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Introduction

The main purpose of this paper is to consider the volume elements of infinite
dimensional spaces. In fact, we show the possibility of the construction of a
volume element » on E,, a separable infinite dimensional real Banach space with
a normalized monotone basis {e;, ey -+ } such that

D anenc By, if || Zca,

n=]

where {c.} isia series of (non zero) positive numbers with /im. p—wtx=0, such
that to set

Lo, {ca}]={x] x:anen, 0=xn=cu},
n=]

o, {cn}]):j[ﬂ e’ takes non zero finite value. (A Banach space B is called to

have a basis if there is a countable set {b,} of B such that any element x of B
can expressed uniquely as x:annbn_ Much of Banach spaces such as C(Q), L?
(Q), 1=p<o0, etc, have basis. But there exist Banach spaces which have no
basis ([87)). For the details about the bases of Banach spaces, we refer ([16]).
We note that, of cause we have for this v,

o, {c'n}])=00, if cu=0{c'x}),
Ve, {"a}])=0, if c¢"v=0({cn}).
Since the volume element of a finite dimensional space M can be dfined by

an Alexander-Spanier #-cochain on M, n=dim. M (cf. [4]), we first define the
Alexander-Spanier cochain of degree co—p for a Banach manifold M modeled by
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E, for this purpose. In this definition, first we note that since there are many
possibilities of the definition of topology of the infinite product Ey X EyX -+ , there
are many types of (co—p)- Alexander-Spanier cochains of M. Moreover, unlike in
the finite degree case (cf. {1], [177]), the product space topology of By x X +----
seems to be not appropriate in the definition of (co—p)-cochains. By this reason,
we denote by C~—?ycumy (M) the space of (co—p)-cochains on M by a fixed
topology of EyXEyXx - determined by U(4(E)). (The meaning of U(4(E)) is as
follows : First we consider EoXFEyX - to be the space of linear maps from
Un‘;"lEn, E, is the space spanned by {e, e, - , ex} and it is considered to be
a subspace of E, the space spanned by {e, e, ez }, into E,. Then, by this
correspondence, the diagonal element (o, a4, 4, - ) of EyxXEyX- - corresponds to
the operator 4. defined by

Ao(x)= <2x,> a, x:;xiei,

and to set A(E)={4d.|ack,}, UA(E) is a suitable subset of L(UnEn, Eo)contains
AME). The examples of U(4(E)) are as follows: A

UAE)={T+4o| TEINE, E)}, 1=p<eco,
UAE)={T+4.| TELIE, Ey)},

where L(E, E,) is the space of bounded operators from E into E, and [?(E, E) is
given by

IME, Ey= {T I Z |¢ij12< oo, T(ei):ZCijej}-

We denote the above two types of U(AE)) by UpdE) and Ui4(E)). TFor some
types of U(4(E)) such as Up(d(E)) or Usd(E), we can define the coboundary maps
for the elements of C*—?pyuwm(M) by means of Abelian sum (cf. [12]). For
example, if f € Co~lycwn), then we set

5af(]):22a(-«1)”e“"1f(xo, Xy, v ) K1, Kpygy e ),
n=1
where 2 is a complex number with Re. >0 and « is a fixed complex number
such that 0=<Re.a<1, and define the coboundary map d. by

Aaf=lim. 0af(2),
=0

if the limit exists,
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The definition of the integral of an (co—p)-cochain f is done along the same
line as in [4]. But, although f & C»puwy) (Eo) and the integral is considered
on an cube of FE,, such as [o, {c¢"}], the set of partitions {J3}={(ji, Ja, " )}
should be an infinite set although for each k, 0<{xy <+ <Hmp, #<Cp is a finite

partition. By this reason, we define J[q, {c,,)]f by the limit

J[”, (Cn}:lf
m
= lim lim DN DY flx), Kjvtsy Fjats o ),
1%, pg~ %k, pgt170 Mok JET
(")k:[‘]]k_[']]k—li [J]k:I]l]:(j]; """" ’ jkr 0! """ )}’
J_I_li:(jlr """" ) jl'—l; ji+11 ji+1y """ ), Xmis1y, i =Ci,

xJ:inm nln,
n

(cf. [10], [14], [19]). To snow the existence of this limit, we assume f=f{%,
X1, Ko, rrere ) is Frécnet-derivable for each x,, k>1, and assume

Fonl%a, %y, Kg, eveer , 1)
= an<dup oo Ldx, Slxg, e , Xo, Xo+i(Xm_o1—Xo), e )
""" >, (X1—=%0)>, (Fmo1—%0)>, (Fm—%x0)>,
where dx, means the Fréchet derivation in %,. Then, to have the meaning of
this inequality for small /, the series {¢»} should be tend to 0, and in this case,
we have ]J . fl<2M. Moreover, if each f»>0 and

Lo
M
fm(x()’ K1y Xy wreer ’ t)—>——t mH(%)’ t>0,
is hold for each m for some M'>0, we also get J[U " }jf>M’. Therefore, in

this case, we get a volume element of E, and by this volume element, [o, {cx}]
has finite non-zero volume. But, under the same assumption, we also have

’[[”’ {E,"}]f:oo, if C%ZO({CIM})r

.[[ﬂ, oy =0 Y n=olienl)

although [, {c'»}] and [o, {¢"»}] are both defined and bounded open sets of E,
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and both homeomorphic to [o, {c.}] (¢f. [2], [13]). The integration of feC=-»
veace) (M) on an (co—p) -chain of M is also done similarly as in [4].
Since 9o, {cx}] is, if defined, an infinite chain, and thereforej‘ JScan

. oLe, {cn}]
not be defined directly, we set

da[o, {eu}] (2)

:Z Za(_l)Mg—ml ([U, {Cn}]me:O - [0’ {Cn}]xm-;.1=cm+1)-
=0
Then, by virtue of Stokes’ theorem for the integrals of alternative Alexander-
Spanier cochains of finite degree ([4]), we can show for the alternative f, the
Stokes’ theorem

lim, J F=lim, j 3af(2),

A0 auley el A0 o, o]

if the limits of both sides exist. Similarly, to define duy(2) by using 8. [o, {cn}]
(1), we also get

lim. J F=lim, J daf (0.

=0 oy A0,

Simbpolically, we may also write these Stokes’ theorems as follows :

— Ba A-a Re, a
Jf’[”’ {C'n)]f (4{[”! {ea}] f> +0( | 21 ),

Jorf=(] sepia-stof|21ze.s),
Here, (o, {cn}] means the formal sum) oio(—l)m (Lo, {ex}emir=0—10, {€n¥lams

—emer). If =0, the above simbolical expression may be reduced to

= J
Ja[”y {Cn)]f J[”: {C,,}] Of’

Jﬂrf:Jréo /.

We note that by this Stokes’ theorem, there should be exist non-exact closed
(o0 —1) -cochain on 9[e, {cn}] (With respect to some U(A(E)) although 3o, {c.}]
1s homeomorphic to [, {c.}] {61, [7D.

We also note that, unlike in the finite degree case, the (co—p) -Alexander-
Spanier cochains, or more general, the (co—p) -cohomologies of Banach manifolds
(cf. [81, [7], [11], [15]), are not topological objects. Or, in other word, the
geometry of Banach manifolds seems to be not based on topology.
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The outline of this paper is as follows: In §1, we define (oo—p) -cochains.
‘The coboundary operators and related topics are stated in §2. The integration
of oo -cochains is defined in §3. §4 is devoted to the definition of the integration
of (co—p) -cochains. In §5, we prove Stokes’ theorem.

1 would like to thank Dr. Matsugu and Dr. Terasawa (Department of Physics)
for their kind advices during the preparation of this paper. Espescially, I owe
lemma 7 of §2, which is very usefull in the study of the coboundary maps, to
Dr. Matsugu and Dr. Terasawa teach me Feynman integrals.

§ 1. Definition of (co—p) -cochains

1. Let E be a separable Banach space (over R or C) with a normalized
monotone basis {e, €, € - 3}, that is, for every x=E, there is unique series
.of scalar {x,} such that

x:ixkeki
=0
N e I e, |, n<lm,
k=0 =0

and ||e,|]=1 for each k. We denote by Ex», # =1, the subspace of E spanned
by {es, €1, , en}, and the subspace of E spanned by {e;, e - 1 is denoted
by E.

We note that under this assumption, if 7" is a bounded linear operator from
E into E, then

TV =tim, sup. |13 T5Te)l ], =Y
n—oo  ||x]|=1 =0 T
Definition. We denote by L(UEn, Ey) the space of all linear maps (not nece-
_ssarilly bounded) from UEn, the subspace of E consisted by those x that x,=0
with finite excption, into Ey with the compact open topology. Then we set AE) the
subspace of L(\JEn, E,) given by

A(E):{Aalda(x):(zk}xk)a, =28y, aeEo},

By definition, we may identify 4(E) and a by the correspondence a—4,. We
note that if 40, then 4., may not be defined on E unless E=/' and {e,, ¢ e, -
«+.} is its natural basis.

We take a subset U(4(E)) of L(UEn, Ey) with a fixed topology such that
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(). The topology of UAE)) is not weaker than the induced topology of UAE))
from L (| JEn, Ey).

). AE) N UAE)) is dense in Ey by the (strong) topology of E.

Example 1. We set T(e;)=>]; ¢;; ¢; and set

B, By={T|2c;7<o0}, 15p<oo.
Then we set U(4(E)) as the subset of L({ JE., Ey) to be

UAE)={S|S=T+4a, TIV(E, E), acE).

By definition, we get U(d(E)=I?(E, E,)x4(E) because 4, does not contained in
I2(E, E,) unless a=0. Since we can consider [?(E, E;) to be the Banach space by
the /2-norm and 4(E) is the Banach space by the norm of E,; we define the
topology of U(4(E)) by the Banach space topology given by the product structure.
This U(4(E)) is denoted by Uy (A(E)).

By definition, if p=2 and E is a Hilbert space, then Uy4(E)) is also a Hilbert
space.

Example 2. We denote by L(E, E,) the Banach space of bounded linear
operators from E into E,. Then, since ||dq||=(sup. ||x||=1|2kxk|)l lal|, we have

L(E, E,) N 4E)={4y}, or AE).
In the first case, we set
UAE)={S|S=T+4., TeLE, E,), acE,},

and give the product space topology of L(E, Ey)xd4(E) to U(4E) and in the
second case, we set U4(E))=L(E, E,) as the topological space. These U{4(E)) are
denoted by Uid(E)).

Note. These examples, U(4(E)) satisfy the stronger condition

(Y. UdE)) contains AE).

2. Definition. To fix UAE)), a germ of continuous function f defined on some
dense subset of a neighborhood of AE) in UME) (by the topology of UAE)) such
that

fd)=0, acE,, fis defined at 4,

at AE) is called an Alexander-Spanier cochain of degree o of By with respect to
U4(E)).
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We denote by for f the germ of f. The set of Alexander-Spanier cochains
of degree < of E, with respect to U{(AE)) is denoted by Ceucimy (Ey).

Definition. An Alexander-Spanier cochain of degree o of E, with respect to
UME)), f is called standard if U(A(E)) satisfies the condition (i) and f, a represen-
tative of f, is defined on some neighborhood of ME) in UAE)).

The set of standard Alexander-Spanier cochains of degree oo of Ej with respect
‘to U(A(E)) is denoted by s-Ceyum) (By), or simply, by C=uy) (Fy).

Definition. We use jfollowing terminologies. Where f is a represeniative of f
«and T, etc., appeared in the definitions, arve assumed to belong in UAE)).

(). Fis O-normal if f(T)=0, where T(e,)=Tle)) for some k40,

(1). F is normal if AT)=0, where Tle;)=T(e;) for some i7j,

(ii). f is regular if f (S)=0, where S is written uniquley T4, in UME)) and
ker. T=£{03.

(iv). f is alternative it f(;T)=—f(T) for any i, where

t17“('97):7‘(8]): ]#27 l+17
t;T(e)=Tle;.1), 1;T(e; )=Tle).

(). fis differentiable if UME)) allows a (fixed) differential structure and f is
differentiable by this structure. Similarly, Lipschitz continuous Alexandes-Spanier
«cochain is also defined.

(vi). f is positive if f is real valued and fZ=0.

Lemma 1. If S=T+4,, then

(1) Sle;)=Sle;) for some izj if and only if Tie;)=T(e;) for some izj.
(2) f;ST—f,‘T‘l‘Aa.

Lemma 2. There exists non-trivial standard regular (or wormal or 0-normal)
Alexander-Spanier cochain of degree o of Ey with respect to UfAE)).

Proof. Since U dE)=IXE, E,)xE, and Whitney extension theorem is hold
for real valued differentiable functions on /2 (E, E,) ((18]), we have the lemma.

Theorem 1. There exists non-trivial standard alternative regular Lipschitz
.continuous Alexander-Spanier cochain of degree o of E, with rvespect to UydE)) if
E is a Hilbert space.

Proof. We denote the space of bounded C!-functions with bounded derivatives
on UjfdE) by CHULAE)) and its closure in C(Uy4(E)), the Banach space of
bounded continuous functions on UyA(E)) with ||f]|= sup. +|AT)|, by C{ULXE)).
CUUSAE)) is an infinite dimensional Banach space by a theorem of Wells ([18]).

On C{U4(E)), we define operators A, #=2, 3, , by
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Anf(T)=21 23 sgn (§)f6T).

n! 3EGH
Here &, is the symmetric group of #n-letters {0, 1,:--- , n-1} and 8T is given by

8Te)="Te 3ny), 0=i=m—1,
§T(e;)=Tley), izn.

By definition 8 maps Uy4(E)) onto Uyd(E)) because 84,=4, and each A, is a
bounded linear operator with ||A.]|=1. Moreover, since

Z}u Ty)|

66@
XJMHW}@RH

ﬁn/
,wggMﬂﬁ—nn—Muﬂ—nu
where M is the bound of the derivative of f if fo CHUJ(E)), {A~f} is equicon-
tinuous if feC {U4(E)). Hence by the theorem of Ascoli-Arzéla, there exists a
subsepuence {Au f} of {A.f} such that {Ax f} converges in CY{U4(E)). Then,
since CH{U44(R))) is dense in CYUA(E)) and Cy(Uyd(E)) is separable, we can choose
a subsequence {Ax} of {A»} such that {Awf} converges in C{UA(EY) if f belongs
in some dense subset of CHU44(E)). Then, by the theorem of Banach-Steinhauss

((5]), {Ax} converges to a bounded operator A on CYU.A(E)), because || Aw||=1
for each n”,

By the definition of A., for this A, we get
(3) AfiaT)=sgn Q)AT), 8€&,, n is arbitraly,
@ NAAT)-AST)N=M||T—Ts|l, if |AT)—AT)=M||Ti—Ts|].

To show As£0, we set

e(ﬁ):m’:zx. {0, - , k—1) | 8(i)=i, 0<i<kh—1},
for 83&©,. Then for T2 (E, E,) given by

T(ek) k+ 1ek+1’

we define a (conitnuous) function on {87|8e U”>1@n} by
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A fT)
L — DD A — D) — (12— D) ) v 1
=1l = =D+ (=1 —(n—2))+ +52),
we have Af(T)=1. Hence A0 and we have the theorem.
8. We denote by I=1I,, J=J4 etc., the index sets {#, - , 1pt (O=dy<lonenne
<ip), Uy reeee y Jat (0=41<-+--<Jq), €tc., and set
(5) E1={x|x<E, x:;xkek, Ky == 00,

etc.. For E5, we define a (continuous) isomorphism =T, Er — E by

(6) rl(eo):eo, ...... , Tl(ei1—1):eil-1, TI(ei1+1):ei“ ...... ,
Tl(ej):ej—rl (2.7‘<j<i7‘+1); """ ’ TI(eip—1):€i1,_p,
Tllipi)=Cip pit, o y The)=e;_p, (1 >1p).

If p=q, then we define zIJ:(IpJ by
»

(7) tIpJp:z'IP(rJP)‘l : EIP — EJP.

By definition, we have zIJ zJK:zIK and the following diagram is commutative,.

We set v, E.)=Ey; , Then r; induces the (continuous) isomorphism T
L(UE;z, Ey) — L(UEI, n, o).
Definition. To fix UUE)), a germ of continuous funcion f defned on some
dense subset of a neighbotrhood of (v, *)™* (A(E)) in (c; *)t (UAE)) (by the topology
r b
of UUR)) such that
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f((rlp*)‘1 (A))=0, acE,, f is defined at (erP*)‘1 (da),
at 4 1, (E):(z-lp*)‘l (d(E)) is called an Alexander-Spanier cochain of degree (co—p)
of Ey with respect to UAE])) (or U(AIP(E)) and Ip.

We denote the set of Alexander-Spanier cochains of degree (o —p) of E, with
respect to UAE)) and Iy by C~~?yciay, z, (Eq) or Cm“ﬁU(IVP @, 1, (o).

For the element of C*~?y 1, (E,y), we define standard, normal, alter-
native, differentiable, efc., similarlly as co-cochain. Especially, the set of
standard cochains of E,, denoted by s-C~2y g, 1, (Eo), or simplly, Co=2y, m,
7 (Bo), form a module.

By definition, z, induces the isomorphism z# : C®pye gy (o) = Co~2ysemy,
1, (Eo). Hence we have the isomorphism I # 1 Co=2y0, gy 5 (B — CoPymy &
(Ey). Then, since

ITgg4 I
¢ J ¢ K = K

we can classify UIp C==? yeacmy, I, (By) by
o, i =
(8) f~ gif and only zfg:zJ f)
7 = Cm_DU(d(E)), Iﬁ (EO): EE Cm_pU(d(E‘)), IP (Eo)y

and the set of this equivalence class can be represented by Cw—ﬁ&( a1, (E,) for
a (fixed) Tp.

Definition. The above equivalence class of {f}, may be denoted by f or f, is
called an Alexander-Spanier cochain of degree (co—p) of Ey with respect to UAE)
(or Uld, (E)) and the set of Allexander-S panier cochains of degree (co—p) of E,
with respect to UAE)) is denoted by Co—btycscmy (Eo).

For the element of C*—?ym) Eo, we define standard, normal, alternative,
differentiable, etc., similarly as for the element of C=—?ycsEy, 1 (Es). Then the
set of standard cochains of E,, denoted by s-Ce—?yuwmy (F), or Co—?ycsmy (Fo),
form a module.

Note. Similarly, although Te={i, dg, -~ 1 is an infinite set, if the comple-
ment of J in {0, 1, 2, .- 7} is also an infinite set, we can define Alexander-
Spanier cochains of degree (co—o) of E, with respect to UA(E)) and I. and
Alexander-Spanier cochain of degree (0o —c0) of Ey with respect to U(4(E)). Their
sets are denoted by C=—ywmy, 1 (Ey) and C*—=yumE) F.)
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By the same way, we can also define (oo -+ p)—cochain or (oo oo)—cochain.

4. Let M={(U, ha)} be a (paracompact) Banach manifold modeled by E,,
that is, {U.} is an open covering of M and for each «, h« is an homeomorphism
from U. onto E,., Then we can define a homeomorphism se* @ Ua X UagXeeeet —
L(E,, E,) (the topology of the infinite product Uax Usxx -+ is the weak topology)
by

© ha*((Eo, €1y oo )={T, Tle)=hal§;), 1=0, 1,--}

By 9), to set gup*=ha*(hs™)™!, gup* is a (continuous) isomorphism defined in
L(UE?b EO)- .
Lemma 8. gap™ maps AE) into AE).

Proof. Since we know

TAa:AT(a),

we have the lemma. In fact, we have h™((&, &, )=4, if and only if &=¢
e =€ and a=h(€). Then we get

Zap (Anpced)=Adnace>.

Definition. The collection {(UaxXUaX ++-+- , ha®)} is called local E-product of M
and denoted by W4, (M).

Definition. We set AU.)={& & - ) | é€Us} and call the element of {{4dya,
ho*)} in WA (M) the diagonal element of W4, (M)) and the set of diagonal elements
is denoted by 4,(M).

By lemma 3, we may define 4,(M) by

(10) ag)=U gyiae).

Definition. We fix UAE)). 1If g* maps UAR)) into UAE)) for any (o, B),
then we call Wd(M)) has the UAE))-structure,

Example 1. W4,(M)) always have Uyd(E))-structure.

Example 2. If M is a Hilbert manifold and (e;, e, -+ ) 1s an O.N. -basis of
E,, then lI(AE(M ) has Uy(E))-structure.

We assume W4, (M)) has the U(4(E))-structure. Then we set

(11) U(AE(M))ZLQJ (ha*) (UIAE))).

We that note by (10), we have 4,(M)c Ud (M), ‘
Definition. A germ of continuous function f defined on some dense subset of a
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neighborhood of 4 (M) in U, (M) such that f vanishs on 4,M) is called an
Allexander - S panier cochain of degree o of M with respect to U(ME)) and the set
of Alexander-Spanier cochains of degree co of M with respect to UAE)) is denoted
by Coucamy (M)

As in ne2, we define standard, normal, alternative, differentiable (if M is a
Banach differentiable manifold), efc., for the element of Coyumy (M) and the
set of standard cochains of M, denoted by s-C=guwmy (M) or Coyuwmy (M),
form a module.

Similarlly as theorem 1, we have

Theorem 1'. If M is a differentiable Hilbert manifold and W4, (M) has the U,
(A(EY)- structure, then there exists non-trivial alternative regular Lipschitz continuous
Alexander-Spanier cochain of degree <« of M with respect to UfAE)).

Similarlly, to define %1, o«* @ UaXUasX o+ — L(U Er, 5, Ey) by
(9)' hI, a*«EO, El, """ )):Ty T(T]—l(ei)):ha(Si),

we define H(AEI (M)) as the collection of {(UaX UgX ++++-- , k1, o*)} and dg, (M) and
U(4r,(M)) are also defined similarlly as above. Then using U(AEIP (M)), we define
Alexander-Spanier cochain of degree (co—p) of M with respect to U(AE)) and I,
as in n°3. Then since Aq, «*=hs* ;7! and the diagram

L(U Ey, n, Eo)

{IJ p
-1 -1
TI TJ

LU En Ey)

is commutative, we can define Az P 5, W4, (M) — u(AEJ (M), and therefore

Ey
we can define Alexander-Spanier cochain of d%gree (o0 —p) V\fith respect to U(A(E))
as in ne3. The sets of Alexander-Spanier cochain of degree (co—p) of M with
respect to U(A(E)) and I, or with respect to U(4(E)) are denoted by C=~?ucicEy, 15
(M) or C=—?ycacmy, (M).

As co-cochain, we define standard, normal, alternative, differentiable, efc.,
for (co-—p)-cochains and the sets of standard cochains, denoted by s-Ce—?ycEy,1
(M) and s-Ce=?pumy (M), or Ce—tyumy, 1 (M) and C°—?guwmy (M), form
modules.

Note. As in n°3, we can also define Alexander-Spanier cochain of degree oo
—oo of M with respect to U(4(E)) and I~ or with respect to U(4(E)) if I» 1s an
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infinite set and the complement of fo in {0, 1,:-- - 7} is also an infinite set. These
sets are denoted by Co—=yu@Ey, 1 (M) or C®—>yucmy (M)
Similarlly, we can also define (co+ p)-cochain or (co+ oo)-ochain, etc. .

§2. Operations on Co—27my (M)

5. By definition, we can consider the addition and the (scalar) product of the
continuous functions on M for the elements of Ce—?yuumy (M). Moreover, by
the proof of theorem 1, we have

- Lemina 4. If M is a differentiable Hilbert manifold, then the alternation
operator A is defined on D>—?yamy (M) and non-trivial if UdE)=UyNE)). Here
D=2 acmyy (M) means the germ of those continuous functions of U(AEI (M) at 4y
(M) that can be uniformly approximated by C'-class functions with bounded derivatives
of U(AEI (M)).

To define the product of (co —p)-cochains efc., first we define

Definition. Let I={iy, is, -+ Y oand J={j,, jo, -+ YV be two index sets tuch that
I N J=@. Then to set El={x|x € E, x=>, %, ¢,, %,=0, k € I}, Elu={x|x

=5 i eip } ete., for Ty & L(UE’n, E), T; L(UEJH, Ey)), we define an

j=

I
element T\/T; of (L) E UJ”, Ey) by

(12) (TN Ts) (e)=T1 (ey), i € I, TNTy) (ey)=T3 (ey), j € J.

TuJ
We note that if 7 e LJ B~ , E), then there exist T € L(J B! , Ey
and Ty € L(UE-’ , Ey) both uniquely, such that ,
n

T=T\/Ts.

Starting from EI, we can define the set of Alexénder-Spanier cochains C!
wcacEyy (M) by the same method as in §1. If I is a finite set, then U(AI(E)) must
be equal to L(EI, E,) and therefore we write Cd(M } in this case. Here AI(E) is
.defined similarly as 4¥(E).

Definition. Let I and J be two index sets such that I N J=§ and UINI(E)),
UJIE)) and U4 (E)) are given to satisfy

) TVTe e Ud (®)if Ty € UA(E), T, e UL E),
Y  T=TNTy Ti € UAE), T.ec ULE)if T e U4 " (E).

Then we define fg & CIYIUWINIE) (M) for T e CTUUNE) (M) and g e C'U4”
{E)) (M) by
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(13) Fe=TJg, (fg) (T)=f(Ty) g(Ts) if T=T\/Th.

Similarly, if M is a differentiable Hilbert manifold, we define the inner

product 7AZ e AD U U7 (EY 1) by

(13y TAE=IN\g fAg=Alfg)

Example. If I is a finite set, then for Upd " (E) and Up (AXE), or for Us
@ (B) and ULAAE), UMAYE)) satisfies the assumption of the above definition.

Definition. Let I and J be two index sets such that Iis a finite set, J contains
I and the complement of J in {0, 1, 2,----- Y is an infinite set. Then we call Ud

(E)) satisfies the condition (P) if U4 {E)) and U(AJ_I(E)) are given by

Uld {(E)=(c ) (UAE)),

and the triple U4NE), U4 AE)) and U(AJ_I(E)) arve satisfy (p) and (p).

By definition, if U(4(E)) satisfies (P), then for any f € C?(M), the set of
Alexander-Spanier cochain of degree p of M, p< oo, and g € Co—ayumy (M), g
Zp or g=oo, we can define the product fg & Co—etoymy (M). Espesially,
since UAE)) satisfies (P), fAg &€ AD=—a+syumy (M) can be defined if f is
differentiable.

6. By the definition of C*~?gcaEy), IP (M), we have the isomorphism z# : C
o=dyacEy), I (M) — CopuEy M). For I=Ip ¢ J=J,, we set

¥ 5
(14) nl‘,zrlg (cy V2 Co—tyamy, 1 (M) — C==tyauw, 5 (M).

By definition, we have for ICcJCK,

I J I
(15) LA e .

In the case g=p+1, we have J=[I, k]={iy, , ip, B} (I={dgy oo , ip}) (B
may be smallar than ¢; for some j) and we denote

I

(14) T = .
I, K LI, %]

Similarly, we denote

(14)" T =a! .
I, k, kR [, %, k']
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Here [I, k, k'] means [[{, £], #'] but assumed & <.

On the other hand, we denote the cannonical isomorphism from C®—?ycay)
(M) onto Co—2ycucmy), 1 (M) by p,. Summarising these, we have the following
commutative diagram. Here pz, » means prr, #].

Co=ayEy (M) Co=tycacryy (M) (@>h)

pl\' ‘Ip r
N V
Co—aycacmy, 5 (M) C=tucaumy, 1 M) ~——— C" w1 (M)

¥
#A
TJ ‘ /T’/ J 71'1' 5 ‘0], A

C=ycamy (M) b Co=ODyEy, 1, k1 (M)

[4, #]
¥ I kR

i, k1 Co= Dy, o, b k1 (M)

Oy

Co=+Vyamyy (M)

For & € I, we define an integer v(k)=v (k) by

(16) ryle)=eo (B

Definition For f € Co—o—1lyumy (M), we define a jfunction o1,4f) (), cC,
‘Re. 2>0, by

(17) o, « () (A) (T)

- éza(—l)wk) e-vmy 4or 1f) (T).

Lemma 5. If UARE)) is contained in Uyd(E)) and the inclusion UAE)) — Uid
() is  continuous, then o1, « (f) (A) (T) is holomorphic for Re 1>0 and

iz'w(z). dr, L F) () (T)=0 for any T if Re. «>1.

Proof. By assumption, | z, k(pl kf) (T) | is uniformly bounded (in k). Hence

‘we have for some M >0,

(18) 13, ()@ (D) | = 2 | 2 |Rese-nmei i
_ M | 2 IRe.a

R Re. 1>0.
"Therefore we obtain the lemma.
In the rest, we assume 0 << Re.a < 1.
Note. By (18) and Fatou’s lemma ([9]), if Re.a=1, then
im, g 01, « (F) (0+48) (T) exists for almost all £,
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Definition. If lim. 1 - o 31, « (f) Q) (T) exists, then we define o1, « (f) by

(19) o« (f) (T)=lim. 81« (f) () (T).

10
Since 01,4 (f)=42—# o1, (f) we have
or, () (T)=0, if o1« (f) (T) exists and Re. (f—a) >0

Lemma 6. For any I, Jp, we have

(20) pr7t 01« (f) (4) (T)=p, 1, o () @) (D).

Proof. By the definitions of p; and =, £, We have

-1 -1 .
Oy I & OI k=05 T, k01, k0, U 0 (R)=0,(R).

Hence we have the lemma.
Definition. We set

(21) 0l f) B (T)=p, o1, « (/) @) (T),
(21) b (f) (D)=lim, b0 () () (D).

By definition, &« is defined in Ce—?2—1gyamy (M) and maps it into C*—2ycacm)
M),

Theorem 2. 50« 1S equal to 0. That is, if 0« (f) (T) exists, then

(22) tm, lim. 0,0 f) ) () (T)=0,

A=0  u—0

if UAE)) is contained in Uy (4 E)).
Proof. By deﬁnitioh, we have

o1, A0 £l () (T)
=22 (— 19 ev kY 7y (o, da S (T)

kel
v (k) v (k) oy k](j)
W S IR Sy
e ed(~1) Ty, W0, D

_vrr, Rde
e ' zy, g, 5 (er x5 ) (T)

—ape 20 (=) 19D (TP,
ky g€, k<)

N N
—e A ) my, o, (o, g, 5 1) (D)
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=((k~p)A+pu) ~(pA+(k—p+Du
:/Z‘u“(z](‘l)k (Z e —e )
k<k =k

-1 -1 -1 -1
1, vy (), vy, G=ptD) PLowp G, vp o GR=phD N (T)
~((k=p)A D ~(pA+Ch—p+Da)
20 (1 (2 e e )
>k p<k

—1 -1 -1 -1
Ty, oop U vp , CGe=p+D PLovp- (0, op , G—p4D ) (T).

Then, since 6. (f) (T) exists, we have by (18),

k (k=D A+Du) =(pA+k—p+1)7
20 (=1 (e —e )
E>K <K

~1 -1 ~1 -1
g, o ), v k Ck—p+1) PI, vy (R, L) A (k—p+1) f(T) I

Le|A|-t] p| Re o
forfgiven ¢>0 if K is sufficiently large. On the other hand, since

. ~((k=p)A+pn) ~(pA+R—p+Du)
lim. Z (e —e )
=0 <k
-1 -1 -1 -1
Tf, op G v g G=ptD PLowp (), vy Ge=pHD AT)
~(k—p)2 -p2) -1 -1 -1
e - BL ooy G, vp , Ce=ptD) PLoop G, vy,

=

“Yp—pr AT)=0,

we get

k =((e~DYA~+pu) - DA+ (k—p+1Du)
| (~1) (2] e —e )
RSk <k

-1 -1 -1 -1
TLoap U vp , GeptD PLovp G0, vy, GeeptD) F() ] <
for the above e if | | is sufficiently small. Hence we obtain

| 01, 0af(ps)) @) (T) | etel|a||p|Re e,

for given ¢>0 if | ¢ |is sufficiently small. This shows (22).
7. The following lemma owe to Dr. Matsugu.

Lemma 1. If {a.} is a series such that lim .o an=0, then
z—1

lim. (z—1) Q) an 29=0, |z | < 1.
n=0

Proof. Since (z—1) (Z‘_, an ,zn):_a(,qtz,@1 (Gn-1—ax) 27, and we know
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k
lim, (—ay+Y ) (@n-1—@n 2n)=—ay,

z=1 n=1

we have the lemma by Abel’s continuity theorem.
Corollary. If f & Cm_qUﬁ(d(E)) (M), then 6,f is equal to 0. In general, if
U (4E)) satisfies

©) lim Tie,)=0 if T € UUE)),

h—co
or more general,

cy ]lim T(eq;, —€s4,-1)=0, or /lzm T(es;,~—es;,.1)=0,
R— 00 R—r 0O
then 8.f=0 if f & C=~tyuwm) (M).
Proof. We set

3./(2) (T)

:1(2 (_1)k e—kl WI' Z,I—l(k) AoI, yI -1 f(T))

k=0

=@y ekt (1—e) m,  “law o, “lew AT+ ] e-Gh-0i
E=0 1 I k=1

1 —1 -1 -1
(T, o, @B 01, 0y @ ST =ay - pg o o ST

Then by (18), | (1—e) Z,:o ezt my ulﬁl(zk) 1 o “law F(T) | is bound in 2
On the other hand, to set A=log 2z, |z| <1, Re. z > 0, we have

. i -1 -1
lim 2> e-@k-D1 1 (k) P oy J(T)
A0 f=1 1, vy I, vy

-1
=Ry 0, @001 5, ko S (T))
=0

by (C) and lemma 7. Hence we have the corollary.
We assume U(4(E)) satisfies the condition (P). Then to denote 4,, o the
operator in L(E =, E) given by

Ay, o (en)=a, a € Ey,

we define the map &1, », o : Co—2yawy, 1, (Eo) — Co—2~lyumy, 1, »1 (Bo), nelp,
by
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(23) (1, u, « /) (Ty=FT\/ 4u, a),
e C==tyuwmy, 1 (E), T € (r1, v3%) U@

Since we know
kl, n, a Pr f:kJ, n', a pJf,

if n e I, ' € Jand v,(n)=v,n'), we define the map km, « : C~2ucam) (Eo) —
Ce—2-1gaum) (Ey) by

-1
(24) km, a f:kl, vy (s a O 1.
Theoremm 3. If UAE)) satisfies the condition (CY, then

(25) lim 2-%(ks, o (0 fR) (T) +0a (ky, of) (&) (T)=S(T).

A—0

Proof. By definition, we have

2olls, o Gr, « FO) (D101, 5 (b, af) () (T)
=k, o (24 (~1) ey, o pr, "l AT)

nz0

_ —nk -1 -1
+n§0 (=1) me=nt mp, o, %1 1 ) P, 1, oep, 1y P ky, o S(T)

eyt ST L) ) (~ 1 et oy a (g, ~Yo) (o, o, 00f) (T,

I n=0

Then, since (1—e-4)=0 (1), 12 |0, we have

lim (L—e-%) (3] (—1pn e-nt ky o (x) by (o ;ton S) (T)

A0 nz0

=0,

by the corollary of lemma 7, we obtain the theorem,
Note. Since we know

Z“' nay—n:O(___l__)’ Re' @ > _1: ¥ l' 1:

n=0 (1—7)+Re. «a
if UAE)) is taken to satisfy such that if T e U(4(E)), then

oy | Tlezy,—esp-1) | =O(RS ), or | T(eg,—esy.1) | =O(Re ),
—1 < Re. a < 0,

we have for f € C~—tyumy (E),
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és (f) (T)=0, Re. 8 > l+a,
Orsa (8,S) (T)=0, if 8,1 exists,

We also have that by Fatou’s lemma, lim,.ig d141e flo+it) (') exists for almost
all ¢ in this case.

§3. Integration of Alexander-Spanier cochain of degree oo,

8. We denote by £y the infinite product EyXEyx - ={(x0, %1, g, -+eee ET
e E,} of E,. The diagonal of Ey> is denoted by 4(Ey~). In Ey>,” we denote by
D a subset such that

@). Dn4d (E>)7#0.

Gi). If x+a € D, a € AEy), then tx+a € D, 0 < ¢ <1,

(iii). D can be considered to be a C~ -class Banach differentiable manifold and
the topology of D by this structure is not weaker than that of the induced topology

of (the weak topology of) Ey.
Then, if f i1s Fréchet derivable on D, and satisfies

(26) F Zo, Fiy Fayoeeo)=0if xi=x for some i,
then we have

fla, a+Hx,—a), ati(xg—a), )
=dy, fla, a, at+lxe—a), )t —a)y>to(| £ )
=dy, <dx, fla, a, a, at+i(xz—a), - ) HE—a)>, Hw—a)y>—+o(] 2 )

‘:tk <dxk <dxk_1 < ...... <dx1 f(a, ...... , a, a_l_t(xkﬂ_a)’ ...... )’ (x1—~d)>, ,,,,,, >’
(Hr-1—a)>, (xp—a)>-+of| tk+]),

for any k if fla, a+txi—a), a+ixs—a), - ) is C= -class in . Here dx, means

Fréchet derivation in x;. For simple, we set

(27) fk(a: X1, Xgy ceveer ’ t)
=dyy, <dgp-, - Ldx, fla, - v Gy At HXpei—a), (X—a)>, e >,

(Kp-1—a)>, (xr—a)>.
By (27), we get

(28) fla, a+t(x;—a), a+i{xe—a), - )
:tkfk(a, Xy, Kgy ereers , t)+0(l th+l l).

On the other hand, since
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= sup. ||day, <dgy, ooooldsy fla, oy @, a+l0n—a), ¢>0>, 6>

lle;l1=1
[ 2—ay []eeee [l %,—ay 11,

we may assume that there exists a continuous positive real valued function gz (a,
Kpaty sreee , 1) such that

(28) | fla, a+tx1—a), a+i(xs—a), - )
gtkgk(a’ Kpigy ooeeee s t).

Moreover, to set

we may assume that
(29) Ifm(a9 xl’ Koy eeret » t) l é t-m Gk(a; xk+1> """ ) t)) 0 < t< 19

is hold for any m if m=lk.

Definition. Let G{x, t) be a positive real valued function on Ula)x[0, 1,7,
where Ula) is a neighborhood of a in D N 4 (Ey>) and {cm} and {em} be serieses of
positive numbers, Then we denote

flb, b+Hxy—b), b+ixs—b), -+ 1=0(G), with respect to {cm} and {em?,
on Ula) if

(30) | b, Xy, creee Xy, vereee y B = emt-m G, 1), 0 < t <lem,
(b, X1, Koy veveee ) = D, b (= U(a),

is hold for all m, m=0. Moreover, we denote

fb, b4t(x,—b), b-+ixz—Db), - Y~G, with respect to {cm} and {en},
on Ula) if (30) and

(30y | fnlb, %1, g, eeeee , B 2w t-m GO, ), 0 <t < &,
' m=0{en}), ¢m=0{em})

.are both hold.
Example. We set a:Z/:l a;, e, and assume a,70. We also assume (a, a+

5y, attaly, oo ) € D and to set

x/i:Z} xliner, 1=1, 2, +ere ,
k=1 )
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we can take a series {#(:)} such that

0 < & < | &, md |, (@, atix!y, attxls ) € D, i=1, 2,
la] > lai—ti| = | artedaly, oli) [, 140, | ¢ |=1

Moreover, we assume that there is a series {#;} such that
(r;+1)

zi" s “a) <

as

Then, to set

fa, a+itx'y, atixly, - )

=3 (1_d1+€itx'i, ﬁ@) ¢ G Gy,
ay
v
1 (a}etx!; n(-))”"
(e:tx! . )= — (L= g, PR
gz(eztx i ni )—m2:1 m( alt L
fa, at+ix!y, attxly, - )=0(G) with respect to {¢n} and {en}, where G, {cw}
and {ex} are given by

Gla, t):i (1_%) e-gi(—tei)’

=1

Cm="5up. 2] —log 7; | ,
E2 , n({)

an=sup. {Izt g, wo) | < om 0 < v < e},

xt i, n(i)

Definition. If we can take the above G, t) to be

. 1 . ) Lo
(31) G(b, t)_m, Hb, t)is an entire function in ¢,

Then we call f to be class H with respect to {cn} and {ewm}.
By definition, H(b, f) has essential singularity at f=co and to set H({b, %)

—~Z cn Yt», we may consider ¢, (b) > 0 for any # and in this case, we have

lim Cn+i(D ) 0.

nco Cnlb)

9. By the map j : L(UE,, E,) — Ey given by
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J(T)=(T(eo), T(er), Tlea), "),
there is a | to 1 correspondence between L(U E;, E;) and E,> and we have
JAME)=AEy), jda)=(a, a, ).
Hence jJIUAE)) contains 4(Ey°). The conditions (ii) and (iii) of no8 are changed to

(i)’ T+de € UE) implies tT+4, € UAE)0 <t < 1

e $4

(idi) U(ME)) has the structure of a Banach differentiable manifold,

.of the conditions of U(4(E)). Moreover, j*(f)is O -normal if and only if f satis-
fies (26).

Definition. We assume U(AE)) satisfies the above (i) and (iii)y. Then a diffe-
rerntiable standard O -normal Alexander-Spanier cochain of degree ~ of E with
respect to UAE)) is denoted

Slp+tT)=0(G), with respect to {cwm} and {em},

near a if (%)) (Ao +tT)=0G) with respect to {cwm} and {em}. Similarly, we
define fldp+1T) ~ G and fldy+iT) is class H as above,

Note. Although f is not differentiable, or more weaker, U(4(E)) does not
satisfy (iii), if for each m, there exists a series {gm} such that

(32) | (7%71) (@, attx—a), attlng—a), )|
é tmgm(a’ Xmaty Xmggy oo 3 t), tz 0

and for these {gm}, Wwe get
(32), Igﬂl(b) xm+17 xm+27 """ ’ t)' é cmt—m G(b, t), O < t < Em,y

then we also denote f=O(G) with respect to {cwm} and {ew}. If G satisfies (31),
then we call f to be class H.
By definition, we may consider {c¢»}=0(1) in this case. In fact, we have

[ (7)) (b, b+t =), =) | = em GO, 1), 0 <t < em,

for any m by (32) if (32) is hlod.
Lemma 8. If sup. (%, %y, -) | (5Y) (@ at+t@—a), at+i@—a) )|
exists for 0 < t < ¢, then to set

Gla, t)
- Sup~ l ((]*)—lf) (al a+t(x1_a)r a—l—t(xz»—a), """ ) ]’ 0 gt < &, f:O(G) 'Wlth

(x1, £2,70000)



24 AKIRA ASADA

respect to {1} and {c3.
Note. If f(4p+¢T) is C=-class in ¢ and f is O -normal, then,

| f(dp+2T) | =0(tm), t — O, for any m > 0,

it is not so restrictive that to assume the above G(a, t) to be oim) for ¢ | 0 for
any m > 0. Hence it is also not so restrictive that to assume there is an
analytic function H{a, f) such that

Gla, ) < gty Hla, H=3] cualtn, cila) > 0.

n

10. Let {c¢.} be a series of fpositive numbers such that limy—c,=0. Then
assuming Ey to be a real Banach space such that

we define a subset [o, {¢a}] of Ey by
(33) Lo, {cad]={x | 2= x40, 0 < %, < ;).
=

By definiton, mf. [p, {cx}] is non-void in E,.
For {cx}, we define a power series H=H {c,x} by

By definition, H(¢) defines an entire function and along the real axis, we have
limioH(f)=c0. More presisely, we get lint; .o t-kH(t)=oc0 for any k.
On each interval [0, ¢,], k=1, 2, , we consider a partition

O:xk, o < Xk, 1 < ...... < Xk, my, < Ck’ k:l’ 2’ ...... .
Then, for an index set J=(ji, fo, -+ s JEy e ), we set
X =>) %, j, er € Ey,
J k=1
xJ-l—l_:é xk’jk Ek-{—x,', ji+1ei) 1:1: 2: """ y Xiy m,’+1:ci-
1

For the index set J, we also set



Alexander-Spanier Cochains of Degree co—p 25

[J]k:{']| J:(jly j2) """ s jk) O’ O, """ )}!
DNe=[T1e—[J k-1, £ = 2, Uh=[J

Definition. We call UAE)) satisfy the condition (Iy., (37, if there exists a
series {ex} such that {c,}=0(.) and

J~4%x g, Yppny Fpay ) € Uldy) for any x; € [o, {ca]],

if | Xy pg —%n, pesr | ew for any m and pg.

Definition. We assume UME)) satisfies (1 )Ea’ )T Let f be a standard Alexa-
nder-Spanier cochain of degree oo with respect to UAE)) of E, with the represen-
tation f. Then we define the integral of f on [o, {c.}], denoted byJ[,,, e )1 f, by

(34) {co, et

"
= lim lim

( ]”l(f) (x X X eeeees )).
¥k, pg ¥k, pgt1l 70 Mo k=1 MEWY, oy

1 2

Theorem 4. J’E”: oy f exists if fis class (H ¥ with respect to {M} and {en].
Proof. For each fixed k and the partition O=xg, ¢ <xp,1 <l--eoe: <Xk my, <Chy
we assume

| %y par—%yp | X8, 8 < en.

Then we have by assumption,

|20 ) Gy gy By |

JE Dk
S e V) g Xy s Ky )]
S:JE[J:Ik |f—1(f) (xJ, xJ+11’ x*”’lz’ ______ )|
=2¢icpeech sup. | fm (%5, ey, g e, )|

1
gzMﬁlcg """ Chr t‘km, 0 < t < &y

because x; +1, =% 7=, ige1—%5, j) er. Hence we get

”

D3 ( 23 ) G Sy Fpgy )
k=1 VJEW, 7 Y

243

=271 JUS) %y Xy oy Xy, )
a2, T e ey Fa,
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n
1 .
_S_g OMeiCyereee- th—km, 0 < t < min, (g, , em),
<2M,
if the partitions 0=%z, o <%k, 1 <-vree <Xk my <Chy, B=1,0een , m, are taken to
satisfy /
| Xk, par —Xky p | <mim, (gg, +eeeer , em), k=1, , m.

Hence we have the theorem.
Note 1. If fm = O for large m and f ~ (H(1/f)-* with respect to {M'} and
{en}, then we have

J[a, wpn f =z M.

Note 2. If f is class (H{.,}) with respect to {M?} and {e,}, then we have

[[a, sea1f
= lim lim ( FAFY (ry Esr ) Foppn s eeeene )
xk, . _xk, Dq+1 =0 m—oo fmg JE(J)k J J+11, J+12’ ) )
for any s.

11. Since [, {cn}] has interior point in E, by assumption, we can consider
(continuous or) differentiable map ¢ from {0, {c,}] into M if M is a Banach
differentiable manifold.

Definition. ¢ : [o, {cu}] — M is called non -degenerate at x € [o, {c,}] if
for any (relative) neighborhood Ulx) of x in [o, {cn}], there is a neighborhood V(x)
of x in [, {ca}] such that

Viz) < Ulx), hol@(V(x) has interior point in E,,

Here the manifold structurve of M is given by {(Ue, ha)} and V{(x) is assumed to be
o(V(x) < U.

Definition. Let M be given UM(E))-structure by local E-product WA M)). Then
we call UME)) satisfy the condition (I} 0, 1 if Lthere exists a series {e,} such
that {c:}=0{en}) and

(90(9‘7,]), 90(xJ+ll)’ go(xj*_lz)y """ ) & u(dE(M)))

Sor some WAr(M)) and for any x5 € [o, {ca}] if
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| %y pg—%n, D | < en, for any n and pg.

Definition. We assume UAE)) satisfies (Doro, c1. Then for a standard cochain
F € Copamyy (M) with representation f, we define the integral of f on ¢[o, {cn}],
denoted by L,D eyq o 0

(34 L‘,[a, en

m
— lim lim (
1%k, pg %k, pgt1 170 Mo k=0 NEWD

Note. To set
So*f(xo, X1, Xg, e )=f(go(x0), ga(xl)’ gD(xg), """ )y f & COOU(A(E)) (M);

we have

— *
Jw[n, )] f ”“J’co, eyl /.

Here ¢*f is identified to j*e*f) and the integral of the right hand side is the
integration of o« -cochain of E, defined in nel0.

By the definition of the integral and theorem 4, we get

Theorem 4!, J'{p[a' ) S exists if o*f is class (Hy,,) with respect‘ to {M?} and
{en}. Moreover, if ¢*f satisfies the assumption of note 1 of nol10, then er[u, ) I

0.
As usual, we define the chain y of M by the finite formal sum

=33 i, Lendl

Then we define the integral of f, a standard oo —cochain of M with respect to
UMEY, on 1, denoted by |, by

(35) szi‘, aijwi[g, SEL

i=1

Here we assume U(A(E)) satisfies (I)pis, cm1 for each i.

On the other hand, we get by the definition of the integral

(36) JT<§ bifi> :,Erl szTfi:
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if JT f; exists for each i.

Deﬁnition. We call f is absolutely integrable on y if y is given by Ei a;p; o,
{c,}] and Jw-f"x w1 | S exists for each i, Here | f| means the oo—cochain with
representatioln | fnl.

Definition. We call UAE)) satisfy the condition (S) if UME)) satisfies (I, icn3
(07 (Doto, tew) and L' 3=0({cs}), then UME)) also satisfies (I)s, w1 (07 (Doto, ')

Definition. For 8 & & ,, considering 8 to be a z‘mnspoéition of {0, 1,
m—1%}, we set

(37) 6[01 {_Cn}:l:{x | .’)C:E xkek’ 0 é xk _S_ CQ (n)y ‘3(%):%: n Z m}o
k=1

We note that by definition, we mayewrite

8o, {c,}]=lo, {3}, Lc3m}I=0{ca).

For r:Z‘,i aipilo, {c.}], we set

S

(37)! 8()=> aipi( 8[o, {c,}1).

i=1

By theorem 2 of [4], we have
Lemma 9. If f is absolutely integrable on y and alternative, U(A(R)) satisfies the
condition (S) and (I)q,i[,’ a1 JOr each i,then we have

(38) [, o, F=sente)| 7,

for any 8 € & m, m is arbitraly.
§4. Integration of Alexander-Spanier cochain of degree co—p

12. Definition. If Ud(E)satisfies (I)s, ©n1 and [ is a standard cochain of
degree (o—p) of E, with vespect to UAE)), then we define the integral of f on

71_1[07 {Cﬂ}] by
#
(39) J o e f :J[v, fe,}] (e )4
Here, the right hand side is the integration of (rf)-lf € Covumy (Eo) on [0, {ea}].

Note. Directly, J’ f is defined as follows: We set

-1
ey Lo {c,1
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. -1 . .
Ji=Uy s Jyp @y Fyy o),
(J4+1:)1
- . . -1 . -1 . =1
:(]UI (1), ]UI [COPRAAA ’ ]Z)I (-1 ]UI (i)—i—l, ]”I Ga)y =m0 )’
[Jrle
=L | Jr=0, 7, Jo e ey Jo 7y, 0, 0,00,

Une=0Jrle—[Jr]k-1,
= . _1 —1
1, g x]uI w frp T

. -1 —1 . -1
21 x,vl k) €y (k)+x,01_1(l_)+1 R .

X, =
T £

‘Then, since we have

1
T o, tenD

:{x i x:gl X,

ke, "k, 0= %, Tlay < Ck},
I I I

1
I (o, {eat]

S by

we may define J

-1
(10) J’I Lo, {en}]

= lim lim

= JYS) (x
I,
1‘—»0 M—roo k=1 (JIE(JI)k I

120 p =100, 2, "va'"l(k), Pq+
x , x PR ))-

(J+1I (T+1201
Definition. Let ¢ be a continuous map from v;~o, {c.}] into M, a Banach

-manifold modeled by E,, and assume UME)) satisfies (I)y¢z ;—1ro, 1en). Then for a
standard (oo —p) -cochain with respect to UAE)) and I of M with the representation

J,swe define the integration of f on ¢lc;~o, {ca}]), denoted ’by J’ w(rz_lta, €D J, by

(40y _‘.w(q—l[a, regn
— — %
“Jr; 't, ey ? f

= lim lim (
1 |0 m—oo k=1 JIE(JI)k

oo

S (s )

%o =1, 2, %0 g 00, o+

90(x(1+11)1)» GD(x(JH)Z ,)’ """ ))-
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By definition, we have
#
(39)' f«o(q—lta, %) f :Jtv, )7 (e ) He™S),

and if f is 0 -normal and codim. ¢(z;~t [0, {ca}]) is defined (for example, if M
and ¢ are both differentiable), then

Jotermtte ey 7=0 if codim.ole T, {exF) # .

By (39) and (39)!, we obtain

Lemma 10. If ¢, : v, {cx}] — M and ¢, : w5 '[o, {ca}] — M are given
to satisfy

(41) o= 5
then we have

I, [ _ Iy
(42) J‘ s r ey S ”‘JTJ o, 31 €N

_ I
(42)f J«q(r]_lta, ) D f_Lq(rI"lta, €D € 7.

By lemma 10, to define a singular (co—p) -simplex of M to be the equivalence
class of {¢,(r; 1[0, {cx}])} by the equivalence relation ¢, ~ ¢, if and only if ¢,
and ¢, satisfy (41), and denote this equivalence class by ¢e-z[0, {¢x}], we can
define the integral of a standard cochain f € C>=?2yum@E) (M) on @e—plo, {catl,
denoted by jgow_pcﬂ’ {C"}]f’ by .

(43) J%o_z,[n, w1t :J«q[u, 1 orf.
As usual, we define the singular (co—p) -cochain 7 of M by the finite formal
sum

S

T=Z aror (TI(k)—I[O', {ency 1),

k=1

Where I(R)={in, 1, y Gk ph 0 Kodny s <dkyo <loooeee ik, p, for each k. ‘Then if

U(A(E)) satisfies([) for each %, we define the integral of a stand-

erGIry 1[6, et
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-ard cochain f of degree (co—p) with respect to U(4E)) on M, on 7, denoted by
Lf, by

S

! = —1
(35) J'Tf Z akak(rl(k) Loy {en)tD orf.

k=1
“Then we also get
v

(36 L ,Z:E bifi=Z,' biJT fi,

1=1
(38) Jg o f=sgn (8 )JT f, if f is alternative and U(AE)) satisfies (S).
13. For [0, {cx}], we set
\ .
Lo, {Cn}]k:{xl x= D] Zmem, 0 Ziwm < cm},
m=1

[0, {esFlomi={ | 2= 3 tnem, 0 < #m < om),
Mm=41

[, {Cn}]xk=ak

:{x | % =akek+7§k Xmem, 0 < X < cm}.

‘By definition, we have

[01 {C”}]:[U> {C"}]kx[d, {Cn}]oo—k,
(@Le, {endlr)xLo, {cn}leor

k .
'—‘; (—1)-4[o, {Cn}]xfo—[% {c"}]xiw,«)XEG’ {en3Joo—r

‘Here o, {c.}]x means the usual boundary of % -cube [, {cx}le.

Lemaa 11. Let U(AE)) satisfy (S) and (I) 14, 1 ad f & Co—lycaumy) (By) to be
-standard and py, f is class (H, ) with respect to (M) and {ex}, {en}=O{cn}), on
Lo, {cn}]xk=0 and [o, {cn}jxr% for each k. Then to set .

(44) orLo, {ca}] ()

k
=31 (—1pt emo0i (o, {eu¥], Lo, {eaF], _, )

m=]
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limk%o'[ak[,,, iy S oexists if Re. () > 0 and we have

(45) [, oy F=007), Re.2 | 0.

f—oo0

Proof. By assumption and theorem 4, we have

outor s |

_mz e-(m-1) Re. A{IJ f|+lj fl}

La, {En‘r]xm=o Lo, {C"me:%

k
éZ‘, e-(m-1) Re. 2 AM

m=1

£4M

=]1—e-Re.

we have the lemma.
Definition. We set 0,0, {c,}] (A) to be the formal sum

(44) 0o, {c}] ()

oo

E 1)m-1 22 e-On-11 ([g, {Cn}:lx =0 —[o, {C"}]x =™

By lemma 11, if f satisfies the assumptions of lemma 11, then we“can define
J‘aa[a, ey 03

lim
sz[lf i STk MJ%E«:, }vmm‘f’

if Re. «>0. Moreover, by Fatou’s lemma, limtqoj f exists for al-
most all £ if Re. a=1,
Definition. For an (co—p) singular simplex with the representation oz,

{cn}Y)), we set

balo, {e,}](t+is)

(44) dap(rr~tLo, {caT]) (4)
=gl Y0ulo, {ca3] (4)

;’Z (—1)ym-1 2« e'v(m—l)" V(QD(TI-I[U, {Cn}])xybl_l(”ozo _
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=z, o, {ca}])

va—l(m)Icm)).

Here, (v,~'[o, {cn}] is defined similarly as [o, {cn}]

.2/_(1

1( 1=
Similarly, for y= Z}kdkgok ()t Lo, {ea}]), we set

(44 aaru):kﬁi Wrdeprlcran-tLo, {ex}] )

Lemma 11'. Let y be an (co—p) singular chain of M and U(AE)) satisfy (S) and
(1)¢k<fl(k) o, €, ,3) for each k, f & C—tycamy (M) be such that f is standard,
PLpm fis class ) with respect to {M?} and {&,} on @i Trn” e, {catl) qu—l(m> -0

and ¢i(ryy, o, {cn}] va_1(m):cm for each k and m. Then Jﬂar(/\) f exists if Re.
2 > 0 and we have

(46) [aam) f=0O(Re. 2Re=-1), Re.2 | 0.

§5. Stokes’ theorem

14. We denote by K, r the subspace of E, spanned by e - , er. The
inclusion Eo, r — Eo is denoted by ¢% Then (¢%)-1 (x, ) is defined if J € [JJrand
1 <i <k and we have

]_l(f) (xJ, xJHl, ------ R xJ%l’ ...... )
=7-F) (¢h)-* (x,), (F) (xJ+11)’ ...... , () (g, ),
() (£0) +2has €z, vy (R)2 (E0)Fmy 1m0,

for any f € Couwmy) (Ey).
We set

teoil{CaD)= D) tomem, 0 <t <,
m=k+1

and define an Alexander-Spanier k- cochain j-Yf)r (teeo—i{{cn}), Pew—il{cn}) is a
parameter, of E* for j-i{f) by

(47) FH )k (%o, H, ooy Xk) (Feooyp ({60 ]))
=771 f) (ch(xg), cB(xy), oo y tB(xR), KE)FEChy1 Ryt ooy
‘k(x0)+tcm Copy v )
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Lemma 12. IfJ' f exists, then

Lo, {c,}]

(48) Jtv, {41 f

=tim lim S, U emmilfend)

=0  m—oo p—y

~Jto, ey, FH et (Eeomirifend)).

HereJ[ﬂ’ €30 J U (teco—r({cn)}) is the integral of Alexander-Spanier k -cochain j-1
(r on k -simplex [o, {cn¥]r ([4]) and we set JCd’ €] J 1 (fe=0. Moreover, if f
satisfies the assumptions of theorem 4, then

(49) [

m

=tim lim 37 [, g, U (tecnii{ca).

10 Mmoo ey

Proof. By the definition of the integral, we have (48). On the other hand,

since
33 e gy, I Mt paafend) |
=1 n' —k-1
m 1
...... -~k
gkzzl Mcl Ck-lt + H(t'l)
<Mz,
we get (49).

Similarly, by (39), we have
Lemma 12/. Let f be an element of C=—?rcacmy, 1 (Eo) such that J

exists, then

“ o, {6,}] f

(48 Jr;ta, en /S

a

=tim lim SV 0., 13, 7 Dkt onD)

t—0Q m—oo I

‘[ T o e e Ry ({C”}»}'

Moreover, if (z ¥\ f satisfies the assumption of theorem 4, then
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(49 [
m

—tim lim 33 [e 0, 4013, 374 U (temmillend)

10 m—oo %oy

15. Theorem 5. Let {c,} be monotone decreasing and f = C>—lywry (Eo) be
standard, alternative and satisfy the assumptions of lemma 11. Then, if limig
J[a, ) da f(A) and liquojaacd, € W f both exist, we have

=lim
J[a, )] 0a 12 10 J’ 9aLla, {330 f.

(50) lim
Proof. First we note that, by assumption, d./(4) satisfies the assumptions of
theorem 4 for Re. 4 > 0. Hence J[d 3 O f(A) exists for Re. 1 > 0. Therefore
* Yn
by (49), we have

JE«!, e )1 Jaf(2)
m

~tim lim_ 3 Jeor gy, 37 GuS @ (eomsi{en)

=) Mm—oco k

On the other hand, since we have
T~ 40 f(2))
:za(z (—1ym e~mr -1 f) (xy, %y, - , Xmet, Koty ee )),

m=0
to set

82§~ H )k (2) (teco—r ({CaT)
k
:Z“(Z (—1)7” e-mi j—l(f)k (xo, xl; """ y Xmi-1, Xmg1, 0o 3 xk) teco—r ({CM})))’

m=0

0af Y oot () (Ko, Hy, eveeer s k) (teo—r ({ea]))

=2“( gﬂ (—1)pm e=mi =1 (f) (k (%), o& (%2), ey ok (%2), ok (%o)+PCha1 €hys,

we get

(51) FY0af (M (tecore ({€n])
=0a j-1 (Sl () (teco~re ({cnI)+0a J-Soomr (3) (tecor ({Cn3))
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Hence we have by Stokes’ theorem for the integrals of Alexander-Spanier cochains
of finite degree ([41),

J[a, o3 IO S Qe (Feomre ({en])
[ gy Bo U ) (Gemstfen?)
+J[g, oy B T o (A (tecos (L0n)
oo gy 2 A ) e ()
+J’Ea, e, O K ) (Beore ({CnP) =004 Iems () tecomr ({en))
o o3, B 77 Peomte (@) (i (o)
:J oo, top A7 I et (e (Lnd)
e gy O 3 (e @) e o) =2 857 (Ues () e (ea)
+J{a, ey, 02 I )t (A) (Eeeore ({Cn3)
:Jeatv, )1 i gy T eer (e ({en])
+{Ja[a, )3~ J-H oy (Eecomr ({Cnl)
_Jaata, )1y F Uy (Beco—r ({Cn}))}
e ey, O 30 Q) e (0N =20 8 Fecs @) tems (Cor)
e ey B0 51 Phomr @) Gemi (e

Here, [0, {cx}] (Ar-1 is defined similarly as [o, {¢x}]e-1. Then, since we
have by lemma 12 and the assumptions,

Jvata, {6,330 f

m

—lim lim J U e (oo
P k; 8qL0, o33 (W, 7 {f)e ( r (Leeh),

to show (50), it is sufficient to show

m

(52) lim lim lim > JBD, oy A s (et {end)

A=0 -0 m—oo BTy

”Jaa[u, \ASNES FH V-1 (Becore ({Cn])
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:O’
m .
53 tim tim tim > | 2 jt o
©3) b Ui Hm 24 Yo, ey, O T (3) (Feeillen])

— 2% A7 k-1 (2) (Feeamrc ({CnD))

=0,

m
4 lim lim li j Ba 5 oo o (£0, )=
(54) lim lim %wkﬂzl or 16,37, 03 K)o (ecor ({nT)=00.

But, since lim, Jaata, €)1 f exists by assumption, we have

m

i i lim S [, 0 K (eamiend)

A, u—0 -0 m—oo p—9

"Jaaza, (e31 Gy IS Vet (teoor ({Cn )
=0,

‘On%the other hand, we also know

Jtim 0 1oy ooy 378 (oo (Cea)

-0
=J‘9Ev. o3 I T (e (Len)).
Hence we have (52).

To show (b4), first we note that by the alternativity of f and the monotone-
-ness of {cn}, we get

oo ey 92 3 bomte B (tecms (end) |

oo

LCpereee th‘kﬁ% t(z (Ck+2"~1 e-(2n-1)Re. ’I—Ck‘»zn e-2nRe. 1)) e-kRe. 2
n=]

Hence we have

m

‘kz=1 [[a. 37, Oa j“l(f)OO—k (Z) (tem—k ({cn})) I
> - M 3 =-Zn- €.
é kE:l Cyrvvere th kHT“l) t(n=1 (k+2n-—1 e-G@n-1)Re. 1



38 AKIRA ASADA
—Cpezn €727 Re. 1)) g~k Re. 1

oo

= Mt (2 (Con €21 Re. 2y, @=(2n4m) Re. /1))_

n=1

Therefore we get

tim | 33 [ ey, 90 37Kt () Gemsllen) |

M- 00

< Mt (g Con €27 Re. x).

This shows (54).
Then, since we know

o, 1033, 740 S0
:JEv. e}z Ja )k (2)+j[a, €, Oa 7Y floo—tts
for any ¢ > 0, there exists @ 6 > 0 and ¢, > 0, k=1, 2,..--» such that

[ g, 7740 SO Fecmr Cead)

‘Jta, ey, 0 I e ) (tecor ({enD) |
<5kv ift < 5,

Z Ek g £,
k=1
Therefore we have

iim (33 [, ., 37400 FDs Gemms (0r)

m—oo b=1

,ﬁ JE« e )3 O IS e (et ({Cn})) I
< if t <a.

Hence we obtain

(55) lim lim i; oo, e, B 5P @) (tewmi {en})
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:Jca, fe,11 Oaf(A).

“Then, since lz'm,poj[a' ] Oa J(2) exists by assumption, we get

m

lim  lim lim S j[a, 13, G e () tewmr (fon?)

X, 40 t0 Mmoo p

—8a J-US)k () (teoo—r ({Cn D)
:O.

‘On the other hand, we know that

i, oy O 4% (@) (tems (es3)

=J[”, ¢33, N e-1 (A) (oot ({n3)).

“Therefore we obtain (53).

39

16. Theorem b5!. we assume y, UAE)) and f all satisfy the assumptions of
demma 11!,  Moreover, we assume {c,} is monotone decreasing and f is allernative,

Then, if lim A-—»QJ’T oxf (A) and lim“ofaa sy f both exist, we have

50y tim [, 2 S@=tim [, 0

Proof. By (44)” and (35), it is sufficient to show (50) to prove

(50)" ﬂ’ﬁ’f) jwz_lta, 1 0 S (X)Zﬁi_’,’f, Jamq“lcn, ) W t.
But since we know
#_ # - # *
(z )t (p*0a A N=0ullz )1 ¢*f) (A),

“we get by (39),
5 f(R)= 3l 1 ¢*f) (@
Lz(rfl[a, £ %° T e, 1 % o 7t et) @
“Then by (50), (39) and (44)’, we have

lim j
4=0 w(rl—lliﬂ, €D Ja f(2)
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—lim j :
120 Jogge, o1y (1) 9%F)

=lim J
A—0 q;(rl_l(@a[f, {e, 11 () f

=lim j
120 Jogocer o, 1epp 0 I
This shows (50)".
Example. If f & Ceyuwm) (Ey) is standard and j-Y(f)~H,;, where f is posi-
tive and U(4(E)) and f both satisfy the assumptions of theorem 4, then we have

(56) [

In this case, we call f to be a volume element of E, with respect to [o, {cx}].
We note that for this f, we have

(b7) JEJ, {e/ 11 f=oo, if {eat=0{{c'n}),

(57) [t tyy 720, i {e"a}=0l{ea)

We also note that starting from f, if G(a, t) given by lemma 8 is same
order as 1/H(t-1) for ¢ | 0, where H(zf)zz::1 hutn with h, 220 for any #. Then
to set cu="hun,1/hn, We have

(56)/ Jtn €] f == 0, if f satisefis the assumptions of note 1 of nol0,

if Eq satisfies 3" nen € Eo, if | %2 | < Cn.
We assume E, is a Hilbert space and U(4(E)) is contained in Ux{A(E)). Then

by theorem 1, the alternation of f, Af is defined. Hence by theorem 3 and
lemm 9, we get

lim

kya Af=, oy FZ O
10 Lota, ey Les {6}

Therefore, there exists non-exact closed (co—1) -Alexander-Spanier cochain in
C>—lyeacmyy (0o, {c.}]), although o[, {c.}] is homeomorphic to [¢, {cs}] (¢f.
(61, L7).
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