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Introduction.

In [4], the authour introduced the notions of C(S"-%)-differentiable functions
and generalized vector fields. On an 7 -dimensional (paracompact connected)
manifold M, they are defined as follows: Let p be a metric of M such that if
olx, y) <2, then there exists unique the shortest path which joins ¥ and y with
respect to p.  Then, denoting 7, ,,, the point on the shortest path which joins x
and y such that

{O(xy r.r,y,l):t;

we call a function f of M is C(S"-1)-differentiable at x if there exists a continuous
function g=g(x, ¥) on S,={y|px, y)=1} such that

J 7oy, 0= )+ glx, y)iE+olt).
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As usual, a function f on M is called C(S*-Y)-differentiable on M if f is C(S™1)-
differentiable at every point of M. Note that, in this case, g(x, ¥) may not be
continuous in ¥ in general.

We denote the space of C(S"-!) -differentiable functions on M by Cgcsn-1y (M).
It is a dense subspace of C(M), the space of continuous functions on M with the
compact open topology. Then we call a linear operator X from Cecse-1y (M) to
M, (M), the space of locally bounded functions on M with the compact open
topology, to be a generalized vector field or a C(S"!)-vector field on M if X
satisfies the following (i), (ii), (iii).
(i). X is a closed operator of C(M).
Gi).  X(fg) is equal to (Xf)g+f(Xg).
(i), (XAU@)=0 if | f(¥)—f(@)] =ololx, ).

It is shown that denoting C*(s(M)) the dual bundle of the C(S*-!)-bundle asso-
ciated to s(M)={(x, »|plx, =1, x=M7}, the associate S"-!-bundle of the tangent
microbundle of M, Xf is written as

Xfl)=<¢x), doflx)>,

where &(x) is a (locally bounded) cross-section of C*s(M)) and denoted by rep. X
and dpf(x, y) is given by

Ao (5, S)=lim. (f 7,0 F(0).

The main purpose of this paper is to treat the integral curves of generalized
vector fields. For this purpose, first we consider the problem in local, that is,
we consider the case M=R" and p is the euclidean metric of B*. 1In this case,
first it is noted that d,f is the Gateaux-differential of f (cf. [8], [9]) and if f is
C(S*-1)-differentiable on R" and d,f(x, ¥) is continuous in x, then f is tatally
differentiable on R" (cf. [8], [97, [16]). Since d,f(x, y) is linear in y if f is tatally
differentiable, the problem to solve the equation d,f(x, y)=u(x, v) is quite different
whether u(x, y) is linear in ¥ or not. In fact, if u(x, ) is C(S"1)-differentiable in
x and C(S"%)-differentiable in y, then to set

1

Flsy, )= wtsy, misdt, 11511=113l =1,
0

we obtain

|M(Sy, yl)'dpf(sy; yl)'
1

<[ luttsy, (3, 1)+ ultsy, e )l 11— (3, 011
0

+d,, MY, y1, s—(ultsy, y)+d, sy, y, yiis)|dt,
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Here, ey,5» means the point of S*-! such that o(y, ey,n)=1 with y;-direction, where
p is the metric on $*! induced from the euclidean metric and (v, ¥) is the inner
product of y and y;. The right hand side of this inequality is complicated in
general. But, since

M(x, yl):u(x7 y)(y7 y1)+dﬁ,yu(x9 Y, 63‘:3’1)' |y1—(y, yl)y| ly

if u(x, ») is linear in », the above inequality is reduced to

lu(sy, y1)—d.f(sy, 1)
1

< 1dy,sautsy, 31, 3)=dp,,aultsy, 3, pi)ltsat,
0

For this reason, we set the subspace of C(S"-!) consisted by linear functions
by 4S"!) and decompose C*S*-1) as follows: To define a subspace I*(S™1) of
C*S™1) by

[X(S" )= {ici5i|cieR}y
=1

where 9; is the Divac measure of S"~' concentrated at (0, -, 0, i, 0, -+, 0), and set
CHS™ 1) =1(S"HDUS™ ).

In this decomposition, we denote the projections from C*S"!) to [*(S*-1) and
[(S"-1L by p, and p,. Then we define generalized vector fields D(X) and S(X) by

DX) [l =<pEx)), d,f(x)>, rep. X=&(x),
SX)f(x)=<pals()), dof(2)>,

for a generalized vector field X on R". Then we have

(). We may consider X to be a usual vector field on R if and only if X=D(X).

(). [If X=S(X), then Xf is equal to O almost everywhere on R”.

(ity. If X=S(X) and rep. X is CS" Y)-differentiable, then X(Cccsn-»(R™) contains
Do (RY. Here, 1Y, (R")is given by

llzoc.(R"):{flzlf(x)|<°°, K is compact in R”}.

xek
{ii). If o(t) is an integral curve of X starts from the ovigin in the weak sence, that
is (t) satisfies

tim. Lim, | LA =T g — ey, d,figtty>,

5-0 S a0/,

Jor any C(S"-Y)-differentiable f, then
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I3
Flolth=FO+ | <elolt), doflplt)>at.
0

Especially, if X=S(X), then X can not have integral curve although in the
weak sence.
But, since /*(S"-1)==R", we may consider B" to be a subspace of C*(S"-1). Then,
since we can extent &x)=rep. X)to be a function & (x): CHS" D)—-C*S" Y and we
can solve the equation

W) g1 (i),

in C¥S"Y) under suitable assumptions about &% (x), we may consider a generalized

vector field X of R" have an integral curve ¢(f) starts at any point of R", in

C*S™1) under suitable assumptions about X. We call this ¢(#) to be the generalized

integral curve of X. For the generalized integral curves, we have

(). If X=D(X), then o) is the usual integral curve of X. In general, curve of
X. In geneval, pio(t)) is the usual integral curve of D(X).

(i), If X=S(X), then py (p(t)=pp(0)) for any t.

(iii). X has the generalized integral curve starts from x if and only if D(X) has the
usual integral curve starts from x.

Since X has the integral curves, we may consider X generats a 1-parameter
local group of transformations {7}, T,: R"—C*S"1). Therefore, if we allow to
consider the functions from R* to some space of measures, we can solve the
equation

Xu=f,

for continuous f locally, although X=S(X).
We note although there are many subspaces of C*(S"-1) which can be identified
to the dual space of {(5""!) such as

V(S Y={gw|glS""), w is the standard mesure of S" 1}.

But, to define the generalized tangent of a curve a(t), «(0)=x, to be &x)=C*S"1),
where &(x) is given by

<e), do fla)>=tim. Llim. J flalt) = 1) gy
s=0 § h-0 ¢
« is smooth at x if and only ife(x)=cd, where 4, is the Dirac measure of S"*!
concentrated at y. ([4]). Hence no element of //(S"1) is expressed as a generalized
tangent of some smooth curve and it seems to be natural to take *(S"-!) to be the
standard model of the dual space of {(S™1).
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To extend the above results to the generalized vector fields on a (connected
paracompact n-dimensional) manifold M, first we set

US)={d,.f(x)|d, f is continuous in x on some neighborhood of x3}
Then, it is shown
dim. (S, )<n=dim. M.
Hence to set
M, , =1{x|dim [S)=n—k},
My =U M o1

m=k

we have a decomposition of M as follows:
nt . . .
Mz/yoMs,P,ky A4X,P,inMS,P,j:ﬂ’ lf 175.7'

For these M, ,, we can prove

(i). M, , . is open in M, ;.
(). dim.M,,, is al most n—k.
({il). M, ,=M, , . allows a differential structure.
Moreover, we can construct an (z-k)-dimensional subspace M, , ,# which
contains M, , , such that
(). dim. M, , ¥ is equal to n—Fk,
(). M, ¥ allows a differential structure.
Hence to set

Ms,P b :MS,P_M:,PO<U M:,P,m#)v
me1

Ms,P,kb:Ms,P,k#_MnPk (U M:Fm )y kzly

M ki1

we have a decomposition of M similarly as stratification as follows (cf. [7]):
M=M, ,vUM,,.YU--UM,,.b, M, ,;YNM,, t=f i#j,
dim. M, , > =n—Fk, M, .ot =M, ,".

Moreover, the cotangent bundle of M, ,;? can be extended to some neighbor-
hood of M, ;b in M— Umze+1M;,,,,P. This cotangent bundle T(M, , %) of M, , >
is costructed by using Uxens,n,z #S.). Then to fix the basis d,f1, -, dofu-p of £S.),
we can choose the continuous cross-sections ¥;=y; (*), ', Vyop="In- k( x) of s(M) such
that

d!’fi(x, yj):5zja Z.y ]:1: Y %'k'

Then to modify the subspace of C*S,) spanned by &y, -, 0y,-s, We can construct
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a subspace /*(S,) of C*S,) as follows:
(). I%(S,) is the dual space of U(S,) as a subspaca of C*(S,), if x belongs in M, , .
().  Uxens,, 1 PI¥(S,) allows the structure of vector bundle and it is the dual bundle
THM,, 0% of T(OM,,4%) of T(M, ).
Using these we set

cHH(M)=UTHM, , ;»),
k=0

Here T*M,,, %) and T(M,,, ,>)L are regarded to be the subspaces of C*(s(M)) whose
values are coincide to that of T*(M, ,,*) or T(M,, ;>)# on M, ,,> and vanish on
M-M, . .".

By the definitions of «#*M) and «#(M)L-, we have,

CH(s(M))=#*(M)Dr#(M).

Then to use this decomposition, we canconstruct the generalized integral curve

o) of a generalized vector field X on M as a curve in o#(M)L. This ¢{¢) has the

following properties.

(i). If X=D(X), then o(t) is the usual integral curve of X starts from x=g¢(0).
Here M is considered to be the 0-section of r#(M)L,

(ii).  Denoting the projection of w#(M )L by n#, n¥#(¢(t)) belongs in M, , > if x&M, , ,b.

(iii). If X=S(X), then n#(¢(l))=x for all x.

(iv). X has the genevalized integral curve starts from x if and only if D(X) has the
usual integral curve starts from x.

We remark that, if M is smooth and p is the geodesic distance of a Riema-
nnian metric of M, then M=M,, and #*M) is the tangent bundle of M. On
the other hand, since C*s(M)) is the associate C*(S"1)-bundle of the tangent bundle
of M, #(M)L is also the associate /(S"-!)L-bundle of the tangent bundle of M.
Therefore, t#(M)L is a Banach manifold modeled by C*S™1)([6], [12]). But, since
C**(S"-1) is not separable, by the theorem of Restrepo (6], [14]), «#(M)L is not
C*-smooth.

On the other hand, if we use the L¥S*-!}-differentiable functions and L*S"-1)-
vector fields (cf. [47]), then we can construct the above theory using associate
L¥S™-1)-bundle of the tangent microbundle of M. Hence, if M is smooth, then we
obtain the generalized integral curve of an L%S"-1)-vector field of M in the tatal
space of the associate /{(S”-!)-bundle of the tangent bundle of M. In this case, the
space #(M)L is C~-smooth ([6]) and by Kuiper’s theorem ([117), we obtain '

c#(M)L=M x [(S")L==M x H,



Generalized Integral Curves of Generalized Vector Fields 65

Where H is the separable Hilbert space. But, since a L¥S""!)-differentiable function
at ¥ may not be continuous at x, a smooth curve at x does not have L¥S"-1)-
tangent at x. For example, in R? the function f given by

Slr, O=ro-1/3, y>0, 0<0< 2,
Slr, 0)=5(0, 0)=0,

is L¥SY)-differentiable at the origin by the euclidean metric.  But it can not he
differentiable although in the weak sence along the line a(f)=(f, ) at the origin.
We remark the above f has the (weak) derivation along the curve r8=1 at the
origin. Therefore, no smooth curve corresponds to the element of L¥S"Y).
Moreover, since the generalized tangent of a curve always positive ([4]), no ele-
ment of {(S"1) corresponds to a curve.

The outline of this paper is as follows: In chapter 1, we state the basic pro-
perties of C(S"-1)-differentiable functions and C(S"-!)-vector fields. Since the formulae
(9) and (10) in [4] are false in general, we give the correct form of these formulae
in§2 In §2, it is also shown that the usual Stokes’ theorem can be deduced form
the Stokes’ theorem of [3] (cf. [5], [7]). The generalized integral curve of a
generalized vector field of R” is defined in chapter 2. It is also shown in §5 that
if &x) is continuous in x and positive as a measure on S*! for all x, then there
exists a continuous family of continuous curves ¢,(f) such that

¢{0)=2x,

S
<E), dp > —lim. L(tim. | Ttt) = @y,
s—0 S h—0 3 t
for any C(S™1)-differentiable function f at x for all . In other word, there exists
a l-parameter family {S,|#=07} such that S, is continuous in ¢, Sy=1, the identity
map, each S, is a continuous transformation of R” and

Xf=lim. Liim. j Scf=f s,
5=0 S Am0 /), ¢

In chapter 3, we define the generalized integral curve of a generalized vector
field on a manifold. Since M, , is smooth, it is also shown that if the manifold
structure of M is given by {(U, hy)lhy: U—R"} and M has a metric p such that
o satisfies the properties of [3] and each &y is d,-smooth, that is, C(S"1)-diffe-
rentiable and d,hy{x) is continuous in X, then M is smooth (Theorem 8. The
denseness of the d,-smooth functions of M in C(M) is also proved.

Since the formulae (9) and (10} of [4] are not correct in general, the proof
of de Rham’s theorem in [4] is not correct. But in chapter 3, we give a proof of
de Rham’s theorem in more refined form as in [4]. It takes the following form.
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(). The de Rham group of d,-smooth cross-sections of LAC? (s(M)) with respect to

the diffevential operator d, is isomorphic to HPM, R). Here, ACPHS(M)) is the
b

T,
subbundle of the associate C(S™1x .- x S*V.bundle of the tangent microbundle
of M whose fibve is consisted by those functions f(x, yi, -+, ¥,) that

Fx, Yo, oy Ye)=sg0(0)F(%, 1, -, ¥p), pEEP,

and LAC?S(M)) is the subspace of ACHs(M)) such that LACHs(M)|M, , > is
linear for eachkh.

(i1). The element of the homology group of M is represented by those (singular)
chain y that

T:Z}Cifi(o),
ol flarvi, fLanN<N;|laj.—ail, for each i,
Whef’e J:(jh Ty jP): J+1k:(j1: Ty jk—l, jk+1, jle+1, Yy ]12) and aJ:(ajh Y
Qjp).

(iii). Taking the representations y and ¢ of the p-th homology group and the p-th
de Rham group of M, their duality is given by

<7, ¢>:J .

r

Chapter 1. Preliminaries.

§ 1. C(S»)-differentiable functions.
1. Let M be a (connected) paracompact #-dimensional manifold with the fixed
metric p such that the topology of M is given by p and satisfies
(i). If plxy, %2)<2, then there exists unique path y givem by f: I—M such that y
joins x, and x, and

K243

o, m)=| o= lim. DA, fiti)

| ti—ti+1| =0 =7
0:t0<t1<<tm—1<tm:1'
(ii). If y is a curve of M such that
Lkzb‘p:O,
then there exists a curve v’ of M which contains y and
Jy}p:oo, L,,kxapzo-

Here p is regarded to be an Alexander-Spanier 1-cochain of M and x is an
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arbitrary point of y.
By (i) and (ii), to set
S.={ylolx, =13, B.={zlolx, 91,

there is unique curve 7, , for any y<S, which join » and y and

J p=1.
Tz, y

Then, for any 7, 0<¢{<1, there is unique point 7,,,,, of 7, , such that
(1) p(x, 7z,y,t):t~

Conversely, if zeB,, z#x, then there is unique y&S, such that zer,, 5 We
denote this y by &,,,. By definition, we have

(@) Vx, ez, 0(x,2) =R,

Definition. A function f of M at % is called C(S"Y)-differentiable at x if there
exists a continuous function g(y) of S, such that

(3) S(2)=Ff(%)+&lee,)ol%, z)+0(o(%, 2)), 2€B,.

By definition, we have
Lemma 1. If f is C(S*Y)-dfferentiable at x, then

(@) lim. (f(72,3,0~ (W)=g). YES..

Conversly, if f is continuous at x and the limit of this left hand side exists for all

yeS, and defines a continuous fuuction on S, then f is C(S™V)-differventiable at x.
Proof. 1t only needs to show the converse. Therefore, we set

S(2)=F(x)+gyelx, 2)-+R(z).

Then, if lim. ,..R(2)/p(x, 2)50, there exists a sequence {z,} such that [im. ;o2
=x and | R(z,)| =cp(y, 2,). But, since S, is compact, we may assume ez, converges
to y<S,. Then the limit of (4) at vy, must different from g(y,) and we have the
assertion.

Corollary. In (3), g is determined uniquely by f.

Definition. For a function f of M at x, we set

@ o (8, )=litt £(fl1ey 0 =S (2).

Definition. A function f on M is called C(S"-Y)-differentiable on M if f is
C(S™Y)-differentiable at any point of M,



68 AKIRA ASADA

By definition, a C(S*-1)-differentiable function f at % is continuous at x and teh
set (of germes) of C(5" 1)-differentiable functions at ¥ form a ring. Hence a C(5"1)-
differentiable function M on is continuous on M and the set of C(S*-!)-differentiable
functions on M form a ring.

Lemma 2. If fis C{(S*Y-differentiable on M, then to set

() |dof] I(x):yngéx- ld, f(x, 3,

11d, £l l(a&) 1s locally bounded as a function of x.
Proof. If ||d, f]|(x) is not locally bounded, then there is a compact set K of
M and a series {(%m, Yn)|2mEK, yn<ESs,} such that
lim. |d, f(x,, ¥,)| =00

¥t—co

Since K is compact, we may assume [im. m—coX;m =% €Xists.

For x,,, we set

r— -1/2
Xom rlm; Ym, ldﬂf(-'cm,ym)l
Then, since lim. mocold, f(%,,, Ym)| =00, we have lim. m—%,'=x and we also have

lim, \dp f(.xm, E:cm’:cm[)p(xm, Xm! K =00

m—roa
But this is a contradiction. Because f is continuous and we have by (3)
(3), dﬁ f(xm, €,y xm’)P(xmy xm,)

:f(xm)~f(xm’)—}—o(p(xm, xml)).

2. If M=R", the n-dimensional euclidean space and p is the euclidean metric of
R”, then a tatally differentiable function f on R is C(S"-!)-differntiable on R" and
we have

(©) £, ) :Z]ﬁfi —(div. £, )

7
y:(yly ) yn): ||y| |:2y12:1
i=]

Conversly, if f is C(S"1)-differentiable on some neighbourhood of x and d, f(x, )
is continuous at x, then f is tatally differentiable at x (cf. [8], [9], [16]).

To show this, first we note that if f is C(S*-1)-differentiable at x, and x;, then
we get

A [ (%o, €xg,x)p(X, X1)== F(2%1)— f(Xo)+0(0(%s, ¥1)),
dp f(xs, e, x)p(X1, Xo)= F(Xo)— F(%1)+0(p(x1, x°)).

But since we have exy o=y if ez, sy=3, where ¥ is the antipodal point of y, if d,f
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is continuous at %, then we get
(7) do f(x 3)=—d, f(x, y).

Especially, if M=R", we get d,f(x, —y)=—d, f(x, 3) if d,f is continuous at x.
Hence f is differentiable along any line which pass x. Therefore, fixing a coordi-
nate system (xy, -, %,) of R", df/0x(x), i=1, .-, n, exists. Then, since d,f{(x, ¥)
is the derivative of f along the line ¢y, we obtain

4,1 9=3 3L,

if d,f is continuous at x. Hence to set z=x4{fy, we have by (3),
S@)y=r(x)+(dwv. f, z—x)+o| |z—x]]).

Therefore f is tatally differentiable at x.

We note that there exists C(S"1)-differentiable function f on R” such that
d, f(x, ) is discontinuous at any point of R”. For example, taking a countable set
of points {a»} of B* which is dense in R", to define a function f on R” by

1
f(x) — Zm_lml |x“aml |y
we have
— 1 1 (x_amy y) 1
d X, = e A TR I e i T A e 2 Y XeE Ay,
T = e T T e =l *# )
d, fla, 3)= —_.+ S11 (—a 3)

7 Tlanl D) ' o, 2% 1] IakH [12—a|
Hence d, f(x, ¥) is not continuous at any point of R". Moreover, since

S&)—d, f(x, )] z2—x]|

1 | Iz_am| | | lx_am| 1_(2_ama x—am) xela }

Ezml_i_uamH ||x—am|| ? { mly
S S S S AT ESTATECEY A YA ey
Ie¢7712k1+||ak” ||x—”ak|| ’ ’

f is C(§"-1)-differentiable at any point of R". Because since

Glx||lal|—(a, x)/||al|]||x—a|] is bounded on R" and

lim. ool |2l | el | —(a, x)/||a|}||x—a||=0, for any >0, there exists an integer
my and >0 such that
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_l 1 ||z—am||]|x~—am||—(z~am, x#am) <i
Zlnl-i_HamH Hx_amHHz_xH 2’

MZMg

[z—al || [2— @] | —(z—ay, x—ay)| e — 5
[Tz=al | 2=#T] <5 Nllz=sil<,

Jor k=1, ---, my—1.

Then we get

@)= do S 2% o0 7| 2—x] | <.

Ilz—x1]

This shows f(z)—d, f(x, y)||z—x||=0(||z—x]||) and we have our assertion (cf. [10]).
3. Definition. A function f on M at x is called C(S*-Y)-analytic at % if there
exists a system of continuous functions {g, (v} of S, such that

(®) SE=FE)+ 3] ales, ol 2
if p(x, 2)<le for some ¢>0.

We note that since

nHi=

) =lim. | 1) =S+ 3 807,

F
t-p bk et

in (8), gy(y) is determined uniquely by f for all %.

Definition. A function f of M is called C(S"-1j- zmalytw on M if it is C(S"1)-
analytic at any point of M.

By definition, a C(S*-Y)-analytic function is C(S"-1)-differentiable and the set of
C(S™*1Y-analytic functions on M form a ring.

We set d, fx, y)=d,  f(x, y) and define

k=1

© o S8, )=l ] S0, =)+ 2 5, 07,

k
=0 12 m=

Then, similarly as in lemma 2, we obtain
Lemma 2'. If fis C(S*Y-analytic on M, then to set

(5) o, S| I(x)zgﬂggﬂ |do, i S, D),

Vld,, i S| (%) is locally bounded as a function of x for any k.
If M=R" and p is the euclidean metric of R” then a real analytic function
f of R* at x is C(S"1)-analytic at x and we get
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' B R N
© AR R I f e E

y:(yly Y y”)’

On the other hand, although the metric function f(x)=||x—al|| is not real
analytic at x=q, it is C(S"Y-analytic at x=a and therefore f(x) is C(S""!)-analytic
on K"

Note. If d,:f(x, ) is sufficiently regular in x, then d,,f is calculated as
follows: Set d,'f(x, ¥1)=d, f(x, y1) and define

(10) at %, 31, < )

:limd %—_{dpk-lf(rxrykvt’ ) yk—l)*dﬂk_lf(xy yl, ) yk—l)}y

then we have

(1) do i (&, )=y A S5, 3, -, 3)

In fact, (11) is true for k=1 and assuming (11) is true for k<m—1, we get

f(rx,y, 2t)
n

= flx)+ /}]dp,kf(x, N+do,uf ¥,y Y)EE+O(E")
o=

ki3

= f(x)+ 22k, 5 flx, D)ttolt”).

k=1
Hence by inductive assumption, we have

27dp,m S (2, YN

m—1
= {2 s S0 VOV 2 15, 9 700,

Then, since by induction, we obtain

Al e S0y W)= s £, 9, o0, 9)
we have (11) for k=m.

We remark that in this proof, to get (11) for k=wm, we need not the d,-ana-
Iyticity of f and the continuity of 4,”f in x but it needs the continuity in x of
d)f for km—1. We also note that although f is d,-analytic, d.*f(x, ¥, -, Y2
may not exist for k=2 in general. For example, the metric function f{x)=]|x!|
does not have d,2f(x, ¥1, ¥) unless y;=ys.
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Lemma 3. If the metric function f(x)=pla, x) is C(S*Y)-analytic for any acM,
then the set of C(S™Y)-analytic functions on M is dense in CIM) by the compact open

topology.

Proof. Since the constant function is C(S*!)-analytic and the ring generated
by {1, pla, x), ac M} satisfies the assumption of the theorem of Stone-Weirestrass
(cf. [18]), we have the lemma.

§2. Generalized vector fields,
4, In MxM, we set

(12) s(M)={(x, y)|xeM, px, y)=1}.

s(M) is the tatal space of the associate S"-!-bundle of the tangent microbundle of
M. We denote the projection from S(M) to M by =. Then we have =~ {x)=S5,.

In general, we set

(12)l SP(M):{(X, yly ) yi))"xEMy p('xy yi)zly 1:17 Ty p}
il
The associate C(S”-1) and C(S"!x --- xS*1)-bundles of s(M) and s?(M) are denoted

by C(s(M)) and C?s(M)). Then by lemma 2, we have

Lemma 4. If f is CS*Y-differentiable on M, then d,f is a locally bounded
cross-section of C(s(M)).

Lemma 4. If d.,°f is defined, then d,°f is a locally bounded cross-section of
CP(s(M)).

Lemma 5. If f(x, y1, -+, ¥,) is a locally bounded cross-section of Ct(s(M)), then
to set

(13) Sxo, %1, o, %)
:f(xor Exp,x1, "7, Exﬂ,xi))p(xlb xl)"'{o(xoy xp)- xiEEO) Z:1’ Y p)

Jf defines an Alexander-Spanier p-cochain of M,
By (3), using the above notation, we have

(14) 8 (o, %1)=d, f(&o, exo,z1)+0(p(%0, %1)).
Neote. If f(x, ¥, -, ¥p) is alternative in i, -+, ¥,, that is
Sz, you, -, yﬂ(p)):Sgn(U)f(x, Vi, 0y Yl 0ESP,

then, to set
(IS)I A}.(xl)’ X1, ) xi))

:”_——. (wl)if(xi, Exj, gy *ty i, Tio1y Exi, g1, U, 511',""1’)'
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o(%;, o)+ 0(x;, Xim0)0(%s, Xipa) - plx;, Xp),

Af is alternative in %, %;, -, %, On the other hand, if f(x, y, -+, ¥,) is conti-
nuous in (x, 31, -+, ¥,), alternative in yy, -+, ¥, and for each ¢, f satisfies

(15) f(x, yl, ) 5)1') Yy YP):_f(xy Y1, =y Vi ) yﬁ)y

where J; is the unique point of S, such that p(y;, y)=2, then

(16) F oy Xowy, 0y Xogp)
:sgn(a)f(xo, Xy, oor, X A0(p(Xo, X1)erolXg, X,), c=&FrL
We note that, if f(x, y;, ---, »,) is alternative in y;, ---, ¥, and satisfies
17) S(®, 31, oy Bict, €0, Yivry oy Yp)p(¥!, &)
=J(x, ¥, -, Yie1, ex,x"y Yisty yp)P(x, x")
— (%, Vi, vty YViety Enxty Visty 0t yp)P(x, z')olplx’, x)),

then, assuming f is C(S”!)-differentiable in x, we have

- ~

(14), 5f(x0) X1, -, xp-l—l):dﬁf(x(h X1, vy xP+1)_\_O(IO(x0y xl)'”to(x(b xP-H))'
In fact, we have

0 f(xe, X1, *++, Xps1)

= flxy, Exy xg, 7, eIl,Tp+l)p(x1; Xg)+e (%1, Xpit1)

Pl
+Z(—“1)lf(x0, Exg,xy, **ty €z, Ti-1, G20, %41, 7T, 51‘0,xp+1)
i=1

pxe, X1)--p(Xo, Xi-1)0(Xo, Xi1) - 0(F0, Xpir).
Then, since f is C(S"-1)-differentiable in x, we get
J(x1, €,z oo, €x,mpa)p(F1, Xo) (X1, Xpii)
=f{%o, €x1,a5, -+, Sxp,ap01)0(E1, Xg) o p(F1, Xpiy)
+d, X0, exo,m, €oiyay 0, Ex,zpn)0(Xo, X1)p(X1, Xs)
s 0(%1, Xpyi)+0(p(Xe, ¥1)o(%1, Xa)r0(X1, Xpy1)).
By this and (17), we have

J (%, Exy,xg, Y, €I1,1p+1)4‘)(x17 Xg)e e plxy, Xpet)
o .
:E('“l)l_ f(xO, €z, Xy, vy Exmg,mio1, ®o,Tie1, U7, Ezo,xml)p(xo, xy)
1=1

(%o, Xi-1)p(X0, Xiy1)eer0{Xo, Xpi1)-0(0(%o, X1)-- oK, Xpi1)),

dy S (%o, exy ar, €xyay, +++, Ezy,zpn)0(Xo, %1)0(X1, %) p(X1, Xpit1)
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:dpf(xo, Exg,x1, Exo,x3y *'°, Szo,rz»n)to(xo, xl)P(xo, Xy)
(%, Xpe1)t0(0{%, %) p(Xo, Xpia)).

Hence we obtain (14).

If M is a Riemannian manifold and p is the geodesic distance of the Riema-
nnian metric of M, then s(M) is the associate sphere bundle of the tangent bundle
of M. In this case, if ¢ is a differential form of degree p on M with the local

expression

E f,l, o i X)d%a, o, dXig,
Then denoting the coordinate functions corresponding to dxi, -+, dx, by »,1, -, ¥,.
and set

1
Mi,iy 0y yﬁ,ip:jj Z} sgn (U)yn(l),i1"‘ya(l)>,t'1»
s gCE&P

the function

o#(x, 31, o, V)= Z fq, Sip ()1, oy Yb,ip,

Yi=i1, v Vi)
defines a cross-section of C#(s(M)) and alternative in i, -+, ¥, By definition, ¢#

satisfies (17). On the other hand, we know

dﬂgoﬂ:(x) yO, yly Tty y?)

3y i
=2 Z,‘ fl’ )y (i Ye,ip)

.7 ll; I

Hence do is the mod. (o{xe, %1)+0(%e, %p¢1))-reduction of 5p#.
5. we denote the dual bundles of C(s(M)) and C2(s(M)) by C*(s(M ) and C*?(s(M)).

The fibres of C*s(M)) and C*#(s(M)) are C*S"!) and C*(S" 1>< xS 1.
Definition. A cross-section f of CH*s(M)) or C*(s(M)) is called locally bounded
if the function ||f|| defined by

HATT)= 1A @) |, the norm of flx) in CXS)or in CHS,x xS,)),

is locally bounded. )

Definition. Let N be the carrier of some singular chain of M, then a cross-
section & of CH¥s(M)) (or C**(s(M)) on N is called weakly continuous at x, x€N, if
Jfor any cross-section F of C(s(M)) (or CP(s(M))) which is continuous at x, we have

(18) L&w), Flx)>
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1), Fi

==lim, ,[(Nﬂm(x)*“ NﬂUe(I))<E( b (t)>dV, >
6—0
0 (NN Us()— NN UL

Heyre dV is the volume element of N determined by p and U,x) (or U[x)) means the
d-neighbourhood (or the e-neighbourhood) of x.
By definition, if ¢ is continuous, then ¢ is weakly continuous. But there exists
& which is weakly continuous but not continuous. ‘
Example. Let M be R® and N is a line in R? parametrized by ¢, {=R. Since
s(R})=R?*xS? we have n"{N)=R!xS?, where = is the projection from s(M) to M.
We consider S*=R/Z. Then the map ¢ given by

§t)=dasn, 10, &0)=dd,

where da/n is the Dirac measure on S? concentrated at 1/f mod. 1 and d@ is the
standard measure of S? with the tatal measure 1. Then f is not continuous at
t=0 but weakly continuous at #=0.

We note that if & is weakly continuous at x, then

(18y | §(x)] |
<lim. .[(Nﬂ Us(x)— NN ULx) ‘ IE(t)' IdV
lim
=0 (NN Ustx) = N N U(a))

Definition. A locally bounded cross-section & of C*(s(M)) is called a generalized
vector field (or a C(S"Y)-vector field) on M.

We denote the spaces of C(S"!) differentiable functions and locally bounded
functions on M by Cegn-,(M) and M,,,. (M). Then to set

(19) Xf(x)=<&W), d, f(2)>,

X is a linear operator from Cgin-n(M) into M,,.. (M) by lemma 2. Moreover, X

satisfies

(i). X is a closed operator regarding C(M) and M,,, (M) to be the topological vector
spaces by the compact open topology.

(ii). X(fg) is equal to (Xf)g+f(Xg).

(iii).  (XSf)a) is equal to 0 if |f(x)—f(@)| =0lo(x, a)).

Conversely, by the closed graph theorem, if a linear operator X from
Cesn-1,(M) into M,,. (M) satisfies the aboue (i), (ii), (iii), then X is written as the
form (19) (cf.[47). Therefore, we may define

Definition. A linear opevator X from Cen-y\M) into M,,. (M) which satisfies the
above (i), (ii), (iii) is called a generalized vector field (or a C(S*-1)-vector field) on M,

In (19), we call &(x) to be the representation of X and denote
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£(x)=rep. X,

Definition. If rep. X is continuous, or weakly continuous, thén we call X is
continuous, or weakly continuous,

Definition. If rep. X is positive at X, that is, &x) is a positive measure on S,,
then we call X is positive at x. If X is positive at any point of M, then we call X
is positive on M,

Since a measure &(x) on S, is written uniquely as £%(x)—£&-(x), where £*(x) and
£-(x) are the positive measures on S,, we have

X=X*—X- rep X*+=E*x), rep, X-=£(x).
Definition. For X, we set

CAR. X=Ucar, &x)

xeM

car, X=n(CAR X), &x)=rep. X,

y

6. We assume the manifold structure of M is given by {(U, hy)}, where 2y is
a homeomorphism from U onto B”. Then we know that the transition function
of s(M) is given by {gyv{®)} where gyy(x) is given by

Zuvix)=hy, Iy, 1S™L, St is the unit sphere in R,

hy, (2" =hy(&")=hy(x), %, %'€U,

H

(cf. [17,[3],[4]). Then the transition functions of C(s(M)) and C*(s(M)) are given
by {guv#x)} and {gyy#*(x)}. Here gy, #(x) is the induced map of gyy(%)on C(S™ 1)
and gyy#*(x) is the adjoint map of gy, #(x).

If &(x) is a generalized vector field on M, then using local coordinates, we
may set

(20) Ex)={€u(x)}, GuvH#*(x)ey(x)=Eu(x).

In (20), if at x=x,, &y(x) satisfies the expression

(21) Eu(2)=Eu(%0)+ pulews, )ol%s, x)+0(olx0, %)),

where ¢ples, =) is a bounded map from S"! to C*(S™1), then by (20), we have

Ep{(x)=Ep(%0)+(gvu# *(Xo)pules, =)olxo, *)-+0(o(xo, )
Hgyu#H*(x)— gy y ¥ (o)),

But, since we may assume gyy(x) is C(S™"!)-differentiable, that is, the components
of gyv(x) are all C(S™Y)-differentiable, and Cen-2(S*1) is dence in C(S™!), we may

set

(Gru*™(x)— gy ¥ *(xo)py(x)
=d, vy #* (X, exy, =) y(®)0(%0, %)+ 0(0(xo, ).

Hence we have
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21y Ev(x)=Ep(xo)+{&vuH *(Xa)pulexs, =)+ d,p Gy ¥ * (Ko, e, 2)5p(%)}
oo, x)-+0(p(xo, %))

Therefore we may define

Definition. If a generalized vector field &x) of M is given by (20) and it satisfies
the expression (21) at x,, then we call & is C(S"1)-differentiable at x,,

If &(x) is C(S"Y)-differentiable at any point of M, then we call &(x) is C(S*1)-
differentiable on M.

In the rest, we denote ¢yp=d,£y or d,& in (21).

If X and Y are generalized vector fields on M such that rep, X=£€(x), rep, Y=
7(x) and » is C(S*"1)-differentiable, then the composition XY is defined for C(S"-1)-
2-differentiable functions, Using local coordinates, XYf is given by

(22) XYf(0)=<&éulv), <dmul, 2), d, f(%)>,>,
+<&ulw), <nulx), d2f(x, 2)>,>..

Hence, if & and » are both C(S"-!)-differentiable, then [X, ¥]=XY-YX is a gene-
ralized vector field on M and (by Fubini’s theorem) we have

(22) rep. [ X, Y Ix)=<&ulx), domulx, 3)>.—<nul®), defol, 3)>..

We note that although XY is only defined for C(S*-1)-2-differentiable functions,
by (22), we may consider [ X, Y] is defined for C(S"-1)-differentiable functions,

Note. If gyy(x) is C(S*1)-co-differentiable, then we may define C(S"1)-co-
differentiable generalized vector field on M and the set of all C(S™Y)~oo -differen-
tiable generalized vector fields on M form a Lie algebra, Similarly, if gyp(x) is
C(S"Y-analytic for each (U, V), then C(S"-!-analytic vector field on M is defined
and the set of all C(S"!-analytic generalized vector fields on M form a Lie
algebra. In this case, if & and » are expressed at x, as

E(x)= E(xo)+ D JEnlems, 2)p%o, 2))7,

n=l

(@) =9(%0)+ 2 Dnleo, =) oliko, X)),

=1

&, n; ave bounded functions from S*-1 to C*S"-Y), i=1

’

then rep. [ X, Y |(x) is given by

rep. [X, Y (xo)=<E(o), m>—<plxo), &>
7. For a curve y of M given by a: I-M, I=[0, 1], «(0)=a, we set

(23 £, ()=tim, Liim [ L{ fait)— fiapat,

s—0 S A—0 i
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where f is a C(S"1)-differentiable function at @, If X.(f) exists for any C(S™1)-
function of M at a, then there exists an element &«) of C*S,) such that

X (f)=<E), d, fl@)>,

for any f. In this case, we call 7 is C(S"!)-smooth at a and &(«) is called the
generalized tangent of y at a and denote &l@)=r,(a).

By [4], if M is a Riemannian manifold, p is its geodesic distance and 7 is a
smooth curve, then 7 is C(S""!)-smooth at every point and z,a)=c(a@)d,,;, where
¢(@) is a constant and Oy is the Dirac measure on S, concentrated at the point
¥@). On the other hand, the curve 70=1 or the graph of xsin (1/x) with x>0 are
C(S1)-smooth at the origin.

Similarly, we can define the generalized tangent z.,l®) of 7 at a (f) by

@3y Lrawl@), do Slalt)>

1 (1 B
~tim. Llim, jh L flalt-+u)—flat)du, 1<1.

By defintion, if 7 is C{(S"1)-smooth at every point, then the map z, defined by

ot} = Tacor

gives a cross-section from 7 into C*s(M)). For example, if y is smooth, then
r(at))=c(f)3,,, where c{f) is a continuous function and y(f) is a continuous cross-
section from 7 to s(M),

Theorem 1, If ©, is defined and the convergence of (23) is uniform for t<s<
t+o6 for some 6>0, then ty is weakly 1-sided continuous at t, that is, we have at t

S
(24) <7‘-a(t), (C(), g> = l“/no %lzmo J <T£r(t+u)(a); g>du7
5= A
s>0, geC(S* ).
Proof, Since the problem is local, we may assume M=R" and {=0, the origin
of R” in (24),
First we note that, if «{0)=0 and f is C(S"-!)-differentiable on some neighbor-
hood of a(u), then

(25) o1,
lim. Llim. [ Flalt-+u)—alt)dt = flafw),
y—0 ¥V h—o I

and the convergence is locally uniform in #. Because to set
aft +u)—alt)=alu)+ B(),

we have lim, ;-oB8(¢)=0 and since f is C(S"-1)-differentiable, we get
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Fla(t-+u)—alt)
= fla(w)+d, F(att), eacn,acspw)| | B0 18] 1),

Then by lemma 2, we obtain for any >0,
| fledt + ) — () — f (a{w)) | e,
if t<ty for some #,>>0 and this /, is independent with #. This shows (25) with its

uniformity in #.

To show (24), we assume g=d, f(0). Then we have

<Ta(t)(a')! g>

~tim. Liim. j/ L1 flatt-+1)—alt)— 0]},

Therefore for any ¢, >0, we have for some %, >0 and $,>0,

l <Ta(t)(a); g>

LE[ L flatti0—a(t)— 03| o1, s1<sn, I

sl u
1

and we may take these sq and %y independent with ¢,

On the other hand, we know that, if £2,>0, then

L0 Lt Aot 41— att)—F (03 dudt
k1"

:JZ%[{%J;{ Slaft+u)—alt)— f(o)}dt} du,

and for any & >0, we have by (25),

{ flalt+u)—alt) — f(0)3dt | e,
ka

1
| Flatu)— FO} L

if #<ry, ky<hky for some 7, and ky which are independent with #. Since we may

take e, to satisfy |e; log. 2| <les for any & >0, we have

lim. ’Lllmj <Tnt(t)(a)) g>d%
r—g 7 k=0 ),

F S
—lim, L[ lim, j lim__l_zim_[ Lo flalt-+u)—alt)— £(0)}dudt]
=0 ¥V ko0 Sy 500 S ko0 J u ’

1, (1 v
~tim, Liim. jh L{ Flatm)—£(0)3dn
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=<ty &>.

This shows the theorem.

§ 3. Some inegalities,
8. Definition, If f is a locally bounded cross-section of C#s(M)) and 7 a singulay
p-chain of M, then we define the integral Jf of fonyby
T

(26) J f:J 7,
where f } is the integral of the Alexander-Spanier cochain f on v (cf. [3]).
7
By definition, if y is given by ¢: I"—M, I?={(a;, -, ap)|0<a,<1, i=1, -, p},
then J f is given by
T

J f= lim, D F(@@s), cotap, otay, 3 s Cotap, vlay, )
. FURICH TRTOIE Prelayy,
ro lagyymegl=0T ' d

plplar), plar+n)---plelas), elars 1),
J={Ji, -, Js), J: are the integers and 0< 5;<m,,

J+1i:(j1y Tty ji"ly ]t+1y ji+17 Tty jﬁ),
ar=(aj, -, @iz 0=au<ay<am;-1<am;=1,
In this case, if ¢ satisfies
@7 olelaryry), P@NEN|aj,.—ail,

for some N >0, then’

| 1

7

:laﬂﬁﬁgl»m g | f(plas), cotap. otazyipn s Sotapiotag, )l

plplar), elarn))plolar), plasiiy),

[ 171

L

— lim, a e -
|aJHiTaJM;]If(GD( Dy Seapn oty 1) s Sotaps oy )]

olplar), elari)olelas), elariy),

both exist and if f is continuous, then J | f] :J |f|. Hence | f exists if f is
7 Jr

¥

continuous and 7 satisfies (27).
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We note that, by definition, we have

29) ], o 1] o 11

Example, If M=E" and p is the euclidean metric, ¢ a smooth map given by
(p1, =+, @), then

E(e o e gy

(@), -+, SEm@n) +oll | plarid—plan)l ),

g R

olplas), plar+)=1plarru)—gl@)l|

:\/Wlmm—wil +o(| pl@rr1.)—elan! ).
Hence we have

(29) [

where t=(t;, -+, p).
Lemma 6. If a cross-section f of Cs(R"))=R"xS"1xS"-1 satisfies
| f(x, 31, v |ZL|x||* ||x]| is the euclidean norm of x,

k=1,

Sfor some L>0 and f is integrable on @(I%)=Adz =\ hzy Sor any h>0, where Az zihas
is the triangle with the vertexes ave 0, x; and x,+hx,, then we have

(30) | P EACIEAT

R
4 O x1, X1+ Az

/e+2

Proof. By the assumption, (28) and (29), we obtain
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I A= s

4
x1, x1+Axe X1, %1+hx2

Lottidrdd——L1 (| |x,] | +h||xa] | )4+20,

0 rxr QR a2 /et D
S
0 k42

o

where tan(9/2)=h/2||x:||. Hence we have (30).

9. On M and on s#M), we can define the standard measure m=m(p) from the
metric p (cf.[3],[4]).

Definition. A measurable function f on s®(M) is called a measuvable cross-section
of Cs(M)).

We note that since f is defined almost everywhere on s?M) and m(p) is the
normal measure, we have

(31) mlp)x|m(of(y1, -, V) S%, 31, -+, 3p) is not defined)70)=0,

if f is measurable.

- Lemma 7. If fis an Alexander-Spanier p-cochain of M such that if oI*) is a
singular p-simplex of M. which satisfies (27), then f is absolutely and wuniformly
integrable on ¢ (I?), then to set

(32) dﬂbf(x; yh Ty xP)

= lim, 1
N byeety

f(xy Yz, o,t1, "y 7‘”,3’15,“?)’
d,bf is a measurable cross-section of CHs(M)).
Proof. By the definition of the integral and (27), we have
|f(x> r-"",yl,tly Tty rl,y[),tﬁ)‘ :0<t1 e t?))

almost everywhers on s?(M) and the limit of the right hand side of (32) should be
exists almost everywhere no s?(M). Hence we get the lemma.
Corollary 1. Under the same assumptions, we have

(33) | 7= ars,
T T
where 7:Zia,-goi(ﬁ) and each ¢; satisfies (27).
Corollary 2. If f is a continuous cross-section of C#s(M)) and of satisfies the
assumption of lemma 7, then

(33)" |, 7= | dreh,

where r:Ziaigoi(IP“) and each ¢; satisfies (27).



Generalized Integral Curves of Generalized Vector Fields 83

In the rest, we set
d{'#f:dﬁ b@f)-

Then (33)7 is rewritten as

(33) |

[

= Ld,,#f.

Note. If f is a function, or f is alternative in y;, ---, y, and satisfies (17),
then by (14), we have

d,#f=d,f.

Hence for those f, we get
4 - d .
ch) [, 7=] ar

Especially, usual Stokes’ theorem follows from the Stokes, theorem for the inte-
gration of Alexander-Spanier cochains (Theorem 4 of [3], cf. [5], [7]).

On the other hand, although f is bounded, d,#f does not exist in general.
For example, in R* with the euclidean metric, the constant cross-section ¢ of
C#s(R") defined by c(x, y1, -+, ¥,)=¢, a constant, does not have bounded d,#c.

10. By lemma 6 and corollary 2 of lemma 7, it M=R", p is the euclidean
metric of B* and f is a continuous cross-section of C¥s(R™) such that d,#f exists
and

(35) ld %7 (x, <LI|x||*, k=—1, x€Ulry),

where r,, means 7y, ||¥/|=1, then we get

(36) S (N ) |

S syl Ty

L L2 —
=p53° hA-oh), |13:]]=1.

Because we have

=] =] =y

TSy +hyy sy syt by, sy Y5y, v1, e

SIS

sy-+hy1, sy s3, 9, 1

and by the definition of the integral and the continuity of f, we also obtain
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F=S(s3, y)h+o(h).

”
5y, ¥,k

For general f, first we remark that, by the definition of the integral, we
have

L f= Ll)f (tsy, y)sdt,

sy

where the right hand side is the usual (Riemannian) integral. Hence, if f is
C(S™Y)-differentiable in x and C(S"-?)-differentiable in y, then

(37) S j f
Tsy+ hy1 Tsy

=} Ll) [ F(tsy, V), y0)+d,,, Fltsy, 9, e, 3| | 01—, y03] |

+do, o f(tsy, ¥1, ) ts1di+o(h),
where (y, y1) is the inner product of y and y;. Because we know

| [sy+hyi| | =s+h(y, y1)+olh),

sy+thy: h
Tisy iy ]~ 2 T50= 00 y09)+R).

On the other hand, since

(i
lzm.]—J fltsy, y)dt=f(sy, 1),
h—0 P J1

we have

(38) f(sy, »1) =ﬁ { fltsy, y1)+d,, . fltsy, ¥, y)ts}dt,

if f is C(S"-1)-differentiable in x,

Combinning (37) and (38), we obtain

Lemma 8. If M=R", p is the euclidean melric of R" and f is a continuous
cross-section of CXs(R™) such that d,% f exists and salisfies (35) or f is C(§"-1)-
differentiable in x, C(S"-?)-differentiable in y and satisfies

(35)" | f(Esy, 0¥, Y)+d, S Esy, ¥, e, n)| |31—(3, y)¥]]
Fdo, o flEsy, 31, Nts—(FIsy, y)+d, , S{Esy, ¥, yits)|
<L|ts|*, k20, 0<I<1.

‘Then we have (36)" if d.¥f satisfies (3b)' and
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(36) Aoy, yon—(]  r= ] F)igEehon, kzo,

Ysyk I sy

if f satisfies (35)",

Note 1. There exists f which does not have bounded d,#¥f but (35)" holds.
For example, if f is a constant ¢, then d,%f does not exist but the left hand side
of (35)" bounds by 2|c]|.

Note 2. If f(x, ») is linear in y, then

S, 0, 3)+de,y F(x, 3, e, )| 31— (3, Y0¥ || =S{x, 31).
Therefore (35) is rewritten as

|d,,= flEsy, D1, )—d,, . flEsy, y)|<LIts|t, k=0, 0L
Especially, if f(x, ») is linear in y and

Ao, [, 21, Yo)=d, , f(%, Yo, ¥1),

then to set

gw=| 1, x=s,
T’Sy
we have d,g(x, ¥)=S(x, ).
Note 8. The right hand side of (35) or (35)" may be veplaced by a positive
coefficients polynomial p(||x||) or P(s). Then (36) takes the form

(36)" fo, yoh—([ =] F)I=] s,

S
syt by sy 0

By lemma 8, we obtain
Lemma 9, Let U be a neighborhood of 0, the origin of R, such that if syeU,
then v, U(| |y} =1), and e a cross-section of CHs(R")) on U, then to set

(39) f@=| e x=s,
we have
(i). If e(x, ¥) is continuous in x, then
d, f(sy, y)=e(sy, ¥).
(i), If elx, y) satisfies either (35) ov (35), then f(x) is C(S™Y)-differentiable and

(40) lelx, 3)—d, £, y)]g,—eg |%| ¥, if e satisfies (35),
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lelx, »)—d, f(x, y)I:{E%I |%| |4 if e satisfies (35)".

Chapter 2. Local analytic properties of generalized vector fields,

§4. Local integration of the equation Xu=fF,
11. In this §, we consider the equation

(41) Xu=f,

in local. Here X is a C(S""%Y-vector field on M. But, since the problem is local,
we assume M is R* and p is the euclidean metric of R*. Then, since s(R*)=R"

xS"1 we may set
Xulw)=| ,,_, dyulr, )ds(e)=<elx), dpula)>,

where &(x) is a Radon measure on S"°1,

We regard S"! to be the unit_ sphere of R" and denote the Dirac mesure on
§"1 concentrated at ¢=(0, -, 0, 1, 0, -, 0) by &, We note that 4 is the C(S"~)-
tangent of the line fe;, The subspace of C*S"!) spanned by &y, -+, d, iS denoted
by (5”1, Then [*S”-!) is considered to be the dual space of /(S"-1), the subspace
of C(S”1) consisted by the linear functions on S”-!, Then, denoting the annihilator
of {(S™ 1 in C*(S"1) by {S™ 1)L, we have

(42) CHS™1)=IHS"1)PUS™ 1)L |

In (42), we denote the projections from C*S"-1) to [*(S""1) and to AS" 1)L by p; and

ba.
Definition. Denoting rep. X=£&x), we define the generalized vector fields D(X)

and S(X) for X by
rep. DX )=p:é(x)), rep. S(X)=ps(E(x)).
By definition, we have
X=D(X)+5(X).

Theorem 2. X is a usual vector field if and only if X=D(X), On the other hand,
X=SX) if and only if Xu=0 if u is smooth.
Proof. We note that if # is smooth, then d,u(x) belongs in 4{S"-!) for any x,
In fact, we get
doule, =33 0%w)y, y=(, -, 3.

= 0%
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Then, since we may set

rep. X(x)= Z}ai(x)5i,
if X=D(X), we have

Xul)= 3 Jos (G

if X=D(X). On the other hand, if X' is a usual vector field on R", then we may set

X ’:Z;;lci(x)a/axi, Hence to correspond X' the generalized vector field X :Z};;l

c{x)3;, we have the first assertion, The second assertion follows from the definition.
Corollary. 1f u is smooth, then we have

(43) Xu=D(X)u,

By (43), if D(X)5£0, then for continuous f, the equation (41) is reduced to the
equation

(41)p' DX)u=F1,
or, to set
L&), yi>=clr), Ex)=rep. X, y;=x,|5"", i=1, -, n,
to the equation
), 3 e b)),

We note that (41), has a solution locally if the vector (cix), -+, ¢,(%)70 (cf. note 2
of n°10),

12, Lemma 10. If X=S(X) and &0)-0, E=rep. X, then there is a C(5*-1)-diffe-
rentiable function u of R* such that

(44) Xu(0)=1, Xu(x)=0, %0,

Proof, Since CYS"-Y) is dense in C(S*-1), there exists a differentiable fuction
g(») of S"™! such that

<&0), g>:js,1,_1g(y>d5(0>:1.
Then to set

uw) =g ) 11511, 540, u0)=0,
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u(x) is C(S*~1)-differentiable and satisfies (44). Because by definition, u(x) is C(S™1)-
differentiable at x=0 and 4,u#(0)=g(x)., On the other hand, since

bty 1= el 102 et
T =TT T 11 1=, 9)-oto)

to set z=(y| x| |*—xx, y)/[1y]12]F=x(x, M|, we get

u{x+1y)

:”(xH{g( | |i§| \ ) ﬁx\yi +d,,g( \ Iﬁl 1’ €(f|§|r2>) )

VTTEITE= G, 9F )ttt

foe %540, because g is C(5"-?)-differentiable. Hence # is C(S"-?%)-differentiable and

we have

(45) d.ux, y)

—gfo %\, ) LN ==&, 9F
ST M BT )Y TR, w70

Then, since g is differentiable, d,g is continuous in %/||%|| and therefore d,u is
continuous in % if £540. Hence we have (44) by theorem 2, because X=5(X),

Note. If u,(x) is given by

(46) ui(x)=ulx(x), v is smooth and v(0)=1,

’

then #; also satisfies (44),
Theorem 3. Let X be S(X) on U, an open set of R*, and set rep. X==E&x), {x;}
a dense subset of countable points of U, g(y) the smooth functions on S*-' such that

(47) <&x), g>=1, |&MNI<LA; ld.gly, 2|<B,

and {c;} a series of non-zero positive numbers such that
, - = B,
(48) Eci<°°, Zci~<°°.
i=1 = A
Then, if f(X) is bounded on U and satisfies
(48) DA )] oo,
i=1

there exists a C(S™1)-differentiable function u(x) on U such that
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(49) Xu(x)= f(x;), Xu(x)=0, xe&{x]}.
Proof. We set

ui) =g -t el [, 3o, =0,
Then we have by (45) and (47),
@7y lux)| <A | v~ |, |datdx, )| <A+B;||x]].

Next we set

C; 1

3 ¢
A N S N A T R R
AT

vi{x) = =5 A7

__4A#
27c?

—xll2a _x 3¢
[[x—x |21, || xz||<2Ai.

i3

Then lim, m_mozz_:lu,-(x)vi(x) f(x,) exists and to set

u(x){_ojlui(x)vi(x) ),

u(x) is C(S™1)-differentiable and satisfies (49). Because, we have by the definition
of v; and (47), (48,

|uxix)| Zc;, xER",

|duwie, D<A +e i (5, DR xS

Therefore by (48) and (48), u(x) and d,u(x, ) both exist. Hence by lemma 1, #(x)
is C(S*-1)-differentiable on U and by lemma 10, we get (49).

18. Theorem 4. If X=S(X), then Xf is equal to 0 almost everywhere on R
(with respect to the Lebesgue measure).

Proof. First we note that if u# is C(S"-1)-differentiable and car, # is compact,
then (considering the integral along the line ?y)

(50) J[gﬂdﬁu(x, Vdx=0,

Hence for an element T of CyR")*, the dual space of the space of continuous
functions with compact carrier, we can define X7, X is a C(S"-1)-vector field on
R”, to be an element of C%W(R™*, the dual space of the space of C*-class functions
with compact carrier, by

(51) XTTw]=—T[Xu],
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and if T=T, is given by Tf[u]:J fxu(x)dx, then we get by (50) and (51),

R?I
(50) XTp=Tx,.

Then by definition, if X=S(X), X7 is equal to 0 as an element of C!y(R"*, But,
since CL(R") is dense in CyR"), we have the theorem by (50),
Corollary 1. To set

NR"={ f| f is locally bounded and m (car, f)=07},
m is the Lebesgue measuve,

we have
(52) X (Cocsm(R)CNRY, if X=S(X).

Corollary 2. If flx) is C(S™1)-differentiable on U, an open set of R", then d,f(x)
belongs in I(S™Y) almost everywhere on U,

We note that by theorem 3, we also obtain

Corollary 1'. If X=S(X) and to set rep. X=E(x), if there exists a function
elx, ¥) on UxS"1 such that

<&, dn)>=1, zeU,
lelx, D<A, |do,elx, 3, 2|<B, xel, Ye§'1, 25",

then
(52) X(Ce sn-n(U )21, U).

Here 11, (U) is given by

e (U= { FI Z‘_,Klf(x)]<oo for any compact subset K of U1,

Since {x| f(x)s20}NK is a countable set for any compact subset K of U if
fel,, (U), we have

CC(S”“I)(U)nlllac.(U):{O}-
Hence we can extend X to /Yy, (U) to be the 0-map. Then to set
Cx(U)=X 3 (U )DL .. (U),

we may consider X is defined on Cy(U). The subspace of Cx(U) constructed by the
compact carrier functions is denoted by Cyx.oU).
Taking

UL, k, ¢ &)
={gl1f(x)~gx)| e, x€K, 2} |X(f—g)x)|<e,

ek
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K is a compact subset of U},

to be the neighborhood basis of f, we give a topology of Cx(U) (or Cx,U)). The
dual space of Cy o{U) (under this topology) is denoted by Cx oU)*. Then we define
the inclusion map ¢ from Cx U} to L(Cx,oU), Cx,oU)*), the space of continuous
homomorphisms from Cx o) to Cx,oU)*, by

(TLfD=Trury, Tlh]= L g(x)h(x)dx.

For an element T of L(Cx (U), CxU)*), we define XT, X is a C(S"!)-vector
field, by '

(53) (XTI D g)=XTLrDLe]—(TLX SN g]
=—(TLAIXg]—(T[XfL&].
Lemma 11, The equation
(54) XT=6, 0 is the Dirac measure,
has a solution in L({Cx,oU), Cx,oU)*),
Proof, We define an element 62 of L(Cx,o(U), Cx,oU)*) by
& [ f1=,£(00, 0 is the Dirac measure,

Then by (53), taking the function u(x) deﬁﬁed for X by lemma 10, we get (54)
to set

T=—e""3%

Here f(x)T[ gl is given by TT fg].

By lemma 11, if car. f is compact and X=S(X) on R” such that rep. X(x)5=0
for all x, then we may consider the equation (41) has a solution in F(R”, Cx, oR")*),
the space of functions from R” to Cy oR")*. In fact, by assumption, there exists
a function e(x, y) on R"xS"! such that elx, ¥) is smooth in y and <rep. X(x), e(x)>
=1 for all x. Then to set

- ¢
U, s>—§(x, e et

the solution #(x) of (41) is given by

u(x)=eU D) flr—E)].

Note. In the next §, we show that a C(S"1)-vector field of R” generates a local
1-parameter group of transformation of R” into C*(S*-1). Therefore we may
consider the equation (41) can be solved in F(R", C*S*-1)), locally.
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§ 5. Generalized integral curves of generalized vector fields on R”.
14. If X=S(X), we define a transformation 7, of Cx(RE") by

T.f=f+tX/, 1=0.

Then, since X%=0 on .. (R"), T, is a 1-parameter (semi-) group of linear trans-
formations of Cyx(R") and it is differentiable in ¢ and we have

dir. 1y
LT S)=XT, S,

But, since 7, is the identity map on C{R" ) T, does not induce any (non-trivial)
transformation of R" ‘
On the other hand, if X is positive, then we can construct a family of
(continuous) curves ¢(f, ) of R with the parameter x such that
(i). 00, x)=x, x=R".
(ii). The generalized tangent of ¢(t, x) at t=0 is rep. X(x), x=R"
(iii). If X is continuous, then ¢(t, x) is continuous in x,
To construct such family of curves, first we fix a countable set of points {y,}
of S"! such that
@@). {y,} is dense in S* 1,
(b).  ypFy, if pFq.
For this {y,}, we fix a family of Borel sets {¥,7] of S"*! such that

YoEE,2, lim dia (E,9)=0,
gq-—oo

Stl= y E? for any fixed q, Ep?NEpt=¢,if p'#p".
r=4q

For these {E,7}, we define a series of positive real numbers (¢, ,x)}, x is the
parameter, as follows: First we set rep. X=&x) and set

() S™1)=v().

By assumption, v(x)=0 and if X is continuous, then »(x) is continuous. Using &(x)
and v(x), we set

’

tq, 1(x):’%§3§l

_ ) q g
tq’P(x>_W+(q+l)! Epf(x)(l:r ), p=q.

Since Z}peqé(x)(qu):v(x), these f,, ,(x) are well defined and since &(x) is a positive

measure, we obtain

tq,P(x)th,iﬁl(x); lf p+1§Q7 tq, q(x)th+1,l(x))
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lim. 1, (x)=0, lim. lq:l:(lii):o, if o(x)2£0,

q—roo g—oo Tg1
by, p(%) 25 continuous in x if X is continuous in x.
Then we define a function ¥{f{ x): R*—R", R*={t| =0}, with the parameter
x, xR", by
T(t, x)=0, if v(x)=0, ¥, x)=0.
Ulty, px), %)=Ly, s(®)Yp, f tq, s(®)Ftg, prr(%).
Uty %), K)=t, (%)Y, if tq,%)FEq1,1(%).

Ly %) —t . F—1,, per%)
e AT gy ) e
o )t o), e Ay

if tq, P(x):tq, p+l(x): o :tq,p+r—1(x)r l(q,p(x)>t>tq,p+r(x)~

Ui, %)=

w(q, P(x)y x)y

In this last formula, we consider #,, ,. (%)=141, psr-qo(X) if p+7>q.
By definition, if X is continuous in %, then ¥(f, x) is continuous in ¥ and we
have
HEE, 2)] <o)l
U(t, x)5£0 1f v(x)50 and t40,

Using this ¥t x), we define ¢(¢, %) by

— v, %)
gD(ti x)— x+1)(x)| |Qf(t, x)l ’1 t?éoy U(x);ﬁéo,
U(t, x)=x, for all t it v(x)=0,

70, x)=x.

Then by definition, ¥{, %) is continuous in # and it satisfies (i), (ii), (iii) (cf.[4]).
By (ii), to set '

(55) Sdx)=g(t, %),

S, maps R"” into R” and we have

(56) lim. Llim. J SH &= FWgs— x ),
50 S =0k 14
if f is C(S*™Y)-differentiable on R".
By (i), S, is the identity map of R* and by (iii), if X is continuous, then S,
is a continuous map. Therefore, if X is continuous, then S,* maps C(R") into C(R")
and it is a bounded operator as a map from C,(R"), the Banach space of bounded
continuous functions on R”, into C,R").
15. We call ¢(f) to be the integral curve of X starts from the origin of R” in
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the weak sense if it satisfies

tim, Liim, [* LACEID =T 00 gy — <e(oi0), d, floit)>,
t—0 S k-0 ¥

for any C(S*-Y)-differentiable function f of R", where £(x) is rep. X. We note that,

if lim. ».olpt+7)—o(t))/r exists and fis differentiable, then the above formula reduces

to

_cﬂ_f%ﬁ:)(f«o(t».

If ¢(t) is the integral curve of X in the weak sence starts from the origin, then
we have

r Lr Lol =S @R g ar,
v

0 SJa

i J, Floh+1)— Fo®) gy
SJirldo ¥

=1 Lrtett-+on)—sigorar

=S flglt ps)—Slgle )], 0<K0,0'<1, 0, <1,
by the mean value theorem. Hence we get
6 Flolt)= SO+ || <elple), dusigley>at,

if ¢ is an integral curve of X in the weak sence starts from the origin.

By (57), if X=S(X), then for any smooth f, we have f(¢{f)=s(0). But, since
CY{R™ is dense in C(R"), it occurs only the case ¢(f)=0 for all £. Therefore we
obtain

Theorem 5. If X=S(X), then X has no integral curve although in weak sense.

Note. In R?, the generalized vector field X given by

Xz, 9)
— x y y x
—<m+m)al +<m x2+y2>521 (x; Y)é?(o; O)’
_1
X(0, 0)=-do,

where d; and J; are the Dirac measures concentrated at (1, 0) and (0, 1) and d@ is
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the standard measure of S!, is weakly continuous on E? but X(0, 0)=S{X)0, 0).
This X has the integral curve starts from (0, 0) which is given by

x(t)zi,cos(%%— c), y()= /sin(%—l— c), >0,

x2(0)=3(0)=0, 0<c<2m.

16. Since [*(S"1H)=R", we consider R” to be a subspace of C*S"!) in this
manner. Then we can extend a function f or a generalized vector field X of R*
to a function f# of C*S* 1) or a map X#: CXS"1)——C*S"1) by

(58) SHE=F(uE)), X#(E)=(rep. X):(€)).

We note that since we get
n
P1(5)225(yi)5iy Yi=x,8"1,
=1

we obtain

L 2uE)] =] €11,

Therefore, if f is C(S"-1)-differentiable, then we get

(59) SHE+n)=S#(E)+d, F(D:6), | ]i%—‘)l | Da(g) 1 [ £-+o0().

Hence f# is (1-sidede) Gateaux differentiable (with respect to the real numbers)
and it is Fréchet differentiable if and only if f is tataly differentiable,  Because
we may consider C(S"-1)cC**S*1) and R*=[S"YcC(S™1),
On C*(S™1), similarly as usual ordinary differential equation, we have
Lemma 12. If Y is a map from C*S*-1) to CHS"Y) such that

(60) HYE)—Yi)| | <L||E=7ll,

Jfor some positive number L, then for any E€C*S* 1), there exists unique function
ot), teR with values in C*S" 1) such that

61 WO vigte), pio=¢.

Movreover, if the value of Y all belongs in I%(S""1) and ¢(0) also belongs in [*(S"-1),
then the value of o(t) also belongs in I*(S"1).
Note. If a C(S*-1Y)-vector field X satisfies the Lipschitz condition

(62)' HE@) —E@D <L} [x—x"]|, &x)=rep. X,

then we have
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X #(p) — X#E) | <L | p—€1 1.

If ¢(f) is a solution of the equation
W0 X#(git),
and f is a C(S"!)-differentiable function of R”, then by (569), we get
(63) LU Hpt)=<XHW), (d D>,
Especially, if f is smooth, then
63 G Prlplt)=<XH#W), d(SHeB)>,

where d(f#) is the Fréchet differential of f# and it is considered to be an element
of C¥*(S"-1),

By (63) and (63)', we may define

Definition. A curve ¢(t) in C*(S"Y) is called the generalized integral curve of a
generalized vector field X starts from x if it satisfies

(64) L X(pit), p0)=dv), x<R".
Here {x) means

n
‘(x) :inaiy x:(xla ) xn)-
i=1

Then by lemma 12, we have
Theorem 6. If X is a generalized vector field on R” such that rep, X =&(x) satis-
fies the Lipschitz condition (62) for some positive L' on R”, then X has a generalized

integral curve starts al any point of R".  Moreover, if X=D(X), then we may

consider the generalized integral curve of X to be the usual integral cuvve of X.
Corollary. Under the same assumptions, X generates a local 1-parameter group
{T.} of transformations of CXS")., If X=D(X), then this group is identified the
usual local 1-parameter group of transformations of R" generated by X.
Note 1. In general, if ¢(f) is the generalized integral curve of X starts from

%, then to set
U(t)=cYpolt)),

¥(t) is the usual integral curve of D(X) starts from x. Especially, if X=5(X), then
Y(t)==x for all x.
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Note 2. Denoting the integral curve of D(X) (in C*S" 1)) by ¢4(t), the solution
o(t) of the equation (64) takes the form

t
(65) ey =), | poeNisias)
By (66), if X=S(X), then the generalized integral curve of X starts from x is
given by
(65) p(t)=(x, &x)1).

By (65), we obtain

Theorem 6'. A C(S"Y)-vector field X on U, a neighborhood of x, has the gene-
ralized integral curve starts from x if D(X) has the integral curve (in the usual sence)
starts from x and S(X) is integrable.

By (65), if X=S(X), then the 1-parameter group {7,} generated by X is
given by

Tx)=(x, &), rep. X=&(x).

On the other hand, if X=ID(X), then the generalized integral curve of X is given
by

(65)" P(t)=(pslt), Daln)),

if it starts from peC*S"Y). Here ¢.(f) is the ¢-image of the usual integral curve
of D(X) starts from ¢ '(pi(y). By (65)", the 1-parameter group 7, of transformations
of C*S"1) generated by X takes the form

Tin)=(T/ (:n)), Daln)),

where 7T, is the (c.-image of) the usual 1-parameter group generated by X (=D(X)).

Chapter 3. Generalized vector fields on manifolds.
§ 6. C(8"1)-smooth functions on manifolds.

17. Definition. If f is C(S*Y-differentiable on M and d,f defines a continuous
cross-section of C(s(M)), then we call f to be C(8"1)-1-smooth on M.

Similarly, if f is C(S™V)-differentiable on some neighborhood of x&M and d.f
is continuous at x, then we call f is C(S"1)-1-smooth at x.

Definition. 1f d,*f is defined on M and it defines a continuous cvoss-section of
CP(s(M)), then we call f to be C(S"Y)-p-smooth. If f is C(S*1)-p-smooth for all p,
then we call f to be C(S"1)-co-smooth or C(S™1)-smooth.

C(S*-1)-p-smooth at x or C(S™1)-smooth at x are also defined similarly.

In C(S,), we set
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(66) US)={d, f(x)| f is C(S™1)-smooth on some neighborhood of %}.
Note, Similarly, we may set
(66) ISy={d, f(x)| f is C(S"V)-k-smooth on some neighborhood of %7},

for each k. Starting from these [}(S,), we have same results as in this chapter.
Lemma 13. If dim. M=n, then

(67) dim. (S )<n.
Proof, If f is C(S"!)-smooth at %, then to define ¢,: (—1, 1)=M by
@y(t):rx,y,t’ tz(), 9Dy(i):rr, 3’,'“ t<0;

Sl is differentiable at £=0 and the generalized tangent of @) at {=0 is d,.
But, since #~{U)=S""1xU and a paracompact topological manifold always has a
topological connection and a topological connection can be considered to be a local
parallel displacement ([1]), we may set

Aot =F W lpsit)), -+, Ulpwa()), —eE<e,

where yi, +--, ¥, are suitable points of S,, because dim. M=n, Then, since ¢,(f) and
oun(t), -+, 0y,(f) are smooth in {, we have

” W -1
(68) d, fle, =23 4H0) " . fx, 3

i=1

Hence we have the lemma,
Note. This lemma is hold for I'(S,)={d, f(x}| f is C(S"*1)-smooth at x}.
Lemma 14. For any xM, there exists <0 such that

(69) dim [(Sz)=>dim. [(S,), if plx, x)<e.

Proof. Since dim. {(S,)< o0 by lemma 13, we may take C(S"')-smooth functions
fi, -, fm on some neighborhood of x such that d, fi(x), -, d, fu(x) form the basis
of I(S,). Then, since d, fi, ---, d, f,, are continuous in % on some neighborhood of
x, if plx, x)<le, then d,fi{x)), =, d, Jul®:) are linear independent in C(S) for
some ¢>0. Since d, fi(x1), -+, d, f,.{x1) belongs in /(Sz,), this means

dim. (Se)=m=dim. IS,).

Hence we have the lemma.

Corollary. If dim I(S,)=n(=dim. M) and d,f\(x), -, d, f(x) form the basis of
US,), then for some >0, if olx, %,)<e, then d, fi(xy), -+, do ful%:) form the basis of
US,).
Proof. By the above proof, d,fi(*,), -+, do fu(#:) are linear independent in
[Sz) if olx, x)<e for sufficiently small .  But since dim.l(S,)<<n by lemma 13,
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d, fi(xy), -, d, f,{x,) should be the basis of IS,).
In the rest, we set

dim (S,)=1,,
{x | Zz:n}:M-\‘:P'

By the corollary of lemma 14, M, , is an openset of M.
18. Lemma 15. To set

TM,,0)= U US,)

)
x&Ms,p

T(M,,,) is a (tatal space of a) vector bundle over M,,,.
Proof. By the corollary of lemma 14, to define a map: T(M, )—M,, by
p(g)=x, g€lS.)
we have
UL, &)=Ulx, &xUS,),

for some ¢>0. Moreover, if d,fi(x), -+, d, f,(x1) and d, fi'(xy), -+, d, f,/(%1) both
form the basis of /S.), then it should be

) d, )=, 0d, £ (), (asfe)GLin, R.)
=1

Hence we have the lemma.

Theorem 7. M, , allows the structure of differentiable manifold and its cotangent
bundle is equivalent to T(M, ,).

Proof. By (67), if {d, filx), -, d, f(x)} form a basis of /(S,), then there exist
continuous cross-sections y;=y(x), -+, 3,=3,(%) from U(x, ¢ to s(M) such that

d, fi{&', x(&')EGLn, R), x'€U(x, ).
For simple (if necessary, to change fi, .-+, f, linearly), we assume
(71) d/’.fi(xly y](xl))zazj) i’ ]:1; Tty 72, x,EU(xy E)-

By (71), in the product structure p~YU(x, &)=S""txUlx, ¢), we may regard each ¥;
is a constant cross-section and therefore the integral curve of the generalized
vector field <(dy;, d,f> starts from x is given by ¢,(f) defined in the proof of
lemma 13. Then, since (on(t), -, onltn)), —e<lti<ley, -, —&,<t,<s,, give a local
coordinate of M at x, the local cordinate of M at x is also given by

Z"—>( fl(z)) ) fn(z))’ ze U(x, 6)’

by (71). or, in other word, the manifold structure of M, , is given by {({Ulx, &), Ay},
where ki is given by
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hif2)=(f1(@), -, Sil2)).

Then, since hyhy' is a differentiable map for any (U, V) by (70), we obtain the
theorem.

Corollary 1. T*M,,,), the dual bundle of T(M,,), is equivalent to «(M,,), the
tangent microbundle of M, .

Corollary 2. If M=M,,, that is, l,=dim. M for all xeM, then M allows a
differentiable structure.

We assume the manifold structure of M is given by {{U, &)}, hy: U—R"
We take a C(S"1)-differentiable function f of R" at ky(x). Then we have

Shy(re,y,0)

hy(7e,y,)—hu(%)
" ho(re,y, = ho()] |
+o(| | ho{7s, 5,0 —ho(®)| ).

Hence hy*f(x)=f(hy(x)) is C(S"Y)-differentiable at x if and only if Zy(r,,,, ) is a
smooth curve with respect to ¢ at {=0. Moreover, if Ay(r, ,,,) is smooth at {=0
for any » yES,, then hy*f is C(§" l-smooth at x if f is C(S*1)-smooth (i.e.
differentiable) at Jy(x).

Since we know #hy(r. ) is smooth at =0 for any y if and only if we have

=f(hy(2)+d, f(ho(%) W hy(7s,y,0—ho(%)] |

hU(rz,y, l)ZhU(X)+dﬁhU(xs y)t+0(t)y

that is, hy is C(S™"1)-differentiable at ¥ with respect to the metric p and d,(hy;*f)
is continuous in x for smooth f if and only if d,%y is continuous in ¥, we have
by the corollary 2 of theorem 7,

Theorem 8. 1f the manifold structure of M is given by {(U, hy)} and M allows
a metric p such that p satisﬁes (), (i) of §1 and hy is C(S"')-smooth with respect
to p, then M is smooth,

Note. If M is smooth, then taking p to be the geodesic distance of a Riema-
nnian metric of M, we have M, ,=M and this p satisfies the assumptions of

theorem 8.
19. We set M, ,=M, , 0 and for k>0, to define M, ,, and M, ; by

{xl lz:n_k}:Ms,P,k,
] Mx,P,m:MP,k-

n=k
By definition, we have
M:MP,% MP,71+1:M5,P,11+1:¢7

and also
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(72)i M, DM, 1D -+ DM, ,
n

(72)ii M:}U Ms, 0,0y Ms,o,inMs, o, j=0¢, 15471
k=)

By lemma 14, we have
Lemma 16. M, , , is open in M, ,.
Corollary. To set

T(Ms, o 6)= U S,

X EMs, g, 0

’

T(M;,,,p) is a (tatal space of) vector bundle over M, , ,.

If xeM, ,; then we can take C(S*!)-smooth functions fi,, *, fuep,= ON
Ulx, ¢) for some ¢>0 such that {d,fi,.(%), -, ds fuop, %)} forms a basis of I(S,).
Then, if x'eM,,, and p(x, ') is sufficiently small, {d,fi (*'), -+, dp fuct,(x)} is
a basis of {S:/). Moreover, we can choose ¥,(x")&Sy, -+, ¥, 4x")ESx such that in
the product structure of = YU(x, ¢)=Ulx, &')xS*1, ¢'<¢, each y,(x') is mapped (a
fixed) »,&€5" 1 and to set

(71y d, fi,o%', Yix")=a(%"),

(a;(x")eGLn—k, R) and continuous in x'. We denote by y; the cross-section of
s(M) defined on U(x, ¢’) whose value at %' is y(«').

In Ulx, ¢'), using the integral curves of the generalized vector fields Xy, -, X, .
such that rep. X;=0y,, -+, vep. X, =0y,-; starts from x, we can construct a closed
subset V{(x) of Ulx, ¢') such that V(%) contains ¥ and V{(x) is homeomorphic a
neighborhood of the origin of R""* Moreover, to define a map h, ,: Ulx, ¢')—R"*
by

hx,k(x,):(fl,x(xl)y Tty fn—k,x(x/»y xIEU(x’ EI):
we have a commutative diagram
Ulx, ')

=«

/ AN
7 identity N\t
R+,

Vix)
But since to set
hx’,/e:gx’,xhx, ky

gy, is linear as a map of R"* V(x) and V(¥') are changed by the linear map
considering them to be subsets of R"* if x and %' are sufficiently near. Hence if
k<n—1, we have

(73) dim.( U Vx)=n—~k

xeMs ok
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Then, since M, rc U V{x), we obtain by (73)

xeMs ok
(73) dim. M, o r<n—k, k<n—1,

On the other hand, since Ay(7,,,,) has C(S"!)-tangent for all ¢, 0<{<{1, by
the method of the construction of p (cf.[3]), the C(S* !)-tangent of hy(7,,,,,) takes
the form d,» almost everywhere on, (0, 1) by theorem 5. Hence M—M, , , is dense
in M by the proof of theorem 8. But since M,, , is a closed set of M, we have

(73)0 dlm Ms, P,y n—<;o-

Summalising these, we have

Lemma 18. dim.M,,, , is at most equal to n—k. Especially, dim. M, , is equal
to n and dim. M, , , is equal to O if M, , ,7¢.

Corollary. M, , is open dense in M,

20, We set

Ms, = U Vix).
xeMs ok
Then similarly as theorem 7, we have
Lemma 19. If M, , 17, then M, , % allows the structure of an (n—k)-dimensi-
onal smooth manifold and it is a closed submanifold of M—M, ;...
Corollary. To set

M, o =Ms, ,—Ms, o N U Mg, p,mH),

mz]
]‘45‘,11,}'2":‘1‘45,,!1,/311 _1\45,47,/3h ﬂ( U Ms,p,mh), kgl,
m=k+1
we have
(74) M:Ms,ﬂbUMs,p,lbU UMS,ﬂyﬂb:

Ms,/)meS,ﬂ,kb:¢, kgl:
Ms, o i0 b Ms, 55 =6, i5£].

Here dim. M, ,b=n, dim. Ms,p,kb:nﬁk if Ms,o1b#¢ and they are all smooth and
M, o, 1 b is closed in M— Umzr1Ms,o,m¥? (cf. [17]).

We note that by the definition of Ms 54, M, is dense in M, x4 and
therefore Ms, 1N Ms, o1t is dense in Ms, ,zb.

Theorem 9. To set Ccoesn-vy>(M) the space of C(S"Y)-smooth functions on M,
Cen-ny=(M) is dense in C(M) by the compact open topology.

Proof. First we note that by lemma 18 and the definitions of M, % and
Ms, o, 1P, for any continuous function f of Ms,, %P and compact set K of Ms P,
there exists a C(S*1)-smooth function g of M such that
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(75) | fW)—g(0)] <o, xEK,

is hold for given >0,
We assume that in (74), we get

(74) M=Ms,,> UMs,p,in* U -+ UMsp1nb,
M, o0 =0, 1<k <lp<l oo <k,

Let f be a continuous function of M and K a compact set of M they are both
arbitary but fixed. Then by (75), there exists a C(S"!)-smooth function g, of M
such that

(76)711 I f(x)_ gm(x)l <§€Tm xEKnMS’ ﬂ,kmb

for given e>0, Then, to set f,(x)= flx)—g.(¥), there exists a C(S™!)-smooth func-
tion g,,_i(x) of M such that

(76)77:—1 | fm(x)— gmHI(x)‘ <?ne‘_‘17 xeKﬂ (MS, 0, ke~ b n MS; 0, kem b)-

In fact, there exists compact carrier C(S™')-smooth function g,-1, o(x) of M such
that

(76)0 l fm(x)—gfzz—l, O(x) ! <‘2‘e—m7
xre Kﬂ (MS, 8y R -1 b— U(MS, o, km b)),

for any neighborhood U(Ms, o kb)) of Ms o n,? in M. Hence, if k,=1, we have
(76),,-1 by (76)y by virtue of theorem 9, On the oher hand, if %,->2, then M—
M, o 1n? is connected. Therefore in (76);, we may assume

(M, p,20m = VIMs, , kys1® N M, o, 1 P 1 €07 (G o1, =0,

for any neighborhood V(Ms, s, fp1? N Mg o km?) 0f Mo, 0 km1? N Ms, 0, 5n? in M. Hence
by the continuity of f,.(x), we have (76),_.;. Then, repeating this, we have

m—1

| filx)—&ox)| e, €K, filx)=F (x)—,;})gm-k(x).

Hence to set g(x):zkzogk(x), we have the theorem,
We note that since the space of compact carrier smooth functions is dense in
the space of compact carrier continous functions by the compact open topology
m

and U]=sz, nk;? is closed in M for all p, 1< p<<m, we also obtain
Theorem 9'. Denoting the space of compact carrier C(S"1)-smooth functions on
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M by Ccesn-vy, (M), Ccesn-v, o(M) is dense in CoM), the space of compact carrier
continuous functions on M, by the compact open topology.

Corollary. For any locally finite open covering {U} of M, there exists a partition
of unity {ey(x)} of C(S"Y-smooth functions on M subordinated to {U}.

Proof. We take a partition of unity { fy{#)} of continuous functions subordi-
nated to {U}. Then by theorem 9, there exists a C(S")-smooth function e;'(x)
such that

car.ey' CU, e/ ()220, | fylx)—ey/ (%) ey,

where ey >0 is arbitrary. Then,since {U7} is locally finite, taking ey sufficiently
small, e(x)=2pey'(x) does not vanish at any point of M. Then to set ey{x)=ey’(x)/e(x),
we have the corollary.

§7. C8"1)-smooth forms and de Rham’s theorem.
21. Since the cotangent bundle T(Ms,, 1) of M, b is given by
T<Ms, [y b): Z(Sx’)y
x€Ms o 1Y

where x' is an element of M , > such that xeV(x'), if ey, -, ex—i are the d,-
smooth cross-sections of T(Ms, ,,?) such that {e,(x'), ---, ex—r(x")} form the basis of
I(Sx/) if ' €Upx), a neighborhood of x&Ms,, 1t in Ms , b, then for any m, m<k,
there exists a neighborhood Unm(x) of x in Uj;<mMs, , ;? such that if x"eUx{x)N
M, ., mb, then there exists a neighborhood Viu(x") of 2" in Un(x)NMs,,m? and d,-
smooth cross-sections fi, -+, fe—m of T(Ms pmb) in Vum(x") such that [e(x", -,
Cu—p(x""), fu(x"), -, fr—m(x"')} form the basis of /(Sx/) if x"'&Vm(x"). In the rest,
as the element of C(Sx), etc., we assume '

(77) [lei(x' || =1, ¥ €Upx), i=1, -+, n—~&,
LA =1, 2" eVinl"), j=1, -, k—m.
Definition. A map ¢ from U, an open set of M, to UI:ZO/IDT(MS, o 1k P) is called
a d,-smooth p-form (or a C(S"Y)-smooth p-form) on U if
(). 0| UNMs, o1t is @ d,-smooth cross-section of A2T(Ms,, %) for each k.
(ii).  Using the above notations, if we have

e|UNMs, 1% = Z Pir, ey ip€ir, 0t NCipy

i, ip
On Uk(x), then to set
(78) g[)] V’” = ) Z Diy, e ipy Vr;zefl/\ /\ei/)

e ip
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+ E 901?1',---, iq'jl, "'yfp—q'eil'/\ /\eiq'/\ f]‘l/\“'/\ f)’q-q’ Q>0)

i1,y Lgid, oy Jg—p

we have

(@), iy, ip, Vi 1S defined and d,-smooth on Un(x) and we have

Qir,ip, V| U= @iy, oy ip,

Jfor each iy, -, i, and V,,
(b).  If a series {x;|x;€M;s, , m®Y converges to some element of M, , b, then to set

90/ | Vm: SDl Vm— Z (‘Pil,"'y ip Vm! V’”)efl ~TA eipy
i1, ip

we have
lim. ¢/ (x,)=0,
jorca
lim. d Me")(x;)=0, k>1.

jeo

Here d W) means D i, .., ipd Wiy, i) 8iy o+ A &ipy Where

U= Y1 ip¥ir, o ip 8ir o A &ip and lim. joog(x;)=0, etc. are defined by
lim. j-oo| | @(25)] | =0, efc., where ||@(%;)|| and ||dtp(x;)|| are given by

o = 37 i, idi)],

i ip

[ 1dote(xi)| | = Z max, | %, Yy, -, 2a).
i1y ip YL Yy
Here g; means either ey or fir,

We note that by (77), this definition does not depend on the choice of the
basis of XS,).

Note. Similarly, we can define d,-k-smooth p-form on U. In this case, the
condition (b) of (ii) is changed to
("), lim. @' (2,)=0 and lim. jseed,'@'(%,)=0 if i<k
Moreover, to set

M,y j={x| dim.l[(S,)=n—j},

we can construct the (n-k)-dimensional smooth manifold Mk¥,, ;b similarly as
M, o, i?. Then using M, , ¥, we can deine d,-i-smooth p-form on U if i<k,

By the definition of d.-smooth forms, we have

Lemma 20. If ¢ is a d,-smooth p-form on Ms,, 1V, then for any x&Ms 1%,
there exists a neighborhood U(x) of x in M such that therve exists a d,-smooth p-form
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¢ on Ulx) such that

(79 PV M, p, 1> NUx)=0| Ms, 0,1 P NU(x).
. P S
Note. We define a subspace AC( - xS of CE*ix - xS by

L1 By - Yop)=5g0(0) f(31, =+, ¥p), 0ESPL Then using AC(S""!x -+ X8 to
be the fibre, we can construct a subbundle AC? (s(M)) of C#s(M)) (cf.[4]). On the .
other hand, by the definition of T(Ms,,.%P), We can consider T(Ms,, 1%) to be a
subbundle of C(s(Ms,,zb)). Therefore, U/eioAPT(Ms' oY) is contained in ACHs(M)).
Hence we can define a d,-smooth p-form on U to be a d,-smooth cross-section of
AC?(s(M)) such that whose value at x is contained in A?T(Ms,,b) if x&M,,,rPb.
22. As usual, we can define the addition and the multiplication of d,-smooth

J—
§ix

p-form ¢ and ¢-form ¥. Moreover, we can define the exterior differential d¢ of
¢ by
(80) (de) | Ms, s, 1P =d(p| Ms,p,17).

Here, in the right hand side, d is taken in the usual sense. Then, by (b) of (ii)
of the definition of d,-smooth forms, d is well defined.

We note that, in the coordinate free form, regarding ¢ to be a cross-section
of AC#(s(M)), we obtain

(81) do=Ad.p.
Here Ad,p is given by
AdP x; yl, Y yp+1)

1 -1 1 . 1
= —1) P il y Ty Ji-1y itly "'y
17+1l-=1( )[;Qno{t¢( ity Iy oty Yisty Jisty oty Yped)

"‘SD(x, yl, Ty yi—ly Yivty 7 y?+l)}:|e

By definition, in general, if f is a cross-section of AC?(s(M)), then Ad.f is a
cross-section of AC?+i(s(M)) if it is defined.

Lemma 21. If a d,-smooth p-form ¢ satisfies dp=0 on some neighborhood of x
(in M), then there exists a mneighborhood U(x) of % in M and a (p—1)-form ¥ on
Ulx) such that

(82) o=d¥, on U(x).

Proof. We assume x&M;, 1>, Then there is a neighborhood Uyx) of x in
M, o, r? and a (p—1)-form T on Uyx) such that

(82) el Uyx)=d¥,,

by (usual) Poincaré lemma. We take a contractible neighborhood Uj,.s(%) of % in
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M, 51" UM, , > and assume
Uhx)=Up_o(%)| M, 5,20

Then by lemma 20, there exists a (p—1)-form &, on U,_4(¥) such that
wk| Uyx)=¥,

We set
Gﬁlzﬁﬂ—di"m

on U, x). Then, by definition, we have dp,=0. On the other hand, since U;_i(x)
is contractible, the homology basis y of Up.y(x)-M;,, P is taken to satisfy

(83) max, p(xy Ms,/’,kb)<6;

xelr]

for any ¢>0. Here |y| means the carrier of y. Hence by the definition of d,-
smooth p-forms, we obtain

J 01=0, for any homology basis of Uy.,(x)—M; . ;.
;

Therefore, by de Rham’s theorem, there exists a(p—1)-form ¥;_,' on U, (%) such
that

(82)-1 o1=d¥; 4, on Upq(x).

Then, by (8) of (ii) of the definition of d,-smooth forms, to set «, to be the C=-
function on U,_y(x)—M, , > such that

ae('x):]" p(x, M:,P,kb)>2€:
ae(x):O! P(x) Ms,ﬂ,kb)<€! 1—>;as(x)goy

we have
(84) pr=lim. dla¥s-").
e—0
Hence we may assume ¥, vanishes on M, , P in the sence of C«-topology.
Therefore, to set ¥y =¥,/ +¥, we obtain
(82)p-1 p=d¥ -, on Up_(X).

To repeat this, we have the lemma.
Note. Since we know

(RO+0k) f=F, on Ula), a neighborhood of a,
for the Alexander-Spanier cochain f on M, where &, f is given by

(ke (%o, %1, =y Xpo1)=f (%o, %1, -, Xp-1, @)
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to set

(Eaga)(x: Y, y1;—1)
:go(x, Y, yp~1y ex,a)p(x, a)r

for a cross-section ¢ of C?(s(M)), we obtain for a smooth p-form on M regarding
it to be a cross-section of ACH(s(M)),

(85) dorap=p-+o(D),

if d.9=0, by (14)'.

23. By definition a d,-smooth o-form ¢° is a function on M and it satisfies
(). | M, ,, > is smooth for each k.
(ii). If {x;} is a series of M, , v such thal lim, ;.ox;=%, x€M, > (m<k), then

lim, f(x))=f(x), lim.d>f(x(;)=d* f(x), k=1
J—roo j—

Hence, if d,°=0, then ¢° is a constant function. Therefore, denoting %7 the

sheaf of germs of d,-smooth p-forms on M, we have the fine resolution of the

constant sheaf of real numbers R on M as follows

d d d
0 —R—> @O0 Gl s o s (),
by virtue of lemma 21 and the corollary of theorem 9. Hence we have de Rham’s
theorem of M, a paracompact topological manifold in the following form (cf. [13],
[157)).
Theorem 10. To set CYM) the group of d,-smooth p-forms on M, then we
have

(86) HAM, R)=3M)/dCt-"M),

where 3¢(M) is the kernel of d in CP*M).

On the other hand, since in a smooth manifold, a singular chain always
homologous to a differentiable chain, and if fie——M', M' is smooth, is a diffe-
rentiable, then f satisfies (27), any (singular) cycle 7y of M is homologous to a
cycle y of M such that

(87) r:Z_,‘c,- fio), each f; satisfies (27),

by the decomposition (74), Hence we may consider a d,-smooth form always inte-
grable on the homology basis of M. Moreover, for a d,-smooth form ¢ and a
chain y which is written in the form of (87), we obtain the Stokes’ theorem
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Hence in theorem 11, the pairing of H, (M, R) and 3?(M)/dC?"Y (M) is given by

(88) <7 ¢>:JT 12

Here 7 and ¢ mean the classes of 7y and o.

Note. We denote the groups of d,-smooth cross-sections of C?(s(M)) and alter-
native Alexander-Spanier p-cochains of M by C?(M) and €?(M). The subgroups
of C*M) and (M) consisted by those chains ¢ that

J l@| =0, for any y which is written as (87),
,

by C?y(M) and G2y(M). Here || is given by
|$0|(x, Y 0y y[,):{go(x, yl’ Tty yp)ly SBECIP(M)’
l@'l(x(h X1y 0y xﬁ)zlgo(xﬂ) X1, xp)lr (PE(‘SP(M)'

Then by (14) and (85), we have the commutative diagram

Ci’*l(M)—l—»CP“ )/cpn )4__»(}?*-1 M)/(J]H—l M)

N i

C"(M)——*C (M)/Ct (M —H@” M)/&?5(M)
Here, i is the map induced from the inclusion, d, and 6 are the maps induced
from d, and & and % is the map induced from k. Here, & is given by

(k9’)(x0) X1y o0y xp)

:SD(xOJ Exg, @y "'y 5170, Ip)p(xfh xl)"'P(xo, xp).

We also note that to define a subgroup €?,(M) of &#(M) b
(89) Sz (M {¢|J lol<co is v is given by (87)},
then we get

HCHM) 62, (M).

Moreover, by Stokes’ theorem (cf.[37), if an element ¢ of §#,(M) is written as §,
then we can take ¥ to be an element of &#~1,(M). Hence denoting the sheaf of
germes of the elements of €2, (M) by €?,, we have a fine resolution

] 8
0 R0l

IIREEN

because %”° is a subsheaf of €% and therefore the partition of unity subordinated
to any locally finite open cevering of M by the functions of €% (M) is always
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possible, Hence we get

(86) H!M, R)=3?,(M)/66¢-*(M),
where 3%,(M) is the d-kernel in €7, (M) and we have the commutative diagram
P (M) /0GP~ (M the isomorphism of (86)
ra \-
Le HYM, R)
BHM)/dC?P~ (M) the isomorphism of (86),

where k is the induced map from k.
As in (86), in (86)', by the definition of E#M) and the Stokes’ theorem, we
also have the pairing of H, M, R) and 3?,(M)/6€+ 1, (M) by

(88) <F #>= o

where 7 is the class of a chain 7 of M and ¢ is the class of @, an element of
B#(M).

§ 8. Generalized integral curves of generalized vector fields on ma-
nifolds.

24, We assume x€M, ,; k=0 and k+£n, and take the C(S""!)-smooth functions
near %, fi, -+, fa-p such that d,fi(x'), -+, d, fo-s(x') form the basis of /Sy) if
x'eM,,, ;> and sufficiently near to . Then we can choose yi(x')&Sx, -, Yp-a(x")ESx
such that each y,(x') depends continuously on %’ and they satisfy

(71)” d f(x yj( )) zj7 Z’ .7 1 _k
Then to set
n—Fk

*(S {Zciay,(m |c.e R, ey n—k},

we may consider *(S;-) to be the dual space of /(S,/). Hence at z’, we have
(42) CHSx )= (Sx )DUSx) L.

Moreover, although «'€&M, ,; if x'eM,, P, then since we may consider
d, f1(x"), -, do fo-i(x') spann Ty, the fibre of T(M, ,:P) at x', if x' is sufficiently
near to x, we also have

(90) CHSu)=1*"(Sx)PTa L.

We choose a locally finite open covering {U} of M, , > such that for each U,
the basis of [S,), x€U (or the basis of T,, if x&M,,, but x&M;, ;") and the
cross-sections U, .-, y,.47 of s(M) on U are given to satisfy (71). We set
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Ov=0nv, *» Oyn-s),
OV u(x)=0nvx), =+, Oyu-pv(X))

Then, to set the transition functions of the tangent bundle of M, , % by {guv},
we have

(0)o(2) = guv(®NOv)X) +Euv (X uv(X)ELS,).

Then since we have

Euv(®)+guv(®)yw(®)+ guw (%) w (%) =0,
Guv(Xyy(®)=—Eup(x),

by definition, to take the partition of unity {ey,} of C(S"")-smooth functions on
M subordinated to {UNV}, we have

Eyv(%)=7u(%)—guv(X)py(x),

Py(x) = Z ey o X)Ew p(%).

wNuEp
Hence to set

I*(S)y=1{the subspace of C*S,) spanned by the components of
@ u(®)—nu(x)},

1%(S,)y does not depend on the choice of U and it can be regarded to be the dual
space of I(S,) (if xeM,,,, and if x&M, ,, but x€M, , >, then I*S,)y is regarded
to be the dual space of T,). Moreover, by definition, to set (denoting I*(Sx) instead
of I*(Sa)u),
THM,,pp?)= U IXS,), n—1=k=0,
xEIVIS,P’kb

T*M;,,,,>) is a (tatal space of) vector bundle over M, , ;b and it is the dual bundle
of (TM, ,iP).

We note that similarly, we can define T*M; , ;) and it is a (tatal space of)
vector bundle over M,,,  This T*M,,, is the dual bundle of T(M, , )
= U S,

5,0,k

On the other hand, since T(M, , ;) and C*s(M))|M,,, . are both vector bundles
over M, to set

TM,,0t= U [S)t, n—1=k>0,

xEMs, Pk

T(M,,,;) is also an (infinite dimensional) vector bundle over M, ,, and we have

(1) CHSMNI M, 0,4=T*M, 0, )OTM,,, )4,
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by (42)'.
Similarly, to set

T(Ms,!’,kb): U TxJ‘r n_lgkgly
XEM;s, 5, kP

we get by (90)
(92) CHS(M) | M, 0,0)> =THM 5,1 YD TM,, 5,10,
If k=n, we know that M, , %"=M,, , and therefore M, *cM,, . If xc
M, , . then we define
DS =1"S)={03,

Then we have T*M,, ,)=0, the 0-bundle, and T(M,, )=C*s(M)|M,,, . Hence
(91) and (92)' are hold true although k=mn.
By (91), to set
H

c#(M)= U T(M,,,,»),

fe=0

R (M)= U THM, , ), <HM)L= U T(M,,, )L,

k=0 k=0
we have
(91) CHUM ) =M YD # (M),
by (91).

Similarly, by (92), to set
n
r‘a(M):lu T(M,,,,.%),
=0

n
zh *(M):]U THM,,,4%), T”(M)l:lU T(M, %)%,
e=0 =0

We also have
(92) CHs(M))=z 8 *(M)Drt(M)L.

Note. Since we may assume the metric. p of M defines a measure w=a(*) on
S., we may take I'(S,)={golgelS,)} to be the model of the dual space of IS,).
Here, the pairing <h,g>, h<lS,) is given by

<h, gol@)>=] h. gulx)

Sz

Then Uaeis,s,f'(S,) allows the structure of the dual bundle of T(M;,,. But
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since the generalized tangent of a smooth curve takes the form 4§, in one hand,
and no continuous curve takes the element of /'(S,) to be its generalized tangent
at x on the other hand, the above construction of 7%, , ) seems more natural.
25. Definition. In (91) and (92), we denote the projections from C*s(M)) to
cB*M) (or to <#*M)) and to tH(M)L {(or to «#(M)L) by py and p,.
Definition. Let X be a generalized vector field on M, then we define the gene-
ralized vector fields D(X) and S(X) on M by

rep. DIX)=pirep. X}, rep. S(X)=polrep. X).
By definition, we have
(93) X=D(X)+S(X).

On the other hand, considering X to be a cross-section of C*(s(M)), we define
(the cross-sections of C*s(M)) on M, , .b)

(94) X=X M, . ,b, n=k>0.
Then to define D(X,) and S(X,) similarly as D(X) and S(X), we get
93y’ Xi=D(X)+S(Xy), n=k=0,
We note that by definitions, we have
DX)=DX)| M 01, SX)=SX)IM,,:",
D(X,)=0, the 0O-section on M, , ,b.

Since C*(s(M))| M, ,, 1> =~CHs(M,,, ,?) if k=1, X, is not a generalized vector
field on M, , b if k21, but D(X,) is a (generalized) vector field on M, , ;b for all
k, because D(X,) is a cross-section of T*M, , ,¥) on M, ,,> for all &

We also get to define the (not continuous) generalized vector fields X, on M by

rep. Xyx)=Xyx), x&M, P,
Tep, )?k(x)zoy x$M:,F,kb:

then
(95) X:Zz‘_(,))?k.

Similarly, to define D(X) and S()?k) same as X, we get
(95) D(X):gD(Xk), S(X):é)S()?k).

We assume the smooth structure of M, , b is given by {({U, h, v)}. Then to
set rep. X=£&(x), if hy p '*(€) satisfy the Lipschitz condition
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[, ™ (€N @)— T, o ¥ (E)ag) | | <L | @1 —as] |,

then gy~ 1*(€) also satisfies the Lipschitz condition if a;, @ both belongs in 4, y(U)
N, (V).

Definition. We call X, satisfies the local Lipschitz condition on M, , b if hy p='*
(&) satisfies the Lipschitz condition for all U. Here &(x)=vep. X, and the smooth
structure of M, , ;v is given by {(U, hy )3,

Definition. We call X satisfies the local Lipschitz condition on M if each X,
satisfies the local Lipschitz condition on M, , >, 0<{k<n,

Theorem 11. If X=D(X) and X satisfies the Lipschitz condition on M, then X
has the (unique) integral curve starts from x if x&M, , v, Moreover, it xeM, , .,
then the integral curve of X starts from x is contained in M, , ib.

Proof. Since M, , ;> is smooth and T*M, , ;) can be regarded to be the
tangent bundle of M, ,.>, DX)|M, ,b=D(Xy) can be regarded to be the usual
vector field of M, ,,P. Then, since D(X,) satisfies the Lipschitz condition by
assumption, if x&M, , >, then D(X;) has the (unique) integral curve starts from
x in M, ,;P. Hence we have the theorem.

By theorem 11, if X=D(X) and X(x)+£0, then we can solve the equation

41y Xu=f,
locally for continuous f. On the oher hand, by theorem 4, we have

Theorem 4'. If X=S(X), then Xf is equal to 0 almost everywhere on M with
respect to m, the measure on M in duced from the metric p.

We assume that on M the metric function p(a, x)=f,(x) is C(S™*1)-differentiable
for any a. Then to set

u(x)=8(eq, o) fdX)ed%), x#a, ua)=0,

where g(») is a function in C(S,) such that <X(a), g>=1 and e, x) is a C(S*1)-
smooth function on M such that

ea(a)zl’ car. eaCEa:{xl l P(xr x,)gl})
we have
44y Xula)=1,

Moreover, if f, is C(S"Y)-smooth in B, except at a¢ and g is C{S"%)-smooth, then
we get

(44)" Xu(x)=0, x+a,

if X=8(X). In this case, to set

Bioe (M):{f|2 | Flx)| < oo for any compact set K of M},
xEK
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we have
X(Con-ny(M) Dl e (M),

if X=S(X) and there exists a cross-section e(x) of C(s(M)) such that

(96)1 <‘S(x)r e(x)>:11 E(x):re‘b- X,
(96); lle@)| <A, |1d,,e()]1<B, veM,

by theorem 3. Therefore, if f,(x) is C(S"!)-smooth on B,—a, for all a, then we
can construct Cy oM) similarly as Cx oU) in n® 13, if X=S(X) and satisfies (96);
and (96);. Hence we can solve the equation (41) locally as an element of F(M,
Cue oMY,

We note that if M is smooth and p is the geodesic distance of a Riemannian
metric of M, then f,(x) is smooth on M—{a}.

26. Since tH(M)L is a subset of C*s(M)), we can define the projection
n:th(M)L — M by

Py _—_71-|1-H(M)J_.

We also denote by = !(c8(3)L) the induced C*(S"!)-bundle over c*(M)L from
C*(s(M)), Then, for a function f on M, or a cross-section & of C*(s(M)) from M,
we can define a function #H*(f) on z%(M)L or a cross-section x#*() of ==Y (z4(M)L)
from <h(M)+L,

We assume &M, , b and take a neighborhood U of x in M, ,,b such that
there exists a homeomorphism ¢y{(x) from U onto a neighborhood of the origin of
I*(S,). Then, since C¥S,)=I*S.)®T,L, we can define a homeomorphism ¢y(,)#
from UxT,*+ onto a neighborhood of the origin of C*S,) by

ey (%) #(€) = cp{x) D1(E) + Da€).

Then, since T.L is the fibre of T(M,,,:P) at x, there is a homeomorphism ¢ :
8 Y U)——UxT,+ and we obtain the map

97 ppeyR)# 1 gl YU)——C*(S,).
Hence, if & is a generalized vector field, then to set
v, »=(puty(x)#) (&) |z V),

§y,» is a map from C*(S,) to CXS,). Hence, if ||€y,.|| is continuous and saitsfies
the Lipschitz condition

(98) [€v,4(60)—6v, L |SLI181—Cal |,

where |]&]| is the norm of ¢ in C*(S,), then the equation
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¥y, (1)

(61), —dting,.r(?va,x(t))’

has the unique solution under the initial condition ¥y ,(0)=a, locally, We denote
the solution of (61) with the initial condition

¥y, o0)= eyru(2)#((%, 0)=cy(2)(x),

by ¥y, e

We note that although & . satisfy the Lipschitz condition (98), &, , may not
satisfy the Lipschitz condition in general. But, since M, , .t allows the structure
of a smooth manifold, and /%(S,) is the fibre of the tangent bundle of M, , b at
x and T(M;, , %)L is the associate [,(S,)1-bundle of the tangent bundle of M, , ",
we may consider ¢yy(%)¥ to be a smooth map. Then, since

(99) &y, o= (v tv(%)F) (Quty(®)#)* €y, o

&y . also satisfies the Lipschitz condition.
On the other hand, since (pyep(X)¥*(@pyy(x)#)*~1 is a map from (an open set of)
C*(S,) to an (open set of) C¥S,) and does not depend on t, we have
d .
(100) TR Pvev (%) (puey () F)FY(D)

(v B (o)) (SH0),

for all C¥(S,)-valued C'-class function ¥(f). Hence, if &; , satisfies the Lipschitz
condition (98), then by the uniqueness of the solution of (61)', we have by (99) and
(100),

(101) Ty, olt)= @rev (X)) ey (R)*) Wy o, o(0).
By (101) and the definitions of ¢y and ¢y{(x)¥, we also have
(101>I ﬂhGDU?]I'U,I,J:(L‘):T[h(/,Vw.V,.r,:c(n-

Summarising these, we obtain

Theorem 12. If X is a continuous generalized vector field on M such that X
satisfies the (localy Lipschitz condition on M, then X has the integral curve ¥ (f) starts
From x in the space nW(M)L uniquely, This integral curve satisfies

(102) RHU ()M, 1,

Zf xEMs,P,kb-
Corollary. If X is a continuous generalized vector field on M and satisfies the
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(local) Lipschitz condition on M, then X defines a local 1-parameter group of trans-
Jormations {T} of M such that {T,} is smooth in t and

(103); Ty is the identity and T,T,=T,,,,
(103);; TMYcch(M)t,

(103);;; T (TAM,, 0P VT M, 2P,

(109), LT )= XN )

Note 1. If X=S5(X), then 8% (f)=x for any ¢ and x. On the other hand, if
X=D(X), then z4¥ () is the usual integral curve of X starts from x, and, we
may identify {7,|M, , b3}, the restriction of the above {7T,} on M, ", and the
usual (local) 1-parameter group of transformations of M, , > generated by X for
each k. Therefore, if X=D(X), then we may consider

(103);’ T(M)cM.

Note 2. If M is smooth, then we have M, ,=M if we take p to be the geo-

desic distance of a Riemannian metric of M, Then we have
TH(M)=T*M), the cotangent bundle of M,

Hence <t(M)L=T*M)L is a fibre bundle over M with the fypical fibre 1(S" 1)L,
Therefore, z4(M)L is a smooth Banach manifold (6], [127]), but it is not C'-
smooth by the theorem of Restrepo ([6], [14]).

Note 3. By [3], we may consider the manifold structure {U, iy} of M is
given to satisfy
(d). Jf x, yeU, then

o, VA hyx)—hy()] |7, a<log. 2/log. (2n+2),
Jor some A>0.

(ii). The components of hyhy™! are the functions of bounded variations and log. 2/log.
(Z2n--2)-Holder continuous for each (U, V).
Hence, to set rep. X==£&(x), if hy*(€) satisfies

(98)' | |y *E)a)—hy*(E)as)| | <L | a—as] |,

for a<log. 2/log. (2n+2) and for some L>0, then A,*() also satisfies (98) for some
L'™>0. Therefore, we may define

Definition. We call a generalized vector field X with rep. X=£E(x) to be (locally)
a-Hslder continuous for a<llog.2/log. (2n+2), if hy*€) satisfies (98) for each U,

As in n°16, we definec
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Definition. The integral curve of X in v9(M)L starts from x is called the gene-
ralized integral curve of X starts from x.

Then, as in n°16, we obtain

Theorem 12'. If a generalized vector field X on M is continuous on M, then X
has the generalized integral curve starts from x if and only if D(X) has the (usual)
integral curve starts from x,
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