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                             Introduction.

   In [4], the authour introduced the notions of C(S'tm')-differentiable functions

and generalized vector fields. On an n -dimensional (paracompact connected)

manifold M, they are defined as follows: Let p be a metric of M such that if

p(x,y) $2, then there exists unique the shortest path which joins x and y with

respec.t to p. Then, denoting r.,.,t the point on the shortest path which joins x

and y such that

                         p(X, r.,pt,t)=t,

we call a function f of M is C(S""i)-differentiable at x if there exists a continuous

function g==g(x, y) on S. =={ylp(x, y)=1} such that

                       f(r.,.,,)==f(x)+g(x, y)t÷o(t).



As usual, a function f on M is called C(S'i-i)-differentiable on M if f is C(S'iHi)-

differentiable at every point of M. Note that, in this case, g(x, y) may not be

continuous in x in general.

   We denote the space of C(S"-') -differentiable functions on M by Cc(sn-i) (M).

It is a dense subspace of C(M), the spa,ce of continuous functions on M with the

compact open topology, Then we call a linear operator X from Cc(snri) (M) to

Mt...(M), the space of locally bounded functions on M with the compact open

topology, to be a generalized vector field or a C(S"-i)-vector field on M if X

satisfies the following-(i), (ii), (iii).

(i). X is a closed oPerator of C(M).

(ii). X(fgi is eqzaal to (Xf)g+f(Xg).

(iii). (Xf)(a)==O if lf(x)-f(a)1-o(p(x, a)).

   It is shown that denoting C"(s(M)) the dual bundle of the C(S'iei)-bundle asso-

ciated to s(M)=={(x, y)lp(x, y)==1, xffM]･, the associate S"-'-bundle of the tangent

microbundle of M, Xf is written as

                        Xf(x)=<6(x), d,f(x)>,

                                                          '
where g(x) is a (locally bounded) cross-section of C"(s(M)) and denoted by reP. X

and dpf(x, y) is given by

                   dpf(X, Y) =l,i-m.,･ Lli(f(rx,y,t)'f(x))･

   The main purpose of this paper is to treat the integral curves of generalized

vector fields. For this purpose, first we consider the problem in local, that is,

we consider the case M=R'i and p is the euclidean metric of R". In this case,

first it is noted that d,f is the Gateaux-differential of f (cf, [8], [9]) and if f is

C(S'i-i)-differentiable on R'i and d,f(x, y) is continuous in x, then f is tatally

differentiable on n" (cf. [8], [9], [16]>. Since d,f(x, y) is linear in y if fis tatally

differentiable, the problem to solve the equation d,f(x, y)==u(x, y) is quite different

whether u(x, y) is linear in y or not. In fact, if u(x, y) is C(S"")-differentiable in

x and C(S"'2)-differehtiable in y, then to set

                f(s)?, y,)=fiu(tsy, yi)sdt, il yH =:= H yi l l =1,

                         o

we obtain

              lu(sy, y,)-dpf(sy, y,)1

              ,1            s-l lu<tsy, :y)(y, yi)+dp,yu(tsy, ey,pti)ll yi-(y, yi)yil

              e
               +d,,.u(tsy, yi, y)ts-(u(tsy, yi)+d,,.u(tsy, y, yi)ts)ldt,
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Here, ey,pti means the point of S'i"i such that p(y, ey,,ri)=1 with yi-direction, where

p is the metric on S"-i induced from the euclidean metric and (y, yi) is the inner

product of y and yi. The right･ hand side of this ineq'uality is complicated in

general. But, since

            u(x, yi)==u(x, y)(y, yi)+dp,,u(x, y, ey,y,)1 lyi-(y, yDyR,

if u(x, y) is linear in N, the above inequality is reduced to

            lu(sy, yi)-d,.IC<sy, yi)l

               ;$;Jiid,,.u(tsy, yi, y)-d,,.u(tsy, y, yoltsdt･

                  o

   For this reason, we set the subspace of C(S"-i) consisted by linear functions

by l(S""i) and decompose C'(S""i) as 'follows: To dev7ne a subsPace l*(S'i-i) of

C*(Sii-i) by

                              ;t                     l*(S'i -i) = (i.Ili.. 11c,6, l c, EII R] ,

                                                     i
where 6i is the Dirac measure of S'!mi concentrated at (O, ･･･, O, 1, O, ･･･, O), and set

                        C*(Sii-i)..l*(S,i-i)el(Sn-i)±.

In this decomposition, we denote the projections from C*(S"-i) to l"(S"-i) and

l(S'i-')± by Pi and Pz Then we define generalized vector fields D(X) and S(X) by

            D(X)f(x)-<pi(g(x)), d,f(x)>, reP. X-6(x),

            S(X)f(x)-=<P,(6(x)), d,f(x)>,

for a generalized vector field X on R". Then we have

(i). We may consider X to be a usual vector field on R'i if and only if X=D(X).

(ij). 11f' X=S(X), then Xlf is equal to O almost everywhere on re".

(ii)'. if X=S(X) and reP. X is C(S"-i)-dij7erentiable, then X(Cc(sn-i)(R'i)) contains

     lii,..(R'i). Iilere, lit,,. (R") is given by

            lii...(R'i)=(fl.=.klf(x)1<oo, K is comPact in R"].

(iii). lf g(t) is azz integrag c"rve of X starts from the origin in the weah sence,that

     is g(t) satishes

            end-lvadlif(op(t+r);-f(9(t))dr-<e(pa(t)), d,flp(t))>, ..

                                            '
     .fbr anN C(S"-i)-d,'.t7brentiable f, then



                         t            f(g(t))-f(o)+S <g(q(t)), d,f(ep(t))>dt.

                        o

     EsPeciazay, if X=S(X), then X can not have integral czarve although in the

     weak sence.

   But, since l"(S'i-i)zre", we may consider R't to be a subspace of C"(S'i-i). Then,

since we can extent 4(x)(:=rep. X)to be a function g#(x): C"(S'i-i).C"(S'i-i) and we

can solve the equation

                           dsY) -s# (,(t)),

in C'(S"-i) under suitable assumptions about 6#(x), we may consider a generalized

vector field X of R'i have an integral curve g(t) starts at any point of R", in

C*(S"-i) under suitable as.sumptions about X. We call this g(t) to be the generalized

integral curve of X. For the generalized integra! cuyves, we have

(i).' if X=D(X), then g(t) is the usual integral curve of X. in general, curve of

     X. in general, Pi(g(t)) is the usual integral curve of D(X).

(ii). ILf X=S(X), then Pi (g(t))=Pi(g(O)) for any t.

(iii). X has the generalized integTal curve starts from x lyC and only ･41e D(X) has the

     usual integral curve starts .from x.

   Since X has the integral curves, we may consider X generats a 1-parameter

local group of transformations {T,}, Tt : R"-->C*(S""i). Therefore, if we allow to

consider the functions from R" to some space of measures, we can solve the

equatlon

                                Xu-L

for continuous f locally, although X==S(X).

   We note although there are many subspaces of C"(S'i"') which can be identified

to the dual space of l(S"Hi) such as

           l'(S'i-i)={gnlgEl(S'i-i), to is the standard mesztre of S"-i]･.

But, to define the generalized tangent of a curve a(t), cr(O)=x, to be e(x)ffC"(S'i-i),

where g(x) is given by

              <c(x), d,f(x)> -llm-u -g igtz,e,. Ij, f-/ev(`))i f(X-)-dt,

a is smooth at x if and only ifo(x)==cti. where 6pt is the Dirac measure of S'i"i

concentrated gnt y. ([4]). Hence no element of l'(S""i) is expressed as a generalized

tangent of some smooth curve and it seems to be natural to take l"(S""i) to be the

standard model of the dual spacd of l(S"m!).
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   To extend the above results to the generalized vector fields on a (connected

paracompact n-dimensional) manifold M, first we set

        l(S.)=={d,f(x)1d,f is continuous in x on some neighborhood of x}

Then, it is shown

                        dim. I(S.):$ln == dim. M.

Hence to set

                   M,, ,,,k == {x 1 dim. I(S.) ==n- fe},

                   Mp,k=' U Ms,R,k,
                       nilk

we have a decomposition of M as follows:

                      nt
                   M=U Ms,p,k, Ms,p,inMs,p,j--¢, if ilj･
                     k;O

For these M,,p,k, we can prove

(i). M,,,,k is oPen in M,,k.

(ii). dim. M,,,,k is at most n-fe.

(iii). M,,p==:M,,p,e allows a dtffizrential structure.

   Moreover, we can construct an (n-le)-dimensional sttbspace M,,p,k# which

contains M,,p,k such that

(i). dim. M,,,,k# is equal to n-k.

(ii), A4,,p,k# allows a di.fflerential structure.

   Hence to set

               Ms,p l' =Ms,p-Ms,pn(U Ms,p,m#),
                               ?nl!
               Ms,p,kb=Ms,p,k#-Ms,p,k#n(U Ms,p,m#), lell,
                                     mlk+1

we have a decomposition of M similariy as stratification as follows (cf. [7]):

            M='Ms,pbUMs,p,ibU'''UM,,p,nb, Ms,p,ibnMs,p,j'b=¢, ili

            diM.M,,p,kb==n-k, M,,p,ob=M,,pb.

Moreover, the cotangent bundle of M,,p,kb can be extended to some neighbor-

hood of M,,p,kb in M- Um>-k+iM,,p,,.b. This cotangent bundle T(M,,p,kb) of M,,p,kb

is costructed by using UxEda,e,k l(S.). Then to fix the basis dpfl, ･･･, dp.f;,.k of l(S.),

we can choose the continuouscross-sections y]===yi (x), ･･･, y..fe=y.Fk(x) of s(M) such

that

            dpi(x, yj)=tiib i, 1'--1, ･･･, n-k.

Then to modify the subspace of C"(S.) spanned by 6yi, ･･･, tiy..k, we can c. onstruct



a subspace l"(S.) of C"(S.) as follows:

(i). I*(S.) is the dual space of l(S.) as a subsPaca of C"(S.), if x belongs in M,,,,k.

(ii). UxEMk,p,kbl*(S.) allows the structure of vector bundle and it is the dual bundle

     T'(M,,p,kb) Of T(M,,p,kb) Of T(it,p,kb)･

   Using these we set

                          n                   r#"(M);= U T"(M},,,kb),
                         k--O

                          n
                   T# (M)±= U T(K, p,k b)±.
                         kt-O

Here T'(M},p,kb) and T(Mk,p,kb)± are regarded to be the subspaces of C"(s(M)) whose

values are coincide to that of T*(M},,,kb) or T(ua,p,kb)# on M],,,kb and vanish on

M-it,p,kb.

   By the definitions of r#*(M) and T#(M)i, we have,

                   C*(s(M))==T#*(M)OT#(M).

Then to use this decomposition, we canconstruct the generalized integral curve

g(t) of a generalized vector field X on M as a curve in T#(M)±. This g(t) has the

following properties.

(i). Ilf X=D(X), then op(t) is the usual integral curve of X starts from x=g(O).

     Ilere M is considered to be the O-section of T#(M)i.

(ii). Denoting the Pro7'ection of r#(M)i by rr#, T#(g(t)) belongs in M,,,,kb ijf xEua,,,kb.

(iii). if X=S(X), then T#(g(t))=x for all x.

(iv). X has the generali2ed integral curve starts from x if and only if D(X) has the

     usual integral curve starts from x.

   We remark that, if M is smooth and p is the geodesic distance of a Riema-

nnian metric of M, then M=M,,, and T#*(M) is the tangent'bundle of M. On

the other hand, since C*(s(M)) is the associate C'(S'i-i)-bundle of the tangent bundle

of M, r#(M)i is also the associate l(S"-i)±-bundle of the tangent bundle of M.

Therefore, T#(M)± is a Banach manifold modeled by C"(S"-i) ([6], [12]). But, since

C'*(S'i"i) is not separable, by the theorem of Restrepo ([6], [14]), T#(M)± is not

Ci-smooth.

   On the other hand, if we use the L2(S'i"i)-differentiable functions and L2(S"-i)-

vector fields (cf. [4]), then we can construct the above theory using associate

L2(S"-"i)-bundle of the tangent microbundle of M. Hence, if M is smooth, then we

obtain the generalized integral curve of an L2(S"-i)-vector field of M in the tatal

space of the associate l(S"'i)-bundle of the tangent bundle of M. In this case, thg

space T#(M)± is Cco-smooth ([6]) and by Kuiper's theorem ([11]), we obtain

                   T# (M)i zM x l(Sn-i)± .-, -･..Mx ll,
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Where H is the separable Hilbert space. But, since a L2(S"-i)-differentiable function

at x may not be continuous at x, a smooth curve at x does not have L2(S"-i)-

tangent at x. For example, in ,ll2, the function f given by

                   f(r, 0)=reHi13, r>O, O<0<2ff,

                   f(r, o)=f(o, o)=o,

is L2(S`)-differentiable at the origin by the euclidean metric. But it can not be

differentiable although in the weak sence along the line cr(t):=(t, t2) at the origin.

We remark the above f has the (weak) derivation along the curve rO:=:1 at the

origin. Therefore, no smooth curve corresponds to the element of L2(S"-i).

Moreover, since the generalized tangent of a curve always positive ([4]), no ele-

ment of l(S"-'i) corresponds to a curve.

   The outline of 'this paper is as follows: In chapter 1, we state the basic pro-

perties of C(S"-i)-differentiable functions and C(S"-i)-vector fields. Since the formulae

(9)' and (10) in [4] are false in general, we give the correct form of these formulae

ing2. In g2, i't is also shown that the usual Stokes' theorem can be deduced form

the Stokes' theorem of [3] Ccf. [5], [7]). The generalized integral curve of a

generalized vec'tor field of R" is defined in chapter 2. It is also shown in g5 that

if e(x) is continuous in x and positive as a measure on S"-i for all x, then there

exists a continuous family of continuous curves g.(t) such that

            9.(O) := x,

                                      s             <gft(x), d,f(x)> :- ig'm.-,. -g-[/:-md j', f(qx(t)),-[---f(X)dt],

for any C(S""`)-differentiable function f at x for all x. In o,ther word, there exists

a 1-parameter family {StltZO} such that S, is continuous in t, Se:=:I, the identity

map, each St is a continuous transformation of k'i and

                    Xf=igm.n, ,･ -l;-igzzz,d ll S`fi ttLit.

    In chapter 3, we define the generalized integral curve of a generalized vector
field .on a manifold. Since Ml,, is smooth, it is also shown that if the manifold

structure of M is given by {(U, huMhu: U-K"} and M has a metric p such that

p satisfies the properties of [3] and each hu is d,-smo.oth, that is, C(S'i-i)-diffe-

rentlable and dphu(x> is continuous in X, then M is smooth (Theorem 8>. The

denseness of the dp-smooth functions of M in C(M) is also proved.

    Since the formulae (9)' and (10) of [4] are not carrect in general, the pro,of

of de Rham's theorem in [4] is not correct. But in chapter 3, we give a proof of

de Rham's theorem in rnore refined form as in [4]. It takes the following form.



(i). The de Rham grouP of d,-smooth cross-sections of LACP (s(M)) with resPect to

     the dblizrential oPerator d, is isomorPhic to HP(M, R). Hizre, ACP(s(M)) is the

                                   p
                              -     subbundle of the associate C(S""'i× ･･････ ×S"-i)-bundle of the tangent microbundle

     of M whose fibre is consisted by those functions f(x, yi, ･･･, yp) that

              f(X, Ya(i,, ''', Y.(p))=iSgll (O)f(X, Y!, ''', Yp), PEIISP,

     and LACP(s(M)> is the subspace of ACP(s(M)) such that LACP(s(M))IK,,,kb is

     linear for eachle. ,
     The element of the homology grouP of M is rePresented by those (singttlar)(ii)'

                           r = llEillci L<o),

                    p(L･(aJ+ik), L(aJ));.s{Nilajk,i-ajkl, for each i,

     where J==(A, ny･･, 1'p), J+lk==(]'i, ･･･, 7'k.i, 7'k+1, f'k.i, ･･･, 1'p) and aJ=(aji, ''',

     ai'p)･

(iii). Tafeing the rePresentations r and op of the p-th homology grouP and the P-th

     de Rham grouP of M, their duality is gt'ven by

                    <r, ep>-ig･

                             r

                    Ckapter 1. Preliminaries.

                    g1. C(Sn'i)-differentiable functions.

    1. Let M be a (connected) paracompact n-dimensional manifold with the fixed

metric p such that the topology of M is given by p and satisfies '

(i). if p(xt, x2):-s:2, then there exists unique Path r given by f: F,M such that r

     joins xi and x2 and

                                   ･1)1             p(xi, x2)=I,p== i,,-,i,i,T?i-, l.lll]=,p(f(ti), f(ti-i)),

                           O=::to<ti<<tm-i<t.=1･

     if r is a curve of M such that(ii)'

               '                           l,kxtip=o,

     then there exists a curve r' of M which contains r and

                           lr'P==oo' l,,kx6P==O-

     I7ere p is regarded to be an Alexander-SPanier 1-cochain of M and x is an
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     arbitrary Point of r.

   By (i) and (ii), to set

                   S.={ylp(x, y)=1}, B.={zlp(x, z)S.1,

there is unique curve r.,. for any yGS. which join x and y and

                           f
                               p=1.
                            rx,rv

Then, for any t, Oim-<t$1, there is unique point r.,y,t of r.,y such that

(1) r)(x, z,,,y,t)=t･
   '
   Converse!y, if zEB-., z7!x, then there is unique yaS. such that 2Er.,or. We

denote this y by e.,.. By definition, we have

(2) rx, sx, x, p(x, x) =Z.

   Definition. A ft{nction f of M at x is called C(S'i"i)-dtyizrentiable at x if there

exists a continztozas junction g(y) of S. such that

(3) f(z)==f(x)+g(e.,.)p(x, z)+o(p(x,z)), zEB..

   By definition, we have

   Lemma 1, 11f f is C(S'i-')-cijrerentiable at x, then

(4)' ie'zud -l--(f(r.,.,,)-f(x)):=g(y)･ yES.･

                                            '
Conversly, if f is continuous at x and the limit of this left hand st'de exists for all

yciS. and de77nes a continuous fttuction on S., then f t's C(S"-i)-dnjl?rentiable at x.

   Proo£ It only needs to show the converse. Therefore, we set

            f(z)=:f(x)+g(y)p(x, z)+R(2).

Then, if lim.z-xR(z)/p(x, z)7i:O, there exists a sequence {z.} such that lim.m-･ooz.

=x and lR(2.)l }-)cp(y, z.). But, since S. is compact, we may assume ex,x. converges

to yGES.. Then the limit of (4)' at yo must different from g(yo) and we have the

assertlon.

   Corollary. in (3), g is determined uniquely by f.

   Definition. For a .function f of M at x, we set

(4) d,f(x, y)-ig'e7,･ l(f(ft., y, t)-f(x))･

   Definition. A .function f on M is called C(S"-i)-dWlarentiable on M if f is

C(S"-i)-dij7erentiable at any Point of M.



   By definition, a C(S""i)-differentiable function f at x is continuous at x and teh

set (of germes) of C(S"-')-differentiable functions at x form a ring. Hence a C(S"'i)-

differentiable function M on is continuous on M and the set of C(S"-i)-differentiable

functions on M form a ring.

   Lemma 2. ILf f is C(S'iHi)-dij)Fbrentiabie on M, then to set

(5) Ild,fB(x)-max.ld,f(x, y)1,
                            yESx
lld,fl Kdi) is locally boscnded as a function of x.

   Proo£ If 1id,fl1(x) is not locally bounded, then there is a compact $et K of

M and a series {(xtn, y,n)lxntEilK, y,nESx.,} such that

                   lim. 1d,f(x., y.M == oo.
                   ?72--.oo

Since K is compact, we may assume lim, ,nr,..xm=x exists.

     For x., we set

               Xmt=rvmi ym) idRf(xm,ym)i-i12

Then, since limm-ooldpf(x,., y.)I=oo, we have lim.m.-...x.'==x and we also have

               liM. Idpf(Xtn, ex.,xmt)p(x,n, x,n" =oo.

               "2-.oo

But this is a contradiction. Because f is continuous and we have by (3)

             '(3)' dpf(scm, ex., x.,)p(xm, Xmt)

                   =f(X,n)-f(Xm')+O(P(Xm, Xon')).

2. If M=R", the n-dimensi,onal euclidean space and p is the euclidean metric of

R'i, then a tatally differentiable function f on R'i is C(S'i-')-dfferntiable on R'i and

we have

                         J･t(6) d,f(x, y)-=i.Illl..lf2itll,(x)yi-(div･L y)i

                                           f2
                        Y=(Yi, ''･, y.), llyH===Ni2=1.
                                           i--1

Conversly, if f is C(S"-i)-differentiable on some neighbourhood of x and d,f(x, y)

is continuous at x, then f is tataliy differentiable at x (cf. [8], [9], [16]).

   To show this, first we note that if f is C(S"m`)-differentiable at xo and xi, then

we get

            dpf(Xe, Exo,xi)P(Xo, Xi)=:f(Xi)-f(Xo)+O(P(Xe, Xi)),

            dpf(Xi, exi,=,)p(Xi, Xe)-- f(Xo)-f(Xi)+O(p(Xi, XO)).

But since we have exi,a･o=:y if exo,xi=N, where N is the antipodal point of y, if d,f
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is continuous at x, then we get

(7) d, f(x Y) =:: -d, f(x, N).

Especially, if M==n", we get d,f(x, -y)=-d,f(x, y) if d,fis co,ntinuous at x.

Hence f is differentiable along any line which pass x. Therefore, fixing a coordi-

nate system (xi, ･･･, x.) of R", Of]/Oxi(x), i=1, ･･･, n, exists. Then, since d,f(x, y)

is the derivative of f aiong the line ty, we obtain

                             m                    d, f(x, N) == =, =, -g/it,(x)yi,

if d,f is continuotts at x. Hence to set 2=x+ty, we have by (3),

                   f(2)=f(x)+(div.L z-x)+o(1 1a-x1 1),

Therefore f is tatally differentiable at x,

   We note that there exists C(S"-i)-differentiable function f on R" such that

d,f(x, y) is discontinuous at any point of R". For example, taking a countable set

of points {am} of R'i which is dense in R", to define a function f on n" by

            f(X)= ]III,i), tt' i + ll a. li Hx ua am H ,

we have

            dpf(X, Y)=pu. 2rim i+Aa,.1 H(ill -a"d' .,ilil, te{a.,}

                    '
            dp f(am, y) = 2nt (i+ imui a. i i )+ ,]Ili.l, gle i+ i }a, il if xrm-a ka',R '

Hence d,f(x, y) is not continuous at any point of R". Moreover, since

            f(z)-d,f(x, y)1 12-xI l

            =]ii.il] tt i+ ll a,.I t 1 1Z-"m1 1 1 IXI-/ .a'i12.-,i i2-a"t' xmam>., xcii {a.},

              =i i Y2-akllllx-akll-(z-ak, X-ak), x=a.,
              fe;m                 2fe i+11akil 11x-akll

f is C(S'i-i)-differentiable at any point of Rn. Because since

G lxl 1 HaH-(a, x))/1 la li 1 lx-al

lim.x"aG 1xI111a1l-(a, x))/YaB

mo and 6>O such that

is bounded on R" and

lx-ali=O, for any e>O, there exlsts an integer
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            ,...Z., 8･i'･ i + ila. il i iZ- "-"'lrki2 1!tz ･t"-"Tl± ii}t!iZ,,-i fim･ x-"m) <;,

             112-akllill.lli,7fl 11 ,--(Zfiffk, X-ak) <& ifliz-xi1<b,

                                              '
                                             for k=1, ･･･, mo-1.

Then we get

            f(Z)mdpl {iiXillil)l?Z-Xil <,, ifllz-xH<b.

This shows f(z)-d,f(x, y)Hz-x1 1 =o([ 1z-x1 1) and we have our assertion (cf. [10]).

   3. Pefinition. A .function f on M at x is called C(S"-i)-analytic at x if there

exists a sNstem of continuous fttnctions {g),(y)} of S. such that

(8) f(z)=f(x)+=gh,(e.,.)p(x, z))M,
                            m41

if p(x, z)<E for sonze e>O.

   We note that since

            gk()') ::= iltz?6 "tik ( f(rx,y, t) - ( f( u)+ 'i,'i g;.( y)tm)] .

in (8), gk(y) is determined uniquely by f for all k.

   Definition. A junction f of M is called C(S'i-i>-analytic on M if it is C(S""i)-

analytic at any Point of M.

   By definition, a C(S"-i)-analytic function is C(S"-')-differentiab!e and the set of

C(S""i)-analytic functions on M form a ring.

   We set d,f(x, y)==d,,if(x, y) and define

                                          k-1(g) dp,kf(x, y)==lzi,-,,i,･ -1,(f(rx,y,t)-(f(X) +,i,lllil., ,dp,tnf(X, Y)tM)),

Then, similarly as in lemma 2, we obtain

   Lemma 2'. ILIC f is C(S"-nyi)-analytic on M, then to set

(5)' 11dp,kfll(x)==max. ldp,kf(x, y)I,
                            yESx

I ldp,kfl 1(x) is locallpt bounded as a fa{nction of x for any le.

   If M==R" and p is the euclidean metric of R", then a real analytic function

f of R" at x is C(S"-i)-analytic at x and we get
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(6)' dp,kf(X' Y)=i,+,.E.i...lki,!li.! ox,?'ifeofx.in(sc)Yiii'''Yni"'

                      y=(yi, ･･･, y.)･

   On the other hand, although the metric function f(x)=11x-all is not real

analytic at x =a, it is C(S"-i)-analytic at x=a and ther'efore f(x) is C(S"-')-analytic

on Rn.

   Note. If d,,kf(x, y) is sufilciently regular in x, then dp,kf is calcttlated as

fol!ows: Set d,if(x, yi)==d,f(x, yi) and define

(10) d,kf(x, y,, t･t, yk)

            ==ltt-tzfd -l {dpk'if(rx,y,,t, ･･･, yk-i)-dpk-if(x, yi, ･･･, yk-i)},

                             'then we have

(11) d,,kf(x, y)=tnl! d,kf(x, y, ..., y).

                                                 '
   In fact, (11) is true for le=1 and assuming (11) is true for leSlm-1, we get

            f(rx,y,2t)

                    i･lt.
            == f(x)+ =dp,kf(x, y)+d,,kf(r.,,,,, y)tk+o(tM')

                   h=--1
                                     '
                    f?1
            =f(x)+=2kd,,kf(x, y)tk+o(t"').

                   k==1

Hence by inductive assumption, we have

            2Md,,.f(x, y)tM

               m-1            '= ( lil.llidp, s(dp, m-s f(x, y))( y) + 2dp, ., f( c, y)] tm + o(tm) .

Then, since by induction, we obtain

            dp,s(dp,m-sf(x, y))(y):::: ,!(.1-sT'idpMf(X, Y, ''', Y),

we have (11) for le=m.

    We remarl< that in this proof, to get (11) for le=m, we need not the d,-ana-

lyticity of f and the continuity of d,"Lf in x but it needs the continuity in x of

d,kf for k;;{m-1. We also note that although f is d,-analytic, d,kf(x, yi, ･･･, yk)

may not exist for kl;2 in general. For example, the metric function f(x)=r-1lxH

does not have dp2f(x, yi, h) unless yi==Y2･



     '
   Lemma 3. 117C the metric ftfnction f(x)=p(a, x) is C(S"-i)-analytic for any aEM,

then the set of C(S""i)-analytic .functions on M is dense in C(M) by the comPact oPen

toPology.

   ProoL Since the constant function is C(S'i-i)-analytic and the ring generated

by {1, p(a, x), aeM] satisfies the assumption of the theorem of Stone-Weirestrass

(cf. [18]), we have the lemma.

                   g2. Generalized vector fields,

   4. In MxM we set
              '

(12) s(M)={(x, y)lxEM, p(x, y)=1}.

s(M) is the tatal space of the associate S'i"i-bundle of the tangent microbundle of

M. We denote the projection from S(M) to M by n. Then we have rr-i(x)==S..

In general, we set

(12)' sP(M)={(x, yi, ･･･, y,)lxEM, p(x, yD=1, i=:1, ･･･, p}.

                             p
The associate C(S"-i) and c(Sf;i':I'J-1'il-"' Vix ･･ xS"-i)-bundles of s(M) and sP(M) are denoted

by C(s(M)) and CP(s(M)). Then by lemma 2, we have

   Lemma 4. if f is C(S""i)-d21fflarentiable on M, then d,f is a locally bounded

cross-section of C(s(M)).

   Lemma 4'. Ilf d,Pf is dofned, then d,Pf is a locally bounded cross-section of

CP(s(M)).

   Lemnza 5. ILf f(x, yi, ･･･, yp) is a locally bounded cross-section of CP(s(M)), then

to set

(13) f(xe, xb ･･･, xp)

            =f(Xo, exo,xi, ''', Exo,xp)P(Xo, Xl)'''P(Xo, Xp), XiEBxo, i=1, ,･-, P,

f defines an Alexander-Spanier P-cochain of M.

   By (3), using the above notation, we have .

(14) 6f(xe, Xi):=:dpf(Xo, exo,xi)+O(P(Xo, Xi))･

Note. If f(x, yi, ･･･, yp) is alternative in yi, ･･･, yp, that is

            f(x, Yaa), ･･･, ya(p))==sgn(if)f(x, Yi, `･･, yp), aESP,

then, to set

   '(13)' Ai(xe, xb ･･･, xp)

            =pl71I..o(-1)if(xi, exi,xo, ''', exi,xi-i, vexi,ni+i, ･･･, eri,a,de).
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                   P(Xi, Xo)･･･P(Xi, Xi-1)P(Xi, Ui.1)･･･K)(Xi, Xp),

Af is alternative in xo, xi, ･･･, xp. On the other hand, if f(x, yi, ･-･, yp) is

nuous in (x, yi, ･･･, yp), alternative in yi, ･･･, yp and for each i, f satisfies

(15) f(x, pt,, ･･･, Y,, ･･･, yp)==-f(x, y,, -･-, y,, ･･-, yp),

   where Ni is the unique point of S. such that p(yi, yi)==2, then

(16) f(Xp(o), Xpa), ''', Xp(p))

            ==sgn(a)f(xo, xi, ･･･, xp)+o(p(xo, xi)･･･p(xo, xp)), aESP'1,

   We note that, if f(x, yi, ･･･, yp) is alternative in yi, ･･･, yp and satisfies

(17) f(X, Yi, ･･･, 31i.i, E.,,.u, Yi.i, ･･･, Yp)p(X', X")

            =f(X, Yl, ･･･, YiFb ex,xn, Yi+1, ･･･, Yp)p(x, x")

               rmf(X, Yl, ''', Yi-1, Ex,xt, Yi+1, ･･･, )lf))P(X, X')+O(P(X', X")),

then, assuming f is C(S"mi)-differentiable in x, we have

             . nv(14)t Sf(xo, xl, ･･-, xp.1)=d,f(xo, Xl, ･･･, Xp.1)-i-O(p(Xo, Xl)･･･P(Xo, Xp,1))･

   In fact, we have

            6f(x,, x,, ･･･, xp.i)

            =f(Xl, e=i,x2, ･･･, exi,=p+i)p(xl, x2)･･･p(xl, xp+1)

              P+1
            +Z(rm1)if(Xo) E.:o,a/ii '''e Exo,a/i-) ea'o,.Ti+ie ''') Ea'o, :p+D

              i-1
                   p(xo, xD･･･p(xo, xi-i)p(xe, xi+i)-･･p(xo, xp+i).

Then, since f is C(S""i)-differentiable in x, we get

            f(xl, exi,x2, ･･･, exi,xp+i)p(Xl, x2)･･-p(xb xp+1)

            =f(Xo, exl,=2, ･ny･, Exl,xp+1)p(Xl, X2)`･･p(Xl, Xp+1)

  ' +dpf(Xo, emo, cb ea:i,a:2, '''i Ea:i,xl}+i)K)(Xe, XIJK)(Xl, X2)

            ･･･P(Xi, Xp+i)-l-O(P(Xo, Xi)P(Xi, X2)･･･P(Xl, Xp+i)).

By this and (17), we have

            f(Xe, exi,xb ･･･, exi,xp+i)p(Xl, X2)･･･p(Xl, Xk+D

           '              P+1
            =Z(-1)i-tf(Xoe ea:o, Uii '''f ete, ci-ir :co,a]i+ii '''i Ea:o,=:p+i)P(Xo, Xl)

              i-1
            ･･･p(Xo, ci.1)p(xe, ui+D･･･p(Xo,Xh.1)+O(p(Xo, Xl)･･･p(Xo, Cp+1)),

            dpf(Xe, ea'o,xi, Exi,x2, ''', Exl,xp+1)P(Xo, Xl)P(Xl, X2)'''P(Xl, X?+1)
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contl-



            =dpf(Xot Exo,xi) exe,x2p ''', exo,xt,+i)P(Xoi Xi)P(Xo) XL,)

            ･･･p(xo, xp.i)+o(p(xo, xi)･･･p(xe, xp+D).

Hence we obtain (14)'.

   If M is a Riemannian manifold and p is the geodesic dlstance of the Riema-

nnian metric of M, then s(M) is the associate sphere bundle of the tangent bundle

of M: In this case, if q is a differential form of degree P on M with the local

expression

             ep(x)= ]Iiill] .fi,, ･･･, ip(x)dxi,, ･･･, dxip,

                 il, -･, iP
                                                  '           '
Then denoting the coordinate functions corresponding to dxi, ･･･, dx. by y,i, ''', Y,.

and set

            yi, ii , ' ' ' , yp, ip == pti! .cXtp sgn (a)y.a), ii ' ' ' .v.(p), ip,

the function

            soS(x, y,, ･･･, yp)= = jFl･,,-.,ip(x)y,,i,, ･･`, yp,i,,,

                          i!, -･, iP

            Yi=(Ni,1, ''', Yi,.),

defines a cross-section of CP(s(M)) and alternative in yi, ･･･, yp. By definition, g#

satisfies (17). 0n the other hand, we know

                                    '            dpg#(x, ye, yi, ''', Yp)

            =e. i,,lll.ll). ipO)`}'io'ii' 'P(x)yo,,･(yi,i,, ･ny･, yp,ip).

Hence dgo is the mod. (p(xe, xi)･･･p(xe, xp"))-reduction of tiip#.

   5. we denote the dual bundles of C(s(M)) and CP(s(M)) by C*(s(M)) and C"P(s(M)).

                                                    p
                                                -hThe fibres of C*(s(M)) and C'P(s(M)) are C'(S"-i) and C*(S"-"i×･･･xs"-i).

   Pefinition. A cross-section f of C"(s(M)) or C*P(s(M))) is called locally bounded

if the function IIfl1 dofned by

         llfl 1(x)==Hf(x)11, the norm of f(x) in C"(S,.)(or in C*(S.× xS.)),

is locally bounded.

   Definition. Let N be the carrier of some singular chain of M, then a cross-

section g of C"(s(M)) (or C"P(s(M))) on N is called weakly continuous at x, xEN, if

for any cross-section F of C(s(M)) (or CP(s(M))) which is continuous at x, we have

(18) <e(x), F(x)>
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             :t= lim . I(N n.N fi (x) - N n q (x))<6( t)' F(t)>d V, ti>,.

            ' e':8 J(Nnub(x)-Nnq(x))dV

Here dV is the volume element of N determined by p and Un(x) (or U,(x)) means the

6-neighboztrhood (or the e-neighbourhood) of x.

   By definition, if 6 is continuous, then 6 is weakly continuous. But there exists
                                                                     'e which is weakly continuous but not continuous.

   Example. Let M be re3 and N is a line in ft3 parametrized by t, tGR. Since

s(R3)=:ft3xS2, we have x-i(N)==R'xS2, where n is the projection from s(M) to M.

We consider S2==R/Z. Then the map e given by

            g(t)=salt), t7Lo, g(o)==de,

where o"(ift) is the Dirac measure on S2 concentrated at 1/t mod. 1 and dO is the

standard measure of S2 with the tatal measure 1. Then f is not continuous at

t==O but weakly continuous at t=O.

    We note that if 6 is weakly continuous at x, then

(ls)t 11 e(x)11
            sgli'm.f(ivnuis(x)-Nnu,(.))l[6(t)11dV .

            "2I g f(Nnub(x)HNnuL(x))dV

    Definition. A locally bounded cross-section g of C*(s(M)) is called a generalized

vector field (or a C(S'i-')-vector field) on M.

    We denote the spaces of C(S""i) differentiable functions and locally bounded

functions on M by Cc(sn-o(M) and Mt.,. (M). Then to set

(19) Xf(x) -= <6(x), d, f(x)>,

X is a linear operator from Cc(sn-b(M) into Mt.,.(M) by lemma 2. Moreover, X

satisfies

(i), X is a closed oPerator regnrding C(M) and M}.,.(M) to be the toPological vector

     sPaces by the comPact oPen toPology.

(ii). X(fs) is equal to (Xf)g+f(.ACg).

(iii). (Xf)(a) is equal to O if lf(x)-f(a)1 ::=o(p(x, a)).

    Conversely, by the closed graph theorem, if a linear operator X from

Cc(sn.i)(M) into Mi...(M) satisfies the aboue (i), (ii), (iii), then X is written as the

form (19) (cf. [4]). Therefore, we may define

    Defifzition. A linear oPerator X from Cc(sn-b(M) into Mt.,.(M) which salifYies the

above (i), (ii), (iii) is called a generali2ed vector field (or a C(S""i)-vector field) on M.

    In (19), we call g(x) to be the representation of X and denote



            e(x) = reP. X.

   Definition. 111e reP. X is continuous, or wealely continuous, then we call X is

continuous, or wealely continuous.

   Definition. 111C reP. X is Positive at X, that is, e(x) is a Positive measure on S.,

then we call X is Positive at x. 11f X is Positive at any Point of M, then we call X

is Pqsitive on M.

   Since a measure 6(x) on S. is written uniquely as e'(x)-g-(x), where e'(x) and

g"(x) are the positive measttres on S., we have

            X==X"-X-, reP.X'==6'(x), reP.X-=g"-(x).

   Definition ForX we set
            -!
            CAR. X= u car. g(x), car. X == n(CAR. X), g(x) =: reP. X.
                    xEM

   6. We assume the･ manifold structure of M is given by･ {(U, hu)}, where hu is

a homeomorphism from U onto R'i. Then we know that the transition function

of s(M) is given by {guv(x)} where guv(x) is given by

            guv(x)=hu,.hv,."ilS""i, S"-"i is the unit sphere in R'i,

            hu,.(x')==hu(x')-hu(x), x,x'EU,

(cf. [1], [3], [4]). Then the transition functions of C(s(M)) and C*(s(M)) are given

by {guv#(x)} and {guv#"(x)}. Hk)re guv#(x) is the induced map of g.v(x)on C(S"-i)

and guv#"(x) is the adjoint map of guv#(x).

   If g(x) is a generalized vector field on M, then using !oca! coordinates, we

may set

(2o) e(x)-{eu(x)}, guv#*(x).fi.(x)==6u(x).

In (20), if at x==xe, eu(x) satisfies the expression

(21) eu(x)=8u(xo)+pau(exo,x)p(xo, x)+o(p(xo, x)),

where gu(Exo,x) is a bounded map from S""i to C"(S"-i), then by (20), we have

            ev(x)=ev(xe)+(gvu#"(xo)gu(exo,x))p(xo, x)+o(p(xe, x))

                    +(gvu#"(x)-gvu#*(xo)(6u(x).
 '

But, since we may assume guv(x) is C(S""i)-differentiable, that is, the components

of guv(x) are all C(S"-i)-differentiable, and Cc(sn-2)(S"-i) is dence in C(S'i-i), we may

set

            (gvu#"(x)-gvu#"(xo))gu(x)

                    =r-dpgvu#"(xe,ex,,x)8u(x)p(xo, x)+o(p(xe, x)).

Hence we have
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(21)' ev(x)=6v(xo)+{gvu#*(xe)guCexo, x)+dp gvu#"(xo, exo, x)6u(x)}

                   p(xo, x)+o(p(xo, x)).

Therefore we may define '
   Definition. if a generalized vector field 6(x) of M is given by (20) and it satiskes

the exPression (21) at xo, then we call 6 is C(S"-i)-diLt717rentiable at xo,

   If e(x) is C(S'i"')-differentiable at any point of M, then we call g(x) is C(S'i-i)-

differentiable on M.

   In the rest, we denote opu=::d,eu or dpe in (21).

   If X and Y are generalized vector fields on M such that reP.X:=g(x), reP. Y=:

rp(x) and rp is C(S"Hi)-differentiable, then the composition XY is defined for C(S"-i)-

2-differentiable {unctions. Using local coordinates, XYf is given by

(22)' XYf(x)=<6u(x), <d,rpu(x, z), dpf(x)>.>.

                   +<gu(x), <vu(x), d,2f(x, 2)>,>..

Hence, if 6 and rp are both C(S""i)-differentiable, then [X, y]==XY-YX is a gene-

ralized vector field on M and (by Fubini's theorem) we have

(22) reP. [X, Y](x)=<8u(x), dpqu(x, y)>.-<vu(x), dpeu(x, y)>..

We note that although XY is only defined for C(S"-')-2-differentiable functions,

by (22), we may consider [X, Y] is defined for C(S"-i)-differentiable functions.

   Note. If guv(x) is C(S"-i)-oo-differentiable, then we may define C(S"-i)-oo-

differentiable generalized vector field on M and the set of all C(S't-')-oo-differen-

tiable generalized vector fields on M form a Lie algebra. Similarly, if guv(x) is

C<S"")-analytic for eaeh (U, V), then C(S"-i)-analytic veetor field on M is defined

and the set of all C(S'inti)-analytic generalized vector fields on M form a Lie

algebra. In this case, if 8 and rp are expressed at xo as

            (}(X)=::6(Xe)+ Xe.(Ea:,,`c)(p(xo, c))'t,

                      fn).1

            rp(X)=n(Xe)ri" X rp.(exo,x)(p(xe, x))M,

                      m).1

                 ei, vi are bounded functions .from S'i-i to C*(Sn-i), i>=1,

then reP. [X, Y](xo) is given by

            reP. [X, Y](xo)==<g(xo), rpi>-<n(Xe), ei>.

    7. For a curve r of M given by av: I-M, l= [O, 1], a(O)=a, we set

                           s(23) ee.(f)-igm-d -l igted f, -}-{f(a(t))-f(a)}dt,

              '



where fis a C(S'iHi)-differentiable function at a. If ee.(f) exists for any C(S'i-i)-

function of M at a, then theye exists an element g(a) of C'(S.) such that

            ee.(f)=<e(cr), d,f(a)>,

for any i In this case, we call r is C(S""i)-smooth at a and g(cr) is called the

generalized tangent of r at a and denote g(ev)=::r.(a).

   By [4], if M is a Riemannian manifold, p is its geodesic distance and r is a

smooth curve, then T ls C(S"-i)-smooth at every point and r.(cr)==c(a)6.(.), where

c(a) is a constant and 6yc.) is the Dirac measttre on S. concentrated at the point

y(a). On the other hand, the curve rO=1 or the graph of xsin (1/x) with x>O are

C(Si)-smooth at the origin.

   Similarly, we can define the generalized tangent r.(,)(a) of r at a (t) by

(23)' <r.(,)(cr), d,f(a(t))>

                        s             =ilved -] iLve,･ I, -lt{f(a(t+u)-f(a(t))}du, t<i.

By defintion, if r is C(S"'i)-smooth at every point, then the map rr defined by

            rr(a(t)) == ra ct),

gives a cross-section from r into C"(s(M)). For example, if r is smooth, then

rr(a(t)) =c(t)6,(t), where c(t) is a continuous function and y(t) is a continuous cross-

section from r to s(M).

    tZ'heorem 1. ILIC r, is dojined and the convergence of (23)' is unijbrm for tm-<s;s{

t+6 for some 6>O, then rr is weafely 1-sided continztous at t, that is, we have at t

(24) <r.(,),(a), g> == lg'm-d-l lSvad li <r.(t.,,)(a), g>du,

                           s>O, gEc(sn-i).

   Proof. Since the problem is local, we may assume M=R" and t=O, the origin

of R" in (24).
                                           '
   First we note that, if a(O)=O and f is C(S"-i)-differentiable on some neighbor-

hood of a(u), then ' '
(25) l3ved v; lred lr, f(a(t+u)-cr(t))dt ==f(ev(U)),

     '
and the convergence is locally uniform in u. Because to set

            a(t+u)-a(t) =a(u)+P(t),

       '
we have lim.t--oP(t)--O and since f is C(S""i)-differentiable, we get
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            f(a(t+za)-cr(t))

            . == f(a(u)) -l- dp f(a(u), E.(tt), .(tt) Fp(t)) 1 1 P(t) 1 i + O( 1 i P(t) 1 D･

Then by lernma 2, we obtain for any e>O,

            lf(a(t+u)-a(t))-f(a(u))I<e, .

if tsgto for some to>O and this to is independent with u. This shows (25) with lts
   +
uniformity in as.

   To show (24), we assume g==d,f(O), Then we have '

            <T.(t)(a), g>

                       s            =ipad rl uad I, i{ f(a(t+tt)-ev(t))-f(o)}dtt.

Therefore for any ei>O, we have for some he>O and so>O,

            l<r.(t)(a), g>

                 Sl            - l [I,,i'{f(a(t+")-a(t))mf(O)}du]Kei, si<so, hi<h,,

and we may take these se and ho independent with t.

   On the other hand, we know that, if fei>O, then

               r sl            'l'I,,i,,i{f(cr(t+u)-cr(t))-f(o)}d.dt

               Sl 7'            ==I,,-ul-(r;-i,,{f(a(t+u)-ev(t))-f(o)}dt]d.,

and for any E2>O, we have by (25),

                             r         . 1 { f(a(u)) - f(O)} - }I,,{ f(a(t+ u) - cr(t)) -f(o)]dt L <e2,

if r<re, ki<fee for some ro and ko which are independent with u. Since we may

take e2 to satisfy ie2 log, hil<e3 for any e3>O, we have

                      s            i/:m-6 pl iZm,d I, <r.(t)(a), g>du

                        rs            == i/IM-d -; [i,imm,,･ S, iim.d -l iSvad I, i{ f(a(t+u)-a(t))-f(o)}dudt]

                       s            =llm,d -l ILve,･ i, i{ f(a(u))-f(o)}du



            =<r.(o), g>･

This shows the theorem.

                               '

                    S3. Some ineqalities.

   8. Definition. fyC f is a locally bounded cross-section of CP(s(M)) and r a singular
p-chain of M, then we deLfine the integral i,f Qf f on r bY

(26) lf-Ii
                    2' 7'
where I,7 is the integral of the Alexander-Spanier cochain 7 on r (cf. [3]).

   By definition, if r is given by g: iPeM, IP={(ai, ･-･, ap)IOh-<-ai-E{:1, i=1, ･･･, P},

then f,f is given by

         i.f:=f.J+iiLicMii-,o4f(9(aJ),ep(aJ),p(aJ+i,), ''', ee(aJ),q(aJ+ip))

                           P(9(aJ),9(aJ+1i))･･･P(9(aJ), 9(aJ+lp)),

            J=(ii, ･･･, 7'p), ]'i are the integers and O;S;ji=<mi,

            J+1,=(7'i, ･･･, 7'i-i, 1'i+1, 1'i+i, ･･･, 7'p),

            aJ=(ajl, ･･･, ajp), O=aoi<ali<<anti-1<ami=1.

In this case, if g satisfies

(27) p(g(aJ+ii), p(aJ))=<Nlaji.i-ajil,

for some N>O, then'

              r
                 lfl

               7'

             =:: i.J+il[i--aJi-o lili] lf(9(aJ), ee(aJ), e(aJ+i,), ''', eop(aJ),e(aJ+]p))1

                            P(9(aJ), op(aJ+ii))･･･P(9(aJ),9(aJ+ip)),

              I                 Ifl

               r
             =i.J+iiZi,lllEJi-o 21il1f(9(aJ), Spa(aJ), op(aJ+ii)･ ''', eq(aJ),e(aJ+ip))1

                            P(9(aJ), 9(aJ+ii))･･･P(9(aJ), 9(aJ+lp)),

both exist and if f is continuous, then I,lfl == l, lfl. Hence I,f exists if f is

continuous and r satisfies (27).
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   We note that, by definition, we have

(28) il,(,p)flS!I,(,p)lfl'

   Example. J17r M=R" and p is the euclidean metriic, g a smooth maP

(opi, ･･･, op.), then

              em(aJ), op(aJ+li)

             ==ll7'Eirv] (nvtktf(.,))2( Oo9xl ("'), ''', Oo9.: (aJ))+o(H op(aJ+ii)-g(aJ)1 1),

              P(9(aJ), 9(aJ+ii))= 1 1 9(aJ+ii)-q(aJ) i i

             := V¥( /k,(aJ))21 aji,i-aji1 +o( 1 1 g(aJ+ii)-g(aJ) H ).

                                              '

Hence we have

(29) I,(lp)f

             ==IiPf(pa(t)'Viill](iliil;,,s･y2(9oO,i(t)･ ･･･, Zg,it.(,)), ...,

                    ･V;:ll ] (il,9i,k(t) )2 (mOo91i;-(t)･ ' ' '･ -Oo9-,u (t) ) V:IF (e,g,-f(t) )2

                    V¥(Q,9t,k(t))ii-dti'''dtp,

where t==(ti, ･･･, tp).

   Lemma 6. if a cross-section f of C2(s(K'i))=R"xS"-ixS"-i satistes

             lf(x, yi, y2)1$.LLIIxHk, llxM is the ezaclidean norn7. of x,

                                  le}l-1
                                   -t

for some L>O and f is integrable on g(I2) = dx,,.i.hx, for any h>O, where

is the triangle with the vertexes are O, xi and xi+hx2, then we have

(30) ig{Zi7d [f..,, ., . 1.,fl ;:iillfe +L 2i Ixiilk"21lx21 1.

   Proof. By the assumption, (28) and (29), we obtain

given
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by

tixl,a1+hc2



                l j' d.. ., +h.,f i lSlfzi.,, ., +h., l fl l-S

            ;fgfoe Jgi (i+hM"2 1 Yl IXi I l)Lrk+idrde= le -1. 2( H xi H +h 1 1 x2 1 1 )k'2e,

                           '
where tan(0/2)==h/21lx2H. Hence we have (30).

    9. 0n M and on sP(M), we can define the standard measure m=m(p) from the

metricp(cf. [3], [4]). '
   Definition. A measurable fttnction f on sP(M) is called a measurable cross-section

of CP(s(M)).

   We note that since f is defined almost everywhere on sP(M) and m(p) is the

normal measure, we have

(31) m(p)(xlm(p)((yi, ･･･, y,)lf(x, yi, ･･･, y,) is not dajined)7<:O) =O,

iffis measurable. '
  ･ Lemma 7. if f is an Alexander-SPanier P-cochain of M such that if g(IP) is a

singular P-simPlex of M which satisp"es (27), then f is absolutely and zant'formly

integrable on op (IP), then to set

(32) dpbf(x, ptk ''', xp)

             - lim 1                            f(x, r.,yl,tl, ･.･, rx,yp,tp),
             Mtl.O, ･-, 'tp-+e tl'''tp .

d, bf is a measurable cross-section of CP(s(M)).

   ProoL By the delfZnition of the integral and (27), we have

             lf(x, r.･,yi,ti, ･･･, rx,yp,tp)i=o(tl ･･･ tp),

almost everywhers on sP(M) and the limit of the right hand side of (32) should be

exists almost everywhere no sP(M). Hence we get the lemma.

    Coro!,lary 1. Under the same assumPtions, we have

 '(33)' I, f= f, dP'L

wleere r=]!E ]iaigi(IP) and each gi satishes (27).

    Corollarg 2. if f is a continuous cross-section of CP(s(M)) and of satishes the

assumPtion of lemma 7, then

(33)" I,, f== I, dp b(tif'")'

where r = =iaigi(IP'i) and each gi satisfies (27).



In the

Then

(33)

(33)"

    Generalized Integral

rest, we set

  dp #f= dp b(of).

Is rewrltten as

Iar f = i, dp'f'

   Note. If f is a function,

then by (14)', we have

            dp#f=dpf.

Hence for those L we get

(34) Sorf= I, dpf

Curves

or f is

of Generalized Vector

alternative in yi,

Fields

'
yp and satisfies
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(17),

Especially, usual Stokes' theorem follows from the Stokes, theorem for the inte-

gration of Alexander-Spanier cochains (Theorem 4 of [3], cf. [5], [7]).

   On 'the other hand, although f is bounded, dp#f does not exist in general.

For example, in re'i with the euclidean metric, the constant cross-section c of

CP(s(R")) defined by c(x, yi, ･･･, yp)=c, a constant, does not have bounded dp#c.

   10. By lemma 6 and corollary 2 of lemma 7, if M=R", pis the euclidean

metric of R" and f is a continuous cross-section of C2(s(R")) such that d,#f exists

and

(35)' ld,#f(x, y)l$Lllxllk, kll;-1, xEU(r,.),

where r,y means ro,y,,, 1lyH:=1, then we get

(36)t

Because

and by

      1f(sy, y,)h-([

    g: L    Lle+2sk+2h+o(h),

we have

the

     '-(
rsy+hyl ･trsy

 I1yl11 =:-=- 1.

D
i

   lrsy +ky,f m Irsyf = Iodsy+hyi, s],f - Ixsy, yi, hf

  == fsy+hyi, sydp# f-L,y, y,, hL

definition of the integral and the continuity of L we also obtain



            lr,,,,,,hf==f(SY, yi)h÷o(h).

   For general f; first we remark that, by the definition of the integral, we

have

            l. f = Igf(tsy, y)sdt,

             sy

where the right hand side is the usual (Riemannian) integral. Hence, iffis

C(Sn-i)-differentiable in x and C(S"-2)-differentiable in y, then

(37) Ir,,.h,,f-Irsyf

            == h i: [f(tsy, y)(y, yi)+d,,,f(tsy, y, ey,yi)[ 1pti-(y, yi)pt1 I

                   +d,,.f(tsy, yt, y) ts]dt+o(h),

where (y, yi) is the inner product of y and yi. Because we know

            1 1sy+hyi1 1= s+h(y, yi)+o(h),

              sy+hy,             ll sy+hy, H := Y -i-k(yi-(y, y,)y)+(h).

   On the other hand since
                   '

            iszzfd -A ll'h f(tsy, Ni)dt=f(sy, yi),

we have

(38) f(sy, yD =:I;{f(tsy, yi)+d,,.f(tsy, pt, yDts]･d4

if f is C(S'i"i)-differentiable in x.

   Combinning (37) and (38), we obtain

   Lemma 8. ILI' M=R", p is the euclidean metric of K" and f is a continuous

cross-section of C2(s(R")) such that d,#f exists and satisies (35)' or f is C(S'i-i)-

diltferentiable in x, C(S"'2)-dtffizrentiable tn y and satisfies

(3s)tt lf(tsy, y)(y, yi)-t-d,,,fktsy, y, ey,yi)llyi-(y, yi)yll

            +d,,.f<tsy, yi, N)ts-(f(tsy, y,)+cl,,.f(tsy, y, Yi)ts)1

            ls{IL I ts [ k, kll O, O;$lt51.

Then we have (36)' if d,iff satisfies (35)' and
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(36) lf(SY' YDh-(i,,,+h,,,f-i,,,f)i;$Ilalikh+O(h)' leIO,

if f satisfies (35)".

   Note 1. There exists f which does not have bounded d,#f but (35)" holds.

For example, if f is a constant c, then dp#f does not exist but the left hand side

of (35)" bounds by 21cl.

   Note 2. If f(x, y) is linear in y, then

            f(x, y)(y, N,)+d,,.f(x, y, E.,.,)Ilyi-(y, Yi)Nl1=f(x,Yi).

Therefore (35)" is rewritten as

            1 d,, . f(tsy, yi, y) - d,, . f( tsy, yi) 1 ;:{-L 1 ts l k, kl O, O:s!.t $l.1.

Especially, if f(x, y) is linear in y and

            d,,.f(x, y,, y,)--d,,.f(X, Y2, Yi),

then to set

            g(x)=j, L x==sy,

                  sy

we have d,g(x, N)=f(sc, y).

   Note 3. The right hand side of (35)' or (35)" may be rePlaced byaPositive

coofcients Polynomial P(Nxi1) or P(ts). Then (36) talees the form

(36)" lf(sy, yi)h -(f,,,.,,,,f- I,,,f) 1:S;ii P(t)dt-

   By lemma 8, we obtain

   Lemma 9. Let U be a neighborhood of O, the origin of R", sztch that ije syeU,

then r,,cU(1lyil ==1), and e a cross-section of C2(s(R")) on U, then to set

(39) f(x)=I, e, scrm-SY,

                   S/IJ

we have

(i). Ille e(x, pt) is continuous in x, then

            d,f(sy, y)=e(sy, y). '
     lllC e(x, y) satiskes either (35)' or (35)", then f(x) is C(S"-'`)-dijlerentiable and(ii)'

                              L(40) le(x, y)-d,f(x, y)i$                                 1ixlIk"2, if e satishes (35)',
                             le+2



                              L            le(X, Y)-dpf(x, y)l$.k+21lxllh, ife satistes (3s)".

            Chapter 2. Ijocal amalytic properties of generagized vector fields.

            ss 4. Local ixxtegration of the equation .Ilt==f.

   11. In this g, we consider the equation

(41) Xu =:rL
in local. Here X is a C(S'i'"i)-vector field on M. But, since the problem is local,

we assume M is R" and p is the euclidean metric of ft". Then, since s(R")=R"

xSn-1, we may set

            XU(")=i,.-,dpU(X, N)d6(x)==<e(x), d,u(x)>,

where g(x) is a Radon measure on S"-i.

   We regard S"-i to be the uni't sphere of re" and denote the Dirac mesure on
                             i
S'i"i concentrated at ei=(O, ･･･, O, l, O, ･･･, O) by hi. We note that tii i's the C(S'i-')-

tangent of the line tei. The subspace of C*(S'i"i) spanned by bi, ･･･, S. is denoted

by i"(S"-i). Then l"(S"-i) is considered to be the dual space of l(S"-i), the subspace

of C(S'i-i) consis'ted by the linear functions on S"-i. Then, denoting the annihilator

of l(S"-i) in C*(S"-i) by l(S""i)±, we have

(42) C*(S'i-i)=l*(Sn-i)Ol(S,i-i)±.

In (42), we denote the projections from C"(S"-i) to l*(S"-') and to l(S'iHi)i by Pi and

P2.

   Definition. Denoting reP. X=e(x), we dofne the generali2ed vectorfields D(X)

and S(X) for X by

            reP.D(X)-Pi6(x)), reP.S(X)=P2(g(x)).

   By definition, we have

            X:-D(X)+S(X).

   Theorent 2. X is a usual vector field if and only if X=D(X). On the other hand,

X=S(X) if and only ijC Xu:=O if u is smooth.

   Proof. We note that if u is smooth, then dpu(x) beiongs in l(S""i) for any x.

In fact, we get

                     V･l            d,u(x, y).=M,rm-, oO.", (x)y,, N=(yi, ･･･, y,,).
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Then, since we may set

                      V･l
            reP. X(x) = =ai(x)Si,

                     i-1

if X=D(X), we have

                    n                         ou            Xu(x)==i=lai(X)un6rmx,(X),

if X==D(X). On the other hand, if X' is a usual vector field on R", then we may set

X'===IZu-ici(x)0/axi. Hence to correspond X' the generalized vector field X=ZI/i--i

ci(x)6i, we have the first assertion. The second assertion follows from the definition.

   Corotlarg. 111C u is smooth, t'hen we have

(43) Xu =- D(X)zt.

   By (43), if D(X)7EO, then for continuous .f; the equation (41) is reduced to the

equatlon

(41).' D(X)u=L

or, to set

            <g(x), yi>=ci(x), 6(x)==reP.X, yi=xiiS"'i, i=1, ,･･, n,

to the equation

             J･l(41)D n. ..., ci(x)-g//;.(x) ==f(x).,

We note that (41)D has a solution locally if the vector (ci(x), ･･･, c.(x));O (cf. note 2

of nOIO).

   12. Lemma 10. if X= S(X) and 6(O)740, e==reP. X, then there is a C(S"-i)-dip℃-

rentiable frtnction u of R" such that

(44) Xu(O)=1, Xzt(x)=O, x :O.

   Proof, Since Ci(S""') is dense in C(S"-i), there exists a differentiable fuction

g(y) of S"Hi such that

            <g(O), g>=::I,.-,g(y)dg(O)=1.

Then to set

            u(x) =g( H l: i 1 ) i ix ll , xfo, zt(o) ==: o,



u(x) is C(S'i-i)-differentiable and satisfies (44). Because by definition, u(x) is C(S"-i)-

differentiable at x=:O and d,u(O)=g(x). On the other hand, since

            1 ix+ ty ] ] - i 1xl 1 (1+t1(iii]ll 12i)fi -i- O(t)),

                '
            11lll lll l::Yyl1 - 1iX,,11 + 11 .tl1,( yl lxl i2- x( t, y))+ o(t),

to set zr(yllxlI2-x(x, y))AIyllxB2-x(x, y)Il, we get

              u(x+ty)

            = u(x) + (g(ii: ll ) iX'.Yil +dp g( ll :ia, e(fi:,,,)) "

                    ,vi i 1x1 I2- (x, N)2)t+o(t),

foe x;O, because g is C(S'i-2)-differefitiable. Hence u is C(S"-2)-differentiable and

we have

(45) d,u(x, y)
            = g( 1IX.11) if'.Yll +dpg(11:l1, e(ii:ii,.))iVllxl12-(x, y)2, x:/ o,

Then, since g is differentiable, dpg is continuous in x/1lxl1 and therefore d,u is

continuous in x if x7LO, Hence we have (44) by theorem 2, because X=S(X).

   Note. If ui(x) is given by

(46) ui(x)=u(x)v(x), v is smooth and v(O)=1,

then ui also satisfies (44).

   Theorem 3. Let X be S(X) on U, an oPen set of R", and set rep. X=e(x), {x,}

a dense szabset of cozmtable Points of U, .cr,(y) the smooth functions on S""'i such that

(47) <6(xi), gl>=l, lgl･(y)1.<=.Ai, Id,gL･(y, z)ISBi,

and {ci} a series of non-zero Positive nscvabers such that

(4s)t i.Ii.. 1.",c,<oo, l=.,c,BA,<oo.

Then, if f(X) is bounded oii U and satishes

            oo(48) =A,lf(xi)1<oo,
            i.--1

there exists a C(S""i)-dipC12rentiable fttnction u(x) on U such that
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(49) Xu(x,):=f(x,), Xtt(x)=O, xf{xi}. '

   Proof. We set

            ut(x) == g)( 1llll i lii,i1 )l lx- xA l, x7L' x. u,(x,) =: o.

Then we have by (45) and (47),

(47)' lui(x)l$Ail1x-xii1, ldpui(x, y)1$Ai+Billxl1.

Next we set

            vi(x) -=ft li.l.,11, 11x-xi1i).-:-Sf.,

               --,4,4it'illx-xill2+i, 1lx-xil1<giEit',

                     tx
              7nThen lim. m-oo=i=iui(x)vi(x)f(xi) exists and to set

                 oo            za(x)==ui(x)vi(x)f(xi),

                1==1

u(x) is C(S"-i)-differentiable and satisfies (49). Because, we have by the definition

of vi and (47), (48)',

            1 ui(x)vi(x) 1 $-ci, x E Rn,

            I dp(uivi) (x, y) 1 ;;{;Ai + ciAE{, (x, y) E!i! Rn × sn-i.

                               t

Therefore by (48)' and (48), u(x) and d,u(x, y) both exist. Hence by lemma 1, u(x)

is C(S""i)-differentiable on U and by lemma 10, we get (49).

   13. CIIheorem 4. ILIC X==S(X), then Xf is equal to O almost everywhere on R"

(with resPect to the Lebesgue measure).

   Proo£ First we note that if za is C(S"'i)-differentiable and car.u is compact,

then (considering the integral along the line ty)

(50)' iR.d,u(x, y)dx:L'O.

Hence for an element T of Co(R'i)", the dual space of the space of continuous

fanctions with compact carrier, we can define XT, X is a C(S'i"i)-vector field on

R'i, to be an element of Cio(ft")", the dual space of the space of Ci-class functions

with compact carrier, by

                                                                   '(51) XT [u] ==: -T[Xu],



gO' AKIRA AsADA
and if T=Tf is given by Tf[u]=IR. f(x)u(x)dx, then we get by (50)' and (51),

(50) XTf-TJwf.
Then by definition, if X==S(X), XT is equal to O as an element of Cio(R")". But,

since C'o(R") is dense in Co(R"), we have the theorem by (50),

    Coroltary 1. To set

            IV(R")=:{fl f is locallly boimded and m (car.f)='O},

                    m is the Lebesgue measure,

we have

(52) X(Cc(sn+i)(R"))cA]'(R"), ifX=S(X).
           '
   Coroltary 2. if .f(x) is C(S"m')-dipierentiable on U, an oPen set of R", then d,f(x)

belongs in l(S""i) almost everyw'here on U. '
   We note that by theorem 3, we also obtain

   Corollary 1'. if X==S(X) and to set reP.X=e(x), if there exists a junction

e(x, y) on UxS"-i szach that

             <g(x), e(x)>=1, xGU,

             Ie(x, y)1;:il{A, ld,,.e(x, y, z)i;s{B, xGU, YES"-i, zESn-2,

then

(52)' X(Cc (sn-i)(U))Dlit,,. U).

Ilere lit.,.(U) is given by

            lii.,.(U):= {fl : lf(x)1<oo for any comPact subset K of U}.

                        xEK

   Since {xl f(x)XO}nK is a countable set for any compact subset K of U if

fElii...(U), we have

            Cc(sn-i)(U)filit.,.(U)={O}.

Hence we can extend X to lit.,. (U) to be the O-map. Then to set

            Cx(U)=X"'(lit,,.(U))Ol't,,.(U),

we rnay consider X is defined on Cx(U). The subspace of Cx(U) constructed by the

compact carrier functions is denoted by Cx.e(U).

   Taking

              U(L fe, s; e')

             ={gllf(x)-g(x)1<e, xEK, = [X(f-g)(x)1<s',
                                     xEK
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                   K is a comPact subset of U},

to be the neighborhood basis of L we give a topology of Cx(U) (or Cx,o(U)). The

dual space of Cr,e(U) (under this topology) is denoted by Ci,e(U)". Then we define

the inclusion map c from Cx,o(U)' to L(Cx,o(U), Cx,o(U)'), the space of continuous

homomorphisms from Cx,e(U) to Cx,o(U)*, by

            t(T[f])==TT[f], T.[h] =f.g(x)h(x)dx.

For an element T of L(Cx,(U), Cx,o(U)"), we define XT, X is a C(S"-')-vector

field, by '
(53) ((XT)[f])[g]==(X(T[f]))[g]-(T[Xf])[g]
                        --(T[f])[Xg]-(T[Xf])[g].

   Lentma 11. The equation

(54) XT:=6, ti is the Dirac measure,

has a solution in L(Cx,o(U), Cx,o(U)").

   Proof. We define an element 62 of L(Cx,o(U), Cx,o(U)*) by

            j2 [f]--f(O)6, 6 is tke Dirac measure.

                                         'Then by (53), taking the function u(x) defined for X by lemma 10, we get (54)

                                                                 'to set

             T:= -euxfi2.

Here f(x)T[g] is given by T[.Lg].

    By lemma 11, jf car.fis compact and X=S(X) on R" such that reP. X(x);O

for all x, then we may consider the equation (41) has a solution in F(R", Cx,o(lt")*),

the space of functions from R" to Cx,e(U'i)". In fact, by assumption, there exists

a function e(x, y) on R"xS"-"i such that e(x, y) is smooth in y and <reP.X(x), e(x)>

==1 for all x. Then to set

             U(x, g)=-e(x, 112H)Hgl1,

the solution u(x) of (41) is given by

             u(x)=eU(x･e)62(6)[f(x-6)].

    Note. In the next g,we show that a C(S';Mi)-vector field of R'i generates a local

1-parameter group of transformation of R" into C"(S"ni). Therefore we may

consider the equation (41) can be solvedin F(R';, C"S"Hi)), locally.



                                                                '
       g5. Generalized imtegra! curves of generalized vector fields om R".

    14. If X==S(X), we define a transformation T, of Cx(R") by

             T,f-=f+tXlfL tlO.

Then, since X2==O on lii,,. (R'i), T, is a 1-parameter (semi-) group of linear trans-

formations of Cx(R'i) and it is differentiable in t and we have

                   tt
             d              (T,f)=XT,.1(L
            dnvt

But, since Tt is the identity map on Ci(R'i,) T, does not induce any (non-trivial)

transformation of R".

   On the other hand, if X is positive, then we can construct a family of

(continuous) curves g(t, x) of R" with the parameterx such that ,

(i). g(O, x)=x, xER".

(ii). The generalized tangent of g(t, x) at t==O is rep. X(x), xER'i.

(iii). ILf X is continuous, then op(t, x) is continuous in x.

   To construct such family of curves, first we fix a countable set of points {yp}

of s"-i such that

(a). {yp} is dense in S"-i.

(b)･ Yp#±Ng ifPXq.
    For, this {yp}, we fix a family o'f Borel sets {Epq] of S't-i such that

            yp ci! Epq, .ILm... dia. (Epg)=O, ,

            Sn-i= u Epq for any fixed q, Ep,anEp"q=¢, if P'J7(:P".
                 PS4

For these {Epq}, we define a series of positive real numbers {t,,p(x>}, x ls the

parameter, as follows: First we set reP. X=g(x) and set

            e(x)(S'i-i)=v(x).

By assumption, v(x)llO and if X is continuous, then v(x) is continuous. Using e(x)

and v<x), we set

                   v(x)            tg,1(X)=
                    q! '
                                                     1
            t,,p(x)=(q"+(Xl))!+(q+ql)! ,l,,,6(X)(Erg), P$q-

Since =pE,6(x)(Epq)=v(x), these t,,p(x) are well defined and since e(x) is a positive

measure, we obtain

            tq,p(X)lllltg,p+i(X), if P'lmlSq, tq,g(X);-lltq+i,i(X),
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            l3Mebotg)p(X)=:O, l.it?th-lZe',ii('.(?) "O, if "(X)7`;O,

            t,,p(x) is continuous in x if X is continuous in x.

Then we define a function T(t, x): R"-ft'`, R"={t] tlO}, with the parameter

x, xER", by

            T(t, x>-rmo, if v(x)-o, Y'(O, x)-o.

            Zff(t,,p(X), X)==tp,p(X)Yp, if tg,P(X)Stq,P+i(X).

            W'(tq,g(X), X)':::tg,g(X)Yg, if tq,q(X)[7d:tq,i,i(X)･

                     tg,p(X)mt                                             t-tg,P+r(X)
            IP'(t' X)==t,,p(x)-t,,p,.U(x)W"(tg'P"(X)' X)+t,,p(x)-t,,p,.(x)W'(a'p(X)' X)'

            if tq,P(X) =::tg,P+1(X)=''' :=:tg,P+r.1(X), tq,P(X)>t>tq,P+r(X)･

In this last formula, we consider t,,p+.(x)==t,+i, p+..,(x) if P+r>q.

   By definition, if X is continuous in x, then T(t, x) is continuous in x and we

have

            llep'(t, x)11;Slv(x)1t1,

            W'(t, x)iO lf v(x)7gO and tlO.

   Using this W'(tx), we define pa(t, x) by

            g(t, x)=x+v(x)1lg[l; .X]li, t7Lo, v(x)lo,

            IP'(t, x)=::x, for all t it v(x)=O,

            T'(O, x)=:]x.

Then by definition, T(t, x) is continuous in t and it satisfies (i), (ii), (iii) (cf. [4]).

   By (ii), to set

(55) S,(x)=go(t, x),

S, maps R" into R'i and we have

(s6) lgm.,. -,1 igvad fl St"fg-x)t- f(x)dt=xf(.),

if f is C(S""')-differentiable on R".

   By (i), So is the identity map of R't and by (iii), if X is continuous, then S,

is a oontinuous map. Therefore, if X is continuous, then S," maps C(R") into C(R")

and it is a bounded operator as a map from Cb(R"), the Banach space of bounded

continuous functions on R", into Cb(R").

   15. We call p(t) to be the integral curve of X starts irom the origin of R" in



the weak sense if it satisfies

            ie'wd -l igved ilf(pa(t+r)./-f(9(t))dr -<6(g(t)), d,f(g(t))>,

for any C(S"-')-differentiable function f of R", where e(x) is reP. X. We note that,

if lim. r-o(g(t+r)-g(t))/r exists and fis differentiable, then the above formula reduces

to

             d( f(d9;t)) =, xf(rp(t)).

If g(t) is the integral curve of X in the weak sence starts from the origin, then

we have

              li -lrSl f(ep(k' r>/ -f(g(le))drdle

             ="SS,,ft f(9k+r)),- f(ep(k))dkdr

                   '
             =-l-Si[f(g(t+er))-f(g(e'r)>]dr

              s-h             == , [f(9(t+ptS))-f(9(ps'S))], O<0,0'<1, O<pt,ptt<1,

by the rnean valtte theorem. Hence we get

(57) f(p(t))=- f(O)+l: <e(g(t)), d,iv(t))>dt,

  '

if p is an integral curve of X in the we'ak sence starts from the origin.

    By (57), if X=:S(X), then for any smooth f; we have f(g(t))==f(O). But, since

Ci(R") is dense in C(R"), it occurs only the case g(t)==O for all t. Therefore we

obtain

    T7ieorem 5. (le X=S(X), then X has no integral curve although in weafe sense.

   Note. In R2, the generalized vector field X given by

              X(x, y)

             == (x2 iiE y2+x2 ill y2)6! + (x2 {ll N2Hx2 ill pt2)62, (x, y):>E:(O, O),

              x(o, o)==i.de,

where 6i and 62 are the Dirac'measures concentrated at (1, O) and (O, 1) and dO is
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the standard measure of S', is weakly continuous on R2 but X(O, O)==S(X)(O, O).

This X has the integral curve starts from (O, O) which is given by

            x(t)=:t.cos(-}-+c), y(t)=tsin(l+c), t>O,

            x(O)-y(O)=-O, O$c<2rc.

   16. Since l"(S"-i)=.R", we consider R" to be a subspace of C"(S"-i) in this

manner. Then we can extend a function f or a generalized vector field X of R"

to a function f# of C*(Sn-i) or a map X#: C*(S'i-'i)-C*(S"-i) by

(ss) f#(e)-f(p,(e), x#(e)-(rep.xxp,(e)).

We note that since we get

                  n            lbi(e) = Xg(yD6,, y, -- x, I S,i -･ i,

                 i--1

we obtain

            1 lpi(e)1 i;:$lnygH.

Therefore, if f is C(S""i)-differentiable, then we get

                                    Pi(V)(sg) f#(e+trp)=f#(g)+d,f(p,(e)                                         )1 1P,(o7)l lt+o(t).
                                 '1lpi(n)rl

Hence f# is (1-sidede) Gateaux differentiable (with respect to the real numbers)

and it is Fr6chet differentiable if and only if f is tataly differentiable. Because

we may consider C(S"-')cC*"(S"-i) and R"2} l(S'i-i)cC(S"-i).

   On C'(Sn-i), similarly as usual ordinary differential equation, we have

   Lemma me. ,llle Y is a maP flrom C*(S""i) to C'(S"-i) such that

(6o) HY({?)-Y(77)11;s{ILIle-,7H,

for some Positive number L, then for any eEC"(S"'"i), there bxists uniqtte .lie{nction

g(t), tER with values in C"(S"-') such that

                            '(6i) dsit)-=y<g(t)), g(o)-e

Moreover, if the value of Y all belongs in l"(S"-i) and rp(O) also belongs in l*(S"-'i),

then the value of g(t) also belongs in l*(S"-i).

    Note. If a C(S""i)-vector field X satisfies the Lipschitz condition

(62)' ll6(x)-g(x')11:g{L'Ilx-x'1l, 6(x)=rep. X,

then we have
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             1 1X-(v)-X#(g)l l $n2L' l 1v-ei l.

    If g(t) is a solution of the equation

            g(s-5t)-x#(,(,)),

and f is a C(S""')-differentiable function of R", then by (59), we get

                                                      '                               '
             d(63)' it(f#(p(t))=-<X#(t)), (d,f)#(g(t))>.

Especially, if f is smooth, then

             d(63) uJt(f#(op(t))=<X#(t)), d(f#)(g(t))>,

where d(f#) is the Fr6chet differential of f# and it is considered to be an element

of C**(S,t-i).

    By (63) and (63)', we may define ･

    DeEnition. A cztrve g(t) in C*(S"-') is called the generalized integral curve of a

generali2ed vector field X starts from x if it satishes

(64) td9t/L)-X'#(g(t)), g(o)==t(x), xER".

Here t(x) means

      ･n            c(x)=Xxitih x=(xi, ･･･, c.).

                 i-1

    Then by lemma 12, we have
    7'heorem 6. ILf X is a generalized vector .field on R" such that reP. X:=e(x) satis-

fies the LiPschitz condition (62)' for some Positive L' on R", then X lads a generalized

integral curve starts at any Point of R'i. Moreover, if X=D(X), then we may

consider the generali2ed integral curve of X to be the usual integral curve of X.

    Coroltary. Under the same assumPtions, X generates a local 1-Para-meter group

{T,} of transformations of C"(S'i-i), ILf X==D(X), then this grouP is identijied the

usual local 1-Parameter grouP of transformations of R'i generated by X.

    Note 1. In general, if g(t) is the generalized integral curve of X starts from

x then to set
 '

             le'(t)=c-i(p,(pt))),

W'(t) is the usual integral curve of D(X) stayts from x. Especially, if X= S(X), then

W'(t)=x for all x.
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   Note 2. Denoting the integral curve of D(X) (in C"(S'i-i)) by gi(t), the solution

g(t) of the equation (64) takes the form

(65) g(t) :=: (gi(t), lg P2(e)(gi(S)dS).

By <65), if X--S(X), then the generalized integral curve of X starts from x is

given by

(65)t g(t):-m(X, e(X)t).

    By (65), we obtain

    Theorem 6'. A C(S"Hi)-vector field X on U, a neighborhood of x, has the gene-

ralized integral curve starts from x if D(X) laas the integral curve (in the zasual sence)

starts from x and S(X) is integrable.

    By (65)', if X==S(X), then the 1-parameter group {T,} generated by X is

given by

             T,(x)==(x, e(x)t), rep.X==e(x).

On the other hand, if X:=D(X), then the generalized integral curve of X is given

by

(65)t, 90(t)-:i(90i(t), P2(rp)),

if it starLs from nyEC*(S"-i). Here gi(t) is the e-image of the usual,integral curve

of D(X) starts from c'i(Pi(rp)). By (65)", the 1-paraineter group T, of transformations

of C"(S"-i) generated by X takes the form

            T,(v)i==(T,t(P,(v)), P,(rp)),

where Tt' is the (d-image of) the usual 1-parameter group generated by X (=D(X)).

            Chapter 3. GeReralized vector fields en manifolds.

             g6. C(S"T"i)-smooth functions on manifolds.

   17, Definition. if f is C(S'i-')-dnjlerentiable on M and d,f dojnes a continuozts

cross-section of C(s(M)), then we call f to be C(S'i"i)-1-smooth on M.

   Similarly, if f is C(S"-i)-diflarentiable on some neighborhood of xE!M and d,f

is continuous at x, then we call f is C(S'i-i)-1-smooth at x.

   Pefinition. If d,ij is dofned on M and it dofnes a continuous cross-section of

CP(s(M)), then we call f to be C(Sn-i)-P-smooth. 11f f is C(S""i)-P-smooth for all P,

then we call f to be C(S""')-oo-smooth or C(S""i)-smooth.

   C(S""')-P-smooth at x or C(S"-i)-smooth at x are also defined similarly.

   In C(S.), we set



(66) l(S.)={d,f(x)lf is C(S""i)-smooth on some neighborhood of x}.

   Note. Similarly, we may set

(66) lfe(S.)=={d, f(x)If is C(S"-i)-fe-smooth on some neighborhood of x},

for eaqh fe, Starting from these lk(S.), we have same results as in this chapter.

   Lemma 13. ILIC dim.M:=:n, then .
(67) dim. l(S.) $n.

   Proof. If f is C(S""i)-smooth at x, then to define g,: (-1, 1)-M by

            gy(t) == r., ., t, t)O, pa,(t) = r., y., -,, t<O,

f(g,(t)) is differentiable at t=O and the generalized tangent of op,(t) at t=O is 6..

But, since rc'i(U)=S""ixU and a paracompact topological manifold always has a

topological connection and a topological connection can be considered to be a' local

paral!el displacement ([1]), we may set

            f(go,(t))=f(W'i(gobli(t)), '･･, T.(9oy.(t))), -E<t<e,

where yi, ･･･, y. are suitable points of S., because dim.M=n, Then, since p.(t)'and

9yi(t), ･･･, py.(t) are smooth in t, we have

(6s) d,f(x, N)=i,Iii..i,(ddZif/i(o))-id,f(x, y,).

Hence we have the lemma.

Note. This lemma is hold for l'(S.) ={d,f(x)l f is C(S'i'-i)-smooth at x}.

Lemma 14. For any xEM, there exists e<O such that

(69) dim.l(Sx,)lllldim.l(S.), if p(xi, x)<e.

   Proof. Sinc･e dim. I(S.)<oo by lemma 13, we may take C(S"H')-smooth functions

fl, nyny･, f;,, on some neighborhood of x such that d,fl(x), ･･･, dpL.(x) form the basis

of l(S.). Then, since dpA, ･･･, dpL. are continuous in x on some neighborhood of

x, if p(x, xi)<e, then dpA(xi), ･･ny, dpl.(xi) are linear independent in C(Sxi) for

some e>O. Since d,A(xi), ･･･, dpL.(xi) belongs in l(Sx,), this means

            dim. I(S.,)llilm=dim. I(S.).

Hence we have the lemma.

   Corollary. J]f dim.l(S.)=n(=dim.M) and d,A(x), ･･･, d,L,(x) form the basis of

l(S.), then for some e>O, if p(x, xi)<e, then d,.11(xD, ･･･, d,L.(xi) form the basis of

l(S.)･

   Proof. By the above proof, dpfl(xi), ･･･, dpf;.(xi) are linear independent in

l(Sx,) if p(x, xi)<e for sufliciently small E. But since dim,l(s.)$n by lemma 13,
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                                                     'dp.fl(xi), ･･･, dpL,(xi) should be the basis of l(S.).

   In the rest, we set

            dim. I(S.) = l.,

            {X1 l.=:n}=Ms,p.

By the corollary of lemma 14, M},p is an openset of M.

   18. Lemma 15. To set

            T(Ms,p)= U l(Sx),
                    xEMk,p

T(M},,) is a (tatal sPace of a) vector bunnte over M,,,.

   Proof. By the corollary of lemma 14, to define a map: T(M,,p)-M,,p by

            p(g)==x, gEl(S.),

we have

            p"i(U(x, e))=U(x, E)×l(S.),

for some e>O. Moreover, if d,fl(xi), ･･･, d,L,(xi) and d,A'(xD, ･･t, d,L,'(xi) both

form the basis of l(Sx,), then it should be

                                      '                      n
(70) d,L･'(xi)===ai,<xi)d,L<xi), (aij(xi))eGL(n, R.)
                     o==1

Hence we have the lemma.

    Theorem 7. M,,, allows the structure of ddiizrentiable manijbld and its cotangent

bundle is eguivalent to T(Ml,,p).

   Proo£ By (67), if {d,fl(x), ･･･, d,f;,(x)} form a basis of l(S.), then there exist

continuous cross-sections yi=yi(x), ･･･, N.=y.(x) from U(x, e) to s(M) such that

            d,fli(x', xj(x'))EGL(n, R), x'EU(x, e).
 '

For simpie (if necessary, to change .A, ･･･, L, linearly), we assume

(71) d,]`l<x', yj(x'))=6ib i, 1'=1, ･ny･, n, x'GU(x, e).
                                                                   '
By (71), in the product structure P-i(U(x, E))=:S"-i×U(x, E), we may regard each yi

is a constant cross-section and therefore the integral curve of the generalized

vector field <byh d,f> starts from x is given by gblj(t) defined in the proof of

lemma 13. Then, since (geyi(ti), ･･･, gy.(t.)), -Ei<ti<ei, ･･･, -e.<t.<E., give a local

coordinate of M at x, the local cordinate of M at x is also given by

            2-(.L[(z), ･･･, .IC;,(2)), zEU(X, E), '

by (71). or, in other word, the manifold structure of M,,fl is given by {(U(x, e), hu)},

where hu is given by
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            hu(z):=:(.fl(z), ･･-, L,(z)).

Then, since huhv-i is a differentiable map for any (U, V) by (70), we obtain the

theorem.

   Corollary 1. T"(M,,,), the dual bundle of T(M,,,), is equivalent to T(M,,,), the

tangent microbundle of M,,.

   Corottary 2. if M=M,,,, that is, l.=dim.M for all xEM, then M allows a

dWl?rentiable structure.

   We assume the manifold structure of M is given by {(U, hu)]-, hu: U.R".

We take a C(S'i-i)-clifferentiabie function f of R" at hu(x). Then we have

            f(hu(rx,y,t))

                               hu(r.,,,t)-hu(x)
            ;-f(hu(x))+d,flhu(x),                                            ) B hu(r.,y, t)-hu(x) 1 1
                              1 1 hu(r., y, ,-hu(x) Y

            +o( 1 1 hu(r.,y, ,)-hu(x) 1 l ).

Hence hu*f(x)==f(hu(x)) is C(S"-i)-differentiable at x if and only if hu(r.,,,,) is a

smooth curve with respect to t at t==O. Moreover, if hu(r.,.,t) is smooth at t=O

for any "), yES., then hu*f is C(S"-i-smooth at x if f is C(S"-i)-smooth (i.e.

differentiable) at ,hu(x).

   Since we know hu(r.,.,,) is smooth at t=O for any y if and only if we have

            hu(r.,pt,t):==hu(x)+dphu(x, y)t+o(t),

that is, hu is C(S"Hi)-differentiable at x with respect to the metric p and d,(hu"f)

is continuous in x for smooth fif and only if d,hu is continuous in x, we have

by the corollary 2 of theorem 7,

   Theorem 8. if the manij2)ld structure of M is given by {(U, hu)} and M allows

a metric p such that p satishes (i), (ii) of g1 and hu is C(S'i-i)-smooth with resPect

to p, then M is smooth.

   Note. If M is smooth, then taking p to be the geodesic distance of a Riema-

nnian metric of M, we have M,,p==M and this p satisfies the assumptions of.

theorem 8.

   19. We set M,,,==M,,p,O and for le->rmO, to define M,,p,k and Mp,k by

            {Xi lx=n-fe}==Ms,p,k,

             U Ms,p,m=Mp,k･
            n).fe

By definition, we have

                     tt
            M=Mp,o, Mp,n"=Ms,p,n+1=¢,

and also
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(72)i Mp,eDMp,ID '`' DMp,n,

                 Jt
(72)ii M= U Ms,p,k, Ms,p,inta,p,j'=¢, ili
                k-O

   By lemma 14, we have
   Lemma 16. M,,,,k is oPen in Mp,k.

   Corollary. To set

            T(Ms, p, k) := U l(S.),
                     xGMs,k,F

T(M,,p,k) is a (tatal sPace of) vector bundle over M,,,,fe.

   If xEM,,p,k, then we can take C(S"-i)-smooth functions A,.,

U(x, E) for some e>O such that {dpfl,.(x), ･･･, dpL,-k,.(x)} forms a

Then, if x'EiM,,,,k and p(x, x') is sufficiently small, {d,A,.(x'), ･･･,

a basis of l(Sx,). Moreover, we can choose yi(x')ESxt, -･･, y.-k(x')ESx,

the product structure of T"i(U(x, e'))=U(x, e')xS"-i, e'<e, each yi(x')

fixed) yiES"-' and to set

(71)' d,A,.(x', yJ･(x'))==aiJ･(X'),

(ai,<x'))EGL(n-le, R) and continuous in x'. We denote by yi the

s(M) defined on U(x, e') whose value at x' is yi(x').

   In U(x, e'), using the integral curves

such that reP.Xi:=ay,, ･･･, reP. X..k=:6y..k starts from x, we can

subset V<x) of U(x, e') such that V<x) contains x and V<x) is

neighborhood of the origin of R"-k. Moreover, to define a map h.,k:

by

            hx,k(X')==(.ICIt,x(X'), ''', Lirk,x(X')), X'EIiU(X, e'),

we have a commutative diagram

                   U(t, e')
               // identity Xx,hx･k

            V<x) -R,i-k.
But since to set

            hx',k=gx',xhx,k,

gx,,x is linear as a map of R"-k, Ii(x) and V(x') are changed by

considering them to be subsets of R"-k if x and x' are suffieiently

fe<n-1 we have
 =l
(73)' dim.( U V(x))=n-le.
               xEn41i, p, fe

basis

de Li-k, x(X')}

 such

 is
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', L,-k,. on

  of l(S.).

        is

   that in

mapped (a

                       cross-section of

of the generalized vector fields Xi, ''', ' X,t-k

                    construct a closed

                      homeomorphic a

                       U(x, e')--,-E'i-k

the linear map

near. Hence if
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Then, since ua,p,hc U V<x), we obtainby (73)'
                 xEMls, p, le

(73) dim.Mk,,,le$n-k, lem-<n-1,

   On the other hand, since hu(r.,,,t) has C(S"-i)-tangent for all t, O$t<1, by

the method of the construction of p (cf. [3]), the C(S"Hi)-tangent of hu(r.,,,t) takes

the form 6yt almost everywhere on, (O, 1) by theorem 5. Hence M-M,,p,. is dense

in M by the proof of theorem 8. But since M,,,,. is a closed set of M, we have

(73)o diM. Ms, p,n::llO･

   Summalising these, we have

   Lemma 18. dim.M,,,,k is at most equal to n-k. EsPecially, dim.M,,, is equal

to n and dim.M,,,,. is eqzaal to O of M,,fl,n;ip.

   Corollary. M,,, is oPen dense in M.

   20. We set

            ta･ p, le ig == U V(x).
                   xEMS,p,k

Then similarly as theorem 7, we have

   Lemma 19. if M,,R,k;¢, then M,,,,kig allows the structure of an (n-le)-dimensi-

onal smooth manijbld and it is a closed submanifold of M-Mp,k+i.

   Corottary. To set

            Mk,pb =ua,pnvua,pA( U Ms,p,mla),
                             in2-l
            Ms,p,kb=Ms,p,hla-ua,p,klan( U Ms,p,nila), le21Ll,
                                   mlh+1

we have

(74) M=va,phUca,p,lbU ''' UMs,p,nb,

            My,,bnMg,,,leb=¢, lezl,

            Mk, p, in bMs, p, j' b =¢, ili

Here dim.ua,pb=:n, dimMs,,,feb=n-k if Ms,,,lebXip and they are all smooth and

ua,p,hb is closed in M-Umlk+iua,p,mb (cL [17]).

   We note that by the definition of Ms,p,lela, ua,p,h is dense in ua,p,lela and

therefore ua, p, k n ua, p, fe b is dense in MS, p, fe b.

    Theorem 9. To set Cc(sn-i)co(M) the sPace of C(S'iHi)-smooth functions on M,

Cc(sn-i)Do(M) is dense in C(M) by the comPact oPen toPology.

   ProoL First we note that by lemma 18 and the definitions of Mk,p,k"and

Ms,p,kb, for any continuous function f of Mls,p,kb and compact set K of ta,p,leb,

there exists a C(S"mi)-smooth function g of M such that
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(75) lf(x)-g(x)1<e, xEK
is hold for given e>O.

   We assume that in (74), we get

(74)' M=Ms,pbUMs,p,kibU ''' UMs,p,hmb,
            Mk,p,hib=O, 1=<ki<fe2< ･･･ <fe.:slln.

   Let f be a continuous function of M and K a compact set of M they are both

arbitary but fixed. Then by (75), there exists a C(S"-i)-smooth function gbu of M

such that

(76). 1 f(x)- gin (x) Kte., xeKn Ms, p, k. b

for given E>O. Then, to set .E.(x)=f(x)-g;.(x), there exists a C(S""i)-smooth func-

tion gh,.t(x) of M such that

(76).-t 1 .11,,(x) - gh,-i(x) l <2 .e-v xeKn (M,, ,, k.- b n M,, ,, fe. b).

In ftbct, there exists compact carrier C(S"-i)-smooth function g;,,-i, o(x) of M such

that

(76)e I .Ln(X) H gln-!, e(X)l < ttt,

            xEKn (ua, fl, k..i b - U(Mk, p, k,. b)),

for any neighborhood U(Ms,p,k.b) of Ms,p,k.b in M. Hence, if le.=1, we have

(76).-i by (76)o by virtue of theorem 9. 0n the oher hand, if k.)2, then M-

Ms,p,k,.b is connected. Therefore in (76)e, we may assume

            (ua, v, le. b - V(Ml,, p, k.-i b f) Ml,, p, k. b)) n car, ( gh,.i, e) = O,

for any neighborhood V<Ms,p,k.,-ibnMs,p,k.b) of ua,p,k..ibnMs,p,k.b in M. Hence

by the continuity of L.(x), we have (76).,-t. Then, repeating this, we have

                                            vn-1
             1 )Cl(x)-gb(x)l<e, xEK, A(x)==f(x)- = g},,"k(X).

                                            le=o

Hence to set g(x)==:k':ogle(x), we have the theorem,

    We note that since the space of compact carrier smooth functions is dense in

the space of compact carrier continous functions by the compact open topology

and u,"--'pM,,,,feib is closed in M for ali P, 1$P;$lm, we also obtain

    ZIheorem 9', Denoting the sPace of comPact carrier C(S"-i)-smooth .functions on
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M by Cc(sn--i),ooa(M), Cc(sn-i),ooo(M) is dense in Ce(M), the sPace of comPact carrier

continuous junctions on M, by the comPact oPen toPology.

   Corottary. For any locally finite open covering {U} of M, there exists a Partition

of unity {eu(x)} of C(S"'"')-smooth functions on M subordinated to {U}.

   Proof. We take a partition of unity {fu(x)} of continuous functions subordi-

nated to {U}. Then by theorem 9', there exists a C(S"-i)-smooth function eu'(x)

such that

            car.eu'cU, eu'(t)-->-O, lfu(x)-eu'(x)1<Eu,

where eu>O is arbitrary. Then,since {U} is locally finite, tal<ing Eu sufficiently

small, e(x)==Xueu'(x) does not vanish at any point of M. Then to set eu(x)=eu'(x)/e(x),

we have the corollary.

            g7. C(S"-i)-smooth forms and de Rham's theorei".

   21. Since the cotangent bundle T(ta,p,kb) of Mg,p,hb is given by

            T(Ms, p, le b)= l<Sx'),
                     xEMb,p,kb

where x' is an element of ua,p,hh such that xeV<x'), if ei, ･`･, en-k are the dp-

smooth cross-sections of T(Mg,p,kb) such that {ei(x'), ･･･, en-le(x')} form the basis of

l(Sx,) if x'EiUh(x), a neighborhood of xEMs,p,kb in Mk,p,kb, then for any m, m<k,

there exists a neighborhood U"t(x) of x in Ujs-:mMs,p,jb such that if x"EUm(x)n

Ms,p,mb, then there exists a neighborhood Vm(x") of x" in Um(x)fiua,p,mb and d,-

smooth cross-sec, tions ]CIL, ･･･, .IZle-m of T(ua,p,"ib) in Xn(x") such that {ei(x"', ･･･,

en-k(x"'), .flt(x"'), ･i･, .i`1le-m(x"')} form the basis of l(Sx,) if x"'EV}n(x"). In the rest,

as the element of C(Sx), etc., we assume

(77) llei (x' H =:7 1, x' E Uk (x), i-- 1, -･･, n- fe,

            H ft (x"') 1 1 =1, x"'e "n (x"), 1' -- 1, ･･･, le-m.

                                                  'ill   Definition. A maP g from U, an oPen set of M, to UkL.oAPT(Ms,p,kb) is called

a d,-smooth P-form (or a C(S"-')-smooth P-form) on U if

(i). glUnua,p,leb is a d,-smooth cross-section of APT(Ms,p,hb) for each le.

(ii). Using the above notations, if we have

            g1UnMg,,,kb= : gi,,･･･,ipei,.･･･.eip,

                         il,･･･,ilb

            On Uk(x), then to set

(78) gl V}n =:= IIIiZ] gi,, ･･･, ip, v.ei ,. ･･･ .eip

                   ii,･-,iP
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                                        '
            + = Pii',-･,ig'ji,･-,i'p-g"eii'A'''Aeiq'.fli'i.'''.h'g--g, q>O,
              il',"', iqj)1,"3 iq-P

     we have

(a). gii,･･･,ip, v. is dofned and d,-snzooth on U"?(x) and we have

            g)i!, ･･･, ip, v., 1 Ule = geii, ･･･, ip,

     ]Cbr each ii, ･･･, ip and IL..

(b). ILf a series {xjlxjEMs,p,mb} converg]es to some element of Ms,,,kb, then to set

            g' 1 ¢n=gl Y}n m = (gii, ･･･, ip, vm l V,n)eii A ''' A eip,

                         ii,-･iP

     we have

            lim. gt (xj) ::= O,

            1-oo
            lim.d,k(g')(x,･)=O, le;llll.
            j' -' oo

Here d,k(Ce') means =i,,,,,,ipdpk(ep'ii,･･･,ip) gi,.･･･.gip, where

W' ==ii,-･,ipW'ii,･･･,ipgii.･･･.gip and lim.i-oog(xi)==O, etc. are doj7ned by

lim.,･u,ooHep(x,･)il=O, etc., where 11g(x,･)1l and 1ld,feg(x,･)1l are given by

            11go(xj)ii==: = 1sDi,,･･･,ip(xj)1,

                     it,'-,ip

            11d,kg(xi)il= X max. 1dpkop(xj,yi,･･･,yk)1.
                       il, -･, ip J' 1, ''', Yk

     llk7re gi means either eit or A･".

   We note that by (77), this definition does not depend on the choice of the

basis of l(S.).

   Note. Similarly, we can define d,-k-smooth P-form on U. In this case, the

condition (b) of (ii) is changed to

(b'). Iim.ir.oop'(xj)=O and lim.i-,..d,ig'(xj)=O if i:-ggk.

Moreover, to set '
            Mk,,,,j={xl dim.lk(S.)=::n-]'},

we can construct the (n-k)-dimensional smooth manifold Mks,p,jb similarly as

Ms,p,ib. Then using Mks,p,i'b, we can deine d,-i-smooth P-form on U if i:-f{g-fe.

   By the definition of d,,-smooth forms, we have

   Lemma 20. J]' g is a d,-smooth P-form on Ms,p,kb, then fbr any xEMs,p,kb,

there exists a neig)V2borhood U(x) of x in M such that there exists a d,-smooth P-form
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ip on U(x) such that

(7g) ¢i Mg, ,, le b n U(x) =gl ta, ,,kb n U(x).

                                      pp                                 .-ntm--'L--'mHx HL-N   Note. We define a subspace AC(S""ix ･･･ xs"mi) of C(S"'ix ... xsn-i) by

{fl fO'.a), ''', Y.(p))=sgn(a)f(Yi, '-･, yp), aESP}. Then using AC(S"-ix ･･･ xs"mi) to

be the fibre, we can construct a sttbbundle ACP (s(M)) of CP(s(M)) (cf. [4]). On the

other hand, by the definition of T(Ms,p,kb), we can consider T(Mk,p,kb) to be a

                                    n                                     APT(ua,p,hb) is contained in ACP(s(M)).subbundle of C(s(Ms,p,kb)). Therefore, U
                                   le-o
Hence we can define a dfl-smooth P-form on U to be a dp-smooth cross-section of

ACP(s(M)) such that whose value at x is contained in APT(Mg,p,kb) if xEMs,,,kb.

   22. As usual, we can define the addition and the multiplication of d,-smooth

P-form p and q-form T. Moreover, we can define the exterior differentia! dg of

g by

(80) (d9)iua, p,kb=d(glMs,p, le h).

Here, in the right hand side, d is taken in the usual sense. Then, by (b) of (ii)

of the definition of d,-smooth forms, d is well defined.

   We note that, in the coordinate free form, regarding g to be a cross-section

of ACP(s(M)), we obtain

(81) d9 == Adp9
Here Adpep is. given by

              Ad,g(x, y,, ･･･, yp,,)

            =plitL',(-i)`[l,iva,･ [Iep(rx,yi,t, yi, ''', yi--i, yi+i, ''', yp+i)

                             -90(X, Yi, ''', ))i-i, Yi+i, ''', Yp+i)]],

By definition, in general, if f is a cross-section of ACP(s(M)), then Ad,f is a

cross-section of ACP'i(s(M)) if it, is defined.

   Lemma 21. .lyC a d,-smooth P-form g satiEV7es dg=O on some neighborhood of x

(in M), then there exists a neighborhood U(x) of x in M and a (P-1)-form T on

U(x) such that

(82) g==der, on U(x).

   ProoL We assume xEua,p,hb. Then there is a neighborhood Uk(x) of x in

Ms,,,feb and a (P-1)-form Tk on Uk(x) such that

(82)k gi U,(x) =dep'k,

by (usual) Poincar6 lemma, We take a contractible neighborhood Uk..i(x) of x in
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Ms,p,k-ibUM,,p,kb and assume

            U]e(x)=Uk.i(x)1M,,p,kb.

Then by lemma 20, there exists a (P-1)-form epN'k on Uk-i(x) such that

            gP k 1 u,(x) = zy',,

We set

            gi =p-dep'k,

on Uk-i(x). Then,by definition, we have dgi=O. On the other hand, since Uk-i(x)

is contractible, the homology basis r of UkHi(x)-M,,p,kb is taken to satisfy

(83) max. p(x, M,,,,kb)<e,
            xE[ri

for any e>O. Here Irl means the carrier of r. Hence by the definition of dp-

smooth P-forms, we obtain

            l, qi==O, for any homology basis of UkHi(x)-M,,,,kb.

Therefore, by de Rham's theorem, there exists a(P-1)-form W'k-t' on Uk.i(x) such

that

(82)k-it gi=deY'k"lt, on Uk-t(x).

Then, by (b) of (ii) of the definition of d,-smooth forms, to set a, to be the Coe-

function on Ukmi(x)-M,,,,kb such that

            cr,(X)==1, p(x, M,,,,kb)>2e,

            cr,(X)==O, p(X, Ms,p,kb)<E, 1;aE(X)}ILO,

we have

(84) g)t== lim. d(a,ZP'k-t').
               e-,O

Hence we may assume Tk.i' vanishes on M,,,,kb in the sence of Coo-topology.

Therefore, to set Tk-i=Tk-i'+Tk, we obtain

(82)k-t ep=dTk-i, on Uk-i(x).

To repeat this, we have the lemma.

   Note. Since we know

            (lea5+6fe.)f==L on U(a), a neig7zborhood of a,

for the Alexander-Spanier cochain f on M, where fe.f is given by

            (leaf)(Xo, Xl, ''', Xp-1)=f(Xe, Xl, ''', Xpml, a),
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to set

            (rca9)(X, Yi, ''', Yp-i)

             ==9(X, Yl, ･･', Yp-1, e.,.)p(X, a),

for a cross-section g of CP(s(M)), we obtain for a smooth P-form on M regarding

it to beacross-section of ACP(s(M)), ,
(85) d,m.so == go+o(1),

if d,pa=O, by (14)'.

   23. By definition a dp-smooth o-form gO is a function on M and it satisfies

(i). qOIM,,,,.b is smooth for each fe.

(ii). I17f {xj} is a series of M,,,,.b such that lim.jr,..xj=x, xEM,,,,kb (m<k), then

            4im.f(xj)=f(x), lim.d,kf(x(j)::=d,kf(x), le2.l-1.

            1-'oo ir+oo
Hence, if dpO==O, then gO is a constant function. Therefore, denoting `ifP the

sheaf of germs of dp-smooth P-forms on M, we have the fine resoltttion of the

constant sheaf of real numbers R on M as follows

                           ddd            O-R--({l90-(Zi--･･･-{l;7n ,O,

by virtue of lemma 21 and the corollary of theorem 9'. Hence we have de Rham's

theorem of M, a paracompact topological manifold in the following form (cf. [13],

[15]).

    Theorem 10. To set CP(M) the grouP of d,-smooth P-forms on M, then we

have

(86) HP(M, R)==3P(M)/dCP-i(M),

where 3P(M) is the kernel of d in CP(M).

   On the other hand, since in a smooth manifold, a singular chain always

homologous to a differentiable chain, and if f:a-M', M' is smooeh, is a diffe-

rentiable, then f satisfies (27), any (singular) cycle r' of M is homologous to a

cycle r of M such that

(87) r===ciL(a), eachi satisy7es (27),
                i

by the decomposition (74), Hence we may consider a d,-smooth form always inte-

grable on the homology basis of M. Moreover, for a d,-smooth form op and a

chain r which is written in the form of (87), we obtain the Stokes' theorem

Io,9 -h l, dp･
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Hence in theorem 11, the pairing of H)(M, R) and 3P(M)/dCP-'(M) is given by

(88) <7' ip>=Sr pa'

          '
 Here 7 and ip mean the classes of r and g.

   Note. We denote the groups of dp-smooth.cross-sections of CP(s(M)) and alter-

native Alexander-Spanier P-cochains of M by CP(M) and agP(M). The subgroups

of aP(M) and asP(M) consisted by those chains g that

            j, 1ep]=O, for any r which is written as (s7),

by OPN(M) and igPN(M). Here [opl is given by

            lgl(x, yb ･･･, yp)=lp(x, yb ny･･, yp)I, gEiaP(M),

            Iq[(Xo, Xb ''', xp)=lg(xe, xb ･･･, xp)I, opEEP(M).

Then by (14)' and (85), we have the commutative diagram

                    i -k            CP+i(M)-CP+i(M)/CP+iN(M).EP+i(M)/agP+iN(M)
            afiM) i -ai]l`ii)/o.(M) iT eEp(M-'))agp.(M).

Here, i is the map induced from the inclusion, d, and5 are the maps induced

from dp and a and k is the map induced from k. Here, k is given by

            (kp)(xe, xi, `･･, xp)

            --SO(Xo, Exo, a]i, '`'t Exo,`p)P(Xo, Xl)'''S)(Xo, Xp).

   We also note that to define a subgroup EPb(M) of EP(M) by

                                  '(89) E'b(M) =={gll, Igl<oo is ris given by (87)},

then we get

              A            le(CP(M))cigPb(M).

Moreover, by Stokes' theorem (cf. [3]), if an element g of SPb(M) is written as 6,

then we can take T to be an eiement of gP"ib(M). Hence denoting the sheaf of

germes of the elements of igPb(M) by gPb, we have a fine resolution

                        666            o ,R .EOb ,igib--. ･･･ ,SPb ,･･･,

because (il90 is a subsheaf of QOb and therefore the partition of unity subordinated

to any locally finite open cevering of M by the functions of ngOb(M) is always
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possible. Hence we get

(86), HP(M, R)==3Pb(M)/6igP-ib(M),

where 8Pb(M) is the 6-kernel in igPb(M) and we have the commutative diagram

              Xb,`."meili,b.(1'tme,,,,,.,IP,:4･l'l"li"ig',1

where le is the induced map from k.

   As in (86), in (86)', by the definition of gP(M) and the Stokes' theorem, we

also have the pairing of H)(M, R) and 3P,(M)raagP-'b(M) by

(88)' <7' ij5> ==l, 9'

where r is the class of a chain rof M and pa is the class of g, an element of

3P,(M).

             g8. Generalized integral curves of generalized vector fields on ma-

                 nifolds.

   24. We assume xEM},p,k, fe20 and lefn, and take the C(S"-i)-smooth functions

near x, A, ･･-, ]1,-k such that dpfl(x'), -･･, dpf}..k(x') form the basis of l(Sx,) if

x' EffM,,,,kb and suffLciently near to x. Then we can choose yi(x')eSx,, ･･･, y..k(x')ESx,

such that each yi(x') depends continuously on x' and they satisfy

                                                        '(71)" d,L(x', yj(x'))=Si,･, i, d=1, ･･･, n-fe. -

Then to set

                     n-h            i*'(Sx')=(;.ill..iici6yi(x,)lciGR", i=i, ･･･, n-k],

we may consider l*'(Sx,) to be the dual space of l(Sxt). Hence at x', we have

(42)' C'(Sx')Fl"'(Sx,)Ol(Sx')i.

    Moreover, although x'eM,,p,k, if x'EM,,p,kb, then since we may consider

dp.flL(x'), ･･･, dpL,.k(x') spann Tx,, the fibre of T(M,,p,kb) at x', if x' is sufficiently

near to x, we also have

(go) C*(S.t)=l*t(S.,)eT.,i.

    We choose a locally finite open covering {U} of M,,p,kb such that for each U,

the basis of l(S.), xEU (or the basis of T., if xeM,,p,k but xGM,,p,kb) and the

cross-sections yiU, ･･･, y.-kU of s(M) on U are given to satisfy (71)". We set
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            (ti)u=(6ori[f) ''', 6yn-k[i),

            (a)u(x)=(6yiu(x), ･･･, 5bl.-ku(x)).

Then, to set the transition functions of the tangent bundle of M,,p,kk by {guv},

            (6)u(x)=guv(x)((6.)(x))+guv(x)euv(x)El(S.).

Then since we have

            eu.(x)+g..(x)evrv(x)+g..(x)grvu(x):::o,

            guv(x)6vu(x) == -6uv(x),

by definition, to take the partition of unity {euv} of C(S"H')-smooth functions on

M subordinated to {UnV}, we have

            6uv(x)=rpu(x)-guv(x)rpv(x),

            rpu(x)= = evru(x)euru(x).

                  wnttXb

Hence to set

            l*(S.)u={the subSPace of C*(S.) sPanned by the components of

                   (6)u(x)-rpu(x)},

l*(S.)u does not depend on the choice of U and it can be regarded to be the dual

space of l(S.) (if xGMk,p,k and lf xifM,p,k but xEMG,p,nb, then l'(S.)u is regarded

to be the dual space of T.). Moreover, by definition, to set (denotingl"(Sx) instead

of l"(S.)u),

            T*(M,,,,feb)== u l*(S.), n-lklelllllO,
                      xEM},p,kb

T*(M,,p,kb) is a (tatal space of) vector bundle over M,,R,kb and it is the dual bundle

Of (TMs,p,kb).

   We note that similarly, we can define T"(M,,p,k) and it is a (tatal space of)

vector bundle over M,,p,k. This T"(M,,p,k) is the dual bundle of T(M,,p,k)

=- U l(S.).
  xEAdr
     s,p,k
   On the other hand, since T(M,,,,k) and C"(s(M))IM,,,,k are both vector bundles

over M,,p,k, to set

            T(M,,,,k)±== U l(S.)±, n-llll;fe;210.
                      xEM                         sspik

T(M,,,,k) is also an (infinite dimensional) vector bundle over M,,,,k and we have

(gl)r C*(s(M))IM,,,,k=T*(M,,,,k)eT(M,,,,k)±,
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                   'by (42)'.

    Similarly, to set

            T(M,,p,kh)== U T.i, n-1;lllle21,
                      xEMS,p,hP

we get by (90)

(92)t C*(s(M))IM,,,,k)b=T*(M,,,,kb)eT(M,,,,kb)i,

   If fe=n, we know that M,,p,.in:=M,,p,. and therefore M,,p,.bcM,,p,.. If xe

M,,p,n, then we define

            l*'(S.)=l*(Sx)=={O]',

Then we have T"(M,,,,.)=O, the O-bundle, and T(M,,,,.)=C"(s(M))iM,,,,.. Hence

(91)' and (92)' are hold trtte although k=n.

   By (91)', to set

                   }t            T#(M)== U T(Ms,p,k),
                  le=o

                    n 11            T#"(M)= U T"(M,,p,k), r#(M)i:= U                                         T(Ms,p,k)l,
                                       k:-O                   fe-=o

we have

(91) C*(t(M))-T*(M)G)T#(M)±,

by (91)'.

   Similarly, by (92)', to set

                   ft            Tig (M)= u T(M,,p,kb),
                  k=O

                    1･t O･l            Tla*(M)== U T"(Ms,p,kb), Tla(M)i= U T(Ms,p,kb)±,
                                        fe-=o                   h-=O

we also have

(92) C"(s(M))==rla"(M)eTh(M)±. .
   Note. Since we may assume the metric, p of M defines a measure w=to(x) on

S., we may take l'(S.)=={gdiIgEl(S.)} to be the mode! of the dual space of l(S.),

Here, the pairing <h,g>, hc!il(S.) is given by

            <h, go(x)> - J h. gte(x).

                       Sx

Then UxEAG,p,kl'(S.) allows the structure of the dual bundle of T(M,,,,k). But
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since the generalized tangent of a smooth curve takes the form 6y in one hand,

and no continuous curve takes the element of l'(S.) to be its generalized tangent

at x on the other hand, the above construction of T"(M,,p,k) seems more natural.

   25. Definition. in (91) and (92), we denote the Pro7'ections from C"(s(M)) to

Tla*(M) (or to T#"(M)) and to Tla(M)i (or to T#(M)±) by Pi and P2.

   Dethzition. Let X be a generalized vector field on M, then we define the gene-

ralized vector fields D(X) and S(X) on M by

            reP.D(X):=Pi(reP.X), reP.S(X)=P,(reP.X).

   By definition, we have

(93) X=D(X)+S(X).
 '   On the other hand, considering X to be a cross-section of C"(s(M)), we define

(the cross-sections of C"(s(M)) on M,,p,kb)

(94) ' Xh=XIM,,,,kb, nrr>-fe->.-O.

Then to define D(Xk) and S(Xk) similarly as D(X) and S(X), we get

(g3)t X,=D(X'k)+S(Xk), nllille;lil.O.

We note that by definitions, we have

            D(Xk)=D(X)[M,,p,feb, S(Xk)="S(X)[Ms,p,kb,

            D(X.)==O, the O-section on M,,,,.b.

   Since C"(s(M))IM,,,,kblC"(s(M,,,,kb)) if k>.-1, Xk is not a generalized vector

field on M,,p,kb if kl.lll, but D(Xk) is a (generalized) vector field on M,,p,kb for all

fe, because D(Xfe) is a cross-section of T*(M,,p,kb) on M,,p,kb for all k.

   We also get to define the (not continuous) generalized vector fields Xk onMby

            rep.2k(x)=Xk(x), xEM,,,,kb,

            rep.8k(x);=O, xeM,,,,kb,

then

                 ･J･l.(95) X-=.Xi'k.
                k-O

                        A rtt n   Similarly, to define D(Xk) and S(Xk) same as Xk, we get

                   -il 'il(gs)t D(X)-:D(Xi'k), S(X)-=S(?k).
                  k-O k-O
   We assume the smooth structure of M,,p,kb is given by {(U, hk, u)}. Then to

set reP. X=6(x), if hk,u-i"(g) satisfy the Lipschitz condition
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            " hk, umi*(g)(ai)-hk, u-i*(g)(a2) 1 i s{L H ai-a2 M ,

then hk,v'i*(6) also satisfies the Lipschitz condition if ai, a2 both belongs in hk, u(U)

nhk,v(V).

   Definition. VVe call Xk satiskes the local LiPschit2 condition on M,,,,kb if hk,u"`i"

(6) satishes the LiPschitz condition for all U. Here g(x)==reP.Xk and the smooth

structure of M,,,,kb is given by {(U, hk,u)}.

   Definition. PVe call X satishes the local LiPschitz condition on M if each Xk

satisies the local LiPschitz condition on M,,,,kb, Og{k$ln.

   Theorem 11. if X==D(X) and X satishes the LiPschitz condition on M, then X

has the (unique) integral curve starts from x if xaM,,,,.b, Moreover, it xEM,,p,kb,

then the integral curve of X starts from x is contained in M,,,,kb.

   Proo£ Since M,,p,kb is smooth and T*(M,,p,kh) can be regarded to be the
tangent bundle of M,,p,kb, D(X)IM,,,,kb==D(Xk) can be regarded to be the usual

vector field of M,,p,kb. Then, since D(Xk) satisfies the Lipschitz condition by

assumption, if xGM,,p,kb, then D(Xk) has the (unique) integral curve starts from

x in M,,p,kb. Hence we have the theorem

   By theorem 11, if X=D(X) and X(x);O, then we can solve the equation

(41)t Xu=L
locally for continuous f On the oher hand, by theorem 4, we have

   Theorem 4'. 11f X==S(X), then Xf is equal to O almost everywhere on M with

resPect to m, the measure on M in dntced from the metric p.

   We assume that on M the metric func･tion p(a, x)=L(x) is C(S'imi)-differentiable

for any a. Then to set

            za(X)=g(E.,.)fL,(X)e.(x), xfa, u(a)=O,

where g(y) is a function in C(S.) such that <X(a), g>:=1 and e.(x) is a C(S"-i)-

smooth function on M such that

            e.(a)=1, car.e.cB.:={xlp(x,x')$1},

we have

(44)' Xu(a)==1.

Moreover, if n is C(S'i-i)-smooth in B- . except at a and g is C(S"'2)-smooth, then

we get

(44)" Xza(x)=O, x;a,

if X=S(X). In this case, to set

            l'toc- (M)==(fl.XEKIf(x)l<oo for any compact set K of M],
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we have

            X(C(c(sn-i)(M))Dlit,.. (M),

if X==S(X) and there exists a cross-section e(x) of C(s(M)) such that

(96)i <8(x),e(x)>=1, 6(x)==reP.X,

(96)ii 1le(x)1l:SA, lldp,,e(x)iISB, xEM,

by theorem 3. Therefore, if fl,(x) is C(S"")-smooth on B.-a, for all a, then we

can construct Cx,o(M) similar!y as Cx,D(U) in nO 13, if X=S(X) and satisfies (96)i

and (96)ii. Hence we can solve the equation (41)' locally as an element of F(M,

Cx,o(M)").

   We note that if M is smooth and p is the geodesic distance of a Riemannian

metric of M, then n(x) is smooth on M-{a}.

   26. Since Tig(M)± is a subset of C"(s(M)), we can define the projection

x : Tla (M)± -M by

            rc ig == rc 1T la (M)±.

We also denote by zmi(Tig(M)±) the induced C'(S"-')-bundle over Tla(M)± from

C'(s(M)), Then, for a function f on M, or a cross-sectiori e of C"(s(M)) from M,

we can define a function xla*(f) on Tti(M)t ora cross-section xig*(g) of T"i(Tla(M)L)

from rla (M)i.

   We assume xEM,,p,hb and take a neighborhood U of x in M,,p,kb such that

there exists a homeomorphism eu(x) from U onto a neighborhood of the origin of

l*(S.). Then, since C"(S.)=l*(S.)eT.±, we can define a homeomorphism cu(.)#

from UxT.± onto a neighborhood of the origin of C"(sS.) by

            cu(x)#(g)=t.(xxp,(e)+p,(6).

Then, since T.± is the fibre of T(M,,p,kb) at x, there is a homeomorphisrngu:

x,ig-i(U)-Ux71.± and we obtain the map

(97) gD ueu(x)#: Tla -i(U)-C*(S.).
                                              '
Hence, if 6 is a generalized vector field, then to set

            eu, . == (go ueu(x)#)'(T ig *(e') l n la -i(U)),

eu,. is a map from C*(S.) to C*(S.). Hence, if llgu,.H is continuous and saitsfies

the Lipschitz condition

(98) II6.,.(q,)-8.,.(42)llgLiKi-4211,

where 1 relI is the norm of C in C'(S.), then the equation
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             dW'u,.(t) m

(61)' dt -                      eu,x(ep'u,.(t)),

has the unique solution under the initial condition Tu,.(O)==a, locally. We denote

the solution of (61)' with the initial condition

             ep'u, .(O) = goutu(x) # ((x, O)) := cu(x)(x),

bY epu,x,x･

    We note that although g u,. satisfy the Lipschitz condition (98), 6v,. may not

satisfy the Lipschitz condition in general. But, since M,,p,kb allows the structure

of a smooth manifold, and l"(S.) is the fibre of the tangent bundle of M,,p,hb at

x and T(M,,p,kb)± is the associate l*(S.)±-bundle of the tangent bundle of M,,p,kb,

we may consider gueu(x)# to be a smooth map. Then, since

(99) gv,.==(gvcv(x)#)"(gueu(x)#)"-i6u,.,

gv,. also satisfies the Lipschitz condition. -
    On the other hand, since (opvev(x)#"(opueu(x)#)"-i is a map from (an open set of)

C*(S.) to an (open set of) C'(S.) and does not depend on t, we have

                                              '             d
(iOO) 2irt(gvcv(x)#)*(gutu(x)#)"-iep'(t))

             =:(g.c.(x)#)*(op.c.(x)#)#"i(IZtlep-(t)),

for all C'(S.)-valued C'-class function T(t). Hence, if 6u,. satisfies the Lipschitz

condition (98), then by the uniqueness of the solution of (61)', we have by (99) and

(100),

(101) ZP'v,.,.(t)=govtv(x)#)"goucu(x)#)'-ilP'u,.,.(t).

    By (101) and the definitions of gu and tu(x)#, we also have

(101)' rr la sDuTu, x, .,(t)=ft la 9vUi'v,x, x(t)･

   Summarising these, we obtain .

    Theorem 12. 1]IC X is a continztozts generalized vector field on M such that X

satishes the (local) LiPschit2 condition on M, then X has the integral curve T.(t) starts

from x in the sPace Tla(M)i uniquely. This integral curve satisies

(102) Tig Tx(t)EMs,p,kb, '

if XEMs,p,kb･

   Corottary, Lf X is a continuous generalized vector field on M and satishes the
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(local) LiPschitz condition on M, then X dofnes a local 1-Parameter grouP of trans-

formations {T,} of M such that {T,} is smooth in t and

(103)i To is the identity and T,T,==T,.,,

(103)ii T,(M)crh(M)±,
(103)iii rrla(Tt(Ms,p,kb))CMs,p,kb,

             d
(103)iv d-t(Tt"f)=rr4*(X)(Tt"f).

   Note 1. If X=S(X), then zmp'.(t)==x for any t and x. On the other hand, if

X=D(X), then nmp'.(t) is the usttal integral curve of X starts from x, and, we

may identify {T,IM,,,,kb}, the restriction of the above {T,} on M,,,,kb, and the

usual (local) 1-parameter grottp of transformations of M,,R,kb generated by X for

each k. Therefore, if X=D(X), then we may consider

(103)ii' T,(M)cM.

   Note 2. If M is smooth, then we have M,,p=M if we take p to be the geo-

desic distance of a Riemannian metric of M. Then we have

            Tla(M)==T"(M), the cotangent bttndle of M.

Hence Tla(M)±=T*(M)i is a fibre bundle over M with the typical fibre l(S"-')±.

Therefore, rla(M)± is a smooth Banach manifold ([6], [12]), bllt it is not C'-

smooth by the theorem of Restrepo ([6], [14]).

   Note 3. By [3], we may consider the manifold structure {U, hu} of M is

given to satisfy

(i). ff x, yEU, then

            p(x, y)$A1 lhu(x)-hu(y)i 1 cr, cy.<log. 2/log. (2n+2),

   for some A>O.

(ii). The comPonents of huhy-i are the junctions of bounded variations and log. 2/log.

  (2n+2)-Hblder continuous for each (U, V).

Hence, to set reP.X==e(x), if hu"(e) satisfies

                                     '(gs)' 1lhu"(e)(ai)-hu*(6)(a2)i1$LHai-a2Ha,

for a$log. evlog. (2n+2) and for some L>O, then hv"(6) also satisfies (98)' for some

L'>O. Therefore, we may define

   Definition. We call a generali2ed vector field X with reP.X==6(x) to be (locally)

ev-Hblder continuous for a;s{log.2/log.(2n+2), if hu"(g) satishes (98)' for each U.

    As in nO16, we definec
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    Definition. The integral curve of X in Tig(M)± starts from x is called the gene-

rali2ed integral curve of X starts from x.

    Then, as in nO16, we obtain

    Theorem 12'. if a generalized vector field X on M is continuous on M, then X

has the generalized integral curve starts from x if and only if D(X) has the (usual)

integral curve starts .fli'om x.
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