) W] =, [w] .
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By definition, if w is given by Puiseux series (15), then

ilzm:"'yin:‘x’ .
@iy,

iy B .
(20! G W] (£ = h:_m;‘iﬂ:_mf(h/rﬁrl)'"F(in/fﬁl)

f’lil/?'n. ..Cnin/Tn ,

where 1/I'(Gy/ry + 1)---T(inftn + 1) =0 if some of ix/rr is a negative integer.
Lemma 3. (1). <% [w] comverges on I' = {z)¢; <\2i| <e&'}if wis gven by
(15) and it converges on I'.
(ii). Lf u is integral over 7., then the Riemann surface of < [u] covers C*.
(i), [f ¥ belongs in 527C"), then
1

, o 1
! Ty —_—— /2
@) F L]0 (2’7‘\/_1)715121|:H JIan:zn Zl"'zne M)z dzn

if ¥(z) is holomoyvphic on {z| |zi| = &7
Proof. (i) follows from (16). Since .7 [u] satisfies the equation
R [u]ﬁm + &7 [Sﬂl:m:g [u]#(m—l) +e [(,Dm:] =0 ,
if u satisfies the equation u” 4 @um-1 4.4 ¢, = 0, we have (ii) by (18) and the
fact that each <7 [¢;] converges on C”). (2) follows from the definition.
Note. On f/G(r), to set y; =z; Vri,i =1,.--,n, we set

(AR AT YitteeYpin

(2T P12y, ey in2iy F(Z.l/rl + 1)"'F(i117n + 1) ’

where 1/[Gy/#1 + 1)--I(infrn + 1) =0 if some of ir/rz is a negative integer, then to
set p; = {; /7, we have

) ) 1 1
2 " '/_/) w| = llm T‘J’ .'-J .
( ) g E j 7711"“—00,"‘,77771—’_‘00(27"-N/H‘1)n {yil=¢e1 val=en Y1 Yn

(S TR I /5] Nn
Enty, -, My

, s Wi AT 1,d d n .
5, yn> (¥1, =+, Yu)dys--dy

By (2)', we can show analytically ifZ}ai,, ey i 12y BTz /e §s an analytic
continuation of w, then Y @i, -, i, |[I(i/ry 4 V)--Ilinfra 4 1y /71, <Ly in/ra is an
analytic continuation of &% [w]. In fact, since the branching points and poles of
w are given by ¢(2) =0, z& 74, to set

o(z) = ZZIW(Z), I = (iy, i), 21 = 2y it z4in, 0f(0) £ 0 ,
7

any Puiseux expansion of w covers a connected component I'; of U{0) —{z| |2I| =
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= |zJ| for some I, I} But if z, € ol'; and ¢(z) #0, the Riemann surface of w
which covers such ['; that zy < a"; can be extended to cover z, and since on
which (2)” is hold, we have the assertion.

5. Definition. We set 0" “lz, 7 /, = p, and set

(21) bw=w, .

Theorem 1. Borel transformation (ofu//? n) has the following properties.

(). < [w] =0 if and only if w belongs in ker.p,, that is, each term of
Puiseux expansion of w involve negative power of some z;.

Gi). Ifv, we_z »and a, b are constants, then
3 FHlav+bw]=aZ [v]+bF [w],
@i & [ow] = =, (F VI [w]) .
In 3ii!, if v, w both contained in (’n, the integral closure of 77, then
@y [vw] = & [vI§az [w] .
(iii). To define v @ w, etc., similarly as ¢ & ¢, we have
Gy ZhQwl=.ZWV]I®.Z[w].

(iv). For any i, we get

) 7 (W] = 7 [a1e] |
(o) G [w] = 7 [ziw + 2 ;aw]

Theorem 2. If P(g/d0) is a constant coefficients partial differential operator given
by

P ()= s+ Pilagy g+ Pl )

then its solution with the data

of

ot =70, 8oy o, Ln) = Brar (Goy o, Cn), Ok <m —1, gr € Exp(C*™Y) ,

is given by

(22) /)) l: Z Z 1 _Zlgl 2y ’ Ty Z"_1>)_”i(/*7i7 123 (221 Tty Z")](C) .

i1 pi<lrs

This Q) is holomorphic on C* if deg. P; <m —i for each i. Here
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P(z) = I (z, —0; (23, -+, za))i

7

Z Chy pi (G'ikgoi, Fi) (Zz, T Z") =% -1 [gk:l (22, Ty Z")’ 0 ék ém _1)

P1=ei<r;
where cp, o; 15 given by (1 —x)y=ri = > 1Cr, p; Xk,

In the rest, we set

T, ceeerene e 1
gy, e , C1y Oy, v , C1, 750s
2 iy Col e 0% s
T(?’l, ,1’3) (90 s Coy 7,017, ) Co,y 750
L
m-1 -1 w-
o e Oy 01T e Oy o T

Note. If in Exp (C"), a system of constant cofficiente partial differential
operators is given, then by normalization theorem ([117), is equivalent to the
system of operators

a aﬂll’ a a ami—l
Pi(gg) = g + Do (g ) g
] d
mi |2y oy o 1<i<}
+ lel (aChn, ’ aCm> ’ =t=n

by a change of variables. Then the solution of the overdetermined system L with
the data

alcl+--~—l—khf

m;k.h(oy Ty 0, C]‘-kl’ R C”) = Gkis1y kit (Cj+lv Tt (:‘)1) 5

0< ki <mi—1, gk, - ks € Exp(C""),

is given hy

(22) J€) = &4

Q

[ 2 (1 —z404, 7, (Zhy1 7L, -, 20 '1))—91,_“...
LDIS06 jSri, §

(=1E) ,

= . -1 ... N,
(1 ZhO'h,](ZIHl yy &n )) h‘]hgpp"jl,"',”/z,jlz

Piz) =11 (z; —ai, {241, -+, 2a))i0d

i
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Z}r ; Chyyayji +Chnoy g (01, 11 )F (G, jn)en

Oo1, ju, 00 5n) (B) = 5 " Ghiaty -y kiar] (2)

we note that this last coeficients matrix is given by T(“'l'mm'“

1y 157 71y 51
Thely s Thy sy

® T(

ohyts Ohy sy

As in the single equation case, if deg. P, r<m; —k for each ¢ and %, then
this f is holomorphic on C”.

§2 'Topological extension of Borel transformation

6. Let D be a subset of R” such that [nt. D ¢ and F(D)is a complete
topological vector space (over C) consisted by the functions on D and satisfy

(i). rp(f)= f|D, the vestriction of f on D belongs in F(D) if f & Exp(C*).

i), {rp(f)| f e Exp(C™} is dense in F(D).

‘We note that by assumption, #p : Exp (C")—F(D) is an (into) isomorphism.

Definition. To regard Exp (C") to be a subspace of F(D) by the map rp, the
induced topology of Exp(C") from F(D) is called F(D) — topology of Exp(C"). If a
series {fm} of the elements of Exp (C") converges to f by this topology, then we
denote F (D) —littm—c fn = f. '

By definition, to denote the completion of Exp(C") by F(D) — topology by
Exp (C*)* (or (Exp (C™))* ), we have

(23) rp*: Exp(C*"* = F(D).

Example. If D is a bounded domain, then for all p, L#(D) can be taken as
F(D). The k—th Sobolev space L2%, (D) and CkD) (with the C* topology) can also
be taken as F (D). The k—th local Sobolev space L%, (R") or C*R") are also
taken as F(D). Here, k might be negative.

Since Borel transformation <7 is an isomorphism between 7, and Exp (C"),
&7 71 induces F (D) — topology of Exp (C") to 7. It is also called F (D) —topology
of 77 and if {ow}, ¢m € 7n converges to ¢ by F (D) — topology, we also denote
F(D) — limpy, = ¢ .

By n%2 and (23), to denote ~7,*, efc., the completions of ~°,, etc., by F (D)
— topology, we have the following commutative diagram.

S o l*—h—'/_:i %
G R ——m——> "
L = | o

rp*
(D) «——— Exp(Ch* .



82 AKIRA ASADA

Note. If we consider Exp(C") to be a topological vector space by the compact
open topology (of C"), the completion of Exp(C") is %", the space of entire
functions on €%, and the completion of <7, by this topology (induced by &7 1)
is Exp(C"), the dual space of Exp(C”), and the extended Borel transformation
&7 * is &7, the dual map of <% : #7» — Exp(C").

Lemma 4. If fig is defined in F (D) for any f, g F(D) and the §— product is
continuous in F (D), then 7,* is a ving (by the usual multiplication) and we have

F o] = (rpB (oD rps *[¢])
7. We set

e m—

(24) R = (RxZ)" = (RxXZ)x - x(RXZ) ,

D(xs, mg), o, (X, ) = (x4, o0, X0y € RY, (01, ), -+, (X0, M) € R\h .

By Definition, Z” acts on R” and we set

(24) R" = RYG(r), D= p=UD), Dep = DIG(r), ¥ = (11, -, 7).

The projection from R”¢» (or D)) onto R*or D) is denoted by pr.

Since D¢» is a G(r) — direct sum of D, we define F(D¢») as the G(») — direct
sum of F (D). Then if #|#!, that is #;|#;' for all i, there is a map p7»*: F (D)
—F (D) and since

et = b, if r|e and o1,

we define F(D) by

F(D) = lim[F(De), pr*] .
By definition, we can define 7D E/x\p (C™) — F (B), More general, if ¢ € 2;’?;// (6N
has no singularity on D and £(D) satisfies (i) of n%, then D (p) is defined and
belongs in F (5).

Definition. Let S be a subset of //N/ n Which contains 1, F (D) a function space
such that

~

rp(F [po]) € F(D), if o& Tn, 6 €S .
Then we call { fw?}, fm < Exp(C"), converges to f by the I'(D) — topology with

respect to S if {7p(<F [ B [ fmlo))} converges to ¥p (<7 [F [ f]o) in F (D) for
any o & S and denote F (D)s —lim fum = f. ‘
If F(D)ys — meZ [om] = <7 [¢], then we denote F(D)s — limpm = o.
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Example. We take CR!Y) as F (D) (n =1). If S ={(1 4 az)"!| a € R}, we have

n—coo

CRYs — lim fm = fif and only if CRY) — lim fm = |
M—co

On the other hand, if S = {(1 +4/—1az)"!| @ € R}, we have
CRYs — lim fu = fif and only if { fw} converges uniformly to f on CL

Ni—oo

These may be two extremal cases and in the rest, we assume F (D) satisfies

(iti). If {fm} converges uniformly to f on C", then r,(fm) converges to rp(f)
in F(D).

8. By (iii), denoting U(0) a neighborhood of {0} by £ (D) — topology, to set

Us(0) = {gl# [<7 "[gle] € U0), ¢ €S} ,

Us(0) contains {g| | g(z)| <e, z € K, a compact set in C"} for somee >0and K
7 f.

We denote the vector space of all Cauchy sequences of the elements of Exp
(€™ by F(D) — topology by F (D) — Exp(C"*. We consider F{D) — Exp(C") to be
a topological vector space to take

UL fd) = {{gm}t gn — Jm & Un(0), Unl0) is a neighborhood of 0 by
F (D) — topology and Uu(0) D Up,i(0), n() Unm (0) = {03}.

On the other hand, to take

Us{ fm) ={{gn} gn — fm € Um, s(0), Uwm(0) is a neighborhood of 0
by F(D) — topology and Uu(0) D Upme(0), N Un (0) = {0F},

to be the neighborhood basis of F(D) — Exp(C"), F(D)— Exp(C") also becomes a
topological vector space. This space is denoted by F(D) — Exp (C")s.
In F(D) — Exp(C"), we set

F (D) —Exp(C*) = {{ fu}|{ S} is a Cauchy sequence with respect to S%,
F(Dy —Exp(C"0={{fu}| F(D) =limfn =0},

F(D)s —Exp (C"0={{ fu}| I'(D) “”l[mzof m = 0}

The same spaces regarded as the subspaces of F(D) — Exp(C")s are denoted by
F(D)s — Exp(C*)s, F(D) — Exp(C™h, s and F(D)s — Exp(C™), s.

Lemma 5. F(D)s — Exp(C*) and F(D)s — Exp (C")y are equal to F(D)s — Exp
(C"s and F(D)s — Exp(C"), s as topological vector spaces.

Proof. Since F(D)s — lim(fin — gn) =0 if {gn} e U(fw) in F{D) — Exp(C"),
{ g} should belong some Us{fn) and we have the lemma,

Lemma 6. To set
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I

F(D)s D)s — Exp(C")/ F(D)s —Exp(C") ,
F(DF = F(D) —Exp(C")s/ F(D)s — Exp(C"h,s ,
Ns(F (D)= F (D) — Exp (C"), s/ F(D)s —Exp(Ch,s ,

F
F(
We have the following commmutative diagram with exact (as) topological vector

spaces) columns and raws. Here the maps are induced by the natural inclusions
and projections.

0 0
0 _>F&))s —_— F(lD)s > 0
ool

0— Ng — > F(DfS ——» F(D) —> 0

Proof. Since F(D) = F(D) — Exp(C*/F(D) — Exp(C") by the condition (ii) of
n% and we know

(25) F(D)s — Exp(C")y = F(D)s —Exp(C") n F(D) —Exp(C") ,
we have the lemma by lemma .

In the rest, we denote by F (N)s and F (b)s, the spaces constructed from

~

F(D)s and F (D) similarly as F (D).

9. For a series {gm?} of the elements of 7., we define F(D)s — limpy simi-
larly as F'(D)s — lim fm. Then we can define £(D) — &n, F(D)s — 7, etc.,
similarly as £ (D) — Exp(C"), F(D)s — Exp(C"), etc., Then to define <7 :F (D)
— @n— F(D) —Exp(C") by

B Lomt] = L2 [om]},

< maps F(D)s — ¢7n, F(D) —7n, etc., isomorphiscally onto F(D)s — Exp
(€™, F(D) — Exp(C"), etc.. Moreover, <% can be regarded as the map from
F (D) — n,s onto F(D) — Exp(C")s. Hence to set 7u,s = F(D)s — 7 n/F(D)s
— Py On® = F(D) —a/F(D)s —7ny, 7 induces maps

,VKZ)'SI: £'é71yS§F(D)S 3
27w ZF (DY .

Then, if ¢s (resp. ¢S) is an element of 7y, s(resp. 7% given by F(D)s — lim om
= gg (resp. F (D) — limpm = ¢5), for any ¢ €S, F(D)s — limomo (resp. F(D)s

— limgma) exists as an element of /7 (D)s (resp. F(E)s), and to set
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(26) F(D)g — limpmo = ¢so, F (D) — limgme = ¢S

M0 M—rca

% s and <& S! are extended to maps
B s Py s <S> — F(5>s , 80 <S> —F (ﬁ)s

Here, (7u,s<S> and 75 <S> are the completions of modules generated by
s lor 7,5 and S under the operations given by (26), by the topologies of
F(D)s and F(D)y.

Theorem 3. We assume D is given by 2xk, where 2 is an open set in R"-!
(may be equal to R"!, K is a simply connected subset of C' such that K contains
eithey of intervals (a, b), [0, b) or (@, 0] (@ <0 <b) in R, and F (D) is given by

F(D)=L@)®"AK),
where V@,, W means the completion of VR W by = — topology (cf. [117), A(K) is
a space of analytic functions on K such that by the map vy, Exp(C!) is containd in
A(K) with the variable {,, and L(2) is a function space such that ito satisfy (1), (ii)
of n% and (iii) of n°7 for Exp(C"~Y) with the variables {; , -+, Cn.
Let P(2) = zym + Py(2s, -+, 2n)21 "7 + -+ Pz, -+, 20) be a polynomial such that

k
PR) =1 (2, — oi(z, -, 2a))i, 1<i<k, Ylri=m,
i =
and set
—fi1_ .
S = {1 — z101, (2271, -+, 2071 (L — 23045 (2572, -, 2274) ~714]
1< <=k 1Zp <7}
Then to set

L)s = pa(F (D)s) , L(LP = polF (D)) ,
pg({fin}) = {_1)9-][’”-}7 (pﬁf) (62; Ty 6”) - f(Oy 82) Ty 511) y
Jor any data in L(Q)s (rep. in L(2)S), the equation P(5/0¢;) f =0 has unique solution
in F(D)s (resp. in F(D)%) and it is well posed by the topology of F(D)s (resp. F(D)s).
Proof. By assumption, for the given data {gx} in L{(Q)s (resp.in L(2)¥), we
can solve the equation

23 20 cuyailon bois) = o7 57 Lgk] (or (<7 Sy aw)), 0k <m 1,

13 1\01\/71

Then to cet

f = ‘// S [Z.J Z (1 — zi0i(z9~ Lo, 211—1))*’7'@0[, p[]

) 1<ﬂz\)1
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resp. 7 ST23 2] (1= zwi(a ™t 2 igin])
H Pz ¥i
we get a solutiom in F (b)s (resp. in F(T))S). But, since the solution is invariant
under the covering transformation, f should belong in F(D)s (resp. in I (D),

. Flyon? . .
Moreover, since 7Y *) is ergular and operates continuously on L (2)s”, the m

— direct sum of L(Q)s (sesp. on (L{£2))™), we have the theorem.
Note. Similarly, starting from D = 2xK, 2 c R**, K c C* and F (D)= L{$}
(;3:,1 A(K), we get corresponding theorem for systems.

Appendix. Borel transformation of logz.

Since the universal covering space 7' of I' = {z|e; < |zi] < &'} is given by {w |
loge; < Re.w; <loge;'} with the covering map (2, -+, 24) = eXp Wy, -+, €XP Wa),

to extend Borel transformation for the functions on f, it is sufficient to define
<% [logz]. For this purpose, first we note, if <# [logz] is defined, then by (9),
<% [logz] = [zlogz + z] and by (6), it must be

d
i B logz] =1,

Therefore <& [logz] = logl + ¢, if <# [logz] is defined. To determin this cons-
tant, we use
Lemma. For t <0, we get

oo

2 logz g O ,
e+

where y is Euler’s constant,
n

Proof. To set logxt (logx)*—t = Z/ an, i (logx)k, we get
k=0

(n — 1)!

Ay = 1, Qune1 =0, Quk 4/ (man—km ,

2=k=sn—1,
a — 1yt 1 =1
mo = (=14 —1Ilm), n=> 2] W

w=Im

because J '\-log (x — 1) (logt)*~tdt = logx}‘ x(logt)”“ldt -] -
0 0

m=1

1/ mxl}'l.[ xtﬂl(logt))l -1
0
dt.

n
Then, to set (logx)#" = > / by, r(logx)®, we get
e=0
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n!

bn,n = 1, bn,n-1 = O, bn,k = mbn—k,o ’

2<k=n-1

’

/2] nt{(fy)---L( 4s)
b,: — 1)n=-5e = . Sy Y n=2.
e ;1 jl—---+j,r§ji22 ( ) Jilds + ga)(Jit -+ Js) o
Hence we get
> llogme”
=0 nl
o [1/2] | C(]1)C(15)
= 1 + _1 =S — . + ; t" "
( "2:2 g jl+.,.+j52:n,j1§2( ) il + ]2)"'(]1+"'+]S)) )
( ”z:(}) —!(logx)") -

But since we know log(l + #)=—yt + > 7 (=1y* {m)/m " ([1]), we obtain

n=2

o (/2] L0)-Lgs)
1+ —1y=s— : : — )"
Z—J; <§ jl+...+§,l,jigz( ) Jils + ]2)“'(]1+"*+]s))
oo [n/2]
LR s i,

T2 51 ket e, iz SiJueIs
1 e-rt

= expllog 7y ]

B e-rt

T+

Hence we have the lemma.
Definition. We define the Borel transformation <7 [logz](£) of logz by

% [logz] () = logl + 7 .

By definition, if f(2) = > rar L), T= iy, -, in)ar = (isfrs, -, k7 i)

zpal = z; iUz ik/7k and f1(0) 20, then

ko —
7 Llog f (@] = Y] - (logli; — 1) + & [o1], 1€ 7,

i=1"]

AW(XI CVI -~ ‘XJ
C el (“11»"',0(Im) = {C| ICIm |_ > |CJ l; ar ay e (allr "'7“1711)} .

In the rest, the corresponding set of P'I(all, -~,a1m) in the z — space is also de-

noted by same notation and set
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IR | T
T 1(F (all"m’alm)) =T (all’m’ufn)

We consider following class 7 of holomorphic functions on (wy, -, Wy)
—space such that
(*). [ is holomorphic on some open set D in {w| Re.w; < pi} for some py, -, pn
such that for any 38, ---,0n there exist v < vy <0y, -, ¥n < ¥n' < 0n such that
D contains {w| ri <Re. w; <ri'} =T (ri,ri’,cyrm ra’d
If fi and f; both belongs in 57/, then we denote f, ~ f; if for any &y, -, on,
there exist 7, <7y < 0y, -+, #n < ¥u! <0y such that

Ji AN ra') = S [T Griyri?yermra
The set of this equivalence classes form an integral domain 57”by natural way
and to set the quotient field of 5% by ,/?/” , the elements of 2% and V,//? both

considered to be the germs of multi — valued analytic functions at the origin of
z —space, where w; = exXp z;,1=1,.--, . Similarly, we define the germ of those

functions which are holomorphic on each T Tk (aly, o aly), k=1,--,m, for some
(“11, -'-,azm)' The set of those germs form an integral domain and its quotient

field is denoted by ‘@/”\ As the elements of 7 , we consider the elements of %;f\
to be the germs of multi — valued functions of { — space. Then by the above,
we can define Borel transformation <% for the elements of ,//A/ to be the map
from _7into & and it also satisfies (3)i, (3)ii, (5), (6), (7) and (9).

Note. In this extended Borel transformation, although f(2) is analytic near
the origin, <& [ f] may not be analytic on any neighborhood of the origin. if
n > 2. For example, we have

B [loglzs + 29)1 (L1, Lo) = logly + 7, 1S > (1G]
=logle + 71, Gl > &4
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