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Introduction.

In our previous papers[1], [2], [2], the author introduced the notion of the
generalized tangent of a curve, The motivation of this paper is to consider the
following problem. Under what condition, the graph of a function (of one variable)
has the generalized tangent ?

To expose the problem precisely, we first review the definition of the gene-
ralized tangent, A function f at ¢, a € R”, is said to be (right) Géiteaux differ-
entiable at a, or C(S"Y)-differentiable at @, if the limit

d, f(a, )=lim. +(fla-+ )~ /@)

exists for any », ||¥/|=1, and d,f(a, y) becomes a continuous function on S"°!,
Then, for a curve y of R" given by 7 : I—-R" such that y{0)=a, we call y has the
C(S*Y-tangent, or the generalized tangent at « if the limit

<Ea), d, fla)>=lim. Liim, r fatt) — fla) gy

s=0 S h—g Ja t
exists. Here, Xr(a) is an element of C(S""1)*, the dual space of Ci5"1), It is shown
that if y is smooth at @, then Xy(@)=cé,, where ¢ is a constant and &, is the Dirac
measure on S"! concentrated at y. Moreover, in R?, the curve r0=1 has the
generalized tangent (1/2z)d0 at the origin and the graph of xsin(1/x), ¥>0 has
the generalized tangent (1/zcos?fs/cos20) df,~(zx/4)<0<(z/4) at the origin ([1],
L21).

To consider the above problem, we note

lim, Ltim, ﬁ St) — fla

$—0 S i) t
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—lim Ly @) _\Lr@ll
=lim, --lim, Jh ,,f( Ty )||> dt,

50 S lz—»o t
Hence, if 7 is the graph of a function ¢, then
<Xrla), dofla)>

:li?’}(’)t_%—l/l;md L d, f(a, tan-1< olatt) —

= ole)) | P F =T gy

Therefore, the graph of ¢ has the generalized tangent at ¢ if the limit

by‘(Rx)J'SD(d)(g)

—lim, L lim, j g(éﬂJﬂ:ﬂQ)dt
s-0 S h-0Jn ¢

exists for those g such that g is continuous on R 'and lim, z—+e g(%)/(1+|x|) both
exist., In the above notation, .&# (R!) means the space of those functions,

By this reason, for a fixed function space & (R!) over R! such that whose
elements are locally integrable and whose topology is not weaker than that of
LYy, (RY, if the limit

by (R1)+€D(a)(f)

g L [P clelatt) — ¢la)
=tim. lim. || (A0 =2 D)ay

exists, then we call b g(R1)+¢(a), an element of & (RY)*, to be the (right) & (RY)

-derivate of ¢ at a,or the generalized derivate of ¢ at a. For example, if we take
& (RY) to be R{x}, the 1-dimensional vector space generated by the function ¥, then

bﬁ rny " pla)cx)

:lim.ilim j c¢(a+t) .Udt.
s—0 Sk Jh t

Therefore, we may consider b o rny'0l@) to be the right Borel derivate B,¢la)

of ¢ at a (6], [9], [11], cf. also [4]), But our main interest is in the case that

Z (RY) is dense in C(R"Y), the space of continuous functions on B!  In this case,
b ﬁ(Rl)w( } is a measure on R!U{d=c0}, the 2-points compactification of R!, and
it is a probabilistic distribution on R!U{z*+o}.  If F (RY) is equal to Cy(RY), the
space of bounded continuous functions on R!, then b y(Rl)Jfga(a) is a probabilistic

distribution on R. Explicitly, this measure is given by
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b* @) E) =lim. m({t] weE} neo, a1/s,
30

where m is the Lebesgue measure and E is an open set of RU{-4o}. We note
that it is shown that to set

b pla)(E)

—ltm sup, m({tlga(a—{—t) ol )EE}H(O a1)/s,

where m is the Lebesgue’s outer measure and £ is an open set of RU{+o}, from
b*p(a) we can defines a (Caratheodry’s) outer measure of RU{x+oo7},
For the above b&T(R,)“go(a), or b*¢(a), we can show the followings.

(i). bLyi'(Rl)+9°(“) is a probabilistic distvibution on RU{xoo}.  Conversely, for any
probabilistic distribution P on RU{xoo}, there exists a (vight) continuous function
¢ at a such that

bropl@)=P

(§3, Theorem 6, cf. [1], Theorem 3, [2], §5).
(ii). car drol@yc[ L, K| if and only if for any ¢>0

lim. m{{t| L+e<PHD = #0300, a])/0=1,
§—0

or in other word, ¢ is (right) Lipschitz continuous at a with the bounds L, K in
the sence of Lévy ([77]) (§2, Theorem 4').

(). bdYel@)=d,, the Dirac measure at c, if and only if ¢ is (right) approximately
derivable at a (cf. [107]) and

A*Dola)=

where A*Dyla) means the (right) approximately derivate of ¢ at a (§2, Theorem
3).

(iii). If ¢, and @, are both % (RY)-derivable at a and % (RYCC(RY with the condi-
tion that if fe 7 (RY, then f, fix)=Ffa-tx), €. 7 (RY), then

bﬁ‘(Rl)+(901+902)( )= g’/ o (R @) bﬁ(Rl)"LSDz(a),

where =means the convolution (§ 3, Lemma 12),
(iv), If 7 (RY=Cy(RY={ flflx)/(1+|x|) is bounded on R'}, and ¢ is (vight) F# (RY)
-derivable at a, or, in other word, if v*e(a) has the expectation, then
1

Lim. ?57"“1-* 1og(57™ [D - cmyy*(ep)a) ]) =B, plalt.
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Here, 7 means the Fouriev transformation and B, pla) is the right Borel derivate

of ¢ at a (§3, Theorem 7).

The above (ii'} shows that the (right) & (RY)-derivability at ¢ is weaker than
(right) approximately derivability at @. For the existence of % (R!)-derivate, it
is shown by Prof. Uchiyama that if #gle-+1/t)—¢la)) is almost periodic in the sence
of Besicovi€ ([3]), then ¢ is (right) C(R*U{z+co})-derivable at a (§ 1, Theorem 1).
It is also shown that if ¢ is Lipschitz continuous near a, then ¢ is C}(R'}-derivable
at a, where C(R!) means the space of C'-class functions on R! (§2, Theorem 5).
On the other hand, in the case &% (RH=C(R'U{z00}), the space of those conti-
nuous functions f, such that lim, s+ f(%) both exist, we get b Y &y W E0)=

0w, she Dirac measure at oo, or in other word, dw(f)==lim. r~« f(x). Moreover, if
o(f) is the Weierstrass’ example, that is

wlt)=>Wcoslcxt), ¢ is odd, 0<b<1, be>1+3m,

n

we get
DCRIU (oo T PA) =0—co, if a:%'%, m, k are inlegers,

where §-w is given by d—col f)=lim. x——w f(%).

In this first part of the paper, we only state the results about derivation. In
the second part of this paper, we state the results about corresponding integration
of this derivation. It is related to the stochastic process and the several types of
integrals (cf. [4], [5], [7], [8], [9], [107). The several variables case will be
treated in another paper.

I would like to thank Prof. Uchiyama and Dr. Kano for their kind advices
and encouragements,

§1. & (RY)-derivatives

1. We denote by (R!) a locally convex function space over R!, 1-dimensional
real vector space, which satisfies the following (a), (b).
(@). .7 (RY is contained in Ll (RY) and the topology of (Rl)' is not weaker than
that of L'ioc. (BY).
o). If f e (RY, then p.f given by

0. f(%)=S(ax), asR,

belongs in % (RY) for any acR.
As usual, we denote by C(RY) and Cy(R?Y) the spaces of continuous (resp. compact
carrier continuous) functions on R! By the compact open topology, they both
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satisfy (@), (b). Other examples of 7 (R'), which are specially used later, are
the following spaces. ’
i), Cu(RY) : Banach space of bounded continuous functions on R' where ||f|] is given

by sup. zer'| fx)].
(ii). CR!'U{z=co}) : The subspace of C,R") consisted by those f that lim. y— flx) and
lim, x—co f(x) bOth exist,
(ii). Cx|(RY) : Banach space of those continuous functions f on R such that |f(x)]=
Ol x1) at infinity with the norm || f||=sup. rcr: | f(x)]/(1+x]).
By the assumption (i) of 57 (R'), we have
Lemma 1, Let ¢ be a function of 1-variable defined on a <t<a+te for some >0,
and if the limit

lim. Liim. J/ f(@(ffﬁ)"ﬂ)dt

50 Ji—0

exists for any fe & (RY), then theve exists an element b 57<R1)+go(a) of F(RY,
the dual space of & (RY), suh that

b 5 7 (R ol f)

—lim, Llim, L f(w)dt.

s> h—>0

Similarly, if lim, s.o(1/s)lim, ’HOJ Fllpla)—pla—1))/f) dt exists for any fe & (RY,
then there exists an element b gy ¢(@) of & (R')* such that

m bé]‘ (Rl)—?(a)(f)

=lim, Llz'm_ js f(wﬁ)dt.
S->0 h-0 JA
Definition, We call ¢ to be right (vesp. left) & (R")-derivable at a ifd o (RY
*ola) (resp. h7 (rvy pl@)) exists and bL7 mrny pla) (resp. by’ (rvy"9la) is called right
(resp, left) <7 (RY)-derivate or gemeralized derivate of ¢ at a. If bkg”(R‘)W’(a) and
by(m)‘ga(a) both exist and coincide, then we call ¢ to be % (RY)-derivable at a, In

this case, we seif

@) bf rny?(@) :bLg/T‘ el (= b‘ 5,,«—(121)_9’(‘1))-

Example 1. If ¢ is differentiable in the usual sence at a and & (R!) is con-
tained in C(RY, then, since
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5 (#etD =29 _ f(ga)op),

we get

(3) D o~ (ryPl@) =0y (o).
/

Example 2. If & (R)={x}, the 1-dimensional vector space generated by the
function x, x(f)=t¢, then to identify {x#}*=R, we get

b *pla) =lim. %5% E wdt'

This right hand is known to be the (right) Borel derivate of ¢ at a. For the Borel
derivatives, it is known that ¢ has the Borel derivate at a if and ony if the
indefinite integral @ of ¢ has the second de la Valled-Poussin derivative (or Peano
derivative) at a ((6], [9], [117). Here, de la Vallée-Poussin derivative is defined

as follows: If f is written at a
Fl@-t)=cotort g Rt oth),

then c, is called the k-th de la Vallée- Poussin derivative of f at a.
Note. If . (RY=C(R'U{r7}), then we have
4) C o Deriu (o)) TPl) =0k,
if we get lim. i>glpla-+1)—gl@)/t =00, Here de (Or §-) is given by
oo f=lim, f(x) (F—wof=lim. f()).

xX—>00 X—>—0o0

2. The following existence criterion of d j(R,)’”q)(a) due to Prof. Uchiyama.

Lemma 2. If h(x) is measurable and essentially bounded on x=c, then
lim. swsjzh(xxdx/xz) exists if and only if lim, Tw(l/T)ﬁ*Th(xwx exists, and we
have for any a=0,
) lim sjwh(x)di:zim LJ'"”/z(x)dx

Sse JS 2% raeT ’
T
Proof, First we assume [im, T_mo(l/T)JZ+ hix)dx exists and set it by M (h).

Then, since

rﬂﬂ’f}dx:[,L_jjxh(é)dfji +2K( 1 J:Hh(é)dE)dx,

ats X° (x+a)? (x+a)®

we get
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co M . 1 a+S o 1 atx

J(H—S x® di = (S+a)2L hE)dE +2Js<x aﬁJ h(E)dE)dx,
because M (%) exists. Then, since 1/(x+a)JZ+xh(E)d€§Ma(h)+e for any >0 if x is
sufficiently large, we get

lim. sup. (a+S)Jw M)y,
a+

S>on s xt

1

ST ap M) re)dx =M+ 2e.

<—M.h)+lim. sup. 2(a+S)J

oo

hix)dx/x2)=M (h)—2¢. Therefore

Similarly, we obtain lim. inf, s—>oo(a+S)Ja +s

lim, 5500 Sth(x)(dx/xz) exists and it is equal to M, (k). On the other hand, since

S

L (et —_ e+ TP™ K
TJ(Z h(x)dx N T Ju—!— TTdE+

e 3] M

M (h) exists and coincides to /im, 5—e Sf:h(x)(dx/xz), Because by the essential bou-

ndedness of %, we get

“hx),. (1 < h(x)
[0 of3). 1 1 M a0
We note that by lemma 2, if M, k) exists, then it does not depend on a.
Hence in the rest, we denote M(h) instead of M (k).
Since we know

o Lo % pfolatt) — ola)
iz—?g'?iﬁ'J/If( t >dt

du

—lim, SJ:f(u(go(a —k%)ﬂo(u)»ﬁ,

S—ee

we get by lemma 2,
Theorem 1, If the elements of % (RY) are essentially bounded at infininity, then

we have
(6) b Ca @y @) N)=M(f(p*)).

Here ¢,* is given by
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() 0. ()= tlgla-t 1) —pla)),

and f(p,*) means the composition of f and ¢,*,

Corollary 1. If 7 (RY) is contained in C(R'U{=xc0}) and ¢,* is almost periodic
in the sence of Besicovic ([37), that is, for any £>0, there exists A=A{)>0 and a
periodic, essentially bounded mesurable function ¢4(x) such that

fim sup. [ 10,0 a0 A
T—sc0 Ty
then bLyT’ <lega((zc) exists,

Proof. Since an almost periodic function % in the sence of Besicovi€¢ has the
mean value M(k), we have the corollary.

Corollary 2. To define 57 (RY) by {f| el [(RY), fle,*) is almost periodic in
the sence of Besicovit}, ¢ is & (RY)-derivable at a.

Example. If ¢(f) is given by a trigonometrical series Z,,(a,, sina,,+b,cosp,t),
then

()= i Ly cosPap i Lygin®s
¥, (t)_zt;(aﬂ sina,(@+ 5 t) cos' b,sin 8, {a+ 5 t)Sm 5 t)'

Hence, if &% (R)=C(R*U{=x=}) and ¢(f) is the Cellérier’'s example

o sin (¢"x) ;
go(t) = TR y €18 even’
=0 ¢

then we get
DO(RIU (en ()" 0(@) =00, DC(RIU {o0p) (@) =0 oo,
if a=m/c*, m, k are integers,
Similarly, if ¢(f) is the Weierstass’ examle
¢lt)=">b"cos(c"xx), ¢ is odd, 0<b<1, bc?:1+—g—rr,
H=0
then we get

DCCRIU (£ T P@) =00, DCCRIU {00}~ (@)= 0o,

if a=m/ct, m, k are integers.

3. In our previous papers [1], [ 2], [2], the authour introduce the notion o{f
generalized tangent, or C(S""!}-tangent X,y of a curve y at a as follows : Suppose
v is given by y: I-R" with y(0)=a, lhen
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<X, dogla)>—=lim. Llim, JS st)—g@)y,

s>0 Sh-p Jh 4
where g is a C(S*V)-differentiable function at a and d,g(a) is its Gdteaux diffevential

at a given by

dogla, 9)=lim. 4(glatty)~g(a@), |1yl1=1.

Since we know

lim. Liim J 8at)—5@)
sao. S 0 Jh ¢

—tim. Liim. [ d, @, D=8 3 (2n—a| |dt,
s=0 S k0 J/L Pg( ||T(t)__aH)HT() H |

if X,r exists, we get

8 <X, d.8@)>
—Iim. Llim Js d,gla tan~1(€0(a+t) — ¢(“))\“/t2+(€0(a+t) — gla))? dt
50 S ko0 Jn ? ! t / t ’

if v is the graph of ¢ starts from (@, ¢(@), that is, 7y is given by
@t IR @ t(D)=(a+t, ola-tt).

We note that in (8), S! is parametrized by, —a<l0<r,
By (8), if r is the graph of ¢ and to have the generalized tangent X7, then

" T T
(()) car, &arC[ 5: "g‘ .

Moreover, to define the map tan '#:C(SH—C(RY) by
(tan~'# f)(x)=f(tan"tx), ¥R, feC(SY),

we get

(10) tan HH{C(S))=CR' U {-tc0]}),

By the definition of tan~'¥ and (10), we get
(9) tan-H#*(C(RA U {00 ) ={E|6€OSY", car, écT—Z, 2T}

By (8), (9) and (9), we obtain

(8) <(tan™'#*)7'X.y, (tan™'#*)"'d, g(@)>
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—lim, Llim JS ((tan~1#)"1d g(a))(go(a—i-lf) - Sﬁ(a)\“/tz‘i‘(Sﬁ(a+t)—¢(“))2dt
s>0 S h—0 Ji ’ 14 ! ¢ )

Hence if (tan~'#*)-1%X,r can be considered to be an element of C|(RY), then we
have
(11) be, o el@) f /1 + 27

—<(tan" ¥ Ky, >, FECRMU{o0)),

Hence we obtain
Theorem 2. bcl [(BLU (o0} *pla) exists if and only if the graph of ¢ has the
C(SY)-tangent at x=a. Here C|y(R*U{xoo}) is the subspace of C1A|(R1) such that

Crz(R*U{z=00])

={ f|lim. —f-—) and lim, f(x) both exist},

X—r00 xX——00

Note, Starting from another function space & (SY), we can obtain similar
conclusion, For example, we get

Theorem 2. bLZIx|4(Rl)+g0([l) exists if and only if the graph of ¢ has the L¥SY)
-tangent at x=a, Here, L% .«(R") means the Hilbert space over R' such that whose

norm is given by

[ 1
A1 =] .

§2. Carriers of & (R!)-derivatives,

4. By the definition of b o ry’, We obtain
Lemma 3. If ¢ satisfies

(12’ L <At g, o<,

Jor some >0, and if b .~ piytola) exists, then
G (RD

(12) car.d o-py'ela)clL, K1
Corollary. If (right) Dini devivates D,*o=lim. sup, ;»rolpla+t)—epla@)/t and d,*¢
=lim. inf. i»volpl@+8)—opla)/t are given by D jo=K, d;to=L, then (12) is hold zf

b 97(1{1)+(a) exists,
Note, In this corollary, K may be equal to o and L may, be equal to —oo,
Lemma 4. If 7 (RY) containes C(R'U{=+=o}) and b _~ o (RY) *ola) exists and (12)
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is hold, then for any >0, we have

13) Zim,;m({t]ngJre}ﬂ(O, 57)/3=0,
80

(13) tim, m({2| 2D =021y (0, a7)/0=0,
8—0

where m(E) means the Lebesgue measure of E.

Proof. By assumption, there exists a series of functions { f,} of .& (R") such
that

Tl XiK+e, 00,

where yp means the characteristic function of E. Then, since f,<1, by the defi-
nition of b B ry'pl@), we get

b e Ry POISD e iy AN IS D oy 0l )<
S0 o iy U i) D iy @D =1

Therefore lim. oo ﬁa(Rl)“go(a)( f.) exists and by the definition of { f,}, we get

lzm . bﬁ (R1)+(/)(a)< fn)

J31—00

—tim, mH 2D = A=K 300, p1)/6.

50

But since we can take each f, to satisfy car. f,c{K+¢/2, ), we have (13) by
assumption, : ‘

Similarly, since C(B'U{z=co})* is tha space of the (finte) measures on R!U{z-o0},
we get

Lemma 4'. Under the same assumptions as in lemma 4, if (13) is hold, then
car, bja(R,)‘“gn(a)c[»—oo, K7, Hence if (13) and (13)' are hold, then we have (12),

Note, In the case L= (or K=—00), we get car. bj,(R,)’“go(a):{oo} (or car,
bﬁ* ey pl@)={—0o03).

Theorem 3. If # (RY) containes C(R'U{+o0}), then

by f(R1)+¢(a):55, the Dirac measure concentrated at c,
if and only if ¢ is (vight) approximately derivable at a (cf,[10]) and

(14) c=AD*¢(a), the (right) approximate derivate of ¢ at a,

that is, for any ¢>0, we get
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(15) tim. mit]c—e< PO = M <ot 30, a1,

3

Proof. By lemma 4 and 4, we need only to show the existence of

o (riy*pla). But since we get by (15)

F

mift|o—e< PO =20 <o 31 (0, s)=5—ots),

Sfor any e, we have

jtim. | 7 (PO arpgs) <

h—0 J &
<( max. |[f{x)— f(3))s+ols),

c-eXx, y=Scte

for any >0, Hence, since f is continuous, we get

tim, Liim, Js f (M)dtzﬂd.

s—0 Sh—o Jh
Therefore b ?(lega(a) exists and it is equal to 4,.

Note, We set AD*gpla)=o0 if

(15) lim, m({tlwgc}ﬁw, 57/6=1,
-0

for any c¢. Then we get bﬁ.(m)*go(a):éoo if and only if AD*¢(a)=co, Similarly,
bfml)*go(a):&_oo if and only if AD*p(a)=—o0, that is
lim, som({t]|(pla+H)—ola)/t=e3N (0, §])/6=1 for any c.

5. Lemma. To define b *pla)E) by

(16) b pla)E)=tim. sup. (1| UL £ @e Eyn (0, 57,

where E is an (open) subset of R! and m is the Lebesgue’s outer measure, b*¢(a)
is a {Caratheodry's) outer measure of R!
Proof, We need only to show

brola) (U E,)<D B*o)E,).
n n
But, since m is the Lebesgue’s outer measure, we get

(| 2D = Me y gy, o)
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<>y 2= Ae £ 3000, 5],

Hence we have

5*90(0)(5) E,)

=>Vlim, sup. m({tlweEﬂ}ﬂ(O, /e

w80

IA

20 aE,).

7

Lemma 6, If E is Lebesgue wmeasurable and ¢ is measurable, then E is

b ola)-measurable if and only if lim. som{{t) pla+1)-pla)/teEIN0,8))/0 exists, Here
b*pla) means the corvesponding measure of 5*p(a).
Proof, By assumption, we can set

bplalE)=tim. sup. m((1| D= By (0, 51

Then, Since
{t\weX}ﬁ(O, 5
—1) =M gy, apu et —fex—mynq, o),

(A=A pyng, apni 2t = dex—Eyn(, ),
for any XDOF, we get

b pla)X)

—lim. sup. (] webj} no, U

50

U({tlweX—E}ﬂ(Q 57)/6
—lim, sup. (m({u%ﬂtime]f}n(o, a0+

Fa.

+ iy 2t = dlex - Eyng, 210
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=tim. ({1 MEE}” 0, &1)/6+

+lim, sup,W({HweX—E}ﬂ(O, a0)/5
-0

=b*p@)(E)+b p(a)X —E),

if Lim, som({t|(p(a+1)-pa)/te EYN(0, 0))/5 exists, because E is mesurable,

we have the first assertion. On the other hand, since

(17y tim. m((#| 24D = Mgy (0, a)/5=1,

by definition, we have
lim, inf. m ({t] wem n0,5])/0
50

=1-b"p(@)(R—E),

Hence

if E is (Lebesgue) measurable. Therefore, if lim. smom{{t|(pla+1)—e@)/t=EIN(0, 41)/6

does not exist, then E is not j*¢(a)-measurable,
Definition. We call d*pla) the (vight) derivative measure of ¢ at a,

By definition and lemma 6, if E is Lebesgue measurable and d*¢(a)-measurable,

then
b* p(a)(E) =lim. m({t|9”__(a+t)t" e Ern0, 5.
i (]

Especially, by (17)', R' is always b*p(@)-measurable, and we have

(17) bp(@)(RY)=1.

Theorem 4, If F (RY=C,RY), then bjﬂ(mﬁﬂ(‘l) exists and only if any Borel

set of R is d*¢la)-measurable and we have
(18) b gm0l = | S(Ddo"ela),
Proof. By the definition of d*¢(a). we have

. —tim Liim [, (ele+t) — ola)
b pla)E)=lim. Liim. LIXE( =P D)a,

if E is d'¢(a)-measurable, we have (18) for continuous f by assumption and we

get the first assertion.
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On the other hand, since there exists a series of functions { f,} in C,(R") such
that each f,=0 and

fnTXE’

if E is a Borel set, we have the second assertion by the same reason as in the
proof of lemma 4,
Corollary. We assume ¢ is right C,(R!)-derivable at a, then to set

(19) 2 pea(x)=d*gpla)(— oo, 4T),

K =Sup. {x]x*o() =0}, L:"i.f x|t o) =13,

we have
(20) car. ocyry p@C[K, L]

Conversely, if (20) is hold, then (19) is hold,

6. Although (20) is hold, ¢ does not satisfy the Lipschitz condition (12) at a
or the Dini derivates D,*¢ and d,*¢ can not bound by K, L in general. For
example, to set

_3"(3"~2"")( _L) B |
gﬁ(t)’~ 271—2 t 271: 2n:t:2n Qe 311’

3"(3"— 2"'1)< 1 1 > 1 1 1_1
90( ) 073 t on ' o gn)» p

o(f) is continuous at =0 and we get

deycriytp(0)=ds,  lim, sup. L8 — oo,
t—40 ¢

Definition, We call ¢ to by approximately (right) Dini derivable at a if y*¢e)(x)
is defined. If ¢ is approximately Dini derivable at a, then we set

(1) ADa"sozi’zf. {x| 2t per(x)=1},

Ad p=sup. {2|1" pca(%)=03.

By definition, we have
Lemma 7. (). If ¢ is approximately (right) Dini derivable at a, then

(21 ADrp=inf. (x| lim. m((t| 24T =0 a300, 57/0=1,
x 50
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Ad ro=sup. {x| lim.m({t| ng} N0, 875=0.
x 80

(ii). We have the inequality
(22) d, p<Ad, o< AD, oD, ",

and Ad,;*o=AD, ¢ if and only if ¢ is approximately derivable at a.
(iii)., If ¢ is (right) Lipschitz continuous in the sence of Lévy (cf.[7]) with the bounds
L, K, then

(22)' K<Ad'o<AD,*¢o<L.

Using the approximately Dini derivates, we get
Theorem 4'. ¢ is (vight) C,(RY)-derivable at a if and only if ¢ is approximately
(right) Dini derivable at a and we have

(18) bescan '9l@) )= | _Fdx et

where the right hand side is the Stieltjes integral, We also have
(20) car. cyryy *pl@)cLAd, g, AD el
Coversely, we obtain
ADa*sozifgf. {x| cor.deyrn *pl@)Nx, o)=p},
Adgrp=sup. {x| car.bc,m> *Pl@)N(—oco, x]=g].
‘Or, in other word, [Ad,*¢, AD,tp]| is the shortest interval which containes

car, deyry Ha).
We also note that if (20) is hold, then we get for any ¢>0

(12)" mi{ x| K~e§w§L+e}ﬂ(O, 5])=5—0),

7. We assume ¢{f) is Lipschitz continuous near (the right hand side of) @, that
is ¢ satisfies

(23) kbl = olr ot <tigats,
177E2

for some ¢>0. For simple, in the rest, we assume a=0 and ¢{0)=0.
Lemma 8. If f is differentiable and ¢ is Lipschitz continuous near the origin
and @(0)=0, then the Radon -Nykodim derivative o(f(te(1/1)) of flte(1/1) satisfies

o ref))-of3)
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Proof. First we remark that since

sl

and g{t)=tf(p(t)/t) is Lipschitz continuous near the origin and g(0)=0, we only
need to show the lemma for fe(1/#). But since |p{t,)—olfa)| LI —1s), 0=8<3,<0,
we get

() —tap( L) 11t () 1+ 1l 1e(F) ~ ()|

< L 4L -1
:éimi 1~ + LIt 7 12|
— 2L b =1
_””—1||1 t1|’ tiy t2:5-
Then, to set ¥({t)=tp(l/t), we have
(25) HORBIEC DA =TS
¢
Then, since w'(tz)—yf(tl)_:J ‘sW)t)dt, we get
f
t ‘
LA
||, otrwsids| <2L(1-41), nz=
Hence we obtain
' - 2Lt 1- , . .
(24) |a(PNE) ]| < i t>t1§§’ and the sign of o@)t) is definite almost

everywhere on [t, t].

Therefore we have the lemma.

By theorem 1 and the first remark in the proof of lemma 8, to treat the
existence of b jf(m)*ga(o) for & (RYCC/RYNCYRY, it is sufficient to treat the
existence of the Mean value of ¥, Then, since ¥(f) is bounded and

| wwe=at=—L0L L owite-at, a>o,

¥(¢) has the mean value if lim.z—»orj o(¥(the *'dt  exists by Wiener’'s Tauberian
[7;
theorem ([12], [13]). For simple, we set a=0 in the rest,
Since we get '
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Jma(llf(t))e—-xtdt: J oW (log. $)s—G+Dds,
0 1
by setting f=log.s, we consider the function j§, ) given by
(26) 38, 7= "oWllog. s)s=c+e=isrds,
1

By definition and the theorem of Titchmarsh ([14]), 5, #) is defined on

{(¢, n){Re.&>—1/2, Im, »<0} and holomorphic on its interior. More precisely, we

get
Lemma 9. j&, u) has the following properties,

Q. 7 0 is equal to Jrl'” o((log. s))s—C¢+Dds.

(ii). To set jEXt)=j(&, t), where & is fixed and t is the seal variable, j(€) is continuous
in t if Re, £>0 and belongs in Lr/o-D(RY) if pRe. &+1)>1, —1/2 <Re, £L0.
By lemma 9, (ii), we have

j0e n_ LARY.
22p>1

_ ([14a/2emi0/21/2\2
rolf) =— (e 11
Then 7, maps D,={&||6|<1/2, arg.£#0} conformally onto D={y||»+1]<1} and
lim. ¢-07,(6)=0. But, since (&, 7,(7) is defined and holomorphic on D, x {»|Re, n<1/2}
and since we get for some (positive) constants K and c,

gr’ |o((log, s))| s~CRe: £+DesIm. (ratds
1

sI{Joos_l/ZesIm. (To('fi))ds<K['(%> [Tm, 7,(9)] 12 4¢,
1

HE&, 148) is defined on D, for any ¢ and 0 is either regular point, branching point
or pole of j(, 7,£). Therefore we obtain
Lemma 10, The mean value of W(t) either exists and finite or

lim, L | JG+TW(t)dt| — oo
Tl Ja )

Theorem 5. Denoting CYRY) the space of smooth functions on K, dcicrn) To(a)
exists if ¢ satisfies (23) (cf.[27]).

Proof. We may consider =0 and ¢ (0)=0, Then by lemma 10, we need only
to show that lim, s—o| F (@)(¥))s)| =oe is impossible, But by the above discussion,
if lim. sl F (0(¥))s)| = o0, then | F (6(¥))s)| should be at least O(log.s) for s—0.
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On the other hand, by the theorem of Titchmarsh, we get

Zm-JAC’(W(f))e""”df:ﬁ’ (e(@))s) in L?, p=2,
—e0)

and we also know

) l horA . )
lzm.~J J (T ()e~"* dids=U(A)—U(0),
hlg

li—0 0

for all A. Then, since ¥(A) is bounded on R! by the Lipschitz continuity near the
origin, [lim. s—o| F (I))s)] should be finite and we have the theorem,
Note. By the same reason as in lemma 3, we have

car. bowrn *ol@)c[K, L],

in this case,.

§3. Properties of & (R!)-derivatives.

8. By the definition of b f(,el)w(a) and (17), we have

Lemma 11. If 1 can be approximated by the element of # (RY) in LY. (RY,
then b jﬁwl)*“’(“) is a probabilistic distrvibution on R'U{tco}  Especially, if ¢ is
C,(RY)-derivable, then dc,rvy*ola) is a probabilistic distribution on R!,

Theorem 6. For any probabilistic distvibution & on R' and a= R, there exisis
a (right) continuous function ¢(t) near (the right hand side of) a such that ¢(t) is vight
Cy(Ry)-derivable at a and

(27) by Tel@)=¢.

Proof. For simple, we assume a=0 and ¢(0})=0, We denote the distribution
function of & by x(x), that is y(x)=&{({—o0, x]).
For any positive integer #, we define a set of numbers N, by

7 H
er:{clczzai2i+2bj2—j’
i=0 =
a, b; arve equal 10 0, 1 or —1 and |c|</ 7}

We denote the number of elements of N, by k%, By definition, k,,:_0(10g2"), The

m -th number in bigness in N, is denoted by ¢,, ,. Hence, if n:Z:o_o a2, then

= — 2N an ; = i iti
Cp, (Z_”éig”a,z) d ¢, ky Z—n§igna’z‘ By definition, we also have
(28) NuCNpy1, U N, is dense in R,
nzl

We also set for sufficiently large n
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a,= min. {x(cn, m)}=2(Cn,a)
x(cﬂ,”l

ﬂﬂ: max. {X(Cn, m)}:(xcn,ﬁ),
¥e, p)#1

X(Cn, ())ZO, X(Cn, "k+1):1’ Ca, ny, y=Cn, nk+2_(n+l).

Under these preparations, we define ¢{) as follows:

7 <i

_ 1
So(t)_cn,at; n+—1+2”+2(75+ 1)(%+2) =3

IA

n n

+n(n+ 1) 2% Tun+1y

1
§~7’H—1

o(t)= Co, il 1 + Xy m-1) + X m-1)— e, m~2)§-t

n+1  nnt1) 2" ip(n1)

A

X(cns n}) _ X(cn, m) - X(C", m— 1) a<7ng‘3’

< 1
=n-4+1" nnt1) 241y 7

= 1 ﬁn ﬁn_(cn,ﬁ-l)
‘/’(t) Cnn9+1t; n+1+n(n+1)+2n+1n(n+1)gt§_

1_ Ba
g% 2" iyn+1)

(t) -_-.2"+2(n+ 2(("71, a " Cns1, ﬂ+1)+c1zy « an+ Ch+l, B4t ﬁn+1.

¢ an+ﬁn+l
° . 271+2(n+2)+a," 1 4
(t PRLOESY (n+2)) Fna <n+1+

1 — ﬂn-}-l L Xy

2+ 1) (n+2))"

n+1 2"2n+41)(n+2)

SD(t) — (C,,, m+1~"Cn, m)2n+1(n+ X(Cm m)) + (C,,, m+1+Cp, m)(X(Cn, m) - X(Cm m—l))

Z(X(Cn. m) - X(Cm m——l))

° <t——-————1 __X(Cn, -m) _ X(Cﬂv m) *X(Cn, m—l) ) +
n+1 nn41) 2" n(n4-1)

+ Covmsl < + X(Cn. m) -+ X(Cn, m) - X(Cm m—l) )

1
ntl aml1) 2 p(n4-1)

1 X(cm m) . X(cn, m) _ X(Cn, m— 1)
P Ty P ln+1) <<

L X(cn, m) X(Cn. m) - X(Cm m- 1) ;
<n—|— 1+ n(n-+1) + 2%inm-1) 7 a<m=p,
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where y(c) means lim. yc—g x(%).
Since ¢(t)=0(/F) by definition, ¢ is continuous on 0<i¢<1/n for sufficiently
large # and right C,(R')-derivable at {=0 and we have

(27) bey iy pl0)=¢.
Because by the definition of ¢, if ce U,N,, then y*ulc) exists and
1¥ (e =1(c).

On the other hand, if c,<<s<le¢s, ¢, € U,N,, then since we know

2 owle) lim. inf. mi{t| B <xp00, 57/0
-0

<lim. sup m({t}] ¢it)

<30, 5/
-0

= x0T e(Ca),

we get ye*)=yx(*) if ¢ is continuous at x by (28). But, since ¢ is continuous almost
everywhere on R;, we obtain (27).

Note, If £ is a probabilistic distribution on R'U{z=oc0}, but not on R!, that
is, the distribution function y of £ has the property lim. r _«y(x)0, or
lim, x—ey(®)71, then we set for n=2

Xn(x):X(x), |x|§«/n—1,

1%)=0, x<—/n—1,

Xn(x):]ﬂ x>«/n—1,
and define ¢(¢) as above, but use x,(c, ), elc., instead of y(c, ,) etc.. Then this
ot) is defined on 0<{<1/(3+n) and continuous at {=0 and (right) C(R'U{z=o})
-derivable at {=0 with doriy {+))T@(0)=E.

9. Lemma 12, We assume 7 (RYCC(RY), the space of continuous functions on

RY, and satisfies the following condition (c):

(6. If fe . # (RY) and acR, then f, given by f(x)=f(a+x), also belongs in F (RY).
Then we have

(29) bj/?" (Rx)+(901+ Pa)a) :bj-' (Rl)+§01(a)*bf crny 9a(),

if ¢y and ¢y ave (right) & (R')-derivable at a and continuous near (of the right hand
side) of a. Here, &*& means the convolution of & and &,
Proof. First we remark that

(30) tim. [ F(AOD =Dty ol )00,

h—0 Jh
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if ¢ is (right) & (RY-derivable at a, Then we get

(31) bﬁ(Rl)JrGﬂ(O):ij(le(%Pc*ﬁﬁ) ),

for any ¢40 by (30), if ¢ is &~ (RY)-derivable at 0 and ¢(0)=0. Because we have
5 cS
olet) ;L o(T)
=], 7 ()T
=Dy 90+ R,
where lim. p—o R(h)=

To show (29), we assume a=0 and ¢;(0)=¢,(0)=0 for simple, Then we get by
the mean value theorem of the integral,

o [

:%r J:,f< o) ﬁﬂz( ))dtdk

But since ¢, is continubus, we get by the mean value therem of the integral and
(30),

f<soz(i)>t_ vy PO+ olt)+ R, lim. Rik)=

h—0

Therefore, by (32), if s is sufficiently small, then for suitable «>0, we get

(32) | (0 2d)) gy

s i
= [ [ (20 4R e ofs) + R
On the other hand, we obtain by (30) and (31),

zim,if ij( 2100 9"2( )>dtdk

h—0
=0 e gy 100 (Rn)”%Pa*goz)(O)(f(t+k)k)13+o(5)
- f(ﬂl)%ol(o)(b&g-' (R1)+€D2(0)(f(t+k)k>;3+0(3)_

Hence by (32)', we have
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o L[ e old) el
tim.~im [ (05 240)ay

= jJ(Rx)+901(O)(bL9,7~' (RY oo O) S (£+R))a)
:(bj-'(Rl)J'%(o)* Lg"(Rl)+902(0))(f>-

Therefore, we obtain the lemma,
On the other hand, by the definition of # (R')-derivatives, we obtain
Lemma 13, If ¢ is &% (RY)-derivable at a, then for any ceER, cp is F (RY)-
derivable at a and we have ‘

(33) bf(nx)+(c¢)(a):!’c*(bf ryy 9la)),

where p* means the adjoint operator or p..

By lemma 12 and lemma 13, we have

Lemma 14, If ¢, and ¢; are Cy(R))-derivable at a, then ¢y, is also CyR;)-
derivable alt a and we have

(34) 0C, (RY " 192)(4)
=(0p, (@*(0Cy, (RO T 0@))) ¥y (¥ (DCy, (RYY* Pa(@))).

Proof. By the usual calculation, it only needs to show

om. =tim [ £ 2da+tleatt) —oya)
) e

= o1 (@) (0C, (RY @) S).
To show (35), we assume a=0 and ¢;(0)=9,(0)=0 for simple, Then by lemma

11, for any >0, there exists X >0 and L>0 such that if <., then

@t 120 <KINE, a1>0- 20, i=1,2.

Hence we get for these L and K,
m{2] | o:1)es) | SK2EFN (0, 61)>(1—€)d.

Hence for any >0 and a0, there exists M >0 such that if y <M, then
i) 12900 <300, 7>,

Therefore, since we censider the case & (R:)=C,(R'), we obtain (35).
10. Since b f(Rl)+¢(a) is a probabilistic distribution if , & (R') containes
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Co{R?), we get

(36) lim.d e gy *ep)a)=0 (=),

c—0

if Co{RYC F (RY)CCHRY) by the Lebesgue’s convergence theorem.
Definition. If b ﬁd(m)*ga(a) is a probabilistic distribution and its characteristic

Sunction ﬁ"[bﬂ?q(R1)+go(a)](t):bf(m)*go(a)(e—%/?lsf)s is positive on R', then we
define d - g ola) by
(R

(37) ‘{9,7" (R1)+§0(a):2m_/—1—_—110g.f|:bf crny ela)].

Since we have by lemma 12,

29y y-’l:b](Rl) (s +g2lla ]*f[bﬁ(m) (@) -[f[bf(m) pia)],
we obtain
(88) df(Rl)+(‘/’1+¢2)(a):df(Rl)+¢1(a)+dy‘(R1)+§02(a)’

if dﬁ<R1)+¢i(a), i=1, 2, exist,
Similarly, by (36), we get

(36) lim. d o e *(e0)(@)=0.

Lemma 15, If the expectation of bﬁ(m)*go(a) exists, that is ¢ is ¢ is Cx|(RY)-
derivable at a, then

(39) d g gy CIN@)= 01 " pla)s) (),
Sor ¢5=0,
Proof. By assumption, we can set
T gy PN
=D oy @2 o),
) o Ry (@)1 =274/ ZTcts)+D P Ry Pl@)e=2m/=Tets — 14 278/ —Tcts),.

7

Then, since we get by mean value theorem,

l % (e—zrr./_—lcfs_ 1+ 2714/‘—__1(,‘1‘3) |

— | 2my/ ZTts (et TIets 1)
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< | 2ra/" = 1t5—2m0, ts sin 2rl cts —2xa/ 105 ts cos 05 ts|
<6r|ts|,

we have by Lebesgue’s convergence theorem,

lim,— 3?‘031) *pla)e—2mv =Icts — 1+ 2/ —1cts)=0,

)
Hence we may set
T 9]
=0 e ey PO = 200/ =T ey Tola)(S) H0(c).

Then, since bf(m)*(a)(l):l, we obtain the lemma,
We note that to denote B,¢(@) the right Borel derivate of ¢ at @, then we get

b oy (@ls)= B,g(a).
Note. By the same reason, if Z-th moment of b f(m)“go(a) exists, then

(39) 4 g i (00O = 3 b= 2/ D o ey ")

n!

_TZ.<1[V,—L/}Z]bdoz“<m)+9"(a)(si)by~<R1>+s0( (") 3 olch),

Especially, if bng"ch)S”( ™= {bf(m)sn a)(s)}”, then df(Rl)+(c@)(a):
ct bf(}{l) Pa)s)+o(ck).
Summarising these, we have
Theorem 7. d'JoZ"(Rl) is additive and if d J@/(Rl) (@) is differentiable, then

(40) gﬁ’g (y(m) (ep)a)=B p(a).
Moreover, we get d (374(3,)"9’(41):3&(61)1‘ if and only if © is (vight) approximately
derivable at a.
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