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                               Introduction

   The main purpose of this paper is to consider the volume elements of infinite

dimensional spaces. In fact, we show the possibility of the construction ofa

volume element v on Ee, a separable infinite dimensionai real Banach space with

a normalized monotone basis {ei, e2, ･･････} such that

                           oo                          =xnen E Ee, t.lr l Xn 1 ;illCn,

                          n=1

where {cn} isZ.-a series of (non zero) positive numbers with lim.n-+cocn=O, such

that to set ･

                               '
                                    oo                    [a, {cn}] ={xlX=ZXnen, OSIXn:ICn},

                                   n=1
                                                          '
v([a, {cn}])=l[,, {..}]v takes non zero finite value. (A Banach space B is called to

have a basis if there is a countable set {bn} of B such that any element x of B

can expressed uniquely as x==.x.b.. Much of Banach spaces such as C(st), LP

(a), lf{gP<oo, etc, have basis. But there exist Banach spaces which have no

basis ([8])). For the details about the bases of Banach spaces, we refer ([16]),

We note that, of cause we have for this v,

                      V([O, {C'n}])==OO, if Cn=O({C'n}),

                      v([a, {c"n}])= O, if c"n=o({cn}>.

   Since the volume element ofa finite dimensional space M can be dfined by

an Alexander-Spanier n-cochain on M, n=::dinz. A4 (cf. [4]), we first define the

Alexander-Spanier cochain of degree oo-P for a Banach manifold M modeled by



Eo for this purpose. In this definition, first we note that since there are many

possibilities of the definition of topology of the infinite product EexEex ･ny････, there

are many types of (oo-P)-Alexander-Spanier cochains of M. Moreover, unlike in

the finite degree case (cf. [1], [17]), the product space topology of ZibxEhx･･････

seems to be not appropriate in the definitjon of (oo-P)-cochains. By this reason,

we denote by Coo'Pu(d(m) (M) the space of (co-P)-cochains on M by a fixed

topology of EoxEex･･････determined by U(ti(E)). (The meaning of U(A(E)) is as

follows: First we consider EexEex･ny････to be the space of linear maps from

U.ve.iEn, En is the space spanned by {eo, ei,････-･, en} and it is considered to be

a subspace of E, the space spanned by {eo, ei, e2･･-･･-}, into Ee. Then, by this

correspondence, the diagonal element (a, a, a,･･-･･･> of axth×････-･corresponds to

the operator da defined by

                         Aa(x)==(i21.:]xi)a, x==:;Ii.]xiei, '

and to set A(E)={AalaEEe}, U(A(E)) is a suitable subset of L(UnEn, Ee)contains

                                                                    tttd(E). The examples of U(n(E)) are as follows :

                   U(ld(E))=-{T+aalTGIP(E, Ee)}, 1::IP<oo,

                   U(A(E)) =- {T+ ria l T Ci L(E, Ee)},

where L(E, Eo) is the space of bounded operators from E into Eo and IP(E, Ee) is

given by

                  IP(E, Ee)=(TI]i.I?,i1citi1P<oo, T(ei)=¥. ci,･ej].

We denote the above two types of U(A(E)) by Up(dCE)) and Ub(A(E)). For some

types of U(n(E)) such as Up(A(E)) or Ub(A(E)), we can define the coboundary maps

for the elements of Coo-Pu(d(m)(M) by means of Abelian sum (cf. [12]). For

example, if f E CooHiu(ri(E))(M), then we set

                     oo              ti..f<2)==2a(-1)ne"nif(xo, xb･･-･･･, Xn-b Xn+b''''''),

                    n=1

where Z is a complex number with Re. R>O and a is a fixed complex number

such that O:-{Re.a:lll, and define the coboundary map 6a by

                              2af==liM. 6afl2),
                                  a-o

if the limit exists.
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    The definition of the integral of an (oo-P)-cochain f is done along the sarne

line as in [4]. But, although f e Coou(d(E)) (Eo) and the integral is considered

on an cube of Ee, such as [a, {c"}], the set of partitions {J}={(7'i, d2,･･････)}

should be an infinite set although for each le, O<xi,le<･･････<xmle, k<cfe is a finjte

partition. By this reason, we define i[., {,.}]f bY the limit

              S[a, {cn}]f

                                  m
             .,. Iim lim ]l2 ]( = .f<xb xj.1,, Xj+12,･･･-･')),
              ]"k, pg-Xle, pq+11-O M-'Oeh==1 JE(J)k

            (.J)le==[J]k-[J]le.,, [J]le={IV=(1'i,･･-･･･, j'fe, O,･･････)},

            J'+li=(7'1,-･････, 7'i"1, 7'i+1, 7'i,1,･･････), Xmi,1,i=Ci,

            XJ=illi]xin) nen,

(cf. [10], [14], [19]). To snow the existence of this limit, we assume f=flxo,

xb x2,･･････) js Fr6cnet-derivable for each xle, le;}ll, and assume

                                            M
                  I.Ln(Xe, Xi, X2,'''''', tMS-tmMH'(l), t>O,

                       oo                  H(t)==cic2･･････cntn,

                       n==1
                  .L,,(xo, xl, x2,･･････, t).

                  =<dxm<dxm-i<''''''<dx! f<xo,'''''', xo, xo+t(xin-iHXe),''''''),

                  ''''''>, (Xl-Xe)>, (Xm-tndXe)>, (XntwXe)>,

where dxk means the Fr6chet derivation in xk. Then, to have the meaning of

this inequality for smal! t, the series {cn} should be tend to O, and in this case,
we have II[., {,.}]fl<2M. Moreover, jf each fu>o and

                                           Mt
                   fu(xo, xl, x2,･･････, t)lll;t"MH(.l.), t>O,

is hold for each m for some M'>O, we also get S[., {,.}]f>M'. Therefore, in

this case, we get a vo!ume element of Ee and by this volume element, [a, {cn}]

has finite non-zero volume. But, under the same assumption, we also have

                       J[ti, {c,.}]f== oo, if' cn=o({c'n}),

                       f[a, {c".}]f= O, if C"n "O({Cn}),

    '                                                                      '
although [a, {c'n}] and [a, {c"n}] are both defined and bounded open sets of Eo



and both homeomorphic to [a, {cn}] (ci [2], [13]). The integration of fECoo-p

u(d(m) (M) on an (oo-P) -chain of M is also done simiiarly as in [4].

    since o[a, {c.}] is, if defined, an infinite chain, and thereforef,[., {,.}]f can

not be defined directly, we set

             aa[o, {cn}] (1)

               oe             ==Aa(-1)Me-MA ([ff) {Cnl}]xm+i==G - [Op {Cn}]xm+i=cm+i)-

              m==O

Then, by virtue of Stokes' theorem for the integrals of alternative Alexander-

spanier cochains of finite degree ([4]), we can show for the alternative L the

Stokes' theorem

                    IAIL/Zg' Io.[., {,.}](A)f=<Zt'{-lg' f[., {,.}]6af(2>'

if the limits of both sides exist. Sjmilarly, to define Oar(2) by using a. [a, {c.}]

(R), we also get

                         <ZLMo' l,.,(,)f=lii-?Zlo' f,6"f<2)'

Simbolically, we may also write these Stokes' theorems as follows :

                    lo[l, {c.}]f=(l[., {,.}]6af)2-"+o( 1 2± Re･ a),

                    fOrf:=(f,6af)2-a+o(12IRe.a).

                                       coHere, a[a, {cn}] means the formal suM= (-1)M([if, {cn}]xm+i-o-[a, {cn}]xm+,
                                      m-O
..c,.,,). If a=O, the above simbolical expression may be reduced to

                           la[a, {cn}]f = f[a, {c.}]tiOL

                           forf== l,6e f

   We note that by this Stokes' theorem, there should be exist non-exact closed

(oo-l) -cochain on O[a, {cn}] (with respect to some U(d(E))) although O[a, {cn}]

is homeomorphic to [a, {cn}] ([6], [7]).

   We also note that, unlike in the finite degree case, the (oo-P) -Alexander-

Spanier cochains, or more general, the (oo-P) -cohomologies of Banach manifolds

(cf, [3], [7], [11], [15]), are not topological objects. Or, in other word, the

geometry of Banach manifolds seems to be not based on topology.
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    The outline of this paper is as follows: In g1, we define (oo-P) -cochains.

The coboundary operators and related topics are stated in g2. The integration

･of oo -cochains is defined in g3. g4 is devoted to the definition of the integration

･of (oo-P) -cochains. In g5, we prove Stokes' theorem.

    I would like to thank Dr. Matsugu and Dr. Terasawa (Department of Physics)

/for their kind advices during the preparation of this paper. Espescially, I owe

iemma 7 of g2, which is,very usefull in the study of the coboundary maps, to

.Dr. Matsttgu and Dr. Terasawa teach me Feynman integrals.

                      gZ Definition of (oo-p) -cochains

    1. Let E be a separable Banach space (over R or C) with a normalized

monotone basis, {eo, ei, e2,･･････}, that is, for every xEE, there is unique series

iof scalar {xle} such that

                          oo                       x=Xxkek,
                         k=O

                         n ";                       H =xfe ek l I .<.. 1 1 =xfe efe U , n<m,

                        k-=O le=-O

and tiehl1=1 for each k. We denote by En, nll, the subspace of lf spanned

by {ee, eb･･････, en}, and the subspace of E spanned by {ei, e2,･･･-･･} is denoted

'by Ee.

    We note that under this assumption, if T is a bounded linear operator from

.E into E, then

                                     n
                 1ITI1=lim. suP. II=xkT(ek)l1, x=:xleek.
                       n.oo llxllgl fe-=o fe

    Definition. VVe denote by L(UEn, Eo) the sPace of all linear maps (not nece-

.ssarilly bounded) from UEn, the subsPace of E consisted by those x that xle ==o

with finite excption, into Eo with the comPact oPen toPology. Then we set A(E) the

.subspace of L(UEn, Eo) given by

                 A(E)= ("alAa(x)=(]:iii]xle)a, x==:lilxkefe, aEEiEe].

    By definition, we may identify A(E) and a by the correspondence a.Aa. We

-note that if aiLO, then Aa may not be defined on E unless E==li and {ee, ei e2, ･･･

････ } is its natural basis.

    We take a subset U(a(E)) of L(UEn, Eo) with a fixed topology such that



                           '
   (i). The toPology of U(zi(E)) is not weaker than the induced toPology of U(A(E)>

flrom L (UEn, M})･

   (ii). A(E) n U(drE)) is dense in Eo by the (strong) toPology of Eo.

   Example 1. We set T(ei)==]- ci,･ e,- and set

                    IP(E, Eo):=(T1l.III, jLci,･1p<oo1, i:gp<oo.

Then we set U(d(E)) as the subset of L(UEn, Ee) to be

                                                     h                 U(ta(E))=={SIS=T+Aa, TEIP(E, Ee), aEEe}.

By definition, we get U(ta(E))==IP(E, Ee)×ld(E) because Aa does not contained in.

IP(E, Eb) unless a=O. Since we can consider IP(E, Eo) to be the Banach space by'

the IP-norm and ti(E) is the Banach space by the norm of Eo, we define the,

topology of U(A(E)) by the Banach space topology given by the product structure.

This U(id(E)) is denoted by Up (d(E)).

    By definition, if P==2 and E is a Hilbert space, then U2(A(E)) is alsoa Hilbert

space.

   Exawaple 2. We denote by L(E, Ee) the Banach space of bounded linear'

operators from E into Ee. Then, since 1IAaIl==(suP. ll.H..il:Ei]lexle1)11afi, we have

                       L(E,Eo) fi a(E)-={ido}, or id(E).

In the first case, we set '  '' ' ' ' '

                . U("(E))={SIS-=T+da, TEiEL(E, Eo), aEEo},

and give the product space topology of L(E, Ee)xA(E) to U(A(E)) and in the

second case, we set U(A(E))==L(E, Ee) as the topological space. These U(d(E)) are

denoted by Ub(d(E)).

    Note. These examples, U(A(E)) satisfy the stronger condition

    (ii)'. U(ti(E)) contains A(E).

    2. Definition. To fix U(ti(E)), a germ of continuous function f dofned on some'

dense subset of a neighborhood of a(E) in U(a(EJ) (by the toPology of U("(E))) such

that

                     .f<da) =O, aEEo, f is dofned at "a,
                                                           '

at ta(E) is called an Alexander-SPanier cochain of degree oo of Eo with resPect to

U(ld(E)). ･
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    We denote by f or f the germ of f The set of Alexander-Spanier cochains

･of degree co of Eo with respect to U(a(E)) is denoted by Coou(A(E)) (Ee).

    Definition. An Alexander-SPanier cochain of degree oo of Ee with resPect to

U(di(E)), f is called standard if U("(E)) satifY7es the condition (ii)' and .f; a rePresen-

,tative of jZ is deVined on some neighborhood of A(E) in U(id(E)).

    The set of s'tandard Alexander-Spanier cochains of degree oo of Eo with respect

'to U(d(E)) is denoted by s-Ccou(d(E)) CE6), or simply, by Coou(d(E)) (E6).

    Definition. We use following terminologies. vrhere f is a represenlative of f

,and T, etc., appeared in the dojinitions, are assumed to belong in U(ts(E)).

    (i). f is O-normal if f<T)=O, where T(eh)=T(ea) for some k;O.

    (ii). f is normal if ]f(T)==O, where T(ei)=T(ej) for some i;j.

    (iii). f is regular if f (S)=O, oohere S is written uniquley T+d. in U(d(E)) and

,leer. T7E{O}.

    (iv). f is alternative it ]C<tiT)=-flT) for ans, i, where

                       ti T(ei) -= T(ej), 1' 7<: i, i+ 1,

                       tiT(ei)==T(ei.D, tiT(ei.i)=T(ei).

    (v). f is dipZerentiable if U(d(E)) allows a (fixed) dij7igrential structure and f is

.dijf]2rentiable by this structure. Similarlly, LiPschitz continuoacs Alexandes-Spanier

,cochain is also dojined.

    (vi). f is Positive if f is real valued and f>=O.

    Lemma 1. ifS=T+Aa, then

    (1) S(ei)=S(e,･) for some ii['=1' ij' and only if T(ei)=T(ej) for some i#j.

    (2) tiS==tiT+Aa.

    Lemma 2. There exists non-trivial standard regular (or normal or O-normal)

Alexander-SPanier cochain of degree oo of Ee with resPect to U2(A(E)).

    Proof. Since U2(A(E))=l2(E, Eo)xEe and Whitney extension theorem is hold

'for real valued differentiable functions on l2 (E, Eo) ([18]), we have the lemrna.

    Theorem 1. There exists non-trivial standard alternative regular LiPschitz

,continuous Alexander-SPanier cochain of degree oo of Eo with resPect to U2(d(E)) ije

.E is a ]Uilbert space.

    Proof. We denote the space of bounded C'-functions with bounded derivatives

･on U2(ut(E)) by C'(U2(n(E))) and its closure in C(U2(zi(E)), the Banach space of

bounded continuous functions on U2(ti(E)) with l lfH == suP. Tif(T)i, by C'i(Uli(ti(E))).

'Vi(U2(A(E)) is an infinite dimensional Banach space by a theorem of IVells ([18]).

    On Ci(U2(d(E))), we define operators An, n=2, 3,･･t･･･, by



                        Anf<T)==mi! ii.lls.sgn (g)f(6T)･

Here Sn is the symmetric group of n-letters {O, 1,･･････, n-1} and 9T is given by

                         BT(ei)=T(es(i)), OKi<=.n-1,

                         BT(ei)=T(ei), i.}ln.

By definition 9 maps U2(a(E)) onto U2(A(E)) because 9na=tia and each An is a

bounded linear operator with 1IAnl1=1. Moreover, since

                    IAnf(TD-An.IC<T2)I

                    ;lilliilli,, i@. I -IC<9Ti)-f<BT2) 1

                    SnHl!6=.g.Mll6Ti-9T2ll

                    =ni, s=.@.Ml 1 Ti-T2 1 ] =Ml 1 Ti-T2 1 1,

where M is the bound of the derivative of f if fD Ci(U2(A(E))), {Anfl} is equicon-

tinuous if fECi(U2(id(E))). Hence by the theorem of Ascoli-Arz61a, there exists a

subsepuence {An,f} of {Anf} such that {An,f} converges in Ci(U2(a(E))). Then,

since Ci(U2(ti(E))) is dense in Ci(U2(A(E))) and Ci(U2(ti(E))) is separable, we can choose

a subsequence {An"} of {An} such that {An"f} converges in C'(U2(d(E))) if f belongs

in some dense subset of Ci(U2(d(E))). Then, by the theorem of Banach-Steinhauss

([5]), {An"} converges to a bounded operator A on CirU2(a(E))), because l ]An"il = 1

fOr each ntt.

    By the definition of An, for this A, we get

    (3) /l.fl6T)==sgn (9)f<T), BESn, n is arbitraly,

    (4) lAf(T,)-A.IC(T,)1SM11T,-T,11, ijC 1flT,)-rtT,)1$Ml1T,-T,i1.

    To show A;O, we set

               e(B)=-max. {(O,･･-･･･, le-1) I B(i)-=i, Or<i;:Sk-1},
                    le

for 6ESn. Then for TEI2 (E, Ee) given by

                              T(eh)::=k-+1-leh+i,

we define a (conitnuous) function on {6Tf esEi!U                                             en} by
                                          n).1
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                Anf(T>
                                 '
             :== iTl l! ((n ! -(n - 1) !)+ e((n - 1) ! -(n-2) !)+ ･･････ + i,),

we have Af(T)=1. Hence AiLO and we have the theorem.

   3. We denote by I:=Ip, J=Jq, etc., the index sets {ii,･･････, ip} (OEIii<

<ip), {7'b''''･-, 1'q} (O:!{ji<･･ny･･･<7'q), etc., and set

   (s) EI={xlxEE, x==]Iil]xkeh, xi,::::･･････=Xip=O},

etc.. For Ei, we define a (continuous) isomorphism ri=rip : Ei - E by

                                             '
   (6) TI(ee)=eo,･･'''', TI(eii"1)==eii-1, TJ(eii+1)=::eii,'''''-,

      TI(ej･)=ej'.r, (ir<]'<ir.1), -･-･･･, TI(eipHl)=:=eip-･p,

      rl(eip.i)=eip-p.b ･･････, rl(ei)=el･-p, (1'>ip).

If p=q, then we define ciJ=:=ciPJp by

   (7) `I4p==:TIp(rJp)-i : Elp ' EJp'

                               '

   By definition, we have eiJ cJK=tiK and the following diagram is commutative.

                   E
             T/ XrAr

           EIp el "`iELtrp
             etk ,lli/(',

                  EJp

   We set Tfi(E,t>=Ei, .. Then ri induces the (continuous) isomorphism ri;k :

L(UEn, Ee)-L(UEi, n, Eo). '
   Definii'ioyz. To fix U(k(E)), a germ of continuous fatncion f de]Zned on some

dense szabset of a neighbotrhood of (Tip:':)-' (d(E)) in (TJX`)-' (U(A(E))) (by the toPology

of U(id(E))) such that

9

------



             .f<(Tip'"')-i (Aa))=O, aEIIEo, f is dofned at (rlp'k)-t (ria),

at dJp (E)::=(Tip")-i (li(E)) is called an Alexander-Spanier cochain of degree (oo-p)

of Ee with resPect to U(A(E)) (or U(zii,(E)) and Zp.

   We denote the set of Alexander-Spanier cochains of degree (oo-P) of Eo with

respect to U(ti(E>) and .lp by Coo-bu(ti(E)), ip (Ed> or COeumPu(t,p (E)), ip (El}). .

   For the element of COe-Du(d(E)), ip (Ee), we･ define standard, normal, alter-

native, differentiable, etc., similarlly as oo-cochain. Especially, the set of

standard cochains of ffo, denoted by s-C"e-Pu(zi(E)), ip (Eo), or simplly, Coo-Pu(.(E)),

i (Eo), form a module.
 p
    By definition, ri induces the isomorphism Ti# : COOu(d(E)) (Ee) . Coe-Pu(d(E)),

Jp (Eo). Hence we have the isomorphism ciJ# : Coo-Du(A(E)), J (Eo) . Coo-Pu(d(E)),J

(Eo). Then, since

                               l#J# l#
                               cJe rr =C K,

we can classify Uip Coo-Pu(d(E)), ip (Ee) by

                                     l#-   (s) 7t-gif and only ifg-=e. (f),

              f E Coo-Pu(d(E)), Ip (Eo), g Ei COS-Pu(d(E)), ip (M),

                                          '                                                          'and the set of this equivalence class can be represented by Coo-Pu(d(E)), i (Ee) for
                                                                 p
a (fixed) Ip.

   Definition. The above equivalence class of {f}, may be denoted by f or f; is

called an Alexander-SPanier cochain of degree (oo-P) of Eo with resPect to U(a(E))

(or U(AJp (Ej)) and the set of Allexander-SPanier cochains of degree (oo-p) of E,

with respect to U(a(E)) is denoted by Coo-Puu(E)) (Eo).

   For the element of Coo-Pu<d(E)) Eo, we define standard, normal, alternative,

differentiable, etc. , similarly as for the element of Coo-Pcf(d(E)), i (Eo). Then the

set of standard cochains of Eo, denoted by s-Cao"Pu(d(E)) (Eb), or Coo-abu(d(E)) (Eb),

form a rnodule.

   Note. Similarly, although I6o=={ii, i2,･････-} is an infinite set, if the comple-

ment of Jbo in {O, 1, 2,･･････} isalso an infinite set, we can define Alexander-

Spanier cochains of degree (Do-oo) of Eo with respect to Uli(E)) and I6. and

Alexander-Spanier cochain of degree (oo-oo) of Ee with respect to U(d(E)). Their

sets are denoted by Coo-oou(d(E)), i.. (LEo) and Coo-oou(A(E)) (Ee.)
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    By the same way, we can also define (oo+P)-cochain or (co+oo)-cochain.

   4. Let M={(Ucr, hcr)} be a (paracompact) Banach manifold modeled by Eo,

that is, {Ua} is an open covering of M and for each cr, h. is an homeomorphism

from Ua onto Eo. Then we can define a homeomorphism hcr* : Ucr×Uev×-･････ .

L(En, Ee) (the topology of the infinite product UaxUcr×･･････is the weak topology)

by

                                       ttttt   (9) ha'((6o, 6b''''b'))-{T, T(ei)=hor(8i), i-rmO, 1,･-･'''}.

                                   '
    By (9), to set gzrB"=ha"(hB")-i, gztB" is a (continuous) isomorphism defined in

L(UEn, Eo).

   Lemma 3. gz,B" maPs id(E) into A(E).

   Proof. Since we know

                               Tida=ziT(a),

we have the lemma. In fact, we have ha'((eo, 6i,･･････))==da if and only if 8o==gi

==･･････==6and a==h.(e). Then we get

                            gZvB"(dihB(g))=Ahcr(g).

   Definition. The collection {(U.×U.×･･････, h.")} is called local E-Product ofM

and denoted by U(tiE(M))･

   Definition. VIie set n(U.)={(6, e,･･････) 1 eEU.} and call the element of {(idua,

ha")} in U(ldE(M)) the dia,gonal element of U(AE(M)) and the set of diagDnal elements

is denoted by nE(M).

    By lemma 3, we may define AE(M) by

   (10) A.(M)-U (h.*)-i(A(E)).
                       ct

    Befinition. We fix U(d(E)). ifg' maPs U(ti(E)) into U(A(E)) fbr any (a, P),

then we call U(aE(M)) has the U(d(E))-structure.

   Example 1. U(AE(M)) always 'have Ub(a(ff))-structure.

   Examaple 2. IfMis a Hilbert manifold and (ei, e2,･･････) is an o.N.-basis of

Eo, then U(AE(M)) has U2(E))-structure.

   We assume U(AE(M)) has the U<A(E))-structure. Then we set

           '
   (11) U(d.(M))-tz;J (h.*)-i (U(ti(E))).

   We that note by (10), we have dE<M)cU(AE(M)). ･
   Definition. A germ of continuous fttnction f dofned on some dense subset of a



neighborhood of idE(M) in U(liE(M)) such that f vanishs on AE(M) is called an

Allexander-SPanier cochain of degree oo of M with resPect to U(d(E)) and the set

of Alexander-SPanier cochains of degree oo of M with resPect to U(d(E)) is denoted

   As in no2, we define standard, normal, alternative, differentiable (if M is a

Banach differentiable manifold), etc., for the element of Coou(d(E)) (M) and the

set of standard cochains of M, denoted by s-Coou(A(E)) (M) or Ccou(h(E)) (M),

form a module.

   Similarlly as theorem 1, we have

    Theo.rem 1'. ILIC M is a dtfiigrentiable Hilbert mantfbld and U(AE(M)) has the U2

(A(E))-structure, then there exists non-trivial alternative regnlar Lipschitz continttous

Alexander-SPanier cochain of degree oo of M with resPect to U2(A(E)).

   Similarlly, to define hi, cr" : Ucr×Ucr×････-･- L(U Ei, n, Ee) by

   (g)t hl, .*((go, ei,･･････))=T, T(TJmi(ei))=h.(6i),

we define U(AEi (M)) as the collection of {(UaxUcr×･-････, hi, cr*)} and idEi (M) and

U(Aiiv(M)) are also defined similarlly as above. Then using U(dii7p (M)), we define

Alexander-Spanier cochain of degree (oo-P) of M with respect to U(A(E)) and .ifp

as in no3. Then since hcr, a"=hcr" 7i-i and the diagram

                                Ua × Ua × ''''''
                        hL a/ h.. XhJ･ a'

                                            L(UEJ, Ee)                 L(U Ei, Ee)

                      rl-i

                                                     n!                         nl

                           ×'J /..nt'

                               L(V En, Ee)

is commutative, we can define ciPJp : U(A.i (M)) - U(liEJ (M)), and therefore

                                         ppwe can define Alexander-Spanier cochain of degree (oo-P) with respect to U(ti(E))

as in no3. The sets of Alexander-Spanier cdchain of degree (co-P) of M with

respect to U(a(E)) and Ip or with respect to U(ti(E)) are denoted by CoomPu(ti(E)), ip

(M) or Cco-Pu(zi(E)) (M).

   As oo-cochain, we define standard, normal, alternative, differentiable, etc.,

for (oo-p)-cochains and the sets of standard cochains, denoted by s-Coo-Pu<d(E)),J

(M) and s-CoQ-Pu(A(E)) (M), or Coo-Pu(z(E)), i (M) and Coo-Pu(zi(E)) (M), forrn

modules.

   Note. As in no3, we can also define Alexander-Spanier cochain of degree oo

-oo of M with respect to U(A(E)) and J6o or with respect to U(ti(E)) if I6o is an
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/infinite set and the complernent of Zbo in {O, 1, ･･････} is also an infinite set. These

,sets are denoted by Coe-oeu(A(E)), i (M) or Coo-oou<d(E)) (M).

   Similarlly, we can also define (oo+P)-cochain or (oo+oo)-ochain, etc..

                    g2. eperatioms olt Coo-Pu<d(E)) (M)

   5. By definition, we can consider the addition and the (scalar) product of the

･continuous functions on M for the elements of Coo-Pu<d(E)) (M). Moreover, by

the proof of theorem 1, we have

   Lemma 4. ILf M is a dderentiable Hilbert manijbld, then the alternation

,operator A is dojned on Doo-Pu(d(E)) (M) and non-trivial if U<a(E))==U2(A(E)). Here

Doe-pu(d(E)) (M) means the germ of those continuous .IZetnctions of U(tiiij (M)) at tiE

(M) that can be uni.formly aPProximated by Ci-class functions with bounded derivatives

･of U(ti        (M)).
     4
    To define the product of (oo-P)-cochains etc. , first we define

･ Definition. Let g:={ib i2,･････-} and J=={7'i, 7'2,････-･} be two index sets tuch that

f n J==: ¢. Then to set EJ= {x 1 x E E, x= Xle xfe ek, xk =O, k E f}, Ein t= £xix

==:..iXij eii',}etC･, for Ti E L(UEi., Eo), T2 E L(UEJ., Eo), we dojine an

                      IUJ･element TiVT2 of (LU E ., Eo) by

    (12) (TiVT2) (ei) =Ti (ei), i E L TiVT2) (ej)=:T2 (eD, 1' e J.

                             IUJ    We note that if T E L(U E ., Eo), then there exist Ti E L(U Ei., Ee)

                                                                ',and T2 G L(UEJ., Eo) both uniquely, such that

                               T = T,VT,.

    starting from Ei, we can define the set of Alexander-Spanier cochains ci

u(d(E)) (M) by the same method as jn g1. If f is a finite set, then U(ni(E)) must

be equal to L(Ei, Eo) and therefore we write Cd(M) in this case. Here idi(E) is

･defined similarl'y as ai(E).

    Definition. Let l and J be two index sets such that I n J=¢ and U(AiAJ(E)),
-U(Ai(E)) and U(AJ(E)) are given to satisjly

     (p) T,vT2 e U(A'V' (E)) if Ti E U<tii(E)), T2 E U(AftE)),

     (P)t T==T,VT,, T, E U(tii(E)), T,E u(dJ(E)) if T G u(diiUJ(E)).

Then we dojine fe E CiU'U(AiV'(E)) (M) for7E CiU(tii(E)) (M) andli E cru(ti'

i.<E)) (M) by

                                      m



   (13) z]..jZl (fs) (T)=f<T,) g(T2) if T=TiVT2･

   Similarly, if M is a differentiable Hilbert manifold, we define the inner'
                        IUJ       -- IUJ            EAD U(A (E))(M)byproduct       fAg

   (i3)' 7Ag-fAg, fAg-A(]{g).

   Exarnple. If i is a finite set, then for up("iUi(E)) and up (Ai(E)), or for ub･

(AiUJ(E)) and ub(Ai(E)), u(Ai(E)) satisfies the assumption of the above definition.

   Definition. Let I and J be two index sets such that Zis a finite set, J contains

I and the comPlement of Jin {O, 1, 2,･･････} is an injnite set. Then we call U<A'

(E)) satisyies the condition (P) if U(ldJ(E)) and U(idJ-i(E)) are given by

                   U(A.(E))-(r,*)-i (U(n(E))),

                   U(A.",(E))=(r.-,*)-i (U(di(E))),

and the triple U(AJ(E)), U(ld,(E)) and U(A.-,(E)) are satis.Ey (P) and (P)'.

   By definition, if U(ti(E)) satisfies (P), then for, any f E CP(M), the set of

Alexander-Spanier cochain of degree P of M, P<oo, and g E CDo-au(d(E)) (M), q

ll:P or q== oo, we can define the product fs E Coo-q+Pu(d(E)) (M). EsPesiallN,

since U2(ld(E)) satisfies (P), fAg Ei ADoohq+Pu(ri(E)) (M) can be defined if f is

differentiable.

   6. By the definition of CoonvPu(d(E)), i (M), we have the isomorphism Ti# : C
                                   p
oo- Pv<d(E)), J (M) . Coou<d(E)) (M). For I==Ip c J=Jq, we set

   (14) rciJ=ri# (TJ#>""i : Coo-Pu(ri(E)), i (M) - ℃oo-qu(A(E), J (M).

                                                 '
By definition, we have for IcJcK,

   (ls) rrIJTJK=TJrc

    In the case q=P+1, we have J=[I, le]={ii,･-････, ip, k} (I={ii,'''''', ip}) (le

may be smallar than ij･ for some j' ) and we denote

                  i    (14)t TI, K=rc [I, k]'

Similarly, we denote

    (14),, TI, k, fe,=TI[l, le, k,]･
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'Here [I, le, fe'] means [[I, le], le'] but assumed le <fe'.

    On the other hand, we denote the cannonical isomorphism from Coo-Pu(ri(E))

/(M) Qnto Coo-Pu<d(E)),i (M) by pi. Summarising these, we have the following

-commtttative diagram. Here pi, k means pu, h].

Coe-au(d(ge)) (M) CooinPu(ri(E)) (M) (q>p)

c..mqP
uJ

(dl(E)), J (M) -:iiLtL-- cco-;' :(jd(E)), i (M) Jll[Iitilll))ir' "'lllloo'-pu(,(E)), i, (M)

    TJgA rss lrr,e;k pi,k
               '`ii÷-'u-usu-J'---･Ceou(ld(E)) (M) . # Coe-(P+t)u(id(E)), u, k] (M) -=e-------- Coo-(P+!)u(d(E)) (M)

                  [I, k] # l reI, k, le,

                 T[I, k, h,] Coo-(P+2)u(d(E)), [I, k, k,] (M)

                '
                                              '    For le E I, we define an integer v(le)=vi(k) by

    (16) Tl(ele)=evl(k)･

    Definition For f E Co"-D-iu(d(E)) (M), we dojne a function 6i,.(f) (2), .EC,

.Re. 2>O, by
                     '
    (17) 5i, . (f) (2) (T)
               == liiei]i2cr(-i)V(le) e-v(fe)"ffi, k(s)i, of) (T).

    Lemma 5. if U(A(E)) is contained in Ub(ts(E)) and the inclusion U<id(E)) - Ub(id

,(E)) is continuous, then 6i, . (f) (2) (T) is holomorPhic .fbr Re R>O and

                lim. tii, .(f) (2) (T)==O for anN T ij' Re. ct>1.
                aro
                                '
    Proof. By assumption, I xi, k(pi, kf) (T) 1 is uniformly bounded (in le). Hence

'we have for some M>O,

    (18) i6,, .(f) (R) (T)l .<= =.), lR IRe･ cre-nRe･AM

                     - M 1 z IRe･ cr
                     M 1-e-Re.a , Re･ 2>O.

'Therefore we obtain the lemma.

    In the rest, we assume O .<.. Re. ec ;:S 1.

    Note. By (18) and Fatou's lemma ([9]), if Re.a==1, then

,lim.o-･o 6i, ex (f) (a+it) (T) exists for almost all t.



   Definition. 111' lim.a m.o 6J, cr (f) (2) (T) exists, then we dajne tii, a

   (19) bi,cr (f) (T)=li,M#, di,a(f) (2) (T)･

   Since 6r,.(f)=2"-B 6i,B(f) we have

            Oi,B(f) (T)=O, if tii,.(f) (T) exists and Re. (P-a) >O.

Lemma 6. For 'any Ip, Jp, we have

                                  -1   (20) p,-i 6i,.(f) (2) (T)=p. bJ,.(f) (2) (T).

   Proof. By the definitions of pi and rtcr, k, we have

                    --1 -1                   PI rcL fe PL le=:PJ TJ, k,PJ, le,, if VI(k) =VJ(le').

Hence we have the lemma.

   Definition. We set

                            -1   (21) bex(f) (1) (T)==pi 6i,a(f) (2) (T),

   (21)' 6a (f) (T)=lim. ticr (f) (2) (T).
                        a-.e
                                                  '
   By definition, 6a is defined in Coo-P-iu(ti(E)) (M) and maps it into

M).

    7'heorem 2. 6iScr is equal to O. Tlaat is, if 6cr (f) (T) exists, then

   (22) lim. Iim. 6i(6.(f) )pt)) (2) (T)-O,
               A-O p-O

if U(ri(E)) is contained in Ub (A<E)).

   Proof. By definition, we have

              di, i(5a f(pt)) (R) (T) .

            =2h=el (-1)v(fe) e-v(le)i zi, k(pi, h 6. f(pt)) (T)

            =artcrk=ti(-1)"J(h)e""i(fe)Zxi, le(pi, k(,.e[l2ti:, k](-1)"[i' le](')

              e-"[i, k](')" Ti, k, , (pi, k, i f) (T))

            =:=2ptcrk, Ja=t, k<J.(-1)"I(k)÷"['"} k]O') (eMVI(k)a-V[I, k](1')pt

              -e-("[i, k](i')-i)AM"i(fe)") zi, k, , (pi, k, i f) (T)

(f) by

Coo-Pu(d(E)>
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            =2ptcr(k=.<k(-1)k (p=.,gle e-((feWP)A+P")-e-(PA+(k-P+1)u)

                  -1 -1 -1 -1              rrl, vl (fe), vl,k (k-p+1) Pl, vl (le), vJ, k (k-p+1) f) (T)

              +feX>fe (-1)le (p:I.Ii jsk e-((hwwP)A+P"-e"(PA+(k-p+1)"))

              TJ, vJ'i(h), vi, k-i(k-p+i) pJ, vJTi(k), vi, kMi(k-p+i) f) (T))･

Then, smce 6. (f) (T) exists, we have by (18),

                i kput (-1)le (p=.,{Ke'((k-P)A't'P")-e-(PA+(feTP+1)it)

               zr, vi"i(k), vi, k-i(h-p+i) pi, vinvi(k), vJ, k-i(h-t)+i) f(T) l

               <e121-iIpt]mRe. a,

for.mp'igiven E>O if K is sufliciently large. On the other hand, sjnce

         " liM. = (e-((le-P)A+P")-e'(PA+(k-P+1)"))

                   PSh               g-e

                    -1 -1 -1 -1               rrl, vl (k), vl, le (h-p+1) Pl, vJ (h), vl, le (le-p+1) f(T)

               =pX.<k (e-"(kMP)A-eMPA) rrJ, vi-i(fe), vi, kMi(k-p+i) pi, vi'i(fe), vi, k

                 -i(k-p+i) f(T)=O,

                                                         '

we get

               1 tttk (-1)fe (tLtk e"((fe-P)A+P")-e-(PA,+(k-p+i)g))

                    -1 -1 -1 -1               Zi, vi (h), vi, k (fe-p+i) Pi, vi (h), vi,k (k-p+i) f(T)1< e,

for the above e if [y1 is sufficiently small. Hence we obtajn

               16i, i(5af(pt)) (R) (T)1 <e+el1 H pt1Re･ cr,

for given e>O if i ps Iis sufficiently small. This shows (22).

   7. The followmg lemma owe to Dr. Matsugu.

   Lemma 7. if {an} is a series such that lim .n-.. an=O, then

                         co               lim. (2-1) (= a. zn)==O, 1zl < 1.
               a-1 n=o

   Proof. Since (z-1) (= an zn)=-ao+=.)i (an-i-an) 2n, and we know

17



18 AI<IRA AsADA
                             le
                   lim. (-ao+= (anmi-an 2n)=-ak,
                   z-1 n=1

we have the lemma by Abel's continuity theorem. .

   Corollary. llILffe Coo-au (,(E)) (M), then Sifis equal to O. in general, if
                         p
U (id(E)) satisfies

   (C) lim T(e,)==O if T E U(ti(E)),
             k-oo

or more general,

              lim T(e2k-e2k"i)==O, or lim T(e2k-e2fe.i)=O,   (C),
                                  k-co              le-oo

then 6if==O if f E Coo-Pu(zi(E)) (M).

   Proof. We set

     a,f(R) (T)

       oo   ==Z(iil.lil, ('i)le e-k" ni, ,J-i(k) pi, ,i -i(le) f(T))

    =(Z= e-2hX (1-eA) rti, , -i(2le) pi, . Hi(2le) f<T)+= e-C2fe-i)A

      k=o I l ie=1          -1 -1                                  -1 -1     (TI, .I (2fe) PI, vl (2fe) f(T)-TJ, vl (2fe-1) PI, vl                                               (2h.i) f (T))).

                                     '
Then by (18), 1 (1-eZ) Xk:.io e"2leA fli, ,i-i(2le) i, .i -i(2le) f(T) I is bound in 2.

On the other hand, to set 2=log 2, IzI <1, Re. z> O, we have

                  oo                                 -1 -1              latLmo 2(ill.lli e-(2k-i)A ri, vi (2k) Pr, vt                                           (,le) f(T)

                    -1 -1              Mrrl, vl (2k-1) PI, ,l (2k.i) f (T)))

            =o

by (C)' and lemma 7. Hence we have the corollary.

   We assume U(A(E)) satisfies the condition (P). Then to denote dn,a the

operator in L(E {en} , Eo) given by

                       '
                         zin, a (en)=a, a E Ee,

we define the map fei, n, a : Coo-Pu(d(E)), ip (Eo) . Coo-P-iu(d(E)), u, n] (Eo), nEIp,

by
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   (23) (fei, n, a f) (T)=f(TVAn, a),

              f Efi COO-Pu(d(E)), I (E), T Ei (T[I, n]*)-i(u(zi(E))).

   Since we know

                       leL n, a pl f= kJ, n', a pJL

if n e I, n' E Jand vi(n)=vJ(n'), we define the map lem,a : Coo-Pu(d(E)) (Eo) -'

Coo-pviu(d(E)) (Ee) by

   (24) hm,af=kl, ,1 -1(m),a pi fL

   Theorem 3. Ilf U(A(E)) satisy7es the condition (C)', then

   (25) liM l-cr(leb a (6af(2)) (T) +6a (ki, af) (2) (T))= f(T).
             AAO

   Proof. By definition, we have

     R-cr(lei,a (5i, cr f(2)) (T)+6i,a (ki, af) (2) (T))

   =leb a (tdto (-1)n e-nA Ti, vi-i(n) pi, vi-i(n)f(T))

     +]Il.ilo (-i) ne-"a rr[i, i], ,[i, i]-i(n) p[J, i], ,[i, i]-i(ni hi,a f(T)

                               tt
   =(Ti#)"i f(T)+(1-eHa) (tl.o (-1)n e-na feb a (rri, ,i-i(n) (pi, vii(n)f) (T))･

Then, since (1-e-i):=O (2), 2 lO , we have

                                                      '        l,t[/P: (1-e-a) (li,il.,(-1)" e-"A kba (7gi, ,i-i(n) (pi, imi(n) f) (T))

       =- o,

by the corollary of lemma 7, we obtain the theorem.

   Nete. Since we know

              tlto nar-n=O((1-r)il+R.. .), Re. a > -1, r l 1,

if U<d(E)) is taken to satisfy such that if T E U(A(E)), then

   (C)' l T(e2fe-e2k.i) 1 =O(leRe･ a), or 1 T(e2k-e2k-.i) 1 =O(leRe･ cr),

           -1 < Re. a< O,

we have for f E CoeePu(ti(E)) (E),



                       ti" (f> (T)==O, Re. P > 1+cr,

                       6i+cr (6rf) (T)=O, if 5rf eXiSts.

We also have that by Fatou's lemma, linza-+o bi+cr f(a+it) (T) exists for almost

all t in this case.

          g3. XRtegration of Alexander-Spanier cochaim of degree oo.

    s. We denote by Zl}De the infinite product E6xElix････-･={(xO, xi, x2,･･-･･-) l xi

E Eo} of Ee. The diagonal of Eeoo is denoted by n(Eooo). In Eeoo,' we denote by

D a subset such that

    (i). DnA(E,oo)s¢.
    (ji). if x+a E D, a G A(Eboe), then tx+a E D, O ,<= t ISII.

    (iii). D can be considered to be a CDo -class Banach d(tferentiable manijbld and

the topology of D by this structure is not wealeer than that of the induced topology

of (the weak toPology of) Ebce.

Then, if f is Fr6chet derivable on D, and satisfies

    (26) fxo, xb x2,･･････)=O ij' xi=xe for some i,

then we have

     f(a, a+t(xi-a), a+t(x2-a),･･････)

    ==<d., f(a, a, a+t(x2-a),`･-･･･), t(xi-a)>+o" tI)

    =:<dx, <dx, f(a, a, a, a+t(x3-a),･･････), t(xi-a)>, t(x2-a)>+o(lt2i)

    -i---s-------

    =tk <dxk <dxk., <--･･-･<dx, f(a,･･･t･･, a, a+t(xle+i-a),･･t･･･), (xi-a)>,･･････>,

     (xle-i-a)>, (xk-a)>+o(l tk+i D,

for any fe if f(a, a+t(xi-a), a+t(x2-a),･･････) is Coo -class in t. Here dxi means

Fr6chet derivation in xi. For simple, we set

   (27) fle(a, xb x2,･･-･･･, t)

           = <dxk <dxk.-, <･･････<dx, f(a,･･････, a, a+t(xle+i-a), (xi-a)>,･･････>,

            (xfe-i-a)>, (xk-a)>.

   By (27), we get

   (28) f(a, a+t(xi-a), a+t(x2-a),･････-)

          ==tlefk(a, xb x2,･･････, t)+o(1tle+iI).

   On the other hand, since

'



                   Alexander-Spanier Cochains of Degree oo-p 21

     l.ltn,(a, xb x2}･･････, t)1

   i!ll suP. Hdxk <dxk.-, <･････-<dx, f(a,･･････, a, a+t(xk+i-a), ci>･･････>, cle>1l
     i[ci1ISI
           l I xi-ai l1･･････H xle-ale l I,

we may assume that there exists a continuous positive real valued function gle (a,

xk+b････.･, t) such that

   (28)' lf(a, a+t(xi-a), a+t(x2-a),･････-)i

             -<.tkg;le(a, xle,b････-･, t).

Moreover, to set

            Gk(a, xk",･-･-･･, t)=tkgle(a, xk.b-･････, t),

we may assume that

   (29) l.An(a, xb x2,･･････, t) 1 l;il t-m Gfe(a, xk,b･････-, t), O< t< 1,

'is hold for any m if m;;!fe.

   Definition. Let G(x, t) be a Positive real valued junction on U(a)×[O, 1,],

-where U(a) is a neighborhood of a in D A A (Eooo) and {cm} and £em} be serieses of

.positive numbers. Then we denote

      f(b, b+t(x±-b), b+t(x2-b),-･････)=O(G), with resPect to {cm} and {em},

      on U(a) if

   (30) l .An(b, Xi,''''''X2,'''''', t) IS cmt-M G(b, t), O < t <em,

           (b, xb x2,･･････) G D, b E U(a),

,is hold for all m, mlO. Moreover, we denote

       f(b, b+t(xi-b), b+t(x2-b),-･-･･･)--G, with resPect to {c.} and {s.},

       on U(a) if (30) and

   (30)' 1 .lfin(b, xi, x2,･･････, t) I ll;c'm t-m G(b, t), O < t < e'm,

           c'm=O({cm}), etm=O({em}),

･are both hold.

                         co   Example. We set a==le=i ale ele and assume ai7eO.                                                  We also assume (a, a+

,lx'b a+tx'2, ･･････) E D and to set .

                                    '
                      Xti--X.1 Xtikek, i=1, 2,･････`,



we can take a series {n(i)} such that

      O < gi < l xii, n(i) 1, (a, a+txtb a+txt2, ･･････) E D, i=1, 2, ･･････

       laiI > ]ai-til lll; 1ai+eitx'i, n(i) 1, t7< O, 1ei[=1.

Moreover, we assume that there is a series {ri} such that

                     l=, r,-ig-i(ai-.', 6i)(ri't' < ..

Then, to set

                  f(a, a+txtb a+txt2,･･････)

                =I=i (1-ai+eitiiii, es(,ui)) e"gi(eitX'i, n(i)),

                              ri                  gi(eitxli, n i )=ill,l..il ili (al+eitilti, n(i))M'

f(a, a+txii, a+txt2,･･････)==O(G) with respect to {cm} and {em}, where G,

and {em} are given by

          G(a, t)=i..i (1-aii,t6i) e-gi(-tei),

                        1          Cm = .S,U.P･ 2 lx,i, .(i) - log ri ] ,

          em==sigP･ (lxfi,1.(i)-git(e,rxti, n(i)) 1 < ctn, O < T < e].

   Definition. if we can talee the above G(b, t) to be

   (31)' G(b, t)=H(b,l t-,), H(b, t) is an entire faenction in t.

Then we call f to be class H with resPect to {cm} and {em}.

   By definition, H(b, t) has essential singularity at t=oo and to set

=X.℃o Cn(b)t", we may consider cn (b) > O for any n and in this case, we

                        '                                      '

                            :t[m..C,"i(/ti)==O.

   9. By the rnap ]' : L(UEn, E6) - Eeoo given by

{Cm}

H(b, t>

 have
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                       1'(T)=-(T(ee), T(ei), T(e2),-･････),

there is a1to lcorrespondence between L(U En, Eo) and Eooe and we have

                      ]'(A(E))==ri(Eooo), ]'(id.)=(a, a,･･････).

Hence 1'(U(d(E))) contains n(EGoo). The conditions (ii) and (iji) of no8 are changed to

    (ii)t T+d. E U(A(E)) imPlies tT+ria E U(rd(E)),O ;:il t g 1,

    (iij)i U(ti(E)) has the strzacture of a Banach dnjerentiable manijbld,

･of the conditions of U(A(E)). Moreover, 7"(f) is O -normal if and oniy jf f satis-

'fies (26).

    Definition. VVe assume U(ti(E)) satisfies the above (ii)t and (iii),. Then a dnje.

rerntiable standard O -normal Alexander-SPanier cochain of degree oo of E with

,resPect to U(A(E)) is denoted

                f(Ab+tT)==O(G), wzth resPect to {cm} and {e.},

    '

･near a ijr ((i")-if) (i'ts(db+tT)):=O(G) with resPect to £cm} and {em}. Similarly, we

,devine fltib+tT) ･- G and f("b+tT) is class H as above.

    Note. Although f is not differentiable, or more weaker, U(A(E)) does not

satisfy (iii)t, if for each m, there existsa series {gin} such that '

    (32) K(7'*)-if) (a, a+t(xi-a), a÷t(x2-a),････-･)I
              $tmgin(a, xm+i, xm+2,････-･, t), t lll O,

,and for these {gin}, we get

    (32)t [ gv,t(b, xm,i, xm+2,･･････, t) 1 ;Sl c"zt-m G(b, t), O < t < em,

then we also denote f=O(G) with respect to {cm} and {em}. If G satisfies (31),

then we call f to be class H

    By definition, we may consider {c,n}=O(1) in this case. In fact, we have

            l ((j'*)"if) (b, b+t(xi-b), ･･････) l l$ cm G(b, t), O < t < em,

'for any m by (32) if (32)' is hlod.

    Lemma 8. 11f suP. (xb x2,･･････) l((]'*)-tf) (a, a+t(xi-a), a+t(x2-a),･････-)l

,exists for O ;Sl t IS{ e, then to set

      G(a, t) ･
    =: suP. I((7'")-if) (a, a+t(xi-a), a+t(x2-a),････-･)l, O ;sl;t<e, f==O(G) with
      (Xl, X2,"'M)



resPect to {1} and {e}.

   Note. If f(tib+tT) is Coo-class in t and f is O -normal, then,

                 l f(Ab+tT) l=:o(tm), t - O, for any m > O,

it is not so restrictive that to assume the above G(a, t) to be o(tm) fort l

any m> O. Hence it is also not so restrictive that to assume there

ana!ytic function H<a, t) such that

              G(a, t) ;S; H(a,1t-,), H<a, t)::=]lli,i] cn(a)tn, cn(a) > O.

   10. Let {cn} be a series of :,positive numbers such that limn-oocn=O.

assuming Eo to be a real Banach space such that

o

i
s

for

all

Then

                 oo                X xkek E Ee, if 1 xfe I ;:igl ck, fe==1,

                h--1

we define a subset [a, {cn}] of Eo by

                               ep   (33) [a, {c.}]={x ] x== xkefe, O ;:$; Xle ;:ll

                              k-±1

By definiton, int. [p, {cn}] is non-void in Ee.

   For {cn}, we define a power series H==U {cn} by

2, ･･--･,

Ck}'

                                  oo                            H<t)-X ci-･････c.tn.

                                 n--l

By definition, H(t) defines an entire function and along the real axis, we

limt-..H(t)= oo. More presisely, we get limt-co t'leH(t)==oo for any fe.

   On each interval [O, ck], k=1, 2,･･････, we consider a partition

             O=Xh,e < xk,1 <･･････ < xh, mk < ck, k::=1, 2, ･･-･･･.

Then, for an index set J==(7'b 7'2,･･-･･･, 1'le,-･････), we set

                 oo            XJ =pu.1 Xle, 1'k ele ff Ee,

            xJ+ii=ill411i xk,j'k ek--xi, J'i"ei, i--i, 2,.-･･.･, xt,mi.i=ci.

For the index set J, we also set

have
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            [J]k-{J l J-:: (7'b ]'2, -･････, 1'h, O, O, ･-･･･ ny )},

            (f)fe-[J]fe-[J]k-,, le ll 2, (J)i=[J]i.

   Definition.. We call U(di(E)) satis.fly the condition (I)[., {c.}], of there exists a

series {en} such that {cn}=::O(sn) and

                                 '
            1'-i(XJ, XJ-ei,, XJ+i,,'''''') E U(AE) for anY xJ E [o, {cn}],

if 1 Xn,pg "xn,pg+i 1 <e,T for any n and pq.

   Definition. VVe assume U(di(E)) satisL17es (f)[., {,.}]. Let f be a standard Alexa-

nder-SPanier cochain of degree oo zvith resPect to U(ti(E)) of Eo zvith the rePresen-
tation fl Then we dctne the integral of f on [a, {cn}], denoted byi[., {,.}] L by

   (34) l[a･ {c.}]f

                                   771             :=:lxfe, p, ttWk, p,+1].o l/t'M-oo pu.1 (JE:(J)k 7'-"(f) (XJ' XJ+1,' XJ+1,'''''''))'

                                               '
   Theorem 4. S[., {,.}] f exists if f is class (H{,.}) with resPect to {M} and £e.}.

   Proof. For each fixed k and the partition O==xle,o <xfe,i <･･････ <xk, mk <Ck,

we assume

                       IXk,p+i-Xk,p1 $l t, t< en.

Then.we have by assumption,

                 IJiiili(lj)k 7""i(f) (XJ, XJ+1,, XJ+1,,'''''')l

               <x               -hJE(J)klyLi(f) (xm xJ+1,, xJ+1,,･･････)1

               <x               = JE[J]k 17Ll(f) (XJ, XJ+1,, XJ+1,,･･-･･･) I

               ;${2cic2･･････cle suP. 1.Ln (xJ, ei, e2,･･････, t)I

               $2MCiC2･･････Ch t-leH(}m,y O < t < Sh,

                            '
because xJ-.lk -xJ=(xl', v'k+1-xi, ik) ek. Hence we get

      '

               m              iil.l]i (Jilil(IJ)k 7'-i(f) (xJ, xJ-Fi,, xJ+ia ･･･-･･))i

              1]2
            $il.llll ]JEtJ), 1'-i(f) xJ, xJ+1,, xJ+t,,･･-･-･)I



              "1.            ;Sl{N.J 2Mcic2''''''ckt-kH(l-i), O < t < min. (eb･･････, em),

            5{2M,

                                              '
if the partitions O==xfe,e <xle,i <･･-･･･ <xk, mk <cle, fe==1,･･････, m, are taken to

satisfy

             1xle,p+i -xk,pl <min. (eb･･････, em), k=1,･･････, m.

Hence we have the theorem.

   Note 1. If fu l O for large m and f ･v (H(11t))-i with respect to {Mt} and
                                                   '

              S[a, {c.}] f l M'.

   Note 2. If f is class (H{c.}) with respect to {M} and {sn}, then we have

          '       I:a, SC.B] f

      = IXle, pg trlgele,pg+1 i-'gi 3-'oo #.s (JEi(IJ)k 1'fi'1(f) (XJ' XJ+1i' XJ+12'''''''))'

                       'for any s.

   11. Since [a, {cn}] has interior point in Eo by assumption, we can consider

(continuous or) differentiable map ep from [a, {cn}] into M if M is a Banach

differentiable manifold.

   Definition. g : [a, {cn}] - M is called non -degenerate at x e [a, {c.}] if

for anpt (relative) neigIzborhood U(x) of x in [a, {cn}], there is a neighborhood V(x)

of x in [a, {cn}] such that

              V(x) c U(x), h.(pa(Y(x))) has interior Point in Ee.

Here the manifold structure of M is given by {(Ucr, ha)} and vax) is assumed to be

ep(vrx)) c U.

   Definition. Let M be given U(a(E))-structure by local E-Product U(AE(M)). Then

we call U(A(E)) satisfly the condition (I) g[o, {c.}] ij' there exists a series £en} such

that {cn}=O({en}) and ' '
                (9(XJ), rp(XJ+1,), 9(XJ+1,),"･･-･) Ei U(dE(M)),

for some U(taE(M)) and .for any xJ E [a, {cn}] if
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                  I Xn, pq-Xn, pq+i l < En, for any n and Pa.

   Definition. We assume U(ri(E)) satisfies (I),[a, {c.}]. Then for a standard cochain

f E Coou(zi(E)) (M) with representation L we de7ine the integral of f on g[a, {cn}],

denoted by l,[., {..}] L by

    (34)1 Iop[ti, {c.}] f

                  //      ==IXfe, p, /iMXh, p,+1 l-O l"tjveoo X-o (JE=(J)kf(9(XJ)' 9(XJ+1i)' 9(XJ+12)'''''''))'

    Note. To set

       9"f(Xe, Xi, X2,'''''')=f(9(Xe), P(Xi), g(X2),･･････), f EE C"Ou(d(E)) (M),

we have ･
                          fq[a, {c.}] f::=ka, {c.}] g"L

Here g"f is identified to j'*(op*f) and the integral of the right hand side is the

integration of oo -cochain of Ee defined in nolO. ' '

    By the definition of the integral and theorem 4, we get

,,.,.ti'i
lil':;[Il,,e';, ,l)ep[,'g>c"gz,i,E,X(SISh,ije.,%".'.'SStiC,h"Sil;(tlza";'iWIY'h.rvwwOii,1)(, l,.,Y

    As usual, we define the chain r of M by the finite formal sum

                              s                           r=:i=1 aigi[ff, {c.,}].

Then we define the integral of L a standard oo-cochain of M with respect to

u(n(E)), on r, denoted by l,f, bY ･ '

    (35) l,f=i,Ili..]i ailva,[a, {c.}] fL

Here we assume U<ti(E)) satisfies (I)qi[a, {c.}] for each i.

    On the other hand, we get by the definition of the integral

    (36' S,(i'Ii..li b`")=i'Ili..li bilr"'



if S, fi eXiStS for each i.

{,.}]D.e2:i`Lli:', ,,,l,Ii,e, Cf"li ;.11,S,8blllBO;"ZZIY, 'n,.`egili';3i: Ot "f ri ;'1,E.℃'S ece"..bil,l.l2,z. Z9i.I･2i

representation i f 1.

   Definition. We call U(A(E)) satisfly the condition (S) if U(A(E)) satisfies (I)[a, {c.}]

(or (l),[., {c.}]) and {c'n}=O({cn}), then U<n(E)) also satisfies (I)[at {c,.}] (or (I)g[a, {ct.}]).

   DeEnition. For B Eii S m, considering 9 to be a transposition of {O, 1,･･････,

                               oo   (37) B[a, {c.}]=={x 1 x==X xkefe, O ;:il xk $ cB (n), B(n)==n, nl m}.
                              h-1

   We note that by definition, we mayewrite

                 9[a, {Cn}]=[O, {CB(n)}], {CB(n)}==O({Cn}).

   For r=:I i]i aigi[a, {c.}], we set

                    s   (37)' 6(r)-X aigi(6[a, {c.}]).
                   e=1

   By theorem 2 of [4], we have
   Lemma g. 11f' f is absolutely integrable on r dnd altemative, U(id(E)) satis.17es the

condition (S) and (I)epi[., {,.}] .for each i, then we have

   (38) k(,) f= Sg"(9)l,L

for any 6 E g m, m is arbitraly.

        g4. Iwtegration of AlexaRder-Spanier cochain of degree oo-p

   12. Definition. 111C U(A(E))satisfies (I)[a, {..}] and f is a standard cochain of

degree (oo-P) of Eo with resPect to U(ti(E)), then we dq17ne the integral offon

rl"i[a, {cn}] bY

   (39) iril[a, {c.}] f==I[a, {c.}] (TJ#)"i;L

Here, the right hand side is the integration of (ri#)-if E CooeKzi(E)) (Eo) on [ff, {cn}].

   Note. Directly, I.ii[., {,.}] f is defined as follows : We set
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       -1 -1 'ZI=(f'vl (1), 1'vl (2), ･.`.dd, 1'vl-1(le), ...,..),

 (.J'+1i)i

==
(1' vl-l a), 1'vlPl (2),'''''', j'

vl'lli-i), 1'vl-1(i)+1, 7'vJLI(i+i),''''''),

 [h]le

={Ji 1 Ji=(1'vi-ia), 1'vi-i(2),'''''', 1'vi-i(le), O, O,''''''),

 (h)le=[Ji]fe-[h]lem,,

      oo XiJ= ]il.lii Xi'vi-i(le) evi -i(le),

 X(j+lib==iii,,ili Xs',l-1(le) evl-1(h)+Xj-.l-1(i)+1 evl'1(i)+1.

'Then, since we have

ri i ([a, {cn}])

           co   =(X i X=pu.1 X,l-1(k) e,I-1(le), O ;Sl x,J-1(le) S chi,

we may define JTi-i[a, {c.}] f by

(40)
 Sfiei[a, {cn}] f

,= lim
 IXVI-1(fe), Pq -XVI g

 X(J+1,)J' X(J+12)l'''''''))'

ml(k), p +ll-O M-oe

    oolim =
    h==1

(=NJJE(JI)k
1'-t(f) (XJ,'

                                     c
   Definition. Let g be a continuozas maP from ri-i[a, [cn}] into M, a Banach

-manifold modeled by Eo, and assztme U(id(E)) satisfies (I)va(.i-1[., {c.}]). Then for a

standard (co-P) -cochain with resPect to U(d(E)) and I of M with the rePresentation
.f, gtve dojne the integration of f on g(ri-i[a, {cn}]), denoted .by I,(.i-l[., {,,,}])L bY

(4o)t
 Sg(Tt"-i[a, }c.}]) f

=irlMl[a, {c.}] 9'f

                           oo=Lx,i-i(le), p,-{llM,i-i(le), p,+i i-,o ISIII.. }l.llli (JiEM(Ji)k i-t(f) (g)(xJ?,

 9(X(J+1,)I), 9(X(J+1),?,''''"))'
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By definition, we have

(39),
fep(rl-1[a, {c.}]) f==I[o, {c.}] (r

      '

t#
)-t(9"f)'

and

and

if f is O -normal and codim.

g are both differentiable), then

gO(TI-1 [at {Cn}]) is defined (for example, if M

Sip(rl-1[a,

{Cn}])
f=- o, if codim.g(Ti"i[a, {cn}]) t P'

By (39) and (39)t, we obtain

   Lemma
to satis.th,

10. If 9I: TI-i[a, {Cn}] - M and gJ : TJ-i[a, {C}1}]
--, M are given,

(41) 9I=:9JdlJ,

theR we have

(42)
l`iJ('J-i[ti, }c.}]) f= Jrii[a,

{Cn}]

(,JJ)41f;

(42)t f el(vl-1[a, {C,i}])

f=Jpi(rirmi[a, {c.}]) (,i)aL

    By lemma 10,

class of {gi(ri-i[a,

and epJ satisfy (41),

define the integral
denoted by Jp..mp[a,

t6 define a singular (oo-P) -simplex of M to be the equivalence

{cn}])} by the equivalence relation gi -- gJ if and only if gi

and denote this equivalence class by p..-p[a, {cn}], we can

of a standard cochain f E Coe-Pu(d(E)) (M) on goo-p[a, {cn}],

 {c.}]L by

(43)
fepoo-O[a, {C.}] f== fopl[a, {C.}]

p,1

As usual, we define the singular (oo-p) -cochain rofMby the ,finite formal

sum

   sr==
  le=1

ak9le (TI(h)-i[a, {Cn(le)}])'

Where
U(A(E))

I(le)={ile,i,･･････, ile, p},

satisfies(I)ph(.i(fe)ml[a,

 O ;Il{1 ile,i

      for
{Cn(k)}])

<ik, 2

each

<...... <ik, P,

k, we define the

for each

 integral

k
.
of

Then if'

a stand-
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,ard cochainfof degree (oo-P) with respect to U(d(E)) on M, on r, denoted by

                                           '
    (35)t l,f=pt.l akiqle(u(k)"i[a, {cn(k)}]) Plef'

'Then we also get

                   rr    (36)' Ir i.Il]=, bifi-umi.., biSr fi'

    (38)' k(,) f==sgn (B )l, L if f is altemative and u(n(E)) satisyies (s).

    13. For [a, {cn}], we set

                                 fe               [a, {cn}]k==(x I x= ,iil.il-i xmem, O $ff.xm ;:ig cm],

                                    oo               [a, {Cn}]oo-le=(X l X=ml.llilfe+1 Xmem, O $ X2n ;:Sl Cm],

               [a, {Cn}]xle==ak '
     , =(x lx =akek+,]I,lil7Llk xmem, O ;s; xm $ cm]e

IBy definition, we have

      [ai {Cn}]=[ff} {Cn}]fe×[if) {Cn}]oo-k7

      (O[ar {Cn}]le)×[a, {Cn}]oo--le

      k
    ==i=1 (-1)i-i([a, {Cn}].i=o-[a, £Cn}].i=,i)×[a, {Cn}]oe-k･

'Here a[a, {cn}]le means the usual boundary of k-cube [a, {cn}]k. '

    Lemaa 11. Let U<a(E)) satis.Ey (S) and (I) [., {c.}] and f G Coo-iu("(E)) (Ee) to be

.standard and p{k} f is class (H{,.O with resPect to (M) and {en}, {en}==O({c.}), on

,.･[O, {Cn}]xk=o and [ff, {cn}].k..,k for each le. Then to set ,

    (44)h Ole[a, {cn}] (2)

                                                     '
                k
             =i]Il.lli (-i)m-t e-(m-i)X ([a, {cn}]xm..o-[a, {cn}]xm=cm),



liMk-oofak[a, {c.}](A) f exists if Re. (2) > O and we have

    (45) £ZIMoofo,[a, {,.}](A) f=O(2-i), Re･2 ; O･

    Proof. By assumption and theorem 4, we have

               1Iak[a, {c.}](i) f 1

                le
             :t/'llli il[Il--ll R.i' 1(2/'ti' {c"']"-==o fi + iS[ti･ {cn}]x.,=.. fi]

               m==1

                 4M ･             K
             -1-e-Re. A,
                                  t･･//･

we have the lemma. ･
    lltl4e)finitiOn' III.le[.S,et{,O.crii'(i:C'i}] (2) to be the formal sum . ,

           ==t/]X.i (-1)m-t 2cr e-(M"i)a ([a, {Cn}]..=o -[a, {Cn}]x.,..,m)･

    By lemma 11, if f satisfies the assumptions of lemma 11, then we:can define
 IOa[a, {c.}](x) f bY

                      fa.[a, {c.}](A) f=£iM'oo 2crIok[a, }c.}](A)'f''' ' ' '

 if Re. a>O. Moreover, by Fatou's lemma, limt-ofo.[., {..}](t+,,) f exists for al-

 most all t if Rg cr:=:1.

 {cn}/li/,4e)fi,Z)'jtlOent',illl(."I-,[(.oo, I,P.)}]S)Z℃2g)"i"r SZMPiex zvzth the, representat¢on g(.,-,[.,

･ =go(T,H'i(a.[ff, {lc.}] (2)) /,/ '/ , .･',

                oo             ,f=,]i,lil.i (-i)M-t 2a e-(m-i)A (g(ri-i[o, {cn}]).,i-i(.)..o - '
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              -9(rl-1[a, {Cn}])xvl-lon)=cm)). '

                                                                   '
Here, (rJmi[a, {Cn}])xvJ-i(,n)=a iS dofned similarlY as [a, {Cn}].,.=.･

   Similarly, for r=:lealegfe(Ti(le)-i [a, {cn}]), we set

                                                         '
                         tt
                      s   (44)it O.r(2)==X aleOagok(Tl(k)-i[a, {Cn}] (Z)･

                     h-=1

   Lemma 11t. Let r be an (oo-p) singular chain of M and U(d(E)) satis.fy (S) and

(I)ek(ri(h)-i[a, {c.}]) for eaCh le, f E Coo-Pu(ti(E)) (M) be such that f is standard,

pile,. f is cgass (H{..}) with resPect to {M} and {e.} on eple(Ti(fe)"t[a, {Cn}]>x,i-i(.)-o

and gk(Ti(le)-i[a, {cn}])x,i-i(.).... for each fe and m. Then fo.,(A) f exists if Re.

2 > O and we have

   (46) f,.,(,) f=O((Re. R)Re･ cr-i), Re.2 i O.

   ' g5. Stokes' theorem
    14. We denote by Eo,le the subspace of Eo spanned by ei,･･････, ele. The

inclusion E6, le . Eo is denoted by ck. Then (eh)"i (xJ+i.) is defined if J E [J]fe and

                                                 i1 Si -<fe and we have

              7'-i(f) (XJ, XJ+1,,'''''', XJ--l,''''''')

             =fLi(f) ((ele)-i (xJ), (cle)-' (XJ+1,),･''''', (Ck)-i (XJ+lk),

              (tle)-1 (xJ) +xle.1 ele,b ･･････, (ek)-t (xJ)+Xm, lem, ･･････),

for any f E Coou<d(E)) (Ee).

. We set ･
                                 oo                     te..-h({cn})= ]:li] tcmem, O :;{t Sl,

                               m==k+l

                                                         '
and define an Alexander-Spanier k- cochain ILi(f)k (teoo.fe({cn})), teoo-k(£cn}) is a

parameter, of Ele for d-i(f) by

    (47) 7'-i(f)le (xo, xi,･･････, xk) (teoo-k ({Cn}))

            =jLt<f) (cle(xe), ek(xi),･･････, efe<acle), cle(Xo)+tCh+i ek÷b""",

             cle(xo)-1-tcm em, ･･･.,.).
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    Lemma 12. Iff[., {,.}] f exists, then

    (48) f[a, {c.}]f

             =:ltag Y,IM-oo S., (S[v, {e,,}], 7'-i(f)h (teoo-le({cn}))

                             '               -j[a, {c.}]k.-, 7'-i(f)le-i (teoo-k+1({cn}))].

HizreJ[., {,.}]k 1'-i(f)k (teoo-k({cn})) is the integral of Alexander-Spanier k -cochain 7'-i

(f)k on k -simPlex [a, {cn}]fe ([4]) and we set i[., {,.}], 1"i (f)o=O. Moreover, ij' f

satisfies the assumPtions of theorem 4, then

   (4g) I[a, {c.}]f

                       1]1             =:fag hi-M.. N., f[a, {c.}], 7"i(f)le (teoo-k({cn})).

       '
   Proof. By the definition of the integral, we have (48). On the other hand,

since

                   m                   ill.ll, IS[a, {c.}],-., 1'-i(f)fe-i(teco-k+i({cn})) [

                   m                 ;:{llil.lilil Mci･･････cle-,t-h+t H(tl-,)

                 ;${Mt,

we get (49).

   Similarly, by (39), we have '
   Lemma met. Let f be an element of COOHPu(d(E)), I (Ee) SUCh that f.l[., {,.}] f

exists, then

   (48)' Sri[ct, {c.}]f

              =IZT'Z.13 tttZloo X., (iTt[a, {c.}], IL'((Tii(f))le (teoo-k ({cn}))

               -Irl([a, {c.}],-, 1'-i((Tl#)"'(f))k-i (tecomk ({Lcn}))].

Moreover, if (T")-i f satisfies the assumPtion of theorem 4, then

                    ¥
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   (49)' frl[a, {c.}]f

                       in             ==:Iag gS{Ze.. iil.lli, fri([a, {c.}], i'-'((ri#)-'i(f)le (teoe-k(£cn})).

                                           '

   15. Theorem 5. Let {cn} be monotone decreasing and f E Coo-iu(ld(E)) (Eb) be

standard, alternative and satis.fy the assumPtions of lemma 11. Then, if limA-.o
f[a, {c.}] 6af<2) and liMA-oio.[., {,.}] (a) f both exist, we have

   (so) <tLMo f[., {,.}] 6a f<2)=itu't,13 Jo.[o, {c.}](x) 'L

   Preof. First we note that, by assumption, 6af(R) satisfies the assumptions of
theorem 4 for Re. 2 > O. Hence f[,, {,.}] 6af(2) exists for Re. 2 > O. Therefore

by (49), we have

                   i[a, {c.}] 6af(R) .

                                         '                           ln                 ==It-'r.ll {tAIZe.. }l.ii, j[a, {c.}], ]"i <6af(R))h (teoo-fe({Lcn})).

On the other hand, since we have

                   7'-i(6af(2))
                             '
          =2a(.=O.e.o (-1)m e-mA 7'-1(f) (xe, xl,･-･･･-, xm-b xm.t,･･･i･･)),

to set

     6ajLi<f)fe (R) (teoo-le ({LCn}))

   =2cr(.2le..o (-1)m e-mi ILi(f)h (xe, xl,･･････, xm-i, xm+i,･･････, xle) teoo-k ({cn}))),

     6ai'"'(f)oo-le (2) (Xe, Xi,'''''', Xfe) (teoo-h ({Cn}))

                                             '         oo   == 2a(.puk+i (-1.)M e"MA 1'-i (f) (tva (Xo), cle (xi), i･-･･･, efe (xk), ck (xo)+tck,i ek.i,

     ...-･･, cfe(Xo)+tcm-.i em.-i, ik (Xe)+tCm+i em+i,.,.,..),

we get

                                                           t.   (51) 7'-i(aaf (2))k (teoo-k ({Cn}))

             ==6cr 7'-i (f)k (Z) (teoo-k ({Cn}))+6a 7'-'(f)oo-le (R) (teoo-k ({Cn})).



Hence we have by Stokes' theorem for the integrals of Alexander-Spanier cochains

of finite degree ([4]),

    J[a, {c.}], ]"i(6af(2))k (teoo-k ({cn}))

  ==S[a, {c.}], 6a lLi('f)k (2) (teoo-k({cn})) .

    +f[a, {c.}], 5a ]'-i(f)oo-k (n) (teoo-h ({c.})) ,

  = I[., {,,,}]k 2cr 6(ILi(f)fe-i (2) (teoo-k ({cn})))

    +I[., {,.}], (6er IL'(f)k (2) (teoo-fe ({Cn}))-6(1'-i(f)le-i (2) teosmh ({cn}))))

    +f[a, {c.}], 6cr 1'-i (f)os-le (2) (teoo-k ({cn}))

  = So[a, {c.}]k Aa j'-i(f)le-i (teoo-k ({cn}))

    +S[., {c.}], (acr j'-' (f)le (2) (teco-le ({Cn}))-2cr 6(jLi (i)k-i (2) (te..-k ({c.}))))

    +f{a, }c.}], 6cr j'"'(f)ooMle (2) (teoo-le ({cn}))

                                             '
  =fOcr[ti, {c.}] (A) k., ILi(f)le-i (teoo-k ({c.}))

    +(io[o, {c.}], Zcr j'-'i(f)k-i (teoo-fe ({Cn}))

      -Sa.[a, {c.}] (a)k l"'(f)k-i (teco-h ({c.}))] .

    +J[., {,.}], (6cr 7Li(f)le (2) (teoo-le ({cn}))-2a ti(1'-i(f)le-i (2) te..-fe ({c.})))

    +j[ti, {c.}], 6ex IL'(f)oe-le (2) (teoo-k ({cn})). '

Here, Oa[a, {cn}] (2)k-i is defined similarly as [a, {cn}]k-i. Then, since we

have by lemma 12 and the assumptions, ,

   ' iOa[a, {C.}](a)f

            ' ==IZ-'t.ll IS{Zf6. NM=, fo.[ti, {c.}] (A?,.k 7L'(f)fe (teoo-k ({ck})),

                                          ,"･                                                  '                                                         '
to show (50), it is sufficient to show .
                                                             '

                            ?n    (52) {ZLM, l,i-M, IZItZ.Ll... E., Jo[a, {c.}], 2cr 7'-i(-f)k-i (teoomk ({Cn}))

                  HJaa[a, {c.}] (a)k i-i(f)h-i (teoo-k ({cn}))
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              == o,

    <53) .{ZL/Zl, l3't' ,lg'.M-L,.. ]il.;, S[., {c.}], (6a" 7'-i(f)k (Jl) (teoo-h({lcn}))

                  -2at S(]'-i(f)le-i (2) (teco-k ({Cn}))))

              =o,

              '
    (54) {Zlt/rg l,irM,, t£'.M.oo #., f[., {,.}], 6a lLi(f)os-k(R) (teco-k ({Lcn}))=O.

But, since liMA-o Io.[., {,.}](A) f exists by assumption, we have

             lxZl'Zi-, ,l-iM,, £'{Zi. S., Se.[a,]c.B (R), 1'-'(f)le-i (teoo"k({Cn}))

               -Ja.[a, {c.}] (")k 1'-i(f)fe-i (teoo-le ({cn}))

           == o.

cOneethe other hand, we also know

               l<tL",Z Io,[a, {c.}] (i), 7L'(f)h-i (teoo-le ({Cn}))

             =fo[,, {,di]te IL'(f)h-i (teoo-k (£cn})).

'Hence we have (52).

    To show (54), first we note that by the alternativity of f and the monotone-

/ness of {cn}, we get ''
      lfra, ic.}r, 6cr 1'-i(f)oo-k (2) (teea-h ({cn}))l

                                                     '    $Cl''"''Ckt"'leHYt-1) t(.=[='Ol (Cle+2nNt e-(2"-t)Re･ a-ck,2. e-2nRe･ A)) e-leRe. a.

                   '

iHence we have

               I #., S[a. {c.}], Sa 7L'(f)oo-fe (R) (teoe-k ({lcn})) l

             g ill.l}i ci''''''clet-kH?lt(-i) t(.=O.O.i (le+2nmi e-(2n-i)Re･A



             -Ck+2n em2n Re･ X)) e-le Re. 1

            '            :S Mt (.=O=Ol (C2n e-2n Re･ a-c2..m e-(2n+m) Re. a)).

Therefore we get

                        111                  tt{Ze.. 1 iil.llli l[a, {c.}ik 6a i"t(f)eo-le (2) (teoo-k({cn})) E

                :-E{; Mt (.XO=Ol C2n e-2n Re･ A).

This shows (54).

   Then, since we know

                  S[a, {c.}], j'-i(6a f(Z))k

                 =S[ti, {c.}]k 6a V'-i(f)le (R)+I[a, {c.}], 6cr 7'-i(f)oo-h,

for any e > O, there exists a 6 > O and Efe > O, k==1, 2, ･･････ such that

            ll[a, {c.}], 7'-i(6a f(R))k (teoo-k ({cn}))

             -f[a, {c.}], 6cr 7L'(f)k (R) (teoo-k ({cn}))l

          <ek, if t < 6,

            oo           = ele ;;S; e.

           le=1

Therefore we have

                             '                                '                  1Se'tZg.. (#., J[a, {c.{], i'-'(6a f(2))le (te--fe ({cn})) ･

                  ua' #.i J[a, {c.}], 6cr 7'-t(f)le (teoo-k ({cn})) l

                < e, if t< 6.

Hence we obtain

   (55) lt-'.,ve tt21.. NO.O., j[a, {c.}], ticr 1'-!(f)k (2) (teooHle (£Cn}))
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=f[a, {C.}]
6af(2).

'Then, since
liMA-'OI[a, {c.}] Sex

f(2) exists by assumption, we get

    ,

 lim
 a, "-o

   NSa
=Qe

f-i.m,ttee..S.,S[a･

7Li(f)le (R) (teoe-k

{c.}]k (6a

 ({Cn})))

7Li(f)k (R) teoo-k ([Cn}))

iOn the other hand, we know that

l
z
k
M
,

==

f
[
a
,

l:a, {cti}ik (6e ]'

{Cn}]k

-i(f)k (2)

ti(jLi(f)k., (2)

(teoo-h ({cn}))

(teoo-k ({Cn})))'

'Therefore we obtain (53).

    16. tl7ieorem 5,. we assztme r, U<A(E)) andfall sati,sfy the assumptions of

,lemma 11i. Moreover, we assume {cn} is monotone decreasing and f is alternative.
'.Then, if lim A-+oJ, 6af (2) and lima-+ofo. r(A) f both exist, we have

(50)t lim
a-o

Jr 6at
f(2) -= lim

    a-o

lo.r(A) f

Proof. By (44)" and (35)t, it is sufficient to show (50)t to prove

(50)n lim
A--O

Sq(TI-1[a, {c.}] S"
f(R)==lim

    a--o
s ocrep(rlMl[a,

{Cn})
  .JF:
(A)

'

IBut since we know

  #(TJ )-1 (9*6.
flf))- 6.((T,#)-i

ep*f) (2),

'we get by (39)',

s e(TI-1[a, {c.}]) tia f(2) = S[a,

{Cn}]

ba((rl#)-t
9*f) (Z).

-Then by (50), (39), and (44)t, we have

lim
a.o
f
 ep(.I-1[.,

{Cn}])
5a f(R)
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== lim

 A-O

==lim

 1-O

= lim

 A-.O

fa.[a, {c.}] (A) ((TI#)-i 9*f)

Sip(rl-1(oa[T, {c.}] (A)) f

f
 a.ip(rl-1[a, {c.}]) (A) f'

This shows (5o)U.

   Example. If f Ei Coou(A(E)) (Ee)

tive and U(ti(E)) and f both satisfy

 is

the

standard and

assumptlons

 1'-i(f)"-"H{cn},

of theorem 4,

where

then

 f is posi-r

we have

(56) l
 [o, {Ctt}] f4 o.

In this case,

We note that
we
for

call f to be

this L we

a volume

have

element of Ee with respect tO [a, {Cn}].

(57)-
I[a, {c'.}] f= oo, i

f {Cn}= O({C'n}),

(57)e
f[a, {c".}]

f==o, i]C {cttn}== o({Cn}).

   We also note that

order as 11H<t-i) for t

to set cn= hn+ilhn, we

starting from L

S O, where H(t)==

have

i
f

=
 G(a, t)
dr
   hittn
n==1

given by

with hn ll; O

lemma 8
 for any

 IS

n.

same
Then

   (56)' f[., {..}.]fl2! O, iffsatisevis the assumptions of

if Eo satisfies ]lli[l]h℃.1 Xnen E Eo, if I Xn 1 $ cn.

   We assume Eo is a Hilbert space and U(A(E)) is contained in

by theorem 1, the alternation of L Af is defined. Hence by

lemm 9, we get

note 1 of

U,(A(E)).

theorem 3

nolO,

Then

 and

lim
aAo

f
 O,[a, {C.}] (A)

ki, a
Af=S[a, {c.}]

fl o.

Therefore,

Coo-lu<ti(E))

[6], [7]).

there '

(O[a,

exists

{Cn}])t

non-exact

although

 closed (oo-1)

a[a, {cn}] is

 -Alexander-Spanier

homeomorphic to [a,

cochain in

{cn}] ((vel
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