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                              Introduction.

   In our previous papers [1], [2], [2]', the author introduced the notion of the

generalized tangent of a curve. The motivation of this paper is to consider the

following problem. Under what condition, the graph of a function (of one variable)

has the generalized tangent ?

   To expose the problem precisely, we first review the definition of the gene-

ralized tangent. A function f at a, a E! R", is said to be (right) Gateaux differ-

entiable at a, or C(S"-')-differentiable at a, if the limit

                   d,f(a, y) =f-i7ee. +(f(a+ty)-f(a))

exists for any y, lly-==1, and dpf(a, y) becomes a continuous function on S'i-i.

Then, for a curve r of k" given by r:i-R'i such that r(O)=a, we call r has the

C(S'tmi)-tangent, or the generalized tangent at a if the iimit

             <eer(a), d,f(a)>-giL/{3, -l;-ig-i.d il f(r(t)) t- f(a) dt

exists. Here, eer(a) is an element of C(S'imi)', the dual space of C{.S"Hi). It is shown

that if r is smooth at a, then eer(a)==c6,, where c is a constant and 6. is the Dirac

measure on S"Hi concentrated at y. Moreover, in R2, the curve rO ==1' has the

generalized tangent (1/2rt)dO at the origin and the graph. of xsin(1/x), x>O has

the generalized tangent (1/rccos2eVcos20) de,-(T/4)<e<(T/4) at the origin ([1],

[2]t).

   To consider the above problem, we note

            <(e,1･ Llilli/lm-d l]. f(r(t)) i Zmgc2nt



          =gag･ -lliued Ii dpf(a･ n ;-[-l-lr, ) i i rit)i i dt.

Hence, if r is the graph of a function ep, then

            <eer(a), d,f(a)>

          =li-',ag･ -l;-igmd Ild,f(a, tan-i(9(a+t)tum g(a)))Vt2+(g(at+t)-q(a))2dt..

Therefore, the graph of g has the generalized tangent at a if the limit

             byc(R,)"ep(a)(g)

          -(t-'t℃･ -l;-iszzed Ilg(ep(a+t),- g(a))dt

                  '
exists for those g such that g is continuous on ft iand lim,x-±.. g(x)/(1+Ixl) both

exist. In the above notation, LSeh (Ri) means the space of those functions.

   By this reason, for a fixed function space LS`ki'(ni) over Ri sttch that whose

elements are locally integrable and whose topology is not weaker than that of

L't...(Ri), if the limit

             by- (Ri)'g(a)(f)

          -gt-'ie ･ -l-£tLm, ･ ll f (ep(a + t> - g(a)) dt

exists, then we call b./.,-(Ri)'g(a), an element of ycr(Ri)*, to be the (right) y-(Ri)

-derivate of g at a, or the generalized derivate of g at a. For example, if we take

.s'-;l (Ri) to be R{x}, the 1-dimensional vector space generated by the function x, then

             bya(Ri)'op(a)(cx)

           -(z-'{.?;. -l;-£tL,?1,. Ii c9o(a+t>- sD.(Le)dt.

Therefore, we may consider b.sr(Ri)'p(a) to be the right Borel derivate B.g(a)

of q at a ([6], [9], [11], cf. also [4]). But our main interest is in the case that

.9-(R') is dense in C(Ri), the space of continuous functions on B'. In this case,

 b.srk (Ri)'g(a) is a measure on RiU{±oo}, the 2-points compactification of Ri, and

it is a probabilistic distribution on RiU{:!kiLoo}. If ..9(Ri) is equal to Cb(Ri), the

space of bounded continuous functions on Ri, then bya(Ri)'g(a) is a probabilistic

distribution on R･. Explicitly, this measure is given by
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             b' g(a)(E) = l,tL?1,. m ({t l 9(" + t)t - 9(a) ff E} n (o, 6])/6,

where m is the Lebesgue measure and E is an open set of RU{±oo}. We note
that it is shown that to set

             b"p(a)(E)

          ::=ftL{z,i. sup, in({tlsp.(a+t)t- go.(a)EiE}n(o, b])/6,

where M is the Lebesgue's outer measure and E is an open set of RU{±oo}, from

b'g(a) we can defines a (Caratheodry's) outer measure of RU{±oo}.

   For the above b.y-(Ri)'g(a), or b'g(a), we can show the followings.

(i)･ b.sz-(Ri)'g(a) iS a Probabilistic distribution on Ru{±oo}. Conversely, for any

   Probabilistic distribution P on Ru{±oo}, there exists a (right) continuous ]Cletnction

   g at a such that

            b 'g(a) :::: P

   (g3, Theorem 6, cf. [1], Theorem 3, [2], g5).

(ii). car b'p(a)c[L, K] if and only if for any e>O

            lt-' .ag . m ({t l L + e;${pa(" + t)t nd ep (a );:l{K÷ e} n (o, 6])/6 - 1,

   or in other word, g is (riglzt) LiPschitz continuous at a with the bounds L, K in

   the sence of Levy ([7]) (g2, Theorem 4').

(ii)'. b'g(a)=::5,, the Dirac measure at c, if and only ije g is (right) aPProximately

   derivable at a (cf. [10]) and

            A'Dg(a)==c,

   where A"Dg(a) means the (right) aPProximately derivate of ep at a (g2, Theorem

   3).

(iii). Ille qi and g2 are both LsC; 7-a' (Ri)-derivable at a and ff(Ri)cC(Ri) with the condi-

   tion that iffEiiY-(Ri), then .L,, fh(x)=.f<a+x), Eyr(R`), then

             bg(Ri)"(goi-i-go2)(a)= b.7-(R;)'gei(a)* by--(R,)'go2(a),

   where *means the convolution (g3, Lemma 12).

(iv). Llls-(Ri)=Clxl(Ri)={flf(x)/(1+lxl) is bounded on Ri}, andgis (right) .se/ (Ri)

   -derivable at a, or, in other word, if b'g(a) has the exPectation, then

            gllt,1･ rl]'2ftunv:wutt"i'-iog(-S)-' [by.(Ri)'(cg)(a)])=B.g(a)t.



   Here, yrmeans the Fourier transformation and B,g(a) is the right Borel derivate

   of op at a(g3, Theorem 7).

   The above (ii') shows that the (right) .Srh (Ri)-derivability at a is weaker than

(right) approximately derivability at a. For the existence of Lgdikr'(Ri)-derivate, it

is shown bY Prof. Uchiyama that if t(g(a÷1/t)-g(a)) is almost periodic in the sence

of Besicovi6 ([3]), then g is (right) C(RiU{±oo})-derivable at a (g1, Theorem 1),

It is also shown that if g is Lipschitz continuous near a, then g is C'(Ri)-derivable

at a, where Ci(Ri) means the space of Ci-class functions on Ri (g2, Theorem 5).

On the other hand, in the case .9(.fti)=:=C(ft'U{±oo}), the space of those conti-

nuous functions .L such that lim.xm.±..f(x) both exist, we get byr(Ri)'(tvl7)(O)=:

6.., she Dirac measure at oo, or in other word, 6..(f)=lim.x-.f(x). Moreover, if

g(t) is the Weierstrass' example, that is

            g(t)==;I I]bncos(cnnt), c is odd, o<b<1, bc>1+gr,

                 n

we get

             bc(Riu{±oo})"g(a)==e-.., if a=llt4, m, le are integers,

where 6-.. is given by 5-..(f)=lim. x--.. f(x).

   In this first part of the paper, we only state the results about derivation. In

the second part of this paper, we state the results abottt corresponding integration

of this derivation. It is related to the stochastic process and the several types of

integrals (cf. [4], [5], [7], [8], [9], [10]). The several variables case will be

treated in another paper.

   I would like to thank Prof. Uchiyama and Dr. Kano for their kind advices

and encouragements.

                         g1. Ls;7"(Ri)-derivatives

     1. We denote by (Ri) a locally convex function space over .R`, 1-dimensional

real vector space, which satisfies the following (a), (b).

(a). .g(Ri) is contained in Lii,,.(Ri) and the toPolQgy of (rei) is not weaker than

   that of Liloc. (fti).

(b). ,Ilff E.9e4 (Ki), then p.f given by

            p.f(x)==f(ax), aesR,

   belongs in yr(Ri) for any aER.

   As usttal, we denote by C(Ri) and Co(Ri) the spaces of continuous (resp. compact

carrier cQntinuous) functions on Ri. By the compact open topology, they both
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satisfy (a), (b). Other examples of .E;if'(Ri), which are specially used later, are

the following spaces. '

(i). Cb(Ri):Banach sPace of bounded continttous fatnctions on Ri where ljfij is given

   by suP..ERilf(x)l.

(ii). C(Riu{±oo}) : The subsPace of Cb(n') consisted by those f that lim.xr,co f(x) and

   lim. x..,-.. f(x) both exist.

(iii). Clxl(Ri) : Banach sPace of those continuous functions f on Ri sztch that lf(x)i ==

   O(IxD at inJinity evith tlee norm IIfll=steP..ERi lf<x)Y(1+lxl).

   By the assumption (i) of e9Z-(rei), we have .

   Lemma 1. Let g be a junction of 1-variable def7ned on a <t<a+E for some s>O,

and if the limit

            gt;g . -}lim,. IS, f (9-(e±/(), m q(a)) dt

exists for any feL9-<fei), then there exists an element h,g-(Ri)'g(a) of .9-(Ri)',

the dual sPace of .t'-(Ri), suh that

(1) b.y-, (Ri)"go(a)(f)
                                      '
           :-gz-',"g･-lstm,.iif(g(a+1uag(a))dt.

   Similarly, if lim.s-o(1/s)lim.h-･olj,f((ep(a)-g(a-t))/t) dt exists for anyfiE,.9(Ri),

then there exists an element bLg(Ri)-q(a) of .s-(Ki)" such that

(1)' b.t-- (R,)-op(a)(f)

           -= (zlve ･ -} li.ns . Il f (9(a) m ,9(a - t)) dt.

   Defirzition. We call g to be right (resP. Iefr)Ls")if (Ri)-derivable at a if'b.y-(Ri)

'g)<a) (reSP. bLg-, (Ri)-g(a)) eXiStS and b.s,-, (R,)'g(a) (resP, b.t;,-(R,)-go(a)) is calged riglzt

(resp. Ieft) Lf(Ri)-derivate or generalized derivate of g at a. if b.g.(Ri)'g(a) a7¢d

bLlif7(Ri)"g(a) both exist and coincide, then we call g to be Lsrfz (Ri)-derivable at a. in

this case, we set

(2) b, y- (Ri)g(a) :== b.f (Ri)'g(a) (=b, s- (Ri)-op(a))･

   Example 1. If g is differentiable in the usual sence at a and Y(Ri) is con-

tained in C(R'), then, since



            f (op(a + t)t =' q(a)) =f(g,(a)) +oa),

we get

(3) bts-(Ri)go(a)=6p,(a).

   Examp!e 2. If ..E;fi, 7iip (Ri)=={x}, the 1-dimensional vector space generated by the

function x, x(t)==t, then to identify {x}*==R, we get

            b{x}+op(a)=,l.im, . -li-1uem,. IS, g(a+t)tm g(a)dt.

This right hand is known to be the (right) Borel derivate of g at a. For the Borel

derivatives, it is known that g has the Borel derivate at a if and ony if the

indefinite integral op of g has the second de la Valleb-Poussin derivative (or Peano

derivative) at a ([6], [9], [11]). Here, de la Vai16e-Poussin derivative is defined

as follows : lyC f is written at a

            f(a+t)=co+cit-t-iStl t2+･･････+2itl tk+o(tk),

then ck is called the k-th de la Vdell6e-Poussin derivative of f at a.

   Note. If L9(R')=:C(RiU{±oo}), then we have

(4) ' bc(Riu{±oo})"op(a)=S±oo,

if we get lim.tm>o(g(a+t)-g(a))/t=±oo. Here 6.. (or 6-..) is given by

            6oof=lim.f(x) (6-oof=lim. f(x)).

                 x->oo X->-oo
   2. The following existence criterion of bf(Ri)"g(a) due to Prof. Uchiyama.

   Lemma 2. ILf h(x) is measurable and essentially bounded on xlilc, then

lim.s...SlsOOh(x)(dx/x2) exists if and only if lim. iL...(1/T)I:+ilh(x)dx exists, and we

have for any a>--O,

(s) girn.z,sl,OOh(x)d.X,-s:m.,-.i-I["Th(x)dx.

    Proo£ First we assume lim. iL}..(1/T)ia.+Th(x)dx exists and set it by M.(h).

Then, since

            I".:`,-hi,I)dx - [(. t.),I"."Xh(g) de]i +2Il ((. t.),Ia.'"h(8)dg) dx,

we get
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            f.oo.,h$)dX == -(st.)2i:'Sh(6)d8 +2i,OO ((. t.r,i:'Xh(e)d6)dx,

because M.(h) exists. Then, since 1/(x+a)f:+Xh(E)d6$M.(h)+E for any e>O if x is

sufliciently large, we get

            l,ivaab sup. (a+s)I:., hif)dx

          ;S{-Ma(h)+lgm･ SU..P･ 2(a+S)I:(.t.),(Ma(h)+E)dX=Ma(h)+2e･

Similarly, we obtain lim. ini s..(a+S)I:+s h(x)(dx/x2)ll:M.(h)-2e. Therefore

lim. s... Si:h(x)(dx/x2) exists and it is equal to M.(h). On the other hand, since

            ll}I:+Th(x)dx =- (" +TT)2I.OO.T hS8) de+

. +92I: hS) de+;I:'Tdxl:kS) dg

M.(h) exists and coincides to lim. s-ooSf:h(x)(dx/x2). Because by the essential bou-

ndedness of h, we get

            I[li-lii(3il)dx=-o(-si-), stcx), iIll]2ftl(･,`･C-)dxi<oo, a>o.

   We note that by lemma 2, if M.(h) exists, then it does not depend on a.

Hence in the rest, we denote M(h) instead of M.(h).

   Since we know

            gag . -l;-12.'m,ee . Il f (g(a + t) - ep(a)) di

          - /rvaab si℃f(u(op(a +-l}-) - ep(u)))d.",,

we get by lemma 2,

   tl7ieorem 1. iLf the elements of .q(Ri) are essentially bounded at iwininity, then

we have
        '

(6) byrr (Ri)'g(a)( f)=M( f(9a'))･

Here g.' is given by



(7) 9.'(t)-t(g(a+-}-)-g(a)),

and f({o.{') means the composition of f and op.'.

   Corotlary 1. If Ycr(R') is contained in C(Riu{ too}) and g." is almost Periodic

in the sence of Besicovi6 ([3]),' that is, for any E>O, there exists A==A<e)>O and a

perioclic, essentially boz{nded mesurable junction gA(x) such that

            tt'rr-,.6.S"P･ ilirf,Tlgoa'(:t;)'goA(x)ldx<e, '

then b.-(R,)'g)<a) exists.

   Proof. Since an almost periodic function h in the sence of Besicovi6 has the

mean value M(h), we have the corollary.

   Corollary 2. To doj7ne L2iti-(Ri) by {fl fELii.,(Ri), f(ep.') is almost Periodic in

the sence of Besicovi6}, pa is LS"Z Cki)-derivable at a.

   Example. If p(t) is given by a trigonometrical series :.(a.sina.t+b.cosP.t),

then

            g."(t)=2tlpu, (a.sinev.(a+･2i-t) costzi' -b.sinP.(a+Si/)sina-2'i).

Hence, if .;i/;7-e (R`)==C(RiU{±oo}) and g(t) is the Cel16rier's example

            g(t) =,#.,-S-L"zS-f--'-'E)--, c is even,

then we get

            bc(Riu{±coo'g(a)==fioo, bc(Riu{±oo})'(a)=o"-..,

if a=m/ck, m, le are integers.

   Similarly, if q(t) is the Weierstass' exainle

            g(t)=,l,ill=obncos(c,irrx), c is odd, o<b<1, bcz.1÷-g-.,

then we get

            bc(Riu{±co})"g(a);=6m.., bc(Riu{±.})"g(a)=a..,

if a=m/ck, m, k are integers.

   3. In our previous papers [1], [2], [2]', the authour introduce the notion o,f

generalized tangent, or C(S"ri)-tangent ee.r of a curve r at a as follows:SuPPose

ris given by r:I-R" with r(O)=a, then ･ .
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            <eear, dpg(a)>==:gri,ftt.-l;-ftm,.i].g(r(t))ig(a)dt,

where g is a C(S'i"i)-dnjlarentiable .function at a and d,g(a) is its Ga"teaux

at a gr'ven by

            dpg(a,y)=f.im,.-}-(g(a+ty)-g(a)), 1ly11=-1.

                                '
Since we l<now

            gag･ "lz-' .q. fi g(r(t))ig(a)dt .

          ::=('[ve･ -l;-1pa,･ Il dp g(a･ i i ;[2 ili ". li ) 1 E r(t)-a 1 i dt,

if ee.r exists, we get

(s)' <ee.r, d,g(a)> '
          =,itl//13･ -ltltl/?g. Jl dpg(a, tanHi(op("+t)tnd w(a)))Vt2+(g(a#it) - g(a))2

if r is the graph of q starts from (a, g(a)), that is, r is given by

            g.' : I.R2, g.'(t)= (a+t, g(a+t)).

We note that in (8)', Si is parametrized by, -rr<e:;{n,

   By (8)', if r is the graph of g and to have the generalized tangent

(g) car, ee.rc[--i}, -li-]･

Moreover, to define the map tan'i#:C(Si)-C(Ri) by

            (tan-i#f)(x)==f(tan-ix), xGRi, fEC(Si),

we get

(10) tan-i#(C(Si))=C(R'U{±oo}).

. By the definition of tan-`" and (10), we get . .

(9)' tan-t#*(C(Riu{±oo})")=={616eC(Si)*, car.'6c[-ill-,g]}.･

                                                         '

   By (8)', (9) and (9)', we obtain '
            <(tan-i#")miee.r, (tan-i#")-id,g(a)> - '(
8
)

       9

dnjizrential

dt,

 eear, then
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           =(tlve . -l;- iim,. fl ((tan-i#)-id, g(a)x9(a +t)t - g(a))"vit2+(g(at+ t)- op(a))2dt.

                                             '

Hence if (tan"'#*)-iee.r can be considered to be an element of Clx:(R'), then we

have

(11) bcl.1(Ri)"p(a)(f(x)Vl+x2)

           =<(tan-i#*)-iee.r, f>, fEC(RiU{±oo}).

Hence we obtain

    Theorem 2. bcl.1(Riu{±oo})'g(a) exists if and only if the graph of op has the

C(S')-tangent at x=a. Hizre Cl.1(Riu{±oo}) is the subsPace of Clxl(Ri) sztch that

            CIxl(RtU{±oo})

           =={f1 <i-'L.M..･ fiX) and.Lim-ab fiX) both exist}.

    Note. Starting from another function space yC-(Si), we can obtain similar

conclusion. For example, we get .
    7Iheorem 2. hL21.14(Ri)'g(a) exists if and only if the graph of g has the L2(St)

-tangent at x=a. Uere, L21xl4(Ri) means the Hilbert sPace over Ri snch that whose

nor･m is given by

             1 lfl 12 -= I., d fll(nl 12),dx.

                    g2. Carriers of Y(Ri)-derivatives.

    4. By the definition of b.s--(Ri)", we obtain

    Lemma 3. LiC g satishes

(12)t Ls9("+t)t'ep(a);sK, o<t<e,

for some e>O, and if bLsz-(R,)"g(a) exists, then

                                         tt
(12) car.bycr(R,)'g(a)c[L, K].

   Corollary. lf (ri2tht) Dini derivates D."g=lim.suP.t-+o(g(a+t)-g(a))/t and d.'g

=lim.inlt".+o(g(a+t)-g(a))/t are given by D."g=K, d.'ep=L, then (12) is hold if

b.c-(Ri)'(a) exists.

   Note. In this corollary, K may be equal to oo and L may, be equal to -oo.

   Lemma 4. 111" .S-(Ri) containes C(RiU{±oo}) and bye(R,)"g(a) exists and (12)
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is hold, then for any e>O, we have

               '(13) l,,L/g. m({ti ep(a+t)t- rp(a) }llK-i- E} fi (O, 6])/6 -: O,

(13)' l,zg?g.m({tt9("+t)t-9(a)sL-e}n(o, 6])/6=o,

where m(E) means the Lebesgue measure of E.

   Proof. By assumption, there exists a series of functions {fh} of L9J(Ri) such

that

            f;ttX[K+e, oo),

where xE means the characteristic function of E. Then, since L,Sll, by the defi-

nition of bLE;r(Ri)'ep(a), we get

            by (Ri)'g(a)( fl[);:llb- (Ri)"g(a)( k)$･ ･ ･ ･ ･ ･5;by (Ri)"g(a)( L,):i!.

            -<bLs7-･(Ri)"op(a)(.f;i+i)S･･････-nv<b.g(R,)"ep(a)(1)=1.

Therefore lim.n-..bLs;7J(Ri)'ep(a)(L,) exists and by the definition of {f),}, we get

             Lt-'tindT by(Ri)"g(a)(fl,)

           ..fzag. m({ti9("+t)t-9(a)2ii:K+e}n(o, g])/ti.

But since we can take each L, to satisfy car.L,c[K+e/2, oo), we have (13) by

    Similarly, since C(R'U{±oo})" is tha space of the (finte) measures on Ri U{± oo},

we get

    Lemma 4'. Uhader the same assumPtions as in lemma 4, if (13) is hold, then

car. by(Ri)"ep(a)c[-oo, K]. Hence if (13) and (13)' are hold, then we have (12),

    Note. In the case L= c)o (or K:=-oo), we get car. bLsi･-(Ri)'ep(a)=:{oo} (or car.

by (R,)'g(a) ={- oo }).

    Theorem 3. ifY(Ri) containes C(RiU{±oo}), then

      by(Ri)"pa(a):=:e,, tlae Dirac measure concentrated at c,

if and only if g is (right) aPProximately derivable at a (ci [10]) and

(14) c=AD'g(a), the (right) aPProximate derivate of g at a,

that is, for any e>O, we get



           '(ls) fzlve,m({tfc-e;s{;9(a+t)tMq(a)$c+e}n(o, b])/6=:=1.

                                                         I

   Proof. By lemma 4 and 4', we need only to show the existence of

bLs.:2z (R!)'op(a). But since we get by (ls) . .

            m({t 1 c - e;g9(a + t)t - 9(a)$c + e} n (o, s]) ::= s- o(s),

for any e, we have

             l lTes . i; f (9(a +t)t - ge<a)) dt-f(c), 1 ,s{l

                  E-{( max. If(x)-f(y)l)s÷o(s),
                     c-e=<.x, 3,Sc+e

for any s>O. Hence, since f is continuous, we get

            (,lva, ･ elz-' .ag. fi, f (p(a +t)t - q(a)) dt .. f(,).

Therefore b.sr(Ri)'g(a) exists and it is equal to b,.

   Note. We set AD"p(a)=oo if

(15)t l,tLtl,1.m({tlgD("+t)t+gO(a)llllc}n(O, s])/6-=1,

for any c. Then we get bLs;7--(Ri)'g(a)=6co it and only if AD'g(a)==oo. Similarly,

by(Rt)"op(a) =6-oo if and only if AD'op(a)= -oo, that is

lim.fi.m>om({t1(op(a+t)-g(a))/t;:$lc}fi(O, 6])/6=:1 for any c.

   5. Lemma. To dofne ff-"op(a)(E) by

(i6) 6+rp(a)(E)=-gt?.sup. m-({tl9(a+t)t9 pa (a)EE}n(o, 6])/a

                                             '
where E is an (oPen) subset of Ri and m- is the Lebesgue's outer measure, 5'ip(a)

isa(Caratheodry's) outer measure of Ri. - .
   Proof, We need only to show - ･
            6'op(a)(U E.);Sl:fi'g(a)(E.).

                  It n

But, since m- is the Lebesgue's outer measure, we get

                                            '
            mim({ t l 9(a + t)t - ep(a) Eii y E.} n (o, o"])
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          :$;, in({ t t 9(a + t)t mu 9(a) Ei! E.} A (o, 6]).

Hence we have '
           E'g(a)(U E.)
                n

         llii illli, I] ge.1,t?, . sup. m({t l P(" + t)t " 9(a) E E.} n (o, ti])/6

         ;SIZE'(a)(E.).

            n

   Lemma 6. Ilf E is Lebesgue measurable and ep is measurable, then E is

5'g(a)-measurable if and only if lim.6.om({tlg(a+t)-ep(a)/teE}n(O,6])/6 exists, Here

b'g(a) means the corresPonding measure of 6'g(a).

   Proof. By assumption, we can set ,

           5'g(a)(E)=lzLm,.sup,m({t[9("+t)t-9(")EE}n(o, 6])/fi.

Then, Since

              q(a+t) - q(a)           {tl                        EX}n(O, 6]
                  t

          =({t]p(a+t)t-p(a)EE}n(o, 6])u({t1pa(a+t)tndg(a)Ex-E}n(o, a]),

           ({t1 9(a+t)t- P(a)EE}n (o, 6])n ({t1 9(a+t)tm 9(a)ex-E} fi (o, fi])==¢,

for any XDE, we get

           6"op(a)(X)

                                          '          -= fzJ'z,1. smp. im(({t 1 9("+t)t - 9(a) Eii E} n (o, fi]) u

                  u ({t i 9(a +t)t m 9(a) Ex-E} n (o, s]))/ti

          == I.el{n, . sup. (mn({t 1 9(a+t)t" ep(a) E Er} n (o, 6])/6+

                  + m-({t19(a+t)trm 9(")ex-E}n(o, o]/ti)



           -lt/li.mla({t19(a+t)t-9(a)EE}n(o, 6])/6+

                    + fz-'ll,?. smp. im' ({t 1 9(a+ t)t U 9(a) Ex-E} fi (o, 6])/6

            =E'ep(a)(E)+E'op(a)(X-E),

if lim.6-om({tl(g(a÷t)-q(a))/tEE}n(O, 6])/6 exists, because E is mesurable. Hence

we have the first assertion. On the other hand, since

(17)t i.1/tt.m({tl9(a+t)t-9(a)EiiR}n(o, 6])/ti=1,

by definition, we have

            fz-'zl,?. inf. m ({t i 9(a+t)t - 9(") EE} n (o, fi])/6

           =-1-ff'g(a)(R-E),

                                   '
if E is (Lebesgue) measurable. Therefore, if lim. 6-om({t1(g(a+t)-op(a))/teE}n(O, ti])/6

does not exist, then E is not 6'g(a)-measurable.

   Definition. Vl7e call b'g(a) the (rilg12t) derivative measure of g at a.

    By definition and lemma 6, if E is Lebesgue measurable and b"p(a)-measurable,

then

            b+g(a) (E ) = {.tLljz . m({ t 1 9(a + t)t rm q(a) E E} n (o, 6] )/6.

Especially, by (17)', Ri is always b'op(a)-measurable, and we have

(17) bop(a)(Ri)=1.

    Theorem 4. ILIC .9"(Ri):=Cb(Ri), then by(R,)'g(a) exists and only if any Borel

set of Ri is b'g(a)-measurable and we have

(ls) by(R,)"op(a)(f)=f.,f(t)dO'P(a)･

   Proof. By the definition of b'g(a). we have

            b'g(a)(E)-g.i.e,1, -li-ft't,,. S, x.(ep(a+t}- g(a))dt,

if E is b'op(a)-measurable, we have (18) for continuottsfby assumption and we

get the first assertion.
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   On the other hand, since there existsa series of functions {L,} in Cb(R') such

that each L,illO and

            ]f;itXE,

if E is a Borel set, we have the second assertion by the same reason as in the

proo£ of lemma 4.

   Corollary. We assume w is right Cb(Ri)-derivable at a, then to set

(19) x'g(a)(x)==b"op(a)((-oo,x]),

            K:=suP.{xlx'ip(a)(x)=O}, L==inf.{xlx"di(a)(x)=1},

                xx
we have
             '                              '
(20) car,bcb(Ri)'g(a)c[K, L].

Conversely, if (20) is hold, then (19) is hold.

   6. Although (20) is hold, g does not satisfy the Lipschitz condition (12)' at a

or the Dini derivates D.'g and d.'g can not bound by K, L in general. For

example, to set

                                          '
            g(t)-O, E}.-&,i,2i;tlli;21.,, or t-=o,

                        '
            ,(t)..3"(3;-.-3"-i)(t-i},i), -ili.2it}iiSi･i-b.'3n･

            go(t)=-3"(3i'i;:",2'i-`)(t-&,i,-i-2.13n), ISi,i-2.13nlil;tlilllll,tm&.'

g(t) is continttous at t=O and we get

            bc,(Ri)+g(o)=6,, ･ ltva4osup. Plt) =oo.

    Definition, VVe call g to by aPProximately (rigiht) Dini derivable at a if x'g(.)(x)

is defined. ILf ep is aPProximately Dini derivable at a, then we set

(21) AD."g =:: ini {Xlx'pt(a)(X) -- 1},
                     x
            Ada"g == SUP. {X l x"w(a)(X) = O}.

                     x

    By definition, we have ,
    Lemma 7. (i). lf op is aPProximately (right) Dini derivable at a, then

(21)' AD."g=:=in..L {xl l,tL?1,. m({t19(a+t)t- 9(a) s{x} fi (o, 6]/ti-1,



            Ad.' ep =- su.P. {x l l/T-lr?,. m ({t 1 9(a -iT t)t M 9(a);gx} A (o, 6])6 == o.

(ii). YVe have the inequality

(22) da'op;Ii{-Ada'9S;ADa'9;:SIDa"q,

and Ad."g=AD."g if and only if g is aPProximately derivable at a.

(iii). if q is (right) LiPschitz continuous in the sence of LevN (cf. [7]) tvith the bounds

L K then rl
(22)' KSAda'P;S{ADa"pa$L･

   Using the approximately Dini derivates, we get

    Theorem 4'. g is (right) Cb(Ri)-derivable at a if and only if g is aPProxifnately

(rigJzt) Dini derivable at a and we laave

(18)' bcb(Ri)'g(a)(f)==J℃..f(t)dx"eJ(a)(t),

where the right hand side is the Stieltl'es integral. VVe also have

(20)' car.cb(Ri)"g(a)c[Ad."g, AD.'g].

   Coversely, we obtain

            AD."g =infL {xI cor. bcb(Ri)"g(a)n[x, oo)= ¢},
                    x
            Ad."g=suP.{x1 car.bcb(Ri)'pa(a)n(-oo, x]=¢}.
                    x

Or, in other word, [Ad.'g, AD.'p] is the shortest interval which containes

car. bcb(Ri)"(a).

   We also note that if (20) is hold, then we get for any e>O

(12)" m({xl K-e;;{ep(a+t)t- P(");S;L+6} fi (O, 6])=b-o(ti).

   7. We assume g(t) is Lipschitz continuous near (the right hand side of) a, that

is g satisfies

(23) K;:lllP(t't),IIIt{(t2);;illL, a$ti<t2:S;a+b,

for some b>O. For simple, in the rest, we assume a==O and g(O) =O.

   LeJnma 8. 111e f is dderentiable and g is LiPschit2 continuous near the origin

and ep(O)==O, then the Radon -Nyleodim derivative a(f(tg(1/t))) of fltg(1/t)) satishes

(24) a(f(tp(l))) == O(l).
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   Proof. First we remark that since

            f (t9 (-}-)) :- t(-}-f (t9(-}))),

and g(t)=tf(p(t)/t) is Lipschitz continuous near the origin and g(O)=O, we only

need to show the lemma for tg(1/t). But since lg(ti)-g(t2)l;:SILiti-t21, O;illti<t2;:i{;5,

we get
                   '                                                        '
            1 tigo (l,) -t2go(},) 1SI ti-t2 Y go (-Z) i -H t21 1 so (-II) - go(-lt,) 1

                          :iuzi; S, i ti-t2 1 +L1 t2l I }, - -l) 1

                                       '
                           - 3,II!i ii--li,i･ ti･ t£--lll-.

Then, to set W' (t)==tg(1/t), we have

(2s) 1ip-(t,)- ep'(t,)1$tllLS p,- t,1, -ll-:s{t,;s{lt,.

Then, since W'(t2)-er(ti)==li2,a(T)(t)dt, we get

            III,a(iif)(s)dsl;s{2L(i-l'), tilii-!i-.

Hence we obtain

(24)' la(ep')(t)]<2 ;,ti, t>tilll3j and the sign of a(T)(t) is dofnite almost

                         everywhere on [ti, t].

Therefore we have the lemma.

   By theorem1 and the first remark in the proof of lemma 8, to treat the

existenCe of bLs;7-(Ri)"ep(O) for .S-(R')cCb(R')nC'(Ri), it is sufficient to treat the

existence of the Mean value of T. Then, since T(t) is bounded and

            I:w'(t)e'x'dt==- 'ip4t(")+II:a(ep'(t))e-xtdt, a>o,

                                                          tt
                                                         '
ep'
(t) has the mean value if lim.t-･-ol:o(T'(t))e-"`dt exists by Wiener's Tauberian

theorem ([12], [13]). For simple, we set a==O in the rest, , . .
   Since we get
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            foOea(T(t))e-xtdt == Ira(eraog. s))s-(x+i)ds,

by setting t=log.s, we consider the function 1' (e, v) given by

(26) 1'(e, rp)==IiCea(op(log. s))s-(g+1)e-isvds.

By definition and the theorem of Titchmarsh ([14]), 7`(6, o) is defined on

{(e, v)IRe.6>-1/2, Im.rp;:i{O} and holomorphic on its interior. More precisely, we

get

   Lemma 9. 1'(e, rp) has the following ProPerties.

                     foo(i). 1'(e, O) is equal to ji a(T(log.s))s-(g+i)ds.

(ii). To set 7'(e)(t)= j(e, t), where e is fixed and t is the seal variable, 7'(e) is continuous

   in t if Re.6>O and belongs in LPI(Ppti)(R') ijC P(Re.6+1)>1, -1/2 <Re.e$O.

    By lemma 9, (ii), we have

            1'(O)E n LP(Ri).
                 2)P>1

             ro(6)='(l'-',",,i-i2e,M-IZI2,f',l:)2+i.

Then re maps De--{6ii61<1/2, arg.610} conformally onto D={vl1rp+li<1} and

lim. g..ore(g)==O. But, since ]'(e, r,(rp)) is defined and holomorphic on D, ×{rpIRe. rp<1/2}

and since we get for some (positive) constants K and c,

             Ij'(6, re(e))[

            $fiO 1 a(le'(log. s)) l s-(Re･ g+1)eslm･ (re(v))ds

            ;:{; Kirs-i12esim･ (re(rp))ds<Kl" (-l;) [ Im, ra(q) F/2 +c,

]'(e, re(6)) is defined on De for any 0 and O is either regular point, branching point

or pole of 1' (e, re(g)). Therefore we obtain

    Lentma 10. The mean value of T(t) either exists and finite or

             //tze,lai i S:"Tw'(t)dt i .. . .

    Theorem 5. Denoting Ct(Ri) the sPace of smooth fttnctions on ki, bci(Ri)'g(a)

exists if op satisy7es (23) (cf. [2]').

   Proof. We may consider a=O and g (O)==O. Then by lemma 10, we need only

to show that lim.s-･olL9-'(a)(if))(s)1=oo is impossible, But by the above discussion,

if lim.s-+olY(o(T)))s)1 =oo, then 1.9J(a(T))(s)1 should be at least O(!og. s) for s-O.
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On the other hand, by the theorem of Ti,tchmarsh, we get

            tt{zedeI,Aif(ca'(t))e-'stdt-=yv(a(iif))(s) in Lp, p2.2,

and we also know

            f,t-'-m,･ -lllg f,"o(op(t))e-ist dtds ==: ep'(A)-T(o)i

for all A. Then, since T(A) is bounded on Ri by the Lipschitz continuity near the

origin, lim.s-,ol..S7V(W))(s)l should be finite and we have the theorem.

   Note. By the same reason as in lemma 3, we have

            car.bci(Ri)'op(a)c[K, L],

in this case.

                 g3. Properties of Lff-(R')-derivatives.

   8. By the definition of bLg-(.,)'g(a) and (17), we have

   Lemma 11. if 1 can be aPProximated by the element ofY(Ri) in Lit,,,(Ri),

then bLi;i7-(Ri)"g(a) is a Probabilistic distribution on niu{±oo}. Especially, if g is

Cb(Ri)-derivable, then bcb(Ri)'g(a) is a Probabilistic distribution on Ri.

   Theorem 6. For any Probabilistic distribution 6 on Ri and aERi, there exists

a (rig)lzt) continuous fttnction op(t) near (the rig)lzt hand side of) a such that g(t) is rig7zt

Cb(Ri)-derivable at a and

(27) bcb(Ri)"op(a)=e.

   Proof. For simple, we assume a=O and g(O)=O. We denote the distribution

function of e by x(x), that is z(x)::=6((-oo, x]).

   For any positive integer n, we define a set of numbers IV. by

                      V･l fl            N.= {c ]C=== ai2i += bj2-j,

                     t==O i--l
                   ai, bj are equal to O, 1 or -1 and lcl;SIVUiir}

We denote the number of elements of IV. by fe.. By definition, fe. =O(log2'i). The
m -th number in bigness in N. is denoted by c., .. Hence, if n==i/:ee..ai2i, then

Cn,i=-(=-.,gi-<.ai2i) and Cn,kn==-.ginv<.ai2i. By definition, we also have

(28) N"cNii,i, U Nn is dense in R.
                      n)1

We also set for sufficiently large n
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　　　　　　　　　α。＝〃吻．｛x（cπ〃2　　，）｝＝z（o。，。），

　　　　　　　　　　　　配（oπ，”、）≠o

　　　　　　　　　　β，、＝　　〃2ακ．　　｛x（cπ，〃、）｝＝（zcη，β），

　　　　　　　　　　　　潔（o脚）≠1

　　　　　　　　　Z（6η0　，）一〇，X（・・弗＋1）一1，・，・，・、．、一・・，・、＋2一（π＋1）．

　　Under　these　preparations，　we　define　g（のas　follows：

　　　　　　　　　　・（’）一・…’・☆、…（。誤、）（。＋、）≦’≦

　　　　　　　　　　　　　　　　　≦。十、＋論）一、・＋・煮。＋、），

　　　　　　　　　　・（’）編蒲＋編1）＋z（傷繍瞥一2）≦’≦

　　　　　　　　　　　　　　　　　≦。十、畷鍋一z（ら，。、）一x（ら，。、．、2”＋1細＋1））・・〈・邸

　　　　　　　　　　・（・）一幅。辛、＋轟）＋嘉喘瑠≦’≦

　　　　　　　　　　　　　　　　　　≦（ユ＿　　β・

　　　　　　　　　　　　　　　　　　　｝％2”＋1砲＋1）’

　　　　　　　　　・（’）一7＋2叫2（転・一ら・辮涜1鉾謝ら・Lβ・1魚・1・

　　　　　　　　　　　　　　　・（ト2’；＋2（π＋2）＋α・　　2π＋2（％弓一1）（1¢÷2））畷

　　　　　　　　　　　　　　　　1　　　　β。＋、

π十1

鋼一（c一＋rc一’・）2間門z（6一））＋¢

　　　　　　　　　　　　　　。十、＋、　繭（。＋、）），

　　　　　　　　　　　　　　1　十　　　　απ
　　　　　　　　　ぐく
2”＋2＠＋1）（η÷2）　　　　　　　　　　　　　　　　　2”÷2＠÷1）＠＋2）’　　　　　　　　　　　　　π十！

　　　　　　　　　　　　　。，，。÷、÷c。、，。）（κ（ら鼎）剛（o。，，。一、））

1
十

　
［’一　O

一　
1

　
酔

　
C

十

　1　＿

η十1

　　　1
　　死十1

　z（c。，，。）

　　2（x（ら、，。、）一z（ら。。、．1））

x（ら，“、）　x（c，鷹）一x（6。，，。一、）

細＋1）

＋z（・一）
　　　　　　　十一一一
　　π＠＋1）

2間仰＋1）

x（o。，，。）一z（o。，。、．、）

十一

　1　十

％十1

＜蒲

　　　　　　　2”＋1卿＋1）

κ（o。，，。）一z（c。，，。．、）

　　　　　　　　　　ぐく
2’軍＋1塵＋1）

z（c。，，，、）一z（o。，。、．、）

一

罐＋1）

　　z（oπ卿7η）

÷　　　　　　十一
　砲＋1） 2間細÷1）

，α＜辮≦β，

ψ（0）＝0，
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where x(c) means lim.x-c-ox(x). ･
   Since g(t)=O(V-if) by definition, g is continuous on OSt<1/n for sufliciently

large n and right Cb(Ri)-derivable at t=O and we have

(27)' bcb (Ri)"9(O) ==&

Because by the definition of g, if cEU.N., then z"e(o)(c) exists and

            x"pa(o)(c)=:=z(c).

On the other hand, if ci<x<c2, ci, c2EU.N., then since we know

            z'rp(o)(ci) ;!i{fiL/li. inf. m({tl 9it) :isx}n(o, s])/6

                   :-f{;l,z-'ag.sztP.m({tl opit)h-<-x}n(o, 6])/b

                                  '                   l;{X'if(o)(C2.),

we get xip(o)(x)=::x(x) if g is continuous at x by (28). But, since p is continuous almost

everywhere on Ri, we obtain (27)'.

   Note. If g is a probabilistic distribution on RiU{±oo}, but not on R', that
is, the distribution function x of e has the property lim.x.-.ox(x)7-O, or

lim.x-ooz(x)il, then we set for nl2

            z.(x)=x(x), 1x1$Vn-1,

            X.(X)="O, X<-Vn-1,

            x.(X)=1, x>Vn-1,

and define g(t) as above, but use x.(c.,.), etc., instead of z(c.,.) etc.. Then this

g(t) is defined on 05t<1/(3+n) and continuous at t=O and (right) C(R'u{:itoo})

-derivable at t=O with bc(Riu{±oo})'g(O)=6.

   9. Lemma 12. We assume .Scr(Ri)cC(Ri), the sPace of continuous junctions on

Ri, and satishes the following condition (c):

(c). if fEY(Ri) and affR, then fh, given by fh(x)==f(a+x), also belongs in Y(Ri).

Then we have

(29) bLsz-･ (Ri)'(9i+ 92)(a) =bLE;;7-･ (Ri)"9i (a) Yi bLs;7-･ (Ri)"92(a),

if gi and g2 are (riglzt) .S7"(Ri)-derivable at a and continuous near (of the right hand

side) of a. Here, 6i*g2 means the convolution of 6i and e2.

   Proof. First we remark that

                                           '(30) l,zL/:,?. ii f(gO(a+t)t- SO(a)) dt-bLg.-･ (R,)'g(a)( f)+o(s),



if g is (right) Y(Ri)-derivable at a. Then we get

(31) by (.,)+g(O)=bLs7- (Ri)+ (-1; p,* g) (O),

for any ciO by (30), if g is Ls;er(Ri)-derivable at O and q(O)==O. Because we have

            Ilf(gift))dt=-li-I[1f(pST))dT

                      -=by(R,)+op(O)s+R(la),

where lim. h-o R(h) ==O.

   To show (29), we assttme a=O and gi(O)=g2(O)::=O for sirnple. Then we get by

the mean value theorem of the integral,

(32) Iif(9}(`)+92Se.ev,t))dt

                                   '
          == Ll'ii ll f( op;(t)' 92.`evkfe) )d'dle･

But since g2 is continu6us, we get by the mean value therem of the integral and

(30),

            f(92t(t))t :::by(R,)'g2(O)(f)t+o(t)-l-R(h), l,:'t,,.R(h)==O.

Therefore, by (32), if s is sufficiently small, then for sultable a>O, we get

(32)t fl f( 9}(t)+ 9;(t)) dt

          =- -}ll Il. f( 9;(t)+ 92.(ak-:ig1/ )dtdfe+o(s) +R(h).

   On the other hand, we obtain by (30) and (31),

            £tLm,･ -l-i), llf( 9;`t'+ 92.(a,le) )dtdle

          =b.g(Ri)"SOi(O)(bLg-(Ri)'(-i:p."go2)(O)(f(t+k)k),s÷o(s)

          =bLs;f'(Ri)'9i(O)(b.g(Ri)'g2(O)(f(t+k)k)ts+o(s).

Hence by (32)', we have
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            (t-'llg ･ -]-lt-'l.11i ･ il f ( 9}(t)+ g;(t)) d,

           = by (Ri)"9i(O)(bLsr (Ri) "92(O)( f(t + fe)>k)t

           == (bLg- (Ri)'9i (O)*by (R,)"g2(O))( f).

Therefore, we obtain the lemma.

    On the other hand, by the definition of Y(Ri)-derivatives, we obtain

    Lemma 13. if op isY(R')-derivable at a, then for any cER, cg isL9"(Ri)-

                                 'derivable at a and we have '

(33) bLg- (Ri)'(cg)(a) =p.'(bLg- (Ri)"g(a)),

where p,* means the ady'oint oPerator or p,.

    By lemma 12 and lemma 13, we have

   Lemma 14. ILIC gi and g2 are Cb(Ri)-derivable at a, then gig2 is also Cb(Ri)-

derivable at a and we have

(34) bcb(Ri)"9i92)(a)

          =(Ppi(a)"(bCb(Ri)"902(a)));k(Pw2(a)"(bCb(Ri)'Pi(a))).

   ProoL By the usual calculation, it only needs to show

(3s) gt-' .ve. -l;-ffr' ,m,.Jl f( gi(a+t)(g2(at+ t) -q2(a))) dt

          ==Ppi(a)*(bCb(Ri)"92(a))(f).

   To show (35), we assume a=O and gi(O)=92(O)=O for simple. Then by lemma

11, for any e>O, there exists K>O and L>O such that if a<L, then

            m({tll 9i(t)I;s{K}n(o, 6])>(i-E-)6, i-i,2.

Hence we get for these L and K,

            M({tilgi(t)g2(t)1$K2t2}fi(O, 6])>(1-e)ti.

Hence for any e>O and a>O, there exists M>O such that if r <M, then

            m({ts 1 9i(t)t92(t) l;$;a}n(O, r])>(1-e)r.

Therefore, since we censider the case .E7(Ri)=::Cb(Ri), we obtain (35).

   10. Since by(Ri)'g(a) is a probabilistic distribution if .9-'(Ri) containes



Co(R2), we get

(36) it-'t.lg･ bLs;7-r (Ri)'(cg)(a)=b (=tie),

                             '
if Co(Ri)a .9'"(Ri)cCb(Ri) by the Lebesgue's convergence theorem.

   Definition. 1)C bf(R,)'g(a) is a Probabilistic distribation and its characteristic

funCtiOnL9-[by(Ri)'ep(a)](t)=bLf;;r(Ri)'g(a)(e-2rr/=lst), is Positive on Rt, then we

dofne dy-(Ri)'g(a) by ,

    '
                         -1(37) df (Ri)'g(a) == 2.v-1 1og. L9J  [bLg7- (Ri)"g(a)]･

   Since we have by lemma 12,

(29)' L9" [by (R,)'(pi+g2)(a)] ==Y[bLg- (Ri)"pai(a)].S7J [bLg-･ (Ri)'g2(a)],

we obtain

(38) dLr (Ri)'(gi+g2)(a)=dLg}rt (Ri)"gi(a) +dy (Ri)'g2(a),

if dLr'(Ri)'9i(a), i=1, 2, exist.

   Similarly, by (36), we get

(36)t itL'r.l.dLsz-(RE)'(Cgo)(a)=O･

                                             tt
   Lemma 15. 11f the exPectation of by(R,)"g(a) exists, that is q is op is Clxl(R')-

derivable at a, then

(39) dy (R,)"(cgb)(a)= ctb.r (Ri)'9p(a)(S)+O(C),

        '
                                  ttfor ci;O.

   Proof. By assumption, we can set

           Y[byny(R,)'(cep)(a)](t)

          := by (Ri)'g(a)(e-2n/ricts), ,

          +bLf;7-(Ri)'P(a)(1-2zV-ICts),+bLE;7r-(Ri)"9(a)(e-2rr,/=Icts-1+2nV-cts),,

Then, since we get by mean value theorem,

           i lc- (e-2rr i/=cts - 1 + 2TV - lcts) 1

           ttttt tt          = i 2Tv -its lt- -l;-(em2n/=icts-i) i
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           ;;{ 1 2zV - lts - 2zOi ts sin 2rc0i cts - 2TA/ - 102 ts cos e2 ts 1

           i$ll6rc1ts1,

we have by Lebesgue's convergence theorem,

          '
             itH'l.l3 ･ -i- by (Ri)"op(a)(em2rr /i=icts - 1 +2rcV - lcts) == o.

             -9"' [bLsr (Ri)"(cg)(a)]

            = by (R,)' gp(a)(1) - 2zAvl - lctby (R,)" go(a)(s) -Y o(c).

Then, since by(Ri)"(a)(1)==1, we obtain the lemma.

    We note that to denote B.g(a) the right Borel derivate of g at a, then we get

             bLser (Ri)'g(a)(s)= B.g(a). .

    Note. By the same reason, if le-th moment of bLg7-(Ri)'op(a) exists, then

(39)' dLg-(Ri)'(cg)(a)== 2.ii-i .]{.l, .il (-2z,vX-ict)M{by(R,)"g(a)(sM)-

                     - nrm1! iL,, iii,i),12]bY (Ri)'op(a)(S ')bLf;er (R,)+g(aXM - t)+ , . .}+ o(ck).

Especially, if by(Ri)g(a)(sM)={bLr･(Ri)9(a)(s)}M, then dL$7-(Ri)'(Cep)(a)==

Ct bL.fr･ (Ri)"9(a)(s)+o(ck).

    Summarising these, we have

    Theorem 7. dy-.(R,)' is additive and if dy(R,)'g(a) is dzlff12rentiable, then

                 1(40) it-'lf . "ii-(dy(Ri)"(c9)(a))-B.9(a)t.

Moreover, we get dLg7-･(Ri)'9(a)=B.9(a)t if and only if g is (right) approximately

derivable at a

                                 '
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