Note on Quadratic Extensions of Rings II

By Kazuo Kishimoto
Department of Mathematics, Faculty of Science,
Shinshu University
(Received April 30 1972)

Introduction. Throughout the present paper B will mean a ring with an identity $1, A=B+x B=B+B x \neq B$ an extension ring of B with an identity coinciding with the identity of B.

As an extension of result of [5], T. Nagahara gave characterizations for a commutative ring A to be a Galois extension over B ([7]). The main purpose of this note is to extend the above Nagahara's result to some non commutative case.

Let $A=B \oplus x B=B \oplus B x, d x=x d_{1}+d_{0}$ for each $d \in B\left(d_{1}, d_{0} \in B\right)$. Then the map $\rho: d \longrightarrow d_{1}$ is an automorphism of B and the map $D: d \longrightarrow d_{0}$ is a ρ derivation of B. Further, if $x^{2}=x b_{1}+b_{0}$ for some $b_{1}, b_{0} \in B$, the map σ of A defined by $\sigma\left(x b^{\prime}+c^{\prime}\right)=(x c+b) b^{\prime}+c^{\prime}\left(b, c, b^{\prime}, c^{\prime} \in B\right)$ is a B ring epimorphism of A if and only if there hold followings
(I) c is a unit element of Z, the center of B.
(II) $(1-c) D(d)=d b-b p(d)$ for each $d \in B$.
(III) $c b_{1}=c\left(\rho(c) b_{\mathbf{1}}+D(c)+b+\rho(b)\right)$.
(IV) $b b_{1}+b_{0}=c\left(\rho(c) b_{0}+D(b)\right)+b^{2}$.

For if σ is a B-homomorphism, we obtain
$\sigma(d x)=d(\sigma(x))=d(x c+b)=x_{\rho}(d) c+D(d) c+d b$ and $\sigma(d x)=\sigma\left(x_{\rho}(d)+D(d)\right)=x c_{\rho}(d)$ $+b \rho(d)+D(d)$.

Hence $c \in Z$. Moreover, if σ is an epimorphism, $c B=B$ implies that c is a unit element. Under the assumption that $c \in U(Z)$, the validity of (II)-(IV) is equivalent to that σ is a homomorphism of A by [2].

Now, we set the condition*) as following :
*) If M is a right, as well as left, free A-module of finite rank, then the rank is unique ${ }^{1)}$.

In all that follows, we assume that A satisfies *).

1. Necessary and sufficient conditions for A to be Galois over B.

We shall begin our study from the following
Lemma 1. Let A / B be a Galois extension with a Galois group (8. Then

[^0](a) (53 is of order 2.
(b) For $\sigma(\neq 1) \in(B, x-\sigma(x)$ is inversible.
(c) $\{1, x\}$ is a free B-basis for A^{2}.

Proof. Let $\sigma(\neq 1) \in \mathfrak{G}$. We suppose that $x-\sigma(x)$ is not right inversible. Then there exists a proper right ideal \mathfrak{r} of A such that $\mathfrak{r} \exists x-\sigma(x)$. On the other hand, since $A=B \oplus x B,(1-\sigma) A=\{y-\sigma(y) \mid y \in A\}$ is contained in r. Let $\left\{x_{1}, x_{2}, \cdots\right.$, $\left.x_{n} ; y_{1}, y_{2}, \cdots, y_{n}\right\}$ be a (3)-Galois coordinate system for A / B with $\sum_{i=1}^{n} \tau\left(x_{i}\right) y_{i}=\delta_{1}, \tau$ for each $\tau \in$ (3). Then we have a contradiction $1=\sum_{i=1}^{n}\left(x_{i}-\sigma\left(x_{i}\right)\right) y_{i} \in \mathfrak{l}$. Thus $x-\sigma(x)$ is right inversible. Since $A=B \oplus B x$, the same arguments enable us to see that $x-\sigma(x)$ is left inversible.

Now, let $c^{\prime}+x b^{\prime}=0$ (resp. $\left.c^{\prime}+b^{\prime} x=0\right)$ for some $c^{\prime}, b^{\prime} \in B$. Then $0=\left(c^{\prime}+\right.$ $\left.x b^{\prime}\right)-\sigma\left(c^{\prime}+x b^{\prime}\right)=(x-\sigma(x)) b^{\prime}$ (resp. $\left(c^{\prime}+b^{\prime} x\right)-\sigma\left(c^{\prime}+b^{\prime} x\right)=b^{\prime}(x-\sigma(x))$ yields $c^{\prime}=$ $b^{\prime}=0$.

Regarding that $A \otimes{ }_{B} A$ is a left (resp. right) A-module by $a\left(b^{\prime} \otimes c^{\prime}\right)=a b^{\prime} \otimes c^{\prime}$ (resp. $\left.\left(b^{\prime} \otimes c^{\prime}\right) a=b^{\prime} \otimes c^{\prime} a\right)$ for each $a, b^{\prime}, c^{\prime} \in A, A \otimes{ }_{B} A=A \otimes_{B}(B \oplus B x)=A \oplus$ $A \otimes{ }_{B} B x=A(1 \otimes 1)+A(1 \otimes x) \quad$ resp. $\quad A \otimes{ }_{B} A=(B \oplus x B) \otimes{ }_{B} A=A \oplus x B \otimes{ }_{B} A=$ $(1 \otimes 1) A+(x \otimes 1) A)$ is a free A-module of rank 2. On the other hand, (b), (c), (d) and (e) of [1], Theorem 1.3 are equivalent without assumptions that A and B are commutative ${ }^{3)}$. Therefore $A \otimes{ }_{B} A$ is isomorphic to a direct sum of $\mid(\mathbb{S} \mid$-copies of A. Consequently we have $\mid\left(\oiint \mid=2\right.$ by $\left.{ }^{*}\right)$.

Theorem 1. 4) Let A have a relation $x^{2}=x b_{1}+b_{0}$ for some $b_{0}, b_{1} \in B$. Then A / B is a Galois extension if and only if there hold that
(a) $\{1, x\}$ is a free B-basis for A.
(b) there exists an element b of B satisfying
(i) $2 D(d)=d b-b \rho(d)$,
(ii) $b+\rho(b)=2 b_{1}$,
(iii) $b b_{1}=b^{2}-D(b)$,
(iv) $2 x-b$ is inversible, where ρ, D are maps of B defined by $d \longrightarrow d_{1}$, $d \longrightarrow d_{0}$ respectively for each $d \in B$ with $d x=x d_{1}+d_{0}\left(d_{1}, d_{0} \in B\right)$.
Moreover, if A is commutative (i), (ii) and (iii) of (b) are needless and (iv) can be replaced (iv') $2 x-b_{1}$ is inversible.

Proof. Let A / B be a Galois extension. Then by Lemma 1, (S), the group of B-automorphisms of A is $\{1, \sigma\}$ and $\{1, x\}$ is a free B-basis for A.

Let $\sigma(x)=x c+b$. Then $B \ni x+\sigma(x)=x(1+c)+b$ implies $c=-1$, and hence, $x-\sigma(x)=2 x-b$ is inversible by Lemma 1. The validity of (i), (ii) and (iii) of (b) is a direct consequence of (II), (III) and (IV).
2) A free basis means a free right, as well as, left basis.
3) Needless to say a B-algebra homomorphism of [1] replace to a B-module homomorphism.
4) Cf. [7], Lemma 1 .

Conversely, assume that A satisfy (a) and (b). Then by (a) and (i), (ii) and (iii) of (b), the map σ defined by $x b^{\prime}+c^{\prime} \longrightarrow(-x+b) b^{\prime}+c^{\prime}\left(b^{\prime}, c^{\prime} \in B\right)$ is a B-automorphism of A. Let $\sigma\left(x b^{\prime}+c^{\prime}\right)=x b^{\prime}+c^{\prime}$. Then $(x-\sigma(x)) b^{\prime}=(2 x-b) b^{\prime}=0$ implies $b^{\prime}=0$ by (iv) of (b). Thus $A^{0}=B$. Since $(x-\sigma(x))^{-1} x-(x-\sigma(x))^{-1} \cdot \sigma(x) \cdot 1=1$ and $(x-\sigma(x))^{-1} \sigma(x)-(x-\sigma(x))^{-1} \sigma(x) \sigma(1)=0, A / B$ is a Galois extension.

Let A be commutative. Then we have $b b_{1}=b^{2}$ by (iii) of (b), and the map $\eta: x b^{\prime}+c^{\prime} \longrightarrow\left(-x+b_{1}\right) b^{\prime}+c^{\prime}$ is a B-automorphism of A by (I), (II), (III) and (IV). If $\eta=1$ then $x=\eta(x)=-x+b_{1}$, and hence $2 x=b_{1}=0$. On the other hand, since $2 x-b$ is inversible by (iv) of (b), we can see that b is inversible. But, this contradicts to $b^{2}=b b_{1}$. Thus $\eta=\sigma(\neq 1)$ and $x-\sigma(x)=2 x-b_{1}$ is inversible by Lemma 1 (b).

Let T be a ring, P an automorphism of T, E a P-derivation of T. Then by $T[X ; P, E]$ we denote a ring of polynomials $\left\{\sum X^{i} t_{i} \mid t_{i} \in T\right\}$ whose multiplication is defined by the distributive laws and the rule $t X=X P(t)+E(t)$ for each $t \in T$. A monic polynomial $f(X) \in T[X ; P, E]$ is called a non-vanishing polynomial if the right ideal $f(X) T[X ; P, E]$ is a two-sided ideal of $T[X ; P, E]$, and, an element $t \in T$ is called a root of $f(X)$ if $f(t)=0$ and $X-t$ is non-vanishing ${ }^{5}$.

Corollary 1. Let A / B be a Galois extension with $x^{2}=x b_{1}+b_{0}\left(b_{1}, b_{0} \in B\right)$ and $d x=x \rho(d)+D(d)$ for each $d \in B$. Then the following conditions are equivalent:
(a) $2 \cdot 1=0$
(b) $x-\sigma(x)$ is an element of B.
(c) there exists a free B-basis $\{1, y\}$ for A with $\sigma(y)=y-1$.
(d) there exists a free B-basis $\{1, w\}$ for A such that w and $w-1$ are roots of the polynomial $\left.\left.X^{2}-X-\left(w^{2}-w\right) \in A\left[X ; \mathrm{I}_{w}\right]\right]^{6}\right)$
Moreover, if A has no proper central idempotents, then the only roots of the polynomial $X^{2}-X-\left(w^{2}-w\right)$ given in (d) are w and $w+1$.

Proof. $(\mathrm{a}) \longrightarrow(\mathrm{b})$. Let $2 \cdot 1=0$. Then $x+\sigma(x)=x-\sigma(x)$ means that $x-\sigma(x) \in$ B.
(b) $\longrightarrow(\mathrm{c})$. Let $b=x-\sigma(x) \in B$. Then, by Lemma $1, b$ is inversible. Hence if we set $y=x b^{-1},\{1, y\}$ is a free B-basis for A and $\sigma(y)=(x-b) b^{-1}=y-1$.
(c) $\longrightarrow(\mathrm{d})$. Since $d y-y d \in B$ for each $d \in B, d y=y d+D(d)$, where D is a derivation of B. Now we shall show that $X^{2}-X-\left(y^{2}-y\right) \in A\left[X ; \mathrm{I}_{y}\right]$ is the requested polynomial. $\quad X(X-y)=(X-y) X, \quad X(X-(y+1))=(X-(y+1)) X$ and $d(X-y)=X d-d y+D(d)=(X-y) d, d(X-(y+1))=\dot{(X-(y+1)) d \text { show that } y}$ and $y+1$ are roots of $X^{2}-X-\left(y^{2}-y\right)$.
$(\mathrm{d}) \longrightarrow(\mathrm{a})$. Let $\{1, w\}$ be a free B-basis for A such that w and $w+1$ are roots of $X^{2}-X-\left(w^{2}-w\right)$. Then $0=(w+1)^{2}-\langle w+1)-\left(w^{2}-w\right)=2 w$ shows that
5) Cf. [4].
6) $I_{w o}$ means the inner derivation generated by w.
$2 \cdot 1=0$.
Let A be a ring without proper central idempotents, and let z be a root of $X^{2}-X-\left(w^{2}-w\right)$ given in (d). Then $X(X-z)=(X-z) X=X(X-z)-D(z)$ and $d(X-z)=(X d-d z+D(d))=(X-z) d$ for each $d \in B$. Hence we have $D(z)=z w$ $-w z=0$ and $d w-w d=d z-z d$ respectively. Hence $w+z \in V$, the centralizer of B in A. Since $z w=w z$, we have $w+z \in C$, that is, $z=w+c$ for some $c \in$ C. Noting that $2 \cdot 1=0,0=z^{2}-z-\left(w^{2}-w\right)=(z+w)^{2}-(z+w)=c^{2}+c, \quad c$ is a central idempotents, and hence $c=0$ or $c=1$.

Theorem 2. Let A / B be a Galois extension. Then $2 \cdot 1$ is inversible if and only if there exists an element $y \in A$ such that $A=B \oplus y B=B \oplus B y, y^{2} \in B$ and $y \sigma(y)$ $=\sigma(y) y$ for each $\sigma \in(\mathbb{S}=(3(A / B)$, and if this is the case, y is inversible.

Proof. Let 2.1 be inversible, and let $y=(x-\sigma(x)) / 2$. Then y is inversible, $\sigma(y)=-y$ and $y^{2} \in U(B)$. Since $y^{-1} / 2 \cdot y+y^{-1} / 2 \cdot y \cdot 1=1$ and $y^{-1 / 2} \cdot \sigma(y)+y^{-1} / 2 \cdot y \cdot \sigma(1)$ $=0, B[y]=B+y B=B+B y=A$ by [6, Theorem 2.3]. By Lemma 1, $\{1, y\}$ is a free B-basis for A.

Conversely, assume that there exists an element $y \in A$ such that $A=B \oplus y B$ $=B \oplus B y, y^{2} \in B$ and $y \sigma(y)=\sigma(y) y$ for each $\sigma \in\left(\mathcal{B}\right.$. Then $y(y+\sigma(y))=y^{2}+y \sigma(y)$ $\in B$ yields $y+\sigma(y)=0$, and hence $\sigma(y)=-y$. Consequently, we can see that $2 y$ is inversible by Theorem 1. Thus $2 \cdot 1$ and y are inversible.

Corollary 2. Let A be a Galois extension with $x^{2} \in B$, and $d x=x_{\rho}(d)+D(d)$ for each $d \in B$. Then the following conditions are equivalent :
(a) $x \sigma^{\prime}(x)=\sigma(x) x$ for each $\sigma \in \mathbb{8}$.
(b) $D=0$ and $2 \cdot 1, x$ are inversible.
(c) $\rho=x^{-1} \mid B$ and $2 \cdot 1$ is inversible.
(d) ρ can be extended to an automorphism P of A with $P(x)=x, x$ and $-x$ are distinct roots of $X^{2}-x^{2}$ of $A[X ; P]$ in A.
Proof. Firstly, we shall note that if $\sigma(x)+x=b$ for some $b \in B$, then b satisfies $2 D(d)=d b-b p(d)$ for each $d \in B$ (Theorem. 1 (b), (i)).
$(\mathrm{a}) \longrightarrow(\mathrm{b})$. As is shown in the proof of the sufficiency of Theorem 2, $\sigma(x)=$ $-x, 2 \cdot 1$ and x are inversible. Since $\sigma(x)+x=0$, we have $D(d)=d(b / 2)-(b / 2) \rho(d)$ $=0$ for each $d \in B$,
(b) \longrightarrow (c). This implication is evident.
(c) \longrightarrow (d). If $\rho=\widehat{x}^{-1} \mid B$ then $P=\breve{x}^{-1}$ is an automorphism of A with $P(x)=x$, and $X(X \pm x)=(X \pm x) X, d(X \pm x)=(X \pm x) \rho(d)$ are clear.
$(\mathrm{d}) \rightarrow(\mathrm{a})$. Since $d(X-x)=(X-x) \rho(d)$ for each $d \in B, \rho=\widehat{x}^{-1} \mid B$. Hence the map σ defined by $\sigma\left(x b^{\prime}+c^{\prime}\right)=-x b^{\prime}+c^{\prime}\left(b^{\prime}, c^{\prime} \in B\right)$ is a B-automorphism of A. Thus $x \sigma(x)=\sigma(x) x$ for each $\sigma \in(\mathbb{B}$.

Let A be a ring without proper central idempotents, and let z be a root of $X^{2}-x^{2}$ given in (d). Then $X(x-z)=(X-z) X$ and $d(X-z)=(X-z) \rho(d)$ for each
$d \in B$. Hence we have $x z=z x, d z=z \rho(d)$ respectively. Hence $z=x c$ for some $c \in U(C)$ with $c^{2}=1$. Since C is a commutative ring without proper idempotents, $c= \pm 1$ by [3, Corollary 2.5].

The following will be easily seen from Theorem 2 and Corollary 2.
Corollary 3. ${ }^{7)}$ Let A have a relation $x^{2} \in B$. Then A / B is a Galois extension with $x \sigma(x)=\sigma(x) x$ for each $\sigma \in \mathbb{G}$ if and only if there holds that
(a) $\{1, x\}$ is a free B-basis for A.
(b) $2 \cdot 1$ and x are inversible.
(c) $D=0$ where D is the map defined by $d x=x_{\rho}(d)+D(d)$ foreach $d \in B$.

2. Structure of the centralizer.

In the rest, we shall determine the structure of the centralizer of a quadratic extension.

Let $A=B \oplus x B=B \oplus B x$ be a $\mathfrak{E}=\{1, \sigma\}$ Galois extension, and let V be the centralizer of B in A. Then we may assume that $x^{2} \in U(B), \sigma(x)=-x$ and $d x=x \rho(d)$ for some automorphism ρ of B if $2 \cdot 1$ is inversible for each $d \in B$, and $d x=x d+D(d), \sigma(x)=x+1$ for some derivation D of B if $2 \cdot 1=0$ for each $d \in$ B.

Theorem 4. Let $2 \cdot 1$ be inversible or $2 \cdot 1=0$. Then $V=C[Z]$, the composite of the center C of A and the center Z of B. More precisely, $V=C \oplus Z_{o}$, where $Z_{\sigma}=$ $Z \cap J_{\sigma}$ and $J_{\sigma}=\{a \in A \mid a y=\sigma(y) a$ for each $y \in A\}$.

Proof. It is evident that $V=Z$ if $\sigma=\bar{v}$ for some $v \in V$. Hence we consider the case $\sigma \neq \bar{v}$ for each $v \in U(V)$. Firstly, we note that $V=C \oplus J_{\sigma}$.
case $2 \cdot 1=0$. Let $v=x b+c(b, c \in B)$. Then $d v=v d$ for each $d \in B$ imply $x d b+D(d) b+d c=x b d+c d$ and hence

$$
\begin{equation*}
b \in Z \tag{1}
\end{equation*}
$$

and $D(d) b=c d-d c$.
Thus,

$$
\begin{equation*}
D(b) b=0 \tag{2}
\end{equation*}
$$

Next, let us assume that $v \in J_{o}$. Then $J_{\sigma} \ni \sigma(v)-v=b$ yields $b x=\sigma(x) b=$ $(x+1) b$, and hence

$$
\begin{equation*}
D(b)=b \tag{3}
\end{equation*}
$$

By (2) and (3), we have $b^{2}=0$. Then $1+b \in U(Z)$ by (1).
On the other hand, since $\sigma \neq \bar{v}$ for each $v \in U(V), U(Z) \cong C$. Thus we obtain $0=D(1+b)=D(b)=b$. Therefore $v=c \in B \cap V=Z$ means that $J_{o} \subseteq Z$. Thus

[^1]$V=C \oplus Z_{\sigma}=C[Z]$.
case $2 \cdot 1$ is inversible. Let $v=x b+c(b, c \in B)$. Then $d v=v d$ for each $d \in B$ implies $x \rho(d) b+d c=x b d+c d$, and hence
\[

$$
\begin{equation*}
\rho(d) b=b d, c \in Z \tag{1}
\end{equation*}
$$

\]

Thus

$$
\begin{equation*}
\rho(b) b=b^{2} \tag{2}
\end{equation*}
$$

Next, let us assume that $v \in J_{o}$. Then $J_{o} \ni 1 / 2(\sigma(v)-v)=x b$ and $x b x=x^{2} \rho(b)$ $=\sigma(x) x b=-x^{2} b$, and hence

$$
\begin{equation*}
\rho(b)=-b \tag{3}
\end{equation*}
$$

By (2) and (3), we have $\rho(b) b=b^{2}=0$. Thus $(x b)^{2}=x^{2} \rho(b) b=0$, and hence 1 $-x b \in U(V)$. Since $U(V) \subseteq U(C)$, we have $x b \in J_{\sigma} \cap C=0$. Consequently, $V=C$ $\oplus Z_{s}=C[Z]$.

References

[1] S. U. Chase, D. K. Harrison and A. Rosenberg : Galois theory and Galois cohomology of commutative rings, Mem. Amer. Math. Soc., No. 52 (1965).
[2] P. M. Cofn : Quadratic extensions of skew fields, Proc. London Math. Soc., 11 (1961), 531-556.
[3] G. J. Janusz : Separable algebras over commutative rings, Trans. Amer. Math. Soc., 122 (1966), 461-479.
[4] K. Kishimoto : Zeros of polynomials and Galois extensions of simple rings, J. Fac. Sci. Shinshu Univ., 2 (1967), 117-122.
[5] : Note on quadratic extensions of rings, J. Fac. Sci. Shinshu Univ., 5 (1970), 25-28.
[6] Y. Miyashita : Finite outer Galois theory of non-commutative rings, J. Fac. Sci. Hokkaido Univ., 19 (1966), 114-134.
[7] T. Nagahara: A quadratic extension, Proc, Jap. Acad., 47 (1971), 6-7.

[^0]: 1) If A is commutative, A satisfies ${ }^{*}$).
[^1]: 7) Cf. [7], Lemma 2.
