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Introduction
The main purpose of this paper is to introduce the notion of generalized
tangent of a curve y given by ¢ : I— M, where M is an #n-dimensional Paraco-
mpact topological manifold with a (fixed) metric p. Here p is assumed to satisfy
(M, If p (%1, 25) << 1, them there exists unique curve 7 of M which joins x, and x,
and

er = P(xh Xa).
(For the existence of such metric, see [4]). In the rest, we set

== plx, ¥) =15

By assumption, S, is homeomorphic to S"°!, the unit (# — 1)-sphere. Then the
generalized tangent of 7 at @ = ¢(0) is defined to be a positive Radon measure on
S, and we show that for any positive Radon measure & on S, there exists a
curve 7 on M whose generalized tangent at a is € (§3, theorem 3).

More Precisely, to define the generalized tangent of 7, first we introduce the
notion of & (S""1)-smooth function at @, where & (5" is a (fixed) function space
on S”°! such as C(S*Y), LAS"Y (the measure on S*! is the standard volume
element, that is given byZixic\l/xi (cf. 157, (11 or (if M is smooth or real analytic)
C=(S""1 or C(S*"1), as follows : A function [ defined on some neighborhood of a is
called to be 7 (S"Y-smooth if f is written as

Jx) = fla) + gle, z)ola, %)+ olpla, x)), ola, x)<1,
and g(y) belongs in 57(S,). Here ¢, . means the point y on S, such that
XE

where ¥, , 15 the curve of M which joins a and y and Jr o =1, and 57 (S,) means
ay

the function space on S, defined similarly as (using the measure induced from p(cf.
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(3], [4]).&(S" .
Then the generalized tangent of 7 at a is defined to be the element £ of & *

(S,), the dual space of (S, which is determined by

o1

et - Fladt],

<&, g>=lim. Llim, J

s—0 S -0
where y is given by p: f— M and p is assumed to satisfy

(i) o0) =a, plt)+a, if t#£0,
(ii) ela, o)) = olt),

fis an #7(S"!)-smooth function at @ and g = (S} is given by

20y) =lim. ~(fr..,.) — fl@),

t—0 §
where 7,,,,, is given by

7’a,y,t = Ta,y: Ao(a) ra,y,t) = t

We denote g by d.f or, d,flayor d,, af.

We note that this definition of the generalized tangent depends on the choice
of parameter ¢ of y(cf. n°1l of §3).

If &7(S") is taken to be C(S"1), the Banach space consisted by the continuous
functions on S*°! with the uniform convergence topology, then C*S"°!) is the
space of Radon measures on S"Ycf. [187]), and we can show that an element of
C*S,) is expressed as a generalized tangent at @ of a curve if and only if it is
positive, that is <¢, g>>0if g =0 on S,. For example, the Dirac measure
on S, is expressed as the generalized tangent at a of a curve y which is smooth
at a. Here a curve y given by p: I— M, p0) =@, is called smooth at a if lim,
t-0 €a,o¢ €xists, The problem to characterize the element of C«*(S"-!), the space
of distributions on S$”°! or C«*S*-1), the space of analytic functionals on S"7i,
which is expressed as the generalized tangent of some curve, remains open.

We note that althongh the O, N. -basis of L¥S"-1) is given by spherical harmo-
nics (cf.[5], [11]), a smooth function at a only represents a spherical function of
degree 1. Hence, since the usual tangent of a smooth curve is defined only hy
using smooth functions, the usual tangents of smooth curves corresponds only this
part of L3S"Y). But the above result shows, if we use the L¥S""!)-smooth func-
tions, the generalized tangents covers the positive part of L¥S"™1).

As in the case of usual tangent vectors (cf.[6], [13]), to set
51

FUSlt) — flanat],

X, F) = lim. [lim. j

s—0 S a0

where f is Z(S"1)-smooth at @, we have
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(1) Xolaef1 + BF2) = a¥o(f1) -+ BES2),

(i1) Xo(f1S2) = [il@)Xo( f2) + Sel@X,(f1),
and we also have

(iii) Xo(f) =0 if | fix) — fla)] = olele, %)),
(iv) Xo(f) =0 if dpf 20,

On the other hand, if the map X from the space of & (5”!)-smooth functions
at a to R, the real number field, satisfies (i), (ii) and (iii), then X is written as

f=<& doSfla>,

by some & €. 77%S,). Hence if X also satisfies (iv), X is written as ¥, by some

¢ : I—-M. In some part, the globalization of these discussions are possible,
To do this, first we constract the associate . (S"-!)-bundle of the tangent micro-
bundle of M, which is denoted by & (s(M)) and its dual bundle, which is denoted
by F*sM) (§1). (cf.[1], [9], [12]).

Next, we set
. 1
d,flx, y)= ltﬂjyo. 7(f Fayr) — J¥), ¥y &S

If d,f(x) is a continuous cross-section of # (s(M)), then we call fis F(S"1)-
smooth on M (for n =1, cf.[7], [&], [10]). We can show that the space of
(S*~1)-smooth functions on M (denoted by Cﬁ(sn_l)(M) is dense in C(M) or in L%,
(M) (§ 2, theorem 1), (The measure on M by which LAM) or L?,, (M) is defined,
is that of induced from p (cf.[3], [4]). Then a linear operator X of C(M) which

satisfies the following (i), (ii), (iii) is called an & (58" !)-vector field on M.

(). X is a closed operator from C ﬁ(S”“)(M ) into C(M),
(ii). (XNa) =0, if|flx) — fla)] = olola, x)) at a.
(iii). X(f1/2) = [1X(Sfa) + fo XS,

We show that if X is an 7 (S"1)-vector field on M, then X is written as
Xfx) = <&W), d,f(x)>, x €M,

where & is a continuous cross-section of # *(s{M)) (§ 2, theorem 2). Therefore,
as usual vector field, we may identify X and a continuous cross-section of 57°*
(s(M)). But an F#(S"Y-vector field X does not generate a l-parameter group
germ of M in general. For example, the theorem of Hille-Yosida shows that if
M is compact and simply connected, the C(S"Y-vector field X corresponds to the

cross-section m of C¥*s(M)) given by m = m(x), m(x) is the cannonical measure on
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S, defined from the metric, does not generate any (equi-continuous) 1-parameter
semi group of C(M) or LAM) (§ 2, exemple). (cf.[177], [18]). We note since m(x) is
positive, there exists a curve y =y, for any %, such that 7, starts from x and
whose generalized tangent at x is m(x) (cf. §3, exemple 2), if n =2, 7, is given
by 70 =1,

As usual vector field, if X, Y are . (8" Y)-vector fields such that theire com-
positions XY and YX are both possible, then

[X, Y]=XY - YX

is also an &7 (S""1)-vector field of M, But the composition of . % (S”1}- vector fields
may not be possible in general.

In §1, we also construct associate & (S"71x.--.- XS”;i)-btllldle of the tangent
microbundle of M, It is denoted by &% (s®#(M)). We denote by A 7 (s?(M)) the
subbundle of & (s®M)) whose fibre is consisted by those functions f(yi, -+ , Yoh
¥, 8" of F(S"TIX s x S"71) such that

f(yu(l), """ ) yu(f))) = Sg11(g)f(y1) """ 3 y[)), [ 71)-

The cross-sections of these bundles are considered to be reductions of Alexander-
Spanier cochains (cf. [[17, [3], [14], [15]).

For the cross-sections of & (s?(M)) and A & (s#{M)), we define the maps d,
and Ad, by

dﬂf(xy Y1, e ’ yp+1)
.1
:ll%’/no 7[.][(7’:\':.\’1:13 BZTRREELE ) y[’+1) - f(x: Yo, e 13 y11+1))

Adﬂf(x) Viy e ’ yp+1)

= IR | ‘
_ o i 2 } (__1)1+1LZ}7710. ‘t—(f(rx,y,il, Vi, e y Yiaty toeme y y‘lz+1)~
1= -

f(xy Y1y e y Yi-1y Yiery o » y[)+1))]-

We call f is # (8" Y)-smooth if d,f (or Ad,f) defines a continuous cross-section of
(st M) (or A #(s?*Y(M)). We note that to define
JTf(x, Yy woeeee s yp) bY

where 7 is a singular p-chain of M and the right hand side is the integration of
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Alexander-Spanier cochain defined in {3], J fis exists if f is & (8" Y)-smooth
T
and 7 is given by ¢ : I —~ M where ¢ satisfies
plplarriy), olan) < N|ajiv— aji,
ay :(afl) """ » aj[))y ay+1; = (aj“ """ y Qji-y Qjivyy Qjiary 000 ’ ajP)-
for some N > 0. Since Ad,(Ad,f)=0 if Ad,.f is & (S"!)-smooth, we can obtain
the analogy of de Rham’s theorem by using the cross-sections of A & (s®(M)) and
the Cech cohomology group of M. But the above shows that the analogy of de

Rham’s theorem is also obtained by using the singular homology group of M (cf.

[15], [16]).
We note that if M=R!, the 1-dimensional euclidean space with the euclidean
metric, then

d,f(x) = (D, f(x), D_f(x)),
where D, and D_ mean the right hand side and the left hand side derivations of
f and the (fibre of F(s(RY) is R@® R. We know that f is smooth if and only if
D.f = D~ f at any point of R!, that is d,f defines a cross-section of the subbundle
of . (s(RY) whose fibre is the diagonal of R @ R.
To generalize this, first we assume the metric ¢ of M satisfies (*), If plx;
, X2) X 2, then therve is unique path y which joins x, and x, and

[T{’ = p(x1, %),

Under this assumption, for any y € S,, there exists unique point ¥ of S, such
that

oly, 3) =2

We denote the quotient space of S, obtained by identifying % and y by P,. By
definition, P, is homeomorphic to RP"!, the (rn — 1)-dimensional real projective
space. '

For this P,, if f is % (S""!)-smooth at x and

dpf(xy &) = d{’f(xr y)y

for any ¥y € S,, then d,f may be considered to be an element of % (P,). Here
F{P,) is defined similarly as %7 (S,) and it is also considered to be a subspace of
1(S,) given by

P ={glge 7S, gy =g}
Since % (P,) is isomorphic to & (RP™1Y, we call f to be & (RP"Y-smooth in

this case. If M is R", the n-dimensional euclidean space with the euclidean
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metric, then f is M(S*"1)-smooth at x if and only if f is one-sided differentiable
at x along any line which ends at x and f is M(RP"Y)-smooth at x if and only
if f is differentiable at x along any line which through x.

h—

Since the tatal spaces of s(M) and s?(M ), the associate S" ! and S™1x ... x S7-1
bundles of the tangent microbundle of M are given by

S(M) = {(x, v)lplx, )=1, x €M, (x, y) e M x M,

SP(M) — {(x’ Y1, e , yp);p(x, yl) =1, P 1, ...... , b, % EM,
»
(x’ My, e , yp)eMxMX ...... XM},
—p— N
we can construct the associate RP"!-bundle and RP"1! x...... x RP*'-bundle of

o{M), the tangent microbundle of M, by taking s(M)/~ and s®(M)/~ to be the tatal
»

spaces, Here the equivalence relations ~ or ~ are given by
»
(x, »)~x', ¥)if and only if x = x' and oy, y') =2

(x) yl, """ ) yp)f;(xly ylly """ ’ yﬁ,):
if and only if x =zx, and p(y;, ¥/) =2, i =1, - , b

where p is assumed to satisfy (*)'. Then using s(M)/~ and s*M)/ ~, we can
»

j)~ ,,,,,, N
construct associate % (RP"Y-bundle and &7 (RP"1x.---- x RP*Y-bundle of (M),

They are denoted by 57 {s(M)/~) and 57 (s?(M)/~). We note that since we have
D

S = FRPYD 5 (RP™Y,
T RP"Y = {glgly) = gB)}, & (RP") = {g|gly) = —g)},

we may consider & (s(M)/~) and & (s? M)/ ~) are the subbundles of & (s(M))
and &7 (s#(M)) and can be considered to bhe dirgct summands of them.

We note that using &% (RP"™!)-smooth functions and the bundles 57 (s(M)/~),
F (sH(M)/ ~1)) and A 7 (st(M)/ ,;) (Aﬁ(s"(M)/f;) is defined similarly as others),
we can construct same theories as above,

Similarly, if M = C, the complex number plane with the euclidean metric,
# a holomorphic function, then

a.fta, 9 =" )

This suggests that if dim. M = 2m, then the condition
(*%), there exists associate CP" '-bundle of (M),
may have some meaning for M,
The outline of this paper is as follows: In §1, we define the bundles



Generalized Tangents of Curves and Generalzied Vector Fields 51

F (M), 7 (M) and A 7 (s?(M)) and treat their properties. In § 2, we define
7 (8" 1Y)-smooth functions and &7 (S"1)-vector fields, The generalized tangents
of curves ant their properties are stated in § 3.

Added in proof. In K" with the euclidean metric, d,f may be considered {one-
sided) Gateaux’s differential Vf. Here Giteaux’s differential Vf(x,, k) is defined
by

Vi (o, B = lim, ﬁ{gil;):_ﬂ’@

, he M,,

where f is a map from a Banach space M, to a Banach space M,, For the details
and related notions with their applications, see Burysek, S. : On symmetric G-
differvential and convex functionals in Banach spaces, Publ. Math. , (Debrecen),
17, 1970, 145-161).

§ 1. Bundles &7 (s(M)) and &7 (s?(M)).
1, We denote by M an n-dimensional connected paracompact topological
manifold. On M, we fix a metric p by which the topology of M is given, and
assume p satisfies the following (i), (i), (iii) (For the existence of such metric,

see [4]),
Q). If olxy, %) 1, then there exists unique path y which joins x, and x, and

LP = p(%y, Xa).

{ii). M is complete with respect lo p.
(iii). The measure m(p) induced from p on M is a positive Radon measure and
satis fies
m(p(E) # 0, if E is measurable and containes some non empty open set,

For x € M, we set
S.={lyeM, ofx, y)=1}
Since dim. M =n, S, is homeomorphic to S”°!, the unit (# — 1)-sphere (cf. [4]).

We assume that for any ¥, p induces a metric p, on S, which is given by

pl‘(yly y2) = lnf L. . [P
7, 1 joins y, and ys in S, 7

The measure on S, induced from p, (cf.[3]) is denoted by m = m(x). For this

m(x), we assume (cf.[4])
(). A Borel set of S, is m(x)-measurable and if E is m{x) measurable and contains

some non-empty open set of S,, then

m(x) (E) £ 0.
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(i1). m{x) depends continuously on x.

Since S, is compact, m(x)S,) is finite. Hence, for the simplicity, we norma-
lize m(x) to satisfy m(x)S,) = 1.

Note. If M is a smooth manifold, p is the geodesic distance defined by a
(complete) Riemannian metric on M, then m(x) depends differentiably on x.

In M x M, we set

(1) sM) = {(x, »lxe M, plx, y)=1}

We define #: s(M)— M by =(x, v) =x. Then {s(M), =, M} is the associate unit
sphere bundle of the tangent microbundle of M(cf. [1], [9], [12]). We denote
the transition function of s(M) by {gyv(x)} if we consider the fidre of s(M) at x
to be S,.. We note that if we consider the fibre of s(M) at x to be the measure
space (S,, m,), then the transition function of s(M) should be replaced by {(gyv(¥),

my(x) (Guv(X)*my(x))"1)}, where my(x) is given by

m(x)(E) = J x)de.

m
hy, x(£)

Here hy, . is the local homeomorphism from = YU) to U x S$"! and dQ is the
standard measure on S*7,

We denote by .57 (S*Y) a function space over S"!, In the rest, (S"°!) means
either of C(5"1) or L#S5™ 1), 1< p=<c, regarding them to be Banach spaces.
Here L#S"Y) is defined by d2. (If M is smooth, or real analytic, then C=(S""1),
or C«(8"Y), is also taken as (S*°1)). Then by identifying U x C(S"Y) € (x, f(») and
(%, flgpvlx)y) e V x C(S"Y, x € UnV, we obtain the associate C(S"!)-bundle of
s(M). 1t is denoted by C(s(M)). Since C(s(M)) is a vector bundle over M with the
fibre C(S"1), its dual bundle C*s(M)) is defined. C*s(M)) is a vector bundle over
M with the fibre C*S™ 1), where C*S"1) is the space of Radon measures on S™,

Lemma 1, Regarding wm(x) to be a function on M, m(x) is a cross-section of
C*(s(M)).

Corollary, We have

(2) myX)gyylx) my(x))t = 1,

By this corollary, although .& (S"°!) is LAS"1), we can construct the asso-
ciate .7 (S")-bundle of s(M) by identifying U x & (5" Y)=2(x, f(¥) and (¥, gyylx)*
JFeV x % (8", xeUnV. This bundle is denoted by .5 (s(M)). The dual
bundle of &7 (s(M)) is denoted by 5% *(s(M)). By definftion, the fibre of .&7 *(s(M))
is 57 *(S"Y), the dual space of & (S""Y). We denote the fibre of % (s(M)) (and
(M) at x by 7 (S.) (and 7 XS,).

Definition. An element of 7 *S,) is called an 7 (S*1)-vector at x,
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Note, If we regard S, to be a measure space (S,, k(x), and define L#S),) by
k(x), then to define Ky(x) similarly as my(x), we obtain the associate LA(S"")-bundle
of s(M) by identifying U x LAS" ) >3 (x, f(») and (x, [ky(x) (gyv (®)*ky(x)-1/?

EovX)* ) e V x LAS" Y, x e UNV.
U
2. In MxMx...... xM, we set

(1)/ SP(M): {(x’ Y, e , yp)lxejw, p(x, yi): 1, i:l’ ...... , p}
To define z: s?M)—~ M by ={x, yi, - , Yo =%, {s#{M), =, M1} is associate

Srotx D X S*-'.bundle over M, If the fibre of s(M)at x is considered to be the
measure space (S,, m(x)), then we consider the fibre of s M) at x to be the
measure space (S, X - XS, MUX)R) e ®m(x)). The transition functions {gyy{x)} =
{8uv?x)} of s#M) is given by

Guvi(®)\yy, e , Vo) = (ZuvlX)yy, oo , Suv(E)Y,),

where gyy(¥) in the right hand side is the transition function of s(M).

‘Ne denote by & (S'"P‘l;-?m"‘l) or & #§"1) the function space over S"-!

Loeenns x 8"t which is of the same typ‘e with &7(S*1), That is . & (5" !) means

either of C(§"tx . vres xS or LAS™Ix.wwnen xS 1) V\;ith the measure m(x) @
mfx) in general and Co(S" 11X -e.et XS* 1) or Co(S*1xwee xS" 1) is also considered
if M is smooth or real analytic. By assumption, .7 { (S"‘rl_)@if@m%l) is dense
in 7 (§"1x.eee x S*1),

As & (s(M)), we construct the associate .o #S""!)-bundle of s# M), It is
denoted by &7 (s?(M)). The dual bundle of <7 (s?(M)) is denoted by 57 *(sP(M)),
The fibres of 7 (s?(M)) and % *(s?(M)) at x are denoted by &7 (S,X - xS,) or
FHS,) and TS X e XS,) or . PXS,).

Definition. An element of o P*(S,) is called an < (5" )-p-vector at x,

For any f e 528" 1Y) and ¢ € y#, we set

(3) a(f)(yly """ ) y/)) = f(ya(1)7 """ 3 ya(/)))y Y& S7P1-

Then, since &% (S"")&------ & . (S"1) is dense in &% AS"!), ¢ is continuous,
Therefore, setting

A w8 = {1 fe s M), o f) = sgnlo) /3,

A 7 #S"1) is a closed subspace of % #S"!). Since ¢*, the adjoint operator of s,
is 671, we have

(A711(S "= 1))* = Abg,‘lnk (S n- 1>'

As we know
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o flguv®)yL, , &uv(%)Yp)
= f{guv(®)Yer, oo , Guvl®)¥ep), & F ST,

we obtain an A % #S™Y-bundle over M to be a subbundle of &7 #(s(M)). This
bundle is denoted by A.F (s#M)). Its dual bundle is denoted by A F *(s#M)).
The fibres of A.% (s#(M)) and A & *(s’(M)) are denoted by A& #S,) and A& **
(Sa).

Note. Similarly, to set

SFHSN={fIf € FHS"), olf) = f},

we can define an S.¢7 #AS™1)-bundle S & (s?(M)) to be a subbundle of &7 (s?(M)).
Its dual bundle is denoted by S.&7 *(s®(M)). The fibres of S & (s?(M)) and S & *
(s#(M)) at x are denoted by S XS,) and S & *%S.).

Definition. A (continuous) cross-section ¢ of 7 (s®(M)) is called a {(continuous)
(8™ Y- p-cochain of M. If ¢ is a cross-section of A g7 (sBM)), then ¢ is called
an 7 (S" - p-form of M,

Definition. A (continuous) cross-section of 7 *(s#(M)) is called an 7 (S"°1)-p-
vector field of M.,

In general, we call an element of &% #S,)®X.5% 7%S,) to be an 57 (S*1-(p, q)
-tensor at ¥ and a continuous cross-section of _F (sPM) & 57 *sUM)) to be an
G (S™N)-(p, q)-tensorfield of M.

If M is smooth (or real analytic), then 7 (s®#(M)) and & *(sM)) allow the
structure of smooth (or real analytic) vector bundles, Hence we can define smooth
(or real analytic) &% (S*°1)-p-cochain, etc,.

3. We denote by 7, , the unique curve which joins ¥ and y, ¥y S, and
satisfies

J?‘x, Vp - 1

Then for any @, 0<a <1, there exists unique point z in 7., such that plx, 2)
= a, We denote this z by 7, , ..

On the other hand, if p(x, 2)<{1, then there exists unique point » of S,
such that zev, ,. Or, in other word, %,z determines a point y of S,. We denote
this ¥ by e, ..

By definition, if o(x, 2)<1, then

(4) ¥y, ez, 0¥, 2) 2.
For an & (S"°1)-p-cochain ¢ = ¢(x, i, - , V) of M, we set
(5) @lx, 2q, oo y %p)
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v, eM, ox, x)<1, i=1, , .

Then ¢ defines an Alexander-Spanier p-cochain of M. By definition, if ¢ is an
7 (S*1)-p-form, then § is alternative in x;, ----- , Xy

Definition. If y is a singular p-chain of M, then we define the integration
Lgo of ¢, an 7 (S"Y-p-cochain of M on v by

© [o=]2

Here the right hand side means the integral of the Alexander-Spanier cochain o on

r (L3
By the definition of the integral (cf. [37)), if ¢ is a C(S*!)-p-cochain and y
is given by f: I?* - M where f satisfies

(M o flaj+1), flay) < Nlaj+1 — aj;l,
aj+1; :(ajl) """ y Qjiy Qi1 aji+l’ """ ’ ajn); a] - (ajly """ ’ aj?z)y
for some N <0, then ¢ is absolutely integrable on 7. In fact, since S$" ' and y

both compact, to set

K:max- (max- |§0(x’ Y1y e ] yj))')y
XEY  FIES X XSg

K is finite, and for any partition 4 of I, we have

éKNI)(Z}IajI+1—aJ'I| """ lafp-H ‘“‘Up')gKNP)
J

A is given by 0 =a, < a; < <L, <1,

which shows the absolute integrability of ¢ on 7.

Note, This is also true if ¢ is an M(S" - p-cochain and it seems to be true
for L(S*1)-p-cochains if we change the definition of the integral of Alexander-
Spanier cochains to the Lebesgue type. :

Definition, For an <7 (S*1)-p-cochain ¢ = p(x, y;, , ¥p) of M, we define

(8) dﬁgo(xy Y1, e y yp+1)
.1
=lim, —(o(rs, 51, ay Yo, o+ s Ype1) — @x, Yy, oo s Vpet).
a—0 &
By definition, if d,p(x, i, - , Yps1) €Xists as an element of .57 XS,) for any

x and continuous in %, then d,¢ is an .5 (S"°1) - (p + 1)-cochain of M.
Definition. An 7 (S*Y)-p-cochain ¢ is called F (S"1)-smooth if d,p is a {con-

i
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tinuous) & (S™Y) - (p + 1)-cochain of M,

In general we befine d,"¢ dy

d,S "¢ = d(d," "),

m

and call ¢ to be &7 (5" !)-m-smooth if d,”¢ is a (continuous) & (S*°1) - (p + m)-
cochain of M. If ¢ is .57 (S"Y)-smooth for all m, then we call ¢ to be & (§*1)
-—oo-gmooth.

Definition., For an 5 (S"V)-p-forme = @(x, ¥y, =+ , ¥y of M, we define
(8>I Ad,,ga(x, Vi e 3 y[H-l)
T VT |
:m[g(Al)H‘l(l[zﬁ% z(?(”x,yi, ay Yy e y Yiety Yivry e ’ yj)+1)_
—§0<xy Yy e y Yiety Yisty, ’ y])+1))].

By definition, if ¢ is &% (S""1)-smooth, then Ad,p isan (8" 1)—(p+1)-form
and if ¢ is 7 (S"1)-3-smooth, then

O Ady(Ad,p) = 0.

By (9), denoting CAM, &7 (S"') the space of 57 (S"!)-c0-smooth .57 (S"1)-
p-forms on M, {ZD;QCP(M , F(S"Y), Ad,el is a differential complex and we can
show the analogy of de Rham’s theorem. Because we know

(9 Ad,p = 53,

where 6 is the coboundary homomeorphism in the Alexander-Spanier cochain. By
(9), we also have

(10) Jarsﬂ = JrAdﬂ%

if ¢ is an & (S"Y)-p-form (cf. [3]).

Note, By (10), we have especially
J,d,,f: [,d,,f, if v and ¢ start from same point and end at same point,

Because for a function f, we have
Ad,f=d, .

Therefore, we may write [ d, f if ola,x) is small and we obtain

(10 [d.s =1~ r@,



Generalized Tangents of Curves and Generalized Vector Fields 57

§ 2. Generalized vector fields.
4. Definition. A function f on some neighborhood of x is called to be 5 (S"1)-
smooth at x if (d, . fYy)=d,flx, ¥), x is fixved, defines a function of 57 (S,).
By definition, we have
Lemma 2, fis #(S*V)-smooth at a if and only if f is written as

(11) S(x) = fla) + glea, o) pla, )+ olola, x)),

where x belongs in Ula), a neighborhood of a and g(v) is an element of .7 (S,).
For example, if M = R", n-dimensional euclidean space, p is the ‘euclidean
metric of R” and f is smooth at @, then f is written as

af (@)

ox;

fla) = flay+ (2]

i

(%, — a)/||1x —al|)]|x —a|] -+ o] |x — a]]),

where :(xly """ 3 xn)’ a = (aly """ y an) and | 1x| I = \/Zixiz- Then since g(y):Zl

o0X: yi: y :(yly """ ) yn): ||y| |: 1) beIOngS fOl' any L(//—(S”—l)’ f iS JT(S"_1)~

smooth at a for any & (S"1).
Definition, A function f on some neighborhood of x is called to be &7 (S™1)-
m-smooth at x if

(dﬁ,xmf)(yly """ y ym) = dpmf(x’ Y1y v s ym); X iS fixed,

defines a function of ™S,). If fis <7 (S"™1)-m-smooth at x for any m, then we call
fis 7 (S"N)-o00-smooth at x.

For example, if M= R", p is the euclidean metric of R" and f is of class C"
at @, then f is & (§" Y-m-smooth at a for any .% (S*1). In fact, in this case,
we get

(dP, sz) (yly """ y ym)
B 1 o™ f(a) . ‘
= 7;/1! Rl PP oxi, I, i Y, ims
yi:(yi,h """ ] yi,n); HyzH:L Z:Iy """ y m,

We denote by .5 (M) the function space on M either of C(M) or LAM), 1<
p =< oo, if M is compact and either of C(M), C,(M), the space of bounded conti-
nuous functions on M, LM), 1<p<oco and L?, (M), 1<p=<oo if M is not
compact. Here, M is considered to be a measure space with the measure m(o),
the induced measure from the metric.
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We assume the manifold structure of M is given by {(U, hy)lhy : U— R"},
then we have
Lemma 3. If we have

(12) Hhol@) — hy)lf= O (pla, x)),

Jor any a, x € M and U= { U, where a is regarded to be fixed and x to be a
variable, then the space of .57 (S™Y)-smooth functions on M is dense in 7 (M),

Proof. If f is a smooth function on R” with compact carrier, then the function
hy*f on M given by

hU*f(x) :f(hU(x))y X e U}
hy*f(%) =0, ¥ EU,

is an % (S"1)-smooth function on M by (12) and lemma 2. Hence we obtain the
lemma since M is paracompact.

Corollary. Under the same assumptions about M and o, for any locally finite
open covering SV} of M, there exists a partition of unity by 7 (S"71)-smooth func-
tions {ey(x)} subordinated to { V7 for any 7 (S*1).

Theorem 1. A paracompact topological manifold M always has a metric p such
that the space of o7 (S"1)-smooth functions by p on M is dense in 57 (M) if 7 (M)
15 either of C(M), C,(M) or L, (M), 1< p< oo,

Proof. We take the metric p of M constructed in [4]. Then, since

0< [, 1€ 7l1< o0, if and only if 0<[ o< o0,

hy ()

to set
A={a| a € M, a does not satisfy (12)},

A is a discreet set of M. Hence for any @ € A, there exists a neighborhood U{a)
of a such that Ule) N A = {a}. For this Ula), we set

CUla)y = { fIf is continuous on Ula) and fla) = 0}.
By definnition, we have
(13) CU(a) = RD C,(Ula)),

where R is the space of constant functions on Ula).
We take a neighborhood system {V,(a)} of @ in Ula) such that

Vn(a) € V71+1(a)) ﬂ Vn(a) - {a}y
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and denote
CUa)) ={ f| [ is continuous on Ula) and f|V a)= 0}

Then by lemma 3, & (8" !)-smooth functions are dense in C,U(@) for any n,
Hence &7 (58" 1)-smooth functions are dense in C/U(@)) because U,C,U(a)) is dense
in C,(U(@). But, since a constant function is 7 (S"1)-smooth for any &7 (S"1),
F (S™1)-smooth functions are dense in C(U{a)) by (13).
Foe each a € A, we take a neighborhood V{a) such that Vi{e) € U(@) and set
V(A) = UVlw), UA) = UUla).

acA acA

Then we have
(14) V(A) € U(A).

By lemma 3, we know that & (S""')-smooth functions are dense in CM — V{(A4)),
and by 14, we can set

F=fi+ fo car. frc M — V(A),
Jo= ZfZ,ar car, fz,a c Ula),

acA

for any continuous function f of M. Hence .5 (S"Y-smooth functions are dense
in CyM). Since CyM) is dense in L?, (M), 1< p=< oo, we have the theorem.

Note. If the tatal measure of M ay m(p), the induced measure of p, is finite,
then & (S"1)-smooth functions are dense in L#M), 1< p<oo, although M is
not compact.

5. We denote the space of & (S"1)-smooth functions on M by C. ;7(5”‘1)(M ),
If M is not compact, then the subspace of C' (S (M) consisted by bounded
. (S"1)-smooth functions on M is denoted by C' (S, b(M ). We assume that
C ﬁ(S”‘l)(M) is dense in C(M).

Lemma 4. C' 7(5,,_1)(M) and CLF/'I‘”(S”‘l),b(M) are both rings with the unit,

Rroof. If fi and f; are .7 (S 1)-smooth at @, then we may set

fz(x) - fi(a) + gi(sa, x)P(a: x) ‘i_ O(p(av x))y Z = l, 21 x e U(CZ)
Hence we have

Jilx) fofx)
= fil@)fola) +{ fia)goes, ) + Fol@)gile,, ) Fola, x)+ olola, x)),

for x € Ula). Since fi(@)gale,, ) + fola)gile,, ) belongs in (S,), fife is . &7 (S""Y)-smooth
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at @. On the other hand, since we know d,1=0, where 1 is the constant function
with the value 1,1 is . %% (S*1)-smooth for any <7 (S*-1). Therefore we obtain the
lemma,

Definition. A closed operator X defined in CM) with the range in CM) is
called an < (S*Y-vector field of M if it satisfies the following (i), (i7) (iif).
(i). X is defined on C’ TS (M),
(i), If |fix) — fla)| = olpla, x)) at a, then (Xf)a) is equal to 0,
(iii). X(f1 /o) = [1X(f3) + foX(S2).

Lemma 5. If & = &x) is an .o (8" 1)-1-vector field of M, then to set

(Xf)x) = <&lw), dof(2)>, x & M,

X is an o (S*V)-vector field of M. Heve <& ¢>, &£&*5(S,), o 7(S,),
means the value of & at o,
Proof. By the definition of d,, d, has the following properties.
0. If {f,} converges to f in CIM) and {d, f,} converges normally to some <7 (S*1)-
1-cochain ¢, then fis 57 (S"1)-smooth and d.f = ¢.
(). (@.NNa)=0if |f(x)— F@)| = olola, x) at a.
(iii). If f1 and fo are both 57 (8" Y)-smooth, then

do(f1 o) = Side Jo -+ Sadofi.

Hence we have the theorem.

Note. A series of & (S""!)-1-cochains ¢,(x, ) is called convergses normally
to ¢(x, ) if the series of functions on M given by {|]¢.*, » — olx, »||.} con-
verges uniformlly to 0 on any compact set of M., Here ||olx, »)]|]|, means the
norm of ¢(x), @x)¥) = e(x,y), in 57 (S,).

By the definition of’ &7 (S*1)-vector fields, we have

Lemma 6, If X is an 7 (5" V-vector field of M, then X satisfies the follo-
wing (14) and (15),

(14) X, =0, where c is a constant function of M,
(15) (Xfi)a) = (X faa), if | filx) — falx)] = olela, x)).

Theorem 2. If X is an % (S*Y-vector field of M, then there exists an
F(S*Y)-1-vector field &x) of M such that

(16) (Xf)x) = <Ew), d, fx)>, x & M.

Such &(x) is determined uniquely from X if A, the set defined in the proof of
theorem 1, is the empty set.
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Proof, We use same notations as in the proof of theorem 1 and first assume
x & A. Then the map

dl', T : C <M> - ‘_77(81))

715"
given by (d,,.f)y) = d,f(x, ¥), is onto. Then we define

(17) : L&), g> =(Xfx), d, . f=g ge 7 (5.

By lemma 2 and (15), (17) is well defined and since d,, . is onto, &) is an
element of . *S,) by closed graph theorem because X is a closed operator.
Since Xf is continuous for any f & C' TS (M), &(x) is continuous in %, x &
M-A. Moreover, since M-A is dense in M and XS is continuous on M, lim, 1,
&(x,) = &la) exists as an element of d, (C e (M)* for any @ € A. Hence (by
the theorem of Hahn-Banach), we may consider £«)to be an element of & *(S,)
and € is continuous at @. Therefore we obtain the theorem,

By lemma 4 and theorem 2, there is a I to I correspondence between the
set of & (8" 1)-vector fields of M and the set of . (S"Y-1-vector fields of M,
Hence we identify them,

Note 1. If X, Y are 57 (S"!)-vector fields of M such that their compositions
XY and YX are both deined, then [X, Y] = XY — YX also satisfies the conditions
(i1), (iii) of .&# (8" 1)-vector fields.

Note, 2. Let X be a closed operator with the domain <7 (X)c C(M) and the
range is in C(M) such that
(i), <7 (X) is a dense subring of C(M) with the unit,

(1). If fi, f2 are in < (X), then X(fife) = fiX(fo) + f2X( ).
Then we call X is a generalized vector field of M, If X also satisfies
(iii). (XfNa) =0 if |f(x) — fla)| = olelx, a)),
for a (fixed) metric o of M, then we call X is a generalized vector field of M
with respect to p.
Since X is closed, to define the topology of <7 (X) by taking

where V' and W are the neighborhoods of f and Xfin C(M), as the neighborhood
hasis of f & (X), (X) is a complete space and to set

X)) =S| fe Z(X), fla)=Xfla)= 0],

o

J/X) is a colsed ideal of <7 (X) by this topology. Hence setting

FdX)=(X) N LM)ILX), LM)={f1f € CM), fla)= 0},
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we can set

Xf(a) = <€(a)7 de(a)>y E(d) € Lg//—’a(X)*;

Whefe dxf(a) is the class of f-f(a) in 7 (X).
If X is a generalized vector field of M with respect to p, then we have

S X) 2 {S fe.7(X), [} = oela, ).

6. For an # (S"1)-vector field X given by Xf=<§ d,f> and ¢, 0t L1,
we set

(18) Ux, {f)x) = <&x), Sz,

Here flr.,,,) is regarded to be a function of y, y = S,. Since f is continuous,
f7s, ) is continuous on S,. Hence Uy, (f) is well defined for any X.

By definition, Uy,, is defined on C(M) and a bounded linear operator of
C(MY} if M is compact, We also know that lim, s, Uy, (f) converges normally to
Ux, s (f). Therefore, if M is compact, then Uy, is strongly continuous in ¢,
Moreover, we know

(19) lim, +Ux,, — Ux,0f = Xf, if FEC ggumry (M),

t—0 ¢
We note that
Ux, o f(x) = <&x), 1>Fx),

where 1 is the constant function with the value 1 on S,.

(19) shows that there is a curve in L(C(M), C(M)), the spce of (bounded) linear
operators of C(M) (with the strong topology), such that whose tangent at its
- starting point is X.

For Uy, we set

Troe =exp, (- (Us,o — Uxoo) £20,
Then {Ty,, .}s a 1-parameter semi-group of C(M) with the generating operator
(1/a)Ux,, — Ux,o). Hence if lim, o0 Tx,, . exists, then to set its limit by Ty,
Tx,, is a l-parameter semi-group with the generating operator X. But this limit
does not exists in general, In fact, there exists an & (S"1)-vector field which
does not generate any l-parameter semi-group of C(M) or LAM), 1< p =< oo,
Example. We assume taht M satisfies
(i), HYM, R) vanishes,
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(ii). M is compact.
To define a C(S™1)-1-form ¢(x, y) on M by ¢(x, ¥) = A, an (arbitrary) constant,
we get

dyp =0,
Hence by (i), there exists a C(S" 1)-smooth function % on M such that
(doh)x, )= olx, ).
Let X be the C(S*1)-vector field on M given by
Xflx) = <mlx), d,f(x)>, mx) is the canonical measufe on S,.
Then we have for the ahove £,
Xh = A, the constant function with the value 2 on M,
For this h, we set & = exp. (h)= |,(k)"/m!. Then we get
Xk =2k,

This shows 4 is a proper value of X in C(M)or in LAM), 1 < p <oo, because C(M)

is contained in LAM) since M is compact), Since M is compact), C(M) is a Banach

space. Then by the theorem of Hille-Yosida ([17], [18]), X can not generate any

(equi-continuous) 1-parameter semi-group of C(M) (or L#(M)), because 1 is arbitrary.
In general, if an L¥S"1)-vector field X is given by

Xf = <&x), d.flx)>, &x)+ 0 for any x€M,

and M is compact, then X does not generate any 1-parameter semi-group of C(M)
(or L2M), 1< p< oo), In fact, in this case, we may set

LES,) = ()L © RE),

and denote the projection to R&x) by Peswy. Then a cross-section f of the bundle
U xexRé(x) is considered to be a function f of M by setting

iy &(x)
H(4)— — g\
JAx)=a, if flx) aHS(x)H'

(We note that this also shows that a fuction of M always defines a crosssection of
Uzex REX)). Then by the befinition of X, we have

XSx) = HEX) [(Pecoydof)H(x).
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We define Ped,f by (Ped,f)x) = Pecodo,xf. Then Ped,C L¥S" 1) is dense in the
space of the cross-sections of U xR&(x), for any constant fuction 2 and ¢ >0,
there exists an L¥S"1)-smooth function f,,. such that

XS — 2 <e

This means 2 is at least continuous spectre of X, because M is compact. Hence
by the theorem of Hille-Yosida, we have the assertion.

Note. The generating operator of a 1-parameter semi-group { 7,7} is an
7 (8" 1-vector field of M, if and only if {7} satisfies

(20) TS = (CSNTS) = ot if fio fo @ C rgrony (M),

7. In this n°, we give some definitions about X, an & (5" %)-vector field on
M.

Definition. X is called to be 0 at a, ac M, if (Xf)a)=0 for all 7 (S*1).
smooth functions,

By definition, if X is given by Xf = <&x), d,f(x)>, then X is 0 at a if and
only if &@)=0 as an element of & *(S,). As usual, we set

car. X ={x| X is not 0 at x}.

Definition, For X, we set

(21) CAR.(X) = Ucar. &), if (X/)x) = <6), doS (>,

By definition, CAR. X is a (closed) subset of s(M) and we have

(22) (CAR. X) = car. X.

We note that if M is smooth and X is a usual vector field on M regarded to
be a C(S" Y-vector field on M and does not vanish at any point of M, then CAR,
X is a cross-section of s(M) (cf. n°9),

Definition. X is called to be positive if X is given by Xf= <&(x), d,f(x)>
and

Ex) >0 for any x € M.
As usual, we call X =Y if X — YV >0, Then since
(sup. {Xf=<sup.{&x)}, dof(x)>,

if {X.} is upper (or lower) bounded, then sup, {X,} (or inf {X,}) exists to be an
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7(8”‘1)-Vector field. Especially, we may define X* = max, (X,0) and X~ =(—X)*
for any &7 (§"1).vector field X and we have

(23) X=X"-X"
We note that if Xf = <&(x), d.f(x)>, then
(X*fXx) = <), dof(x)>, (X )x) = <Ex), d,f(x)>,

where (E(x))* is max, (&(x), 0) and (§(x))” is (E(x))*.

Note. Since the space of & (S" Y-vector field of M is a vector space, these
shows that this space has the structure of (complete) vector lattice. Hence to fix
an 7 (8" Y)-vector field Y, Yf= <yx), d,f> the Radon-Nykodim partition of
any . (S"1)-vector field X, Xf= <&(x), d,f> with respect to Y is possible, It
Co11esponds to the Radon-Nykodim partition of £(x) with respect to 7(x).

Definition, If 7 (S*Y)-vector fields X, and X, are given by (X, [f)x) = <&4{x),
dof(x)>, i=1, 2, and Y =[X,, Xa| is defined to be an 5 (S"V.vector field of
M, then we denote

(24) 7(x) = [E4x), Efx)].

Here Y is given by (Y f)lx) = <y(x), d,f(x)>.

We note that if x is fixed in (24), then (24) defines the bracket product for
some elements of & *S,). Or, in other word, % *S,) contains (as a dense subset),
a Lie pseudoalgebra.

§ 8. Gemeralized tangent of a curve,
8. We denote the set of germs of _# (S"')-smooth functions of M at «,
a EM by C/(S" 1) *’a(M)~
Lemina 7. If 7 (S*Y)-smooth functions fi andf 5 defines same germ inC Cace
(M) and | fix) — Fia)l = olplx, @), then |folx) — fia)| is also ololx, a).
By this lemma, we can say |f{x) — fla)| is ole(x, @)} although f is regarded to
be an element of C At (M),

Definition. A linear map X from C (s, (M) to R is called an 57(S™-)-
vector of M at a if it satisfies the following (i), (1'7?), (iii)_

(i). X(f1/2) = [l@X(f2) + SFo@)X( f2).
(ii). X(f)=0, if |f(x) — fl@)| = olola, x)).
(iid). X(f) = (X f)a), where X is an 57 (S V) -vector field of Ula),

a neighbovhood of a,

By (iii) and theorem 2, we have
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Theorem 2'. For any 7 (S"*')-vector X of M at a, there exists an element &
of F*¥Sa) such that

)= <& doaf>,

and such & is delermined uniquely by X, Conversely, if & 5 *(Sa), then <&, d,af >
is an 7 (S*Y-vector of M at a.
Let y be a curve of M given by ¢ : I — M such that

(25) P0) =a, olt)+aif >0

(25) pla, ¢(t)) = 0(F).

Then we set

50 S 0.

(26) £,(f) = tim, [ lim, | <L rlelt) — fla)} at)
h

where f is an .5 (§"1)-smooth function at a,
By (25) and (25)', we have

(26 %u() = dim, Etim, [ A0 a,  pyeq, e,
520 S T am0d t

Lemma 8. If X.(f) exists for all 7 (S*Y-smooth functions at a, then ¥, is
an F (S"Y)-vector of M at a.
Proof. By (26), we only need to show (i), But, since we know

(d,,, a( f112)) (ea, p (&)
= fia)dy,of3) (ea,00) + fol@) (o, af1) (Ea, o)),

we have (i) by (26)'.

Definition. If X, is defined on Ck?f(S”‘l), - (M), then v is called 7 (S"1)-
smooth at a.

By theorem 2’ and lemma 8, If X, is defined on the space of % (5" 1)-smooth

functions at @, then there exists an element & = &) of & *S.) such that

X(f) = <&lo), dp,of)>.

We note that since C¥S.) contains L#S.) for all p, we may consider & to be
a Radon-measure on Se,

Definition. &(p) is called the generalized tangent of y at a.

Note. If M is smooth, real analytic or real algebraic, then to take C=(S.),
Ce(Sa) or C¥e.(S,) as % (Sa), we may define the generalized tangent for wider
class of curves, Here C#&(S"1), the model of C##(S.), is given by
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Calg. (Sn-l) — R[xl, ...... , xn]/(x12 e + x,2 — 1)’

which is dense in C(S*1) or in LAS* 1) (cf. [5], [11]).
9. In this n°, we give some examples of the generalized tangent.
Example 1, We assume 7 is smooth at @, that is

limd ca,0() = Y, ¥ E Sq,
{—

lim, p(&_ﬁ)_): ¢, ¢ is a (positive) rveal number,

t—0

both exists and f is C(S""1)-smooth at @, then we have by the mean value theorem

5

J “(g’"tf@(dﬂ,af) (ea, v)(t))dt
h

= A PO (g ) e ) (5 — B), B < 50 < 5.

So
Hence we have
Xo(Sf) = cldy,a S)I).
Therefore, denoting the Dirac measure of S« concentrated at y by 4,, we get
(27) Xo(f) = <€By, dpaf>.

We note that if f is smooth at «, then X,(f) coincide to the usual definition of
the (one-sided) derivation of f along 7.

Note. If M is smooth and X is a usual vector field of M which does not
vanish at any point of M, then at any point a of M, X has a smooth integral
curve 7. given by ¢,: I— M, ¢,0)=a, and

(XS ) (@) = Xo o /).
Hence we have by (27)

(Xf) (@) = <el@bvwwy, do,af>.
Hence we have

(28) CAR. X = Uyla).
asM

Since ¥a) depends continuously on @, CAR. X is a (continuous) cross-section of s(M),
In the following two examples, we need the following
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Lemma 9. If g() is a continuous periodic function on R' with the period T,
then

(o= T
(29) lim, sj igt(zi)dt:%J g(bdt,
s 0

§—»00

Proof. We define a periodic function e[, s]f), 0<a <0< T, with the period
T by

ela,oty=1, tea+nT, b+ nuT], for some integer n,

=0, otherwise,

Then for 0 <a' <a <b <b' <T, to set

a, b b —a
w,al, b T b—a

(t —(mT + a) +mT +a', mT gvfj;‘ba',b, L(m -+ 1T,
we have

€ Lﬂ b] m a’ b’ ) — e[ﬂ b’ —]( )» WIT <vm a’, b’ é (WLF 1)T

Hence we get

Jm e[ a, 0 (1) di— b—a Jym e, o ) dt.

2 Ty PR
mT t b mT t

Then, since we know

mwﬁ@ﬂmﬂﬂfw

a’— 0 s & s £ ,
o' —T

we obtain
. “elaplt) ,,  |b—al
om, | Sea=

s

Then, since g(f) is bounded and (uniformly) continuous, we have

bim. SJ _gg)« di

s

= lim. [lim, ZSJOO : ,(i[_”_%,",ﬂ]ﬂdt]

s—oo laji1—ail—0

= lim. Zg [lzm sJ " Leasain a“‘( )]dﬂ

tajn —ail—0 R
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=tim. 3 g(a) WI“"“T_ |

laivi—ai|—0 3

Here, 0=ay, <a; <----- <a,, <@, =T is a partition of [0, T.
Example 2. Let M be R? with the euclidean metric, @ the origin 0 = (0, 0))
of R? and 7 is given by ¢: I— R? where ¢ is given hy

olt) = (¢ cos (1), ¢sin(7)), >0,

#(0) = 0.

Hence, if we use the polar coordinate (r, ) of R% » =./x%+ 3% and 0 =tan {(y/x),
then r is given by

r0 =1, r>0,

Then, if St ={(x, |-+ y2 =1} is parametrized by ¢ and g 1s continuous on S},
we get

lim, L[ lim, J 00D oyt
s—0 S A0 A i

S T S | ()
= ZZ;)% ?U/Z,ld Jh g(;{—)dt] = lzﬁ,ﬁ[ - dv,

Hence by lemma 9, we have

2n
(30) %o () = | daor)ioa.
[

Or, in other word, the generalized tangent of the curve 70 =1 at 0 is the stan-
dard measure of S,
Example 8. We take M and p same as above and take ¢ to he

oll) = (¢, tsin(;})), £>0, o0) =0, the origin of R%

By befinition, we have

(0, p(#))

o1 .1
; :\/ 1 +sm2(—f—), €0, oty = tan~Ysin (T»'

Hence we have by lemma 9,
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. . ol0, ot
lim, l[lzm, J Mg(eo,w@) dt]
s—0 S a0 n ¢

2
:%J 4/1 -+ sin?vg (tan~Y(sin()))dv
0

1 J T 1
=— a) (] #}
_%g( " cos? Oa/cos (20)

Therefore, the generalized tangent of the curve xsin(l/x) at the origin is the
measure on S' concentrated on —(z/4) <<#<x/4 with the weight (1/x)(1/cos?§
+/cos (20)).

Note. If y is given by (—¢, fsin(1/#)), >0, then the generalized tangent of
7 at the origin is similar as above but has carrier on 3z/4 << < 5n/4,

10. Lemma 10. The generalized tangent of a curve at a is a positive measure
on S,.

Proof. If ¢ is the generalized tangent of ¢: I— M, then we have

S ' a, o(t
[ gtoe = tim Lpiim, [ A0 gie, ,yar)
Su 520 8 im0 ) ¢
Hence if g0 on S,, then J'S g(3)dé = 0. Therefore & is a positive measure.
Lemma 11. 1f the parameter of y is changed to ¢t instead of #, ¢ is a com-
stant, then the generalized tangent & of y at @ is changed to ¢£. In general, if
the parameter of 7 is changed to «(?) and
lim, i@—: c,
0 1t
then the generalized tangent & of y at a changes to c&.
By this lemma, we may assume the generalized tangent & of 7 at a satisifes

(31) €S = 1.

Theorem 3. If & is a positive measure on S,, then there exists a curve of M
starts from a such that whose generalized tangent at a is €,

Proof. Since the proof for # =1 is similar, we assume #> 2,

First we note that the problem is local, we may assume M = R" with the
euclidean metric and ¢ is the origin 0( = (0, ----- » 0) of R”. Hence S, is the unit
(n—1)-sphere S™t,

We take a positive measure & of S*! such that £S*1) =1, By lemma 11,
this is not restrictive,

We choose a countable dense subset {y,} of S*! such that
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For this {y,}, we divide S"! by Borel sets {£,7} as follows:

(33) Sn—1 :DLé‘J(:IEPq, Eprq ﬂ Epuq = ¢7 1’f p’ i p“y y[) = Eqp-
(33) lim, dia, (E,%) = 0.
g—oo

Here dia. (£,%) means the diameter of £,% Hence, if g(¥) is a continuous function
of §"°%, then

(34) | gty = tim. >3 gl B,

S7-1 = p=gq

On the other hand, for the above {£,7} and &, we take a series of (positive)
real numbers {#, ,}, # =g, as follows:

(35) tq:l’ > tqy.fH'l’ Zf b+ 1 é q, tq,q > Zlq+1,1,

(35)’ lim‘ tq’ = O,
g—co

QLN 1 q S

(35) DT Sl by ) — EES <5, 50,
aitq, p=s S 2

This is possible because &S*)=1 andD ), > J,ir, pes (US) Lo p = Ly purl =1 — (s —
Lao, po)fS 1s sufficiently near to 1. Here, 14, po is the largest {,, which is smaller
than s,

Using this {Z,,,}, we set

Ut p) = L4, Y

—t t—t
L e R ()
P T fg P+l ap  tg, pHl
2.f tq,p > l > tq,[)+1;
. g — 1L . —
V()= g q/(tlﬂl, )+ t—_tlﬂ“'“l'”“?]f(tq, q)’

3

a9 tq+1,1 a0 tq+1,1

Zf t(],q > ¢ > tq+1,1’

70y =0,
Then since ||¥,]|=1, we have the definition of ¥{f) and (32),
(36)" EAGIESIIN

(36)' T+ 0, if t+0.

We also note that by the definition of ¥(¢), ¥(¢) is continuous for all #, 0<{¢ <1,
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72
By (36), to define ¢(t) by
o 40 .
(37) Gf’(f)*wf, >0, ¥0)=0,

o(f) is also continuous in ¢ and satifises similar conditions as (36)" and.

(36) [ot)| | =t.
By (36) and the mean value theorem, if {y,} satisfies
(32) Zim- | |yp+1 - ypf | =0,

then we have for this ¢(f),

ta,r |e(t)]]
LII, s gleo, vl

- g(yp)(tq, p fq, /:+1) -+ 0(| tq, T tq,pﬂl)«

Hence we have

(38) Zim_i[lim_J LMg(so,,p(;))dt]
50 S 7 1-0 A t

qitq, p=s

—lim =S ST s — by par).
s—0 S 75

On the other hand, by (35)"/, we obtain
1
qu)__ ';Zg(yp)( 2 (tq,;b“tq,jnl»l
b ait,gp=s

| > 20 g

pa, tq,pss

S
S:Z 21) :S'
D

Then, by (34) and (38), we get

[ gt 0102

. o et
=lim, L[lzm. J M g (e0, o)t ],
s—0 8 T h-0 7

Therefore the curve 7 given by ¢: I — M, has the generalized tan-

for this ¢(?).
gent at the origin and it is equal to &, Hence we have the theorem.
Since C*S™ 1) contains L#(S"1), a positive linear fuctional of LxS"1)

Note.
always expressed as the generalized tangent of some curve,
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Example 1. If & is the Dirac measure of $*! concentrated at y,, y & S,
then {f, ,} is given by

1 1 1 1,1

tq,lz_éq_'r tq,p: 24 __( - 21;_.1> 87’

2sr=q

Example 2, If ¢ is the standard measure of S"°!, then we take £, to satisfy
§(E) = 1/q, Then we can take {{, ,} to be
1 g+1—p 1

th = .
ST T S D

).

We note that although the curve ¢(f) = v has the generalized tangent dy;,
it is not given by the above method,

11. We denote by H*(F) the group of orientation preserving homeomorphisms
of I =[0, 1]. The subgroup of H*(I) consisted by those homeomorphisms that are
the identity map on [0, ] for some ¢ >0, is denoted by H{I). Then we set

H,*(f) = H(I)/H(I).

H,*(I) is the group of germs of the (orientation preserving) homeomorphisms of
I (cf. [2]).

If « € H*(I), then by the theorem of Radon-Nykodim, there exists a (positive)
measurable function m, on I which does not vanish almost everywhere on I, such
that

b a(lh)
(39) J pedt)dt :J ey, (w)du,

a ala)

where p(f) is an (arbitrary) measurable function on f. We note that this m,(f) also
satisfies

(40) j m,(Odt = 1,

Conversely, if m(f) is a positive measurable function on I such that to satisfy
(40) and does not vanish almost everywhere on I, then J;m(u)du is an element of
H*(I). Moreover, we know that
(). If ai, axe HYI) and a\es) is the composition of «, and «y in H*(I), then

(41) May(ag) = 0™ (M) )My, a*m(t) means mia(t)).

(ii), « belongs in H, (I) if and only if m,({t) =1, 0t <e, for some ¢ >0,

Hence to denote the set of all positive measurable functions on I which do
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not vanish almost everywhere on I and satisfy (40) by _# *(I) and to define a
multiplication my,my for my, mes 7 *(I) by

t
(42) My Wy = C(g*(”’ll)n'lg, Cfg(t) = [ 77’12(M)du,
4

72 *(I) is isomorphic to H*(J) and to set
A ) ={m| me_z*I), mit)=1, 0=t <e, for some ¢ >0},
we have
(43) A )= H 1), o d) =) 2z ).
For ¢: I— M, and a« = H*(I), we set
a*(g)t) = glalt).

Then the image of ¢ and a*(¢) is same, Moreover, we know if « & H/(I), then ¢
has the generalized tangent at its starting point if and only if «*(p) has the gen-
eralized tangent at its starting point and we have by lemma 10,

(44) Xo(f) = Xard(S).
By (44), we have
(44) Xartr) = Xpe(oy, 1 a = p mod H(I).

By (43), (44)' and theorem 3, we can define an operation of the element m
of _# I) to < *,(S"Y), the set of positive linear functionals of <z (5"71) by

(45) <mlE), &> = Xaso)(f),

where, assuming the starting point of ¢ is @, d, . f =g, X (f)= <&, g> and the
class of m in _# 4(I) is m. Then, since the change of parameter of y corresponds
to the operation of _# (I), we may consider the generalized tangent of 7 to be
an element of & * (8" Y)/_#7 ().
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