Generalized Tangents of Curves and Generalized Vector Fields

By Akira Asada
Department of Mathematics, Faculty of Science, Shinshu University (Received October 30, 1971)

Introduction

The main purpose of this paper is to introduce the notion of generalized tangent of a curve γ given by $\varphi: \mathbf{I} \rightarrow M$, where M is an n-dimensional Paracompact topological manifold with a (fixed) metric ρ. Here ρ is assumed to satisfy ${ }^{(*)}$. If $\rho\left(x_{1}, x_{2}\right) \leqq 1$, then there exists unique curve γ of M which joins x_{1} and x_{2} and

$$
\int_{r} \rho=\rho\left(x_{1}, x_{2}\right)
$$

(For the existence of such metric, see [4]). In the rest, we set

$$
S_{x}=\{y \mid \rho(x, y)=1\}
$$

By assumption, S_{x} is homeomorphic to S^{n-1}, the unit ($n-1$)-sphere. Then the generalized tangent of γ at $a=\varphi(0)$ is defined to be a positive Radon measure on S_{a} and we show that for any positive Radon measure ξ on S_{a}, there exists a curve γ on M whose generalized tangent at a is $\xi(\$ 3$, theorem 3).

More Precisely, to define the generalized tangent of γ, first we introduce the notion of $\mathscr{F}\left(S^{n-1}\right)$-smooth function at a, where $\mathscr{F}\left(S^{n-1}\right)$ is a (fixed) function space on S^{n-1} such as $C\left(S^{n-1}\right), L^{p}\left(S^{n-1}\right)$ (the measure on S^{n-1} is the standard volume element, that is given by $\sum_{i} x_{i} d x_{i}$ (cf. [5], [11]) or (if M is smooth or real analytic) $C^{\infty}\left(S^{n-1}\right)$ or $C^{\omega}\left(S^{n-1}\right)$, as follows : A function f defined on some neighborhood of a is called to be $\mathscr{F}\left(S^{n-1}\right)$-smooth if f is written as

$$
f(x)=f(a)+g\left(\varepsilon_{a, x}\right) \rho(a, x)+o(\rho(a, x)), \quad \rho(a, x)<1,
$$

and $g(y)$ belongs in $\mathscr{F}\left(S_{a}\right)$. Here $\varepsilon_{a, x}$ means the point y on S_{a} such that

$$
x \in r_{a, y},
$$

where $r_{a, y}$ is the curve of M which joins a and y and $\int_{r_{a, y}} \rho=1$, and $\mathscr{F}\left(S_{a}\right)$ means the function space on S_{a} defined similarly as (using the measure induced from ρ (cf.
[3], [4]) $\mathscr{F}\left(S^{n-1}\right)$.
Then the generalized tangent of γ at a is defined to be the element ξ of \mathscr{F}^{*} $\left(S_{a}\right)$, the dual space of $\mathscr{F}\left(S_{a}\right)$ which is determined by

$$
\langle\hat{\xi}, g\rangle=\lim _{s \rightarrow 0} \cdot \frac{1}{s}\left[\lim _{h \rightarrow 0} \int_{h}^{s} \frac{1}{t}\{f(\rho(t))-f(a)\} d t\right],
$$

where γ is given by $\rho: I \rightarrow M$ and ρ is assumed to satisfy

$$
\begin{align*}
& \rho(0)=a, \quad \rho(t) \neq a, \text { if } t \neq 0, \tag{i}\\
& \rho(a, \quad \rho(t))=o(t), \tag{ii}
\end{align*}
$$

f is an $\mathscr{F}\left(S^{n-1}\right)$-smooth function at a and $g \in \mathscr{F}\left(S_{a}\right)$ is given by

$$
g(y)=\lim _{t \rightarrow 0} \frac{1}{t}\left(f\left(r_{a, y, t}\right)-f(a)\right),
$$

where $r_{a, y, t}$ is given by

$$
r_{a, y, t} \in r_{a, y}, \quad \rho\left(a, r_{a, y, t}\right)=t .
$$

We denote g by $d_{\rho} f$ or, $d_{p} f(a)$ or d_{p}, af.
We note that this definition of the generalized tangent depends on the choice of parameter t of $\gamma\left(\mathrm{cf} . \mathrm{n}^{\circ} 11\right.$ of $\left.\S 3\right)$.

If $\mathscr{F}\left(S^{n-1}\right)$ is taken to be $C\left(S^{n-1}\right)$, the Banach space consisted by the continuous functions on S^{n-1} with the uniform convergence topology, then $C^{*}\left(S^{n-1}\right)$ is the space of Radon measures on $S^{n-1}(\mathrm{cf}$. [18]), and we can show that an element of $C^{*}\left(S_{a}\right)$ is expressed as a generalized tangent at a of a curve if and only if it is positive, that is $\langle\xi, g\rangle \geq 0$ if $g(y) \geqq 0$ on S_{a}. For example, the Dirac measure on S_{a} is expressed as the generalized tangent at a of a curve r which is smooth at a. Here a curve γ given by $\rho: I \rightarrow M, \rho(0)=a$, is called smooth at a if lim. $t \rightarrow 0 \varepsilon_{a, \varphi t}$ exists. The problem to characterize the element of $C^{\cos ^{*}}\left(S^{n-1}\right)$, the space of distributions on S^{n-1} or $C^{\omega *}\left(S^{n-1}\right)$, the space of analytic functionals on S^{n-1}, which is expressed as the generalized tangent of some curve, remains open.

We note that although the o. N. -basis of $L^{2}\left(S^{n-1}\right)$ is given by spherical harmonics (cf. [5], [11]), a smooth function at a only represents a spherical function of degree 1. Hence, since the usual tangent of a smooth curve is defined only by using smooth functions, the usual tangents of smooth curves corresponds only this part of $L^{2}\left(S^{n-1}\right)$. But the above result shows, if we use the $L^{2}\left(S^{n-1}\right)$-smooth functions, the generalized tangents covers the positive part of $L^{2}\left(S^{n-1}\right)$.

As in the case of usual tangent vectors (cf. [6], [13]), to set

$$
\mathfrak{X}_{\varphi}(f)=\lim _{s \rightarrow 0} \frac{1}{s}\left[\lim _{h \rightarrow 0} \int_{h}^{s} \frac{1}{t}\{f(\varphi(t))-f(a)\} d t\right],
$$

where f is $\mathscr{F}\left(S^{n-1}\right)$-smooth at a, we have
(i)

$$
\mathfrak{X}_{\varphi}\left(\alpha f_{1}+\beta f_{2}\right)=\alpha \mathfrak{x}_{\varphi}\left(f_{1}\right)+\beta \mathfrak{x}_{\varphi}\left(f_{2}\right),
$$

$$
\begin{equation*}
\mathfrak{X}_{\varphi}\left(f_{1} f_{2}\right)=f_{1}(a) \mathfrak{x}_{\varphi}\left(f_{2}\right)+f_{2}(a) \mathfrak{x}_{\varphi}\left(f_{1}\right), \tag{ii}
\end{equation*}
$$

and we also have
(iii)

$$
\begin{aligned}
& \mathfrak{X}_{\varphi}(f)=0 \text { if }|f(x)-f(a)|=\mathrm{o}(\rho(a, x)), \\
& \mathfrak{X}_{\varphi}(f) \geqq 0 \text { if } d_{p} f \geqq 0 .
\end{aligned}
$$

On the other hand, if the map \mathfrak{X} from the space of $\mathscr{F}\left(S^{n-1}\right)$-smooth functions at a to R, the real number field, satisfies (i), (ii) and (iii), then \mathfrak{X} is written as

$$
f=\left\langle\xi, \quad d_{\rho} f(a)\right\rangle
$$

by some $\xi \in \mathscr{F}^{*}\left(S_{a}\right)$. Hence if \mathfrak{X} also satisfies (iv), \mathfrak{X} is written as \mathfrak{X}_{φ} by some $\varphi: I \rightarrow M$. In some part, the globalization of these discussions are possible. To do this, first we constract the associate $\mathscr{F}\left(S^{n-1}\right)$-bundle of the tangent microbundle of M, which is denoted by $\mathscr{F}(s(M))$ and its dual bundle, which is denoted by $\mathscr{F}^{*}(s(M))(\S 1)$. (cf. [1], [9], [12]).

Next, we set

$$
d_{\rho} f(x, y)=\lim _{t \rightarrow 0} \frac{1}{t}\left(f\left(r_{x, y, t}\right)-f(x)\right), \quad y \in S_{x} .
$$

If $d_{p} f(x)$ is a continuous cross-section of $\mathscr{F}(s(M))$, then we call f is $\mathscr{F}^{(}\left(S^{n-1}\right)$. smooth on M (for $n=1$, cf. [7], [8], [10]). We can show that the space of \mathscr{F} $\left(S^{n-1}\right)$-smooth functions on M (denoted by $C_{\mathscr{F}\left(S^{n-1}\right)}(M)$ is dense in $C(M)$ or in $L^{p_{l o c}}$ (M) ($\S 2$, theorem 1). (The measure on M by which $L^{p}(M)$ or $L^{p}{ }_{l o c}(M)$ is defined, is that of induced from ρ (cf. [3], [4])). Then a linear operator X of $C(M)$ which satisfies the following (i), (ii), (iii) is called an $\mathscr{F}\left(S^{n-1}\right)$-vector field on M.
(i).
X is a closed operator from $C_{\mathscr{F}\left(S^{n-1}\right)}(M)$ into $C(M)$.
(ii). $\quad(X f)(a)=0, \quad i f|f(x)-f(a)|=o(\rho(a, x))$ at a.
(iii). $\quad X\left(f_{1} f_{2}\right)=f_{1} X\left(f_{2}\right)+f_{2} X\left(f_{1}\right)$.

We show that if X is an $\mathscr{F}\left(S^{n-1}\right)$-vector field on M, then X is written as

$$
X f(x)=\left\langle\xi(x), d_{p} f(x)\right\rangle, x \in M,
$$

where ξ is a continuous cross-section of $\mathscr{F} *(s(M))(\S 2$, theorem 2). Therefore, as usual vector field, we may identify X and a continuous cross-section of \mathscr{S}^{*} $(s(M))$. But an $\mathscr{F}\left(S^{n-1}\right)$-vector field X does not generate a 1 -parameter group germ of M in general. For example, the theorem of Hille-Yosida shows that if M is compact and simply connected, the $C\left(S^{n-1}\right)$-vector field X corresponds to the cross-section m of $C^{*}(s(M))$ given by $m=m(x), m(x)$ is the cannonical measure on
S_{x} defined from the metric, does not generate any (equi-continuous) 1-parameter semi group of $C(M)$ or $L^{p}(M)$ ($\S 2$, exemple). (cf. [17], [18]). We note since $m(x)$ is positive, there exists a curve $\gamma=\gamma_{x}$ for any x, such that γ_{x} starts from x and whose generalized tangent at x is $m(x)$ (cf. $\S 3$, exemple 2), if $n=2, \gamma_{x}$ is given by $r \theta=1$.

As usual vector field, if X, Y are $\mathscr{F}\left(S^{n-1}\right)$-vector fields such that theire compositions $X Y$ and $Y X$ are both possible, then

$$
[X, Y]=X Y-Y X
$$

is also an $\mathscr{F}\left(S^{n-1}\right)$-vector field of M. But the composition of $\mathscr{F}\left(S^{n-1}\right)$-vector fields may not be possible in general.

In $\S 1$, we also construct associate $\mathscr{\mathscr { V }}\left(S^{n-1} \times \cdots \cdots \times S^{n-1}\right)$-bundle of the tangent microbundle of M. It is denoted by $\mathscr{F}\left(s^{p}(M)\right.$). We denote by $\mathrm{A} \mathscr{F}\left(s^{p}(M)\right)$ the subbundle of $\mathscr{F}\left(s^{p}(M)\right)$ whose fibre is consisted by those functions $f\left(y_{1}, \cdots \cdots, y_{p}\right)$, $y_{i} \in S^{n-1}$, of $\mathscr{F}\left(S^{n-1} \times \cdots \cdots \times S^{n-1}\right)$ such that

$$
f\left(y_{o(1)}, \cdots \cdots, y_{o(p)}\right)=\operatorname{sgn}(\sigma) f\left(y_{1}, \cdots \cdots, y_{p}\right), \sigma \in \gamma^{p} .
$$

The cross-sections of these bundles are considered to be reductions of AlexanderSpanier cochains (cf. [1], [3], [14], [15]).

For the cross-sections of $\mathscr{F}\left(s^{p}(M)\right)$ and $\mathrm{A} \mathscr{F}\left(s^{p}(M)\right)$, we define the maps d_{ρ} and $A d_{\rho}$ by

$$
\begin{aligned}
& d_{p} f\left(x, y_{1}, \cdots \cdots, y_{p+1}\right) \\
& =\lim _{t \cdot 0} \frac{1}{t}\left[f\left(r_{x, y_{1}, t}, y_{2}, \cdots \cdots, y_{p+1}\right)-f\left(x, y_{2}, \cdots \cdots, y_{p+1}\right),\right. \\
& A d_{p} f\left(x, y_{1}, \cdots \cdots, y_{p+1}\right) \\
& =\frac{1}{p+1} \sum_{i=1}^{p+1}(-1)^{i+1}\left[\operatorname { l i m } _ { t \rightarrow 0 } \frac { 1 } { t } \left(f\left(r_{x, y_{i} i}, y_{1}, \cdots \cdots, y_{i+1}, \cdots \cdots, y_{p+1}\right)-\right.\right. \\
& \left.\left.\quad f\left(x, y_{1}, \cdots \cdots, y_{i-1}, y_{i+1}, \cdots \cdots, y_{p+1}\right)\right)\right] .
\end{aligned}
$$

We call f is $\mathscr{F}\left(S^{n-1}\right)$-smooth if $d_{\rho} f$ (or $A d_{p} f$) defines a continuous cross-section of $\mathscr{F}\left(s^{p+1}(M)\right)$ (or $A \mathscr{F}\left(s^{p+1}(M)\right)$. We note that to define
$\int_{T} f\left(x, y_{1}, \cdots \cdots, y_{p}\right)$ by

$$
\begin{aligned}
& \int_{r} f\left(x, y_{1}, \cdots \cdots, y_{p}\right) \\
= & \int_{r} f\left(x, \varepsilon_{x, x_{1}}, \cdots \cdots, \varepsilon_{x, x_{p}}\right) \rho\left(x, x_{1}\right) \cdots \cdots \rho\left(x, x_{p}\right),
\end{aligned}
$$

where γ is a singular p-chain of M and the right hand side is the integration of

Alexander-Spanier cochain defined in [3], $\int_{r} f$ is exists if f is $\mathscr{F}\left(S^{n-1}\right)$-smooth and γ is given by $\varphi: I^{p} \rightarrow M$ where φ satisfies

$$
\begin{aligned}
& \rho\left(\varphi\left(a_{J+1_{i}}\right), \quad \varphi\left(a_{J}\right)\right) \leq N\left|a_{j_{i+1}}-a_{j_{i}}\right| \\
& a_{J}=\left(a_{j_{1}}, \cdots \cdots, a_{j_{p}}\right), \quad a_{j+1_{i}}=\left(a_{j_{1}}, \cdots \cdots, a_{j_{i-1}}, a_{j_{i+1}}, a_{j_{i+1}}, \cdots \cdots, a_{j_{p}}\right) .
\end{aligned}
$$

for some $N>0$. Since $A d_{\rho}\left(A d_{\rho} f\right)=0$ if $A d_{\rho} f$ is $\mathscr{F}\left(S^{n-1}\right)$-smooth, we can obtain the analogy of de Rham's theorem by using the cross-sections of $A_{\mathcal{F}}\left(s^{p}(M)\right)$ and the Cech cohomology group of M. But the above shows that the analogy of de Rham's theorem is also obtained by using the singular homology group of M (cf. [15], [16]).

We note that if $M=\boldsymbol{R}^{1}$, the 1 -dimensional euclidean space with the euclidean metric, then

$$
d_{p} f(x)=\left(D_{+} f(x), \quad D_{-} f(x)\right),
$$

where D_{+}and D_{-}mean the right hand side and the left hand side derivations of f and the (fibre of $\mathscr{F}\left(s\left(R^{1}\right)\right)$ is $\boldsymbol{R} \oplus \boldsymbol{R}$. We know that f is smooth if and only if $D_{+} f=D^{-} f$ at any point of R^{1}, that is $d_{p} f$ defines a cross-section of the subbundle of $\mathscr{F}\left(s\left(\boldsymbol{R}^{1}\right)\right)$ whose fibre is the diagonal of $\boldsymbol{R} \oplus \boldsymbol{R}$.

To generalize this, first we assume the metric ρ of M satisfies (*). If $\rho\left(x_{1}\right.$, $\left.x_{2}\right) \leq 2$, then there is unique path γ which joins x_{1} and x_{2} and

$$
\int_{r} \rho=\rho\left(x_{1}, \quad x_{2}\right)
$$

Under this assumption, for any $y \in S_{x}$, there exists unique point \hat{y} of S_{x} such that

$$
\rho(y, \quad \hat{y})=2 .
$$

We denote the quotient space of S_{x} obtained by identifying \hat{y} and y by P_{x}. By definition, P_{x} is homeomorphic to $R P^{n-1}$, the $(n-1)$-dimensional real projective space.

For this P_{x}, if f is $\mathscr{F}\left(S^{n-1}\right)$-smooth at x and

$$
d_{p} f(x, \quad \hat{y})=d_{p} f(x, y),
$$

for any $y \in S_{x}$, then $d_{o f} f$ may be considered to be an element of $\mathscr{F}\left(P_{x}\right)$. Here $\mathscr{F}\left(P_{x}\right)$ is defined similarly as $\mathscr{F}\left(S_{x}\right)$ and it is also considered to be a subspace of $\mathscr{F}\left(S_{x}\right)$ given by

$$
\widetilde{F}\left(P_{x}\right)=\left\{g \mid g \in \mathscr{F}\left(S_{x}\right), g(y)=g(\hat{y})\right\} .
$$

Since $\mathscr{F}\left(P_{x}\right)$ is isomorphic to $\mathscr{F}\left(R P^{n-1}\right)$, we call f to be $\mathscr{F}\left(R P^{n-1}\right)$-smooth in this case. If M is R^{n}, the n-dimensional euclidean space with the euclidean
metric, then f is $M\left(S^{n-1}\right)$-smooth at x if and only if f is one-sided differentiable at x along any line which ends at x and f is $M\left(\boldsymbol{R} P^{n-1}\right)$-smooth at x if and only if f is differentiable at x along any line which through x.

Since the tatal spaces of $s(M)$ and $s^{p}(M)$, the associate S^{n-1} and $\widetilde{S^{n-1} \times \cdots \cdots \times S^{n-1}}$ bundles of the tangent microbundle of M are given by

$$
\begin{array}{r}
s(M)=\left\{\begin{array}{l}
(x, y) \mid \rho(x, y)=1, \quad x \in M, \quad(x, y) \in M \times M, \\
s^{p}(M)=\left\{\left(x, y_{1}, \cdots \cdots, y_{p}\right) \mid \rho\left(x, y_{i}\right)=1, \quad i=1, \cdots \cdots, p, \quad x \in M,\right. \\
\\
\left(x, y_{1}, \cdots \cdots, y_{p}\right) \in M \times M \times \cdots \cdots \times M
\end{array}\right\},
\end{array}
$$

we can construct the associate $R P^{n-1}$ - bundle and $\widetilde{R P^{n-1} \times \cdots \cdots \times R P^{n-1}}$ - bundle of $\tau(M)$, the tangent microbundle of M, by taking $s(M) / \sim$ and $s^{p}(M) / \sim$ to be the tatal spaces. Here the equivalence relations \sim or $\underset{p}{\sim}$ are given by

$$
\begin{aligned}
& (x, y) \sim\left(x^{\prime}, y^{\prime}\right) \text { if and only if } x=x^{\prime} \text { and } \rho\left(y, y^{\prime}\right)=2 \text {. } \\
& \left(x, y_{1}, \cdots \cdots, y_{p}\right) \sim\left(x^{\prime}, y_{1}^{\prime}, \cdots \cdots, y^{\prime}\right) \\
& \text { if and only if } x=x, \text { and } \rho\left(y_{i}, y_{i}^{\prime}\right)=2, i=1, \cdots \cdots, p \text {, }
\end{aligned}
$$

where ρ is assumed to satisfy $\left({ }^{*}\right)^{\prime}$. Then using $s(M) / \sim$ and $s^{p}(M) / \widetilde{b}$, we can
 They are denoted by $\mathscr{F}(s(M) / \sim)$ and $\mathscr{F}\left(s^{p}(M) / \sim\right)$. We note that since we have

$$
\begin{aligned}
& \mathscr{F}\left(S^{n-1}\right)=\mathscr{F}\left(\boldsymbol{R} P^{n-1}\right) \oplus \mathscr{\mathscr { H }}\left(\boldsymbol{R} P^{n-1}\right) \\
& \mathscr{F}\left(\boldsymbol{R} P^{n-1}\right)=\{g \mid g(y)=g(\hat{y})\}, \quad \check{\mathscr{F}}\left(\boldsymbol{R} P^{n-1}\right)=\{g \mid g(y)=-g(\hat{y})\},
\end{aligned}
$$

we may consider $\mathscr{F}(s(M) / \sim)$ and $\mathscr{F}\left(s^{p}(M) / \sim{ }_{D}^{\sim}\right.$) are the subbundles of $\mathscr{F}(s(M))$ and $\mathscr{F}\left(s^{p}(M)\right)$ and can be considered to be direct summands of them.

We note that using $\mathscr{F}\left(\boldsymbol{R} P^{n-1}\right)$-smooth functions and the bundles $\mathscr{F}(s(M) / \sim)$, $\mathscr{F}\left(s^{p}(M) / \underset{p}{\sim}\right)$ and $A \mathscr{F}\left(s^{p}(M) / \underset{p}{\sim}\right)\left(A \mathscr{F}\left(s^{p}(M) / \underset{p}{\sim}\right)\right.$ is defined similarly as others), we can construct same theories as above.

Similarly, if $M=\mathbb{C}$, the complex number plane with the euclidean metric, f a holomorphic function, then

$$
d_{\rho} f(a, y)=\frac{d f}{d z}(a) .
$$

This suggests that if $\operatorname{dim} . M=2 m$, then the condition (**), there exists associate C P^{m-1}-bundle of $\tau(M)$, may have some meaning for M.

The outline of this paper is as follows: In §1, we define the bundles
$\mathscr{F}(s) M)), \mathscr{F}\left(s^{p}(M)\right)$ and $A \mathscr{T}\left(s^{p}(M)\right)$ and treat their properties. In $\delta 2$, we define $\mathscr{F}\left(S^{n-1}\right)$-smooth functions and $\mathscr{F}\left(S^{n-1}\right)$-vector fields. The generalized tangents of curves ant their properties are stated in $\S 3$.

Added in proof. In \boldsymbol{R}^{n} with the euclidean metric, $d_{\rho} f$ may be considered (onesided) Gâteaux's differential $V f$. Here Gâteaux's differential $V f\left(x_{0}, h\right)$ is defined by

$$
V f\left(x_{0}, h\right)=\lim _{t \rightarrow 0} \frac{f\left(x_{0}+t h\right)-f\left(x_{0}\right)}{t}, h \in M_{2}
$$

where f is a map from a Banach space M_{1} to a Banach space M_{2}. For the details and related notions with their applications, see Burysek, S. : On symmetric G differential and convex functionals in Banach spaces, Publ. Math., (Debrecen), 17, 1970, 145-161).
§ 1. Bundles $\mathscr{\mathscr { F }}(s(M))$ and $\mathscr{F}\left(s^{p}(M)\right)$.

1. We denote by M an n-dimensional connected paracompact topological manifold. On M, we fix a metric ρ by which the topology of M is given, and assume ρ satisfies the following (i), (ii), (iii) (For the existence of such metric, see [4]).
(i). If $\rho\left(x_{1}, x_{2}\right) \leqq 1$, then there exists unique path γ which joins x_{1} and x_{2} and

$$
\int_{r} \rho=\rho\left(x_{1}, x_{2}\right)
$$

(ii). M is complete with respect to ρ.
(iii). The measure $m(\rho)$ induced from ρ on M is a positive Radon measure and satisfies
$m(\rho)(E) \neq 0$, if E is measurable and containes some non empty open set.
For $x \in M$, we set

$$
S_{x}=\{y \mid y \in M, \quad \rho(x, \quad y)=1\} .
$$

Since $\operatorname{dim} . M=n, S_{x}$ is homeomorphic to S^{n-1}, the unit ($n-1$)-sphere (cf. [4]). We assume that for any x, ρ induces a metric ρ_{x} on S_{x} which is given by

$$
\rho_{x}\left(y_{1}, y_{2}\right)=\underset{\gamma,}{\inf } . \quad \text { joins } y_{1} \text { and } y_{2} \text { in } S_{x} \int_{r} \rho .
$$

The measure on S_{x} induced from ρ_{x} (cf. [3]) is denoted by $m=m(x)$. For this $m(x)$, we assume (cf. [4])
(i). A Borel set of S_{x} is $m(x)$-measurable and if E is $m(x)$ measurable and contains some non-empty open set of S_{x}, then

$$
m(x)(E) \neq 0
$$

(ii). $m(x)$ depends continuously on x.

Since S_{x} is compact, $m(x)\left(S_{x}\right)$ is finite. Hence, for the simplicity, we normalize $m(x)$ to satisfy $m(x)\left(S_{x}\right)=1$.

Note. If M is a smooth manifold, ρ is the geodesic distance defined by a (complete) Riemannian metric on M, then $m(x)$ depends differentiably on x.

In $M \times M$, we set

$$
\begin{equation*}
s(M)=\{(x, y) \mid x \in M, \quad \rho(x, y)=1\} . \tag{1}
\end{equation*}
$$

We define $\pi: s(M) \rightarrow M$ by $\pi(x, y)=x$. Then $\{s(M), \pi, M\}$ is the associate unit sphere bundle of the tangent microbundle of M (cf. [1], [9], [12]). We denote the transition function of $s(M)$ by $\left\{g_{U V}(x)\right\}$ if we consider the fidre of $s(M)$ at x to be S_{x}. We note that if we consider the fibre of $s(M)$ at x to be the measure space $\left(S_{x}, m_{x}\right)$, then the transition function of $s(M)$ should be replaced by $\left\{\left(g_{U V}(x)\right.\right.$, $\left.\left.m_{U}(x)\left(g_{U V}(x)^{*} m_{V}(x)\right)^{-1}\right)\right\}$, where $m_{U}(x)$ is given by

$$
m(x)(E)=\int_{h U, x(E)} m_{U}(x) d \Omega
$$

Here $h_{U, x}$ is the local homeomorphism from $\pi^{-1}(U)$ to $U \times S^{n-1}$ and $d \Omega$ is the standard measure on S^{n-1}.

We denote by $\mathscr{F}\left(S^{n-1}\right)$ a function space over S^{n-1}. In the rest, $\left(S^{n-1}\right)$ means either of $C\left(S^{n-1}\right)$ or $L^{p}\left(S^{n-1}\right), 1 \leqq p \leqq \infty$, regarding them to be Banach spaces. Here $L^{p}\left(S^{n-1}\right)$ is defined by d Ω. (If M is smooth, or real analytic, then $C^{\infty}\left(S^{n-1}\right)$, or $C^{\omega}\left(S^{n-1}\right)$, is also taken as ($\left.S^{n-1}\right)$). Then by identifying $U \times C\left(S^{n-1}\right) \in(x, f(y))$ and $\left(x, f\left(g_{U V}(x) y\right)\right) \in V \times C\left(S^{n-1}\right), x \in U \cap V$, we obtain the associate $C\left(S^{n-1}\right)$-bundle of $s(M)$. It is denoted by $C(s(M))$. Since $C(s(M))$ is a vector bundle over M with the fibre $C\left(S^{n-1}\right)$, its dual bundle $C^{*}(s(M))$ is defined. $C^{*}(s(M))$ is a vector bundle over M with the fibre $C^{*}\left(S^{n-1}\right)$, where $C^{*}\left(S^{n-1}\right)$ is the space of Radon measures on S^{n-1}.

Lemma 1. Regarding $m(x)$ to be a function on $M, m(x)$ is a cross-section of $C^{*}(s(M))$.

Corollary. We have

$$
\begin{equation*}
m_{U}(x)\left(g_{U V}(x)^{* *} m_{V}(x)\right)^{-1}=1 . \tag{2}
\end{equation*}
$$

By this corollary, although $\mathscr{F}\left(S^{n-1}\right)$ is $L^{p}\left(S^{n-1}\right)$, we can construct the associate $\mathscr{F}\left(S^{n-1}\right)$-bundle of $s(M)$ by identifying $U \times \mathscr{F}\left(S^{n-1}\right) \ni(x, f(y))$ and $\left(x, \mathrm{~g}_{U V}(x)^{*}\right.$ $f(y)) \in V \times \mathscr{F}\left(S^{n-1}\right), x \in U \cap V$. This bundle is denoted by $\mathscr{F}(s(M))$. The dual bundle of $\mathscr{F}^{F}(s(M))$ is denoted by $\mathscr{F}^{*}(s(M))$. By definftion, the fibre of $\mathscr{F}^{*}(s(M))$ is $\mathscr{F}^{*}\left(S^{n-1}\right)$, the dual space of $\mathscr{F}\left(S^{n-1}\right)$. We denote the fibre of $\mathscr{F}(s(M))$ (and $\mathscr{F}^{*}(s(M))$) at x by $\mathscr{F}^{-}\left(S_{x}\right)$ (and $\left.\mathscr{F}^{*}\left(S_{x}\right)\right)$.

Definition. An element of $\mathscr{F}^{*}\left(S_{x}\right)$ is called an $\mathscr{\mathscr { T }}\left(S^{n-1}\right)$-vector at x.

Note. If we regard S_{x} to be a measure space ($S_{x}, k(x)$), and define $L^{p}\left(S_{x}\right)$ by $k(x)$, then to define $K_{U}(x)$ similarly as $m_{U}(x)$, we obtain the associate $L^{p}\left(S^{n-1}\right)$ - bundle of $s(M)$ by identifying $U \times L^{p}\left(S^{n-1}\right) \ni(x, \quad f(y))$ and $\left(x, \quad\left[k_{U}(x)\left(g_{U V}(x)^{*} k_{V}(x)\right)^{-1 / p}\right.\right.$ $\left.g_{U V}(x)^{*} \mathrm{f}(y)\right) \in V \times L^{p}\left(S^{n-1}\right), x \in U \cap V$.
2. In $M \times \widetilde{M \times \cdots \cdots \times M}$, we set

$$
\begin{equation*}
s^{p}(M)=\left\{\left(x, y_{1}, \cdots \cdots, y_{p}\right) \mid x \in M, \rho\left(x, y_{i}\right)=1, i=1, \cdots \cdots, p\right\} . \tag{1}
\end{equation*}
$$

To define $\pi: s^{p}(M) \rightarrow M$ by $\pi\left(x, y_{1}, \cdots \cdots, y_{p}\right)=x,\left\{s^{p}(M), \pi, M\right\}$ is associate $\overparen{S^{n-1} \times \cdots \cdots \times S^{n-1}}$ - bundle over M. If the fibre of $s(M)$ at x is considered to be the measure space $\left(S_{x}, m(x)\right)$, then we consider the fibre of $s^{p}(M)$ at x to be the measure space $\left(S_{x} \times \cdots \cdots \times S_{x}, m(x) \otimes \cdots \cdots \otimes m(x)\right)$. The transition functions $\left\{g_{U V}(x)\right\}=$ $\left\{g_{U V}{ }^{p}(x)\right\}$ of $s^{p}(M)$ is given by

$$
g_{U V}{ }^{p}(x)\left(y_{1}, \cdots \cdots, y_{p}\right)=\left(g_{U V}(x) y_{1}, \cdots \cdots, g_{U V}(x) y_{p}\right)
$$

where $g_{U V}(x)$ in the right hand side is the transition function of $s(M)$.
 $\therefore \cdots \cdots \times S^{n-1}$ which is of the same type with $\mathscr{F}\left(S^{n-1}\right)$. That is $\mathscr{F}^{p}\left(S^{n-1}\right)$ means either of $C\left(S^{n-1} \times \cdots \cdots \times S^{n-1}\right)$ or $L^{p}\left(S^{n-1} \times \cdots \cdots \times S^{n-1}\right)$ with the measure $m(x) \otimes \cdots \cdots$ $\otimes m(x)$ in general and $C^{\infty}\left(S^{n-1} \times \cdots \cdots \times S^{n-1}\right)$ or $C^{\omega}\left(S^{n-1} \times \cdots \cdots \times S^{n-1}\right)$ is also considered if M is smooth or real analytic. By assumption, $\mathscr{F}\left(S^{n-1}\right) \otimes \cdots \cdots \cdot \mathscr{F}\left(S^{n-1}\right)$ is dense in $\mathscr{F}\left(S^{n-1} \times \cdots \cdots \times S^{n-1}\right)$.

As $\mathscr{F}(s(M))$, we construct the associate $\mathscr{F}^{p}\left(S^{n-1}\right)$-bundle of $s^{p}(M)$. It is denoted by $\mathscr{F}^{F}\left(s^{p}(M)\right)$. The dual bundle of $\mathscr{F}^{F}\left(s^{p}(M)\right)$ is denoted by $\mathscr{F}^{*}\left(s^{p}(M)\right)$. The fibres of $\mathscr{F}\left(s^{p}(M)\right)$ and $\mathscr{F}^{*}\left(s^{p}(M)\right)$ at x are denoted by $\mathscr{F}^{(}\left(S_{x} \times \cdots \cdots \times S_{x}\right)$ or $\mathscr{F}^{p}\left(S_{x}\right)$ and $\mathscr{F}^{*}\left(S_{x} \times \cdots \cdots \times S_{x}\right)$ or $\mathscr{F}^{p *}\left(S_{x}\right)$.

Definition. An element of $\mathscr{F}^{p *}\left(S_{x}\right)$ is called an $\mathscr{F}\left(S^{n-1}\right)$-pector at x.
For any $f \in \mathscr{F}^{p}\left(S^{n-1}\right)$ and $\sigma \in \gamma^{p}$, we set

$$
\begin{equation*}
\sigma(f)\left(y_{1}, \cdots \cdots, y_{p}\right)=f\left(y_{o(1)}, \cdots \cdots, y_{\sigma(p)}\right), \quad y_{i} \in S^{n-1} \tag{3}
\end{equation*}
$$

Then, since $\mathscr{F}\left(S^{n-1}\right) \otimes \cdots \cdots \otimes \mathscr{F}\left(S^{n-1}\right)$ is dense in $\mathscr{F}^{\mu}\left(S^{n-1}\right), \sigma$ is continuous. Therefore, setting

$$
A_{\mathscr{F}^{p}}\left(S^{n-1}\right)=\left\{f \mid f \in \mathscr{F}^{p}\left(S^{n-1}\right), \sigma(f)=\operatorname{sgn}(\sigma) f\right\},
$$

$A \mathscr{F}^{p}\left(S^{n-1}\right)$ is a closed subspace of $\mathscr{F}^{p}\left(S^{n-1}\right)$. Since σ^{*}, the adjoint operator of σ, is σ^{-1}, we have

$$
\left(A \mathscr{S}^{p}\left(S^{n-1}\right)\right)^{*}=A \mathscr{S}^{p *}\left(S^{n-1}\right)
$$

As we know

$$
\begin{aligned}
& \sigma\left(f\left(g_{U V}(x) y_{1}, \cdots \cdots, g_{U V}(x) y_{p}\right)\right) \\
= & f\left(g_{U V}(x) y_{\sigma 1}, \cdots \cdots, g_{U V}(x) y_{\sigma p}\right), f \in \mathscr{F}^{p}\left(S^{n-1}\right),
\end{aligned}
$$

we obtain an $A \mathscr{F}^{p}\left(S^{n-1}\right)$-bundle over M to be a subbundle of $\mathscr{F}^{p}(s(M))$. This
 The fibres of $A \mathscr{S}^{(}\left(s^{p}(M)\right)$ and $A \mathscr{F}^{*}\left(s^{p}(M)\right)$ are denoted by $A \mathscr{F}^{p}\left(S_{x}\right)$ and $A \mathscr{F}^{p *}$ $\left(S_{x}\right)$.

Note. Similarly, to set

$$
S \mathscr{F}^{p}\left(S^{n-1}\right)=\left\{f \mid f \in \mathscr{F}^{p}\left(S^{n-1}\right), \sigma(f)=f\right\},
$$

we can define an $S \mathscr{F}^{p}\left(S^{n-1}\right)$-bundle $S \mathscr{F}^{p}\left(s^{p}(M)\right)$ to be a subbundle of $\mathscr{F}\left(s^{p}(M)\right)$. Its dual bundle is denoted by $S \mathscr{F}^{*}\left(s^{p}(M)\right)$. The fibres of $S \mathscr{F}\left(s^{p}(M)\right)$ and $S \mathscr{F}^{*}$ $\left(s^{p}(M)\right)$ at x are denoted by $S_{\mathscr{S}^{p}}\left(S_{x}\right)$ and $S \mathscr{F}^{p *}\left(S_{x}\right)$.

Definition. A (continuous) cross-section φ of $\mathscr{F}^{\top}\left(s^{p}(M)\right.$) is called a (continuous) $\mathscr{F}\left(S^{n-1}\right)$-p-cochain of M. If φ is a cross-section of $A \mathscr{F}\left(s^{p}(M)\right)$, then φ is called an $\mathscr{F}\left(S^{n-1}\right)$-p-form of M.

Definilion. \quad (continuous \rangle cross-section of $\mathscr{F}^{*}\left(s^{\beta}(M)\right)$ is called an $\mathscr{F}\left(S^{n-1}\right)-p$ vectorfield of M.

In general, we call an element of $\mathscr{F}^{p}\left(S_{x}\right) \otimes \mathscr{F}^{q *}\left(S_{x}\right)$ to be an $\mathscr{F}\left(S^{n-1}\right)-(p, q)$ -tensor at x and a continuous cross-section of $\mathscr{F}\left(s^{p}(M)\right) \otimes \mathscr{F}^{*}\left(s^{q}(M)\right)$ to be an $\mathscr{F}\left(S^{n-1}\right)-(p, q)$-tensorfield of M.

If M is smooth (or real analytic), then $\mathscr{F}\left(s^{p}(M)\right)$ and $\mathscr{F}^{*}\left(s^{q}(M)\right)$ allow the structure of smooth (or real analytic) yector bundles. Hence we can define smooth (or real analytic) $\mathscr{F}\left(S^{n-1}\right)$ - p-cochain, etc. .
3. We denote by $r_{x, y}$ the unique curve which joins x and $y, y \in S_{x}$ and satisfies

$$
\int_{r_{x, v}} \rho=1
$$

Then for any $a, 0 \leqq a \leqq 1$, there exists unique point z in $r_{x, \nu}$ such that $\rho(x, z)$ $=a$. We denote this z by $r_{x, y, a}$.

On the other hand, if $\rho(x, z)<1$, then there exists unique point y of S_{x} such that $z \in r_{x, y}$. Or, in other word, x, z determines a point y of S_{x}. We denote this y by $\varepsilon_{x, z}$.

By definition, if $\rho(x, z)<1$, then

$$
\begin{equation*}
r_{x, \varepsilon_{x, z}, \rho(x, z)}=z . \tag{4}
\end{equation*}
$$

For an $\mathscr{F}\left(S^{n-1}\right)$ - p-cochain $\varphi=\varphi\left(x, y_{1}, \cdots \cdots, y_{p}\right)$ of M, we set

$$
\begin{align*}
& \tilde{\varphi}(x, \tag{5}\\
x_{1}, \cdots \cdots, & \left.x_{p}\right) \\
= & \varphi\left(x, \quad \varepsilon_{x, x_{1}}, \cdots \cdots, \varepsilon_{x, x_{p}}\right) \rho\left(x, x_{1}\right) \cdots \rho\left(x, x_{p}\right),
\end{align*}
$$

$$
x_{i} \in M, \quad \rho\left(x, x_{i}\right)<1, \quad i=1, \cdots \cdots, p .
$$

Then $\tilde{\varphi}$ defines an Alexander-Spanier p-cochain of M. By definition, if φ is an $\mathscr{F}^{-}\left(S^{n-1}\right)$ - p-form, then $\tilde{\varphi}$ is alternative in $x_{1}, \cdots \cdots, x_{p}$.

Definition. If γ is a singular p-chain of M, then we define the integration $\int_{\gamma} \varphi$ of φ, an $\mathscr{F}\left(S^{n-1}\right)$-p-cochain of M on γ by

$$
\begin{equation*}
\int_{r} \varphi=\int_{r} \widehat{\varphi} \tag{6}
\end{equation*}
$$

Here the right hand side means the integral of the Alexander-Spanier cochain $\check{\varphi}$ on r ([3]).

By the definition of the integral (cf. [3])), if φ is a $C\left(S^{n-1}\right)$ - p-cochain and γ is given by $f: I^{p} \rightarrow M$ where f satisfies

$$
\begin{align*}
& \rho\left(f\left(a_{J+1_{i}}\right), \quad f\left(a_{J}\right)\right) \leqq N\left|a_{j_{i}+1}-a_{j_{i}}\right| \tag{7}\\
& a_{J+1_{i}}=\left(a_{j_{1}}, \cdots \cdots, a_{j-i 1}, a_{j_{i}+1}, a_{j_{i+1}}, \cdots \cdots, a_{j_{n}}\right), a_{J}=\left(a_{j_{1}}, \cdots \cdots, a_{j_{n}}\right)
\end{align*}
$$

for some $N<0$, then φ is absolutely integrable on γ. In fact, since S^{n-1} and γ both compact, to set

$$
K=\max _{x \in r} .\left(\max _{y_{i} \in S \times \cdots \cdots \times S x}\left|\varphi_{x}\left(x, y_{1}, \cdots \cdots, y_{p}\right)\right|\right),
$$

K is finite, and for any partition Δ of I, we have

$$
\begin{aligned}
& \left|\sum_{J}\right| \tilde{\varphi} \varphi\left(f\left(a_{J}\right), \quad f\left(a_{J+1}\right), \cdots \cdots, f\left(a_{J+1_{p}}\right)\right) \mid \\
\leqq & K N^{p}\left(\sum_{J}\left|a_{j_{1}+1}-a_{j_{1}}\right| \cdots \cdots\left|a_{j_{p}+1}-a_{j_{p}}\right|\right) \leqq K N^{p} \\
\Delta & \text { is given by } 0=a_{o}<a_{1}<\cdots \cdots<a_{m}<1
\end{aligned}
$$

which shows the absolute integrability of $\check{\varphi}$ on γ.
Note. This is also true if φ is an $M\left(S^{n-1}\right)$ - p-cochain and it seems to be true for $L^{q}\left(S^{n-1}\right)$ - p-cochains if we change the definition of the integral of AlexanderSpanier cochains to the Lebesgue type.

Definition. For an $\mathscr{F}\left(S^{n-1}\right)$ - p - $\operatorname{cochain} \varphi=\varphi\left(x, y_{1}, \cdots, y_{p}\right)$ of M, we define

$$
\begin{equation*}
d_{p} \varphi\left(x, \quad y_{1}, \cdots \cdots, y_{p+1}\right) \tag{8}
\end{equation*}
$$

$$
=\lim _{a \rightarrow 0} \frac{1}{a}\left(\varphi\left(r_{x, y_{1}, a}, y_{2}, \cdots \cdots, y_{p+1}\right)-\varphi\left(x, y_{2}, \cdots \cdots, y_{p+1}\right)\right)
$$

By definition, if $d_{p} \varphi\left(x, y_{1}, \cdots \cdots, y_{p+1}\right)$ exists as an element of $\mathscr{F}^{p} p\left(S_{x}\right)$ for any x and continuous in x, then $d_{\rho} \varphi$ is an $\mathscr{F}\left(S^{n-1}\right)-(p+1)$-cochain of M.

Definition. An $\mathscr{F}\left(S^{n-1}\right)$ - p-cochain φ is called $\mathscr{\mathscr { F }}\left(S^{n-1}\right)$-smooth if $d_{\rho} \varphi$ is a (con.
tinuous) $\mathscr{F}\left(S^{n-1}\right)-(p+1)$-cochain of M.
In general we befine $d_{\rho}{ }^{m} \varphi$ dy

$$
d_{\rho}{ }^{m} \varphi=d_{\rho}\left(d_{\rho}{ }^{m-1} \varphi\right)
$$

and call φ to be $\mathscr{F}\left(S^{n-1}\right)-\mathrm{m}$-smooth if $\mathrm{d}_{\rho}{ }^{m} \varphi$ is a (continuous) $\mathscr{F}\left(S^{n-1}\right)-(p+m)$ cochain of M. If φ is $\mathscr{\mathscr { F }}\left(S^{n-1}\right)$-smooth for all m, then we call φ to be $\mathscr{F}\left(S^{n-1}\right)$ $-\infty$-smooth.

Definition. For an $\mathscr{\mathscr { F }}\left(S^{n-1}\right)$-p-form $\varphi=\varphi\left(x, y_{1}, \cdots \cdots, y_{p}\right)$ of M, we define

$$
\begin{align*}
& A d_{\rho} \varphi\left(x, y_{1}, \cdots \cdots, y_{p+1}\right) \tag{8}\\
& =\frac{1}{p+1}\left[\sum _ { i = 1 } ^ { p + 1 } (- 1) ^ { i + 1 } \left(\operatorname { l i m } _ { a \rightarrow 0 } \frac { 1 } { a } \left(\varphi\left(r_{x, y i}, y_{1}, y_{1}, \cdots \cdots, y_{i-1}, y_{i+1}, \cdots \cdots, y_{p+1}\right)-\right.\right.\right. \\
& \left.\left.\quad-\varphi\left(x, y_{1}, \cdots \cdots, y_{i-1}, y_{i+1}, \cdots \cdots, y_{p+1}\right)\right)\right] .
\end{align*}
$$

By definition, if φ is $\mathscr{F}^{\left(S^{n-1}\right)}$-smooth, then $A d_{\rho} \varphi$ is an $\mathscr{F}^{(}\left(S^{n-1}\right)-(p+1)$-form and if φ is $\mathscr{T}\left(S^{n-1}\right)$-3-smooth, then

$$
\begin{equation*}
A d_{\rho}\left(A d_{\rho} \varphi\right)=0 \tag{9}
\end{equation*}
$$

By $(9)^{\prime}$, denoting $C^{p}\left(M, \mathscr{F}\left(S^{n-1}\right)\right)$ the space of $\mathscr{F}\left(S^{n-1}\right)-\infty$-smooth $\mathscr{F}\left(S^{n-1}\right)$ -p-forms on $M,\left\{\sum j \geqq 0 C^{p}\left(M, \mathscr{F}\left(S^{n-1}\right)\right), A d_{\rho} \varphi\right\}$ is a differential complex and we can show the analogy of de Rham's theorem. Because we know

$$
\begin{equation*}
A \widetilde{d_{\rho} \varphi}=\delta \widetilde{\varphi} \tag{9}
\end{equation*}
$$

where δ is the coboundary homomorphism in the Alexander-Spanier cochain. By (9), we also have

$$
\begin{equation*}
\int_{\partial r} \varphi=\int_{r} A d d_{p} \varphi, \tag{10}
\end{equation*}
$$

if φ is an $\mathscr{F}\left(S^{n-1}\right) \cdot p$-form (cf. [3]).
Note, By (10), we have especially

$$
\int_{r} d_{\rho} f=\int_{r} d_{\rho} f, \text { if } \gamma \text { and } \gamma^{\prime} \text { start from same point and end at same point. }
$$

Because for a function f, we have

$$
A d_{\rho} f=d_{\rho} f
$$

Therefore, we may write $\int_{a}^{x} d_{\rho} f$ if $\rho(a, x)$ is small and we obtain

$$
\begin{equation*}
\int_{a}^{x} d_{\rho} f=f(x)-f(a) \tag{10}
\end{equation*}
$$

§ 2. Generalized vector fields.

4. Definition. A function f on some neighborhood of x is called to be $\mathscr{F}\left(S^{n-1}\right)$. smooth at x if $\left(d_{\rho, x} f\right)(y)=d_{\rho} f(x, y), x$ is fixed, defines a function of $\mathscr{F}\left(S_{x}\right)$.

By definition, we have
Lemma 2. f is $\mathscr{F}\left(S^{n-1}\right)$-smooth at a if and only if f is written as

$$
\begin{equation*}
f(x)=f(a)+g\left(\varepsilon_{a, x}\right) \rho(a, x)+o(\rho(a, x)), \tag{11}
\end{equation*}
$$

where x belongs in $U(a)$, a neighborhood of a and $g(y)$ is an element of . $\left(S_{x}\right)$.
For example, if $M=\boldsymbol{R}^{n}, n$-dimensional euclidean space, ρ is the euclidean metric of R^{n} and f is smooth at a, then f is written as

$$
f(x)=f(a)+\left(\sum_{i} \frac{\partial f(a)}{\partial x_{i}}\left(x_{i}-a_{i}\right) /||x-a||\right)| | x-a| |+o(| | x-a| |),
$$

where $=\left(x_{1}, \cdots \cdots, x_{n}\right), a=\left(a_{1}, \cdots \cdots, a_{n}\right)$ and $\|x\|=\sqrt{\sum_{i} x_{i}{ }^{2}}$. Then since $g(y)=\sum_{i}$ $\frac{\partial f(a)}{\partial x_{i}} y_{i}, y=\left(y_{1}, \cdots \cdots, y_{n}\right), \quad| | y| |=1$, belongs for any $\mathscr{F}\left(S^{n-1}\right), f$ is $\mathscr{F}\left(S^{n-1}\right)$. smooth at a for any $\mathscr{F}^{-}\left(S^{n-1}\right)$.

Definition. A function f on some neighborhood of x is called to be $\mathscr{F}\left(S^{n-1}\right)$. m-smooth at x if

$$
\left(d_{\rho, x^{m}} f\right)\left(y_{1}, \cdots \cdots, y_{m}\right)=d_{\rho}{ }^{m} f\left(x, y_{1}, \cdots \cdots, y_{m}\right), x \text { is fixed, }
$$

defines a function of ${ }^{m}\left(S_{x}\right)$. If f is. $\mathscr{F}\left(S^{n-1}\right)$-m-smooth at x for any m, then we call f is $\mathscr{F}\left(S^{n-1}\right)-\infty$-smooth at x.

For example, if $M=R^{n}, \rho$ is the euclidean metric of R^{n} and f is of class C^{m} at a, then f is $\mathscr{F}^{(}\left(S^{n-1}\right)-m$-smooth at a for any $\mathscr{F}\left(S^{n-1}\right)$. In fact, in this case, we get

$$
\begin{aligned}
& \left(d_{\rho, x}{ }^{m} f\right)\left(y_{1}, \cdots \cdots, y_{m}\right) \\
= & \frac{1}{m!} \sum_{i j \leq n} \frac{\partial^{m} f(a)}{\partial x_{i_{1}} \cdots \cdots \partial x_{i_{m}}} y_{1, i_{1}} \cdots \cdots y_{m, i_{m}}, \\
& y_{i}=\left(y_{i, 1}, \cdots \cdots, y_{i, n}\right),\left\|y_{i}\right\|=1, \quad i=1, \cdots \cdots, m .
\end{aligned}
$$

We denote by $\mathscr{F}^{(}(M)$ the function space on M either of $C(M)$ or $L^{p}(M), 1 \leqq$ $p \leqq \infty$, if M is compact and either of $C(M), C_{b}(M)$, the space of bounded continuous functions on $M, L^{p}(M), 1 \leqq p \leqq \infty$ and $L^{p}{ }_{\text {loc }}(M), 1 \leqq p \leqq \infty$ if M is not compact. Here, M is considered to be a measure space with the measure $m(\rho)$, the induced measure from the metric.

We assume the manifold structure of M is given by $\left\{\left(U, h_{U}\right) \mid h_{U}: U \rightarrow \boldsymbol{R}^{n}\right\}$, then we have

Lemma 3. If we have

$$
\begin{equation*}
\left\|h_{U}(a)-h_{U}(x)\right\|=O(\rho(a, x)), \tag{12}
\end{equation*}
$$

for any $a, x \in M$ and $U \in\{U\}$, where a is regarded to be fixed and x to be a variable, then the space of $\mathscr{F}\left(S^{n-1}\right)$-smooth functions on M is dense in $\mathscr{F}(M)$.

Proof. If f is a smooth function on R^{n} with compact carrier, then the function $h_{U}{ }^{*} f$ on M given by

$$
\begin{array}{ll}
h_{U}^{*} f(x)=f\left(h_{U}(x)\right), & x \in U, \\
h_{U}{ }^{*} f(x)=0, & x \neq U,
\end{array}
$$

is an $\mathscr{F}\left(S^{n-1}\right)$-smooth function on M by (12) and lemma 2. Hence we obtain the lemma since M is paracompact.

Corollary. Under the same assumptions about M and ρ, for any locally finite open covering $\{V\}$ of M, there exists a partition of unity by $\mathscr{F}\left(S^{n-1}\right)$-smooth functions $\left\{e_{V}(x)\right\}$ subordinated to $\{V\}$ for any $\mathscr{F}^{(}\left(S^{n-1}\right)$.

Theorem 1. A paracompact topological manifold M always has a metric ρ such that the space of $\mathscr{F}\left(S^{n-1}\right)$-smooth functions by ρ on M is dense in $\mathscr{F}(M)$ if $\mathscr{F}(M)$ is either of $C(M), C_{b}(M)$ or $L_{\text {toc }}(M), 1 \leqq p \leqq \infty$.

Proof. We take the metric ρ of M constructed in [4]. Then, since

$$
0<\int_{h U(r)}| | \xi-\eta \| \mid<\infty \text {, if and only if } 0<\int_{\gamma} \rho<\infty \text {, }
$$

to set

$$
A=\{a \mid a \in M, \text { a does not satisfy (12) }\} \text {, }
$$

A is a discreet set of M. Hence for any $a \in A$, there exists a neighborhood $U(a)$ of a such that $U(a) \cap A=\{a\}$. For this $U(a)$, we set

$$
C_{a}(U(a))=\{f \mid f \text { is continuous on } U(a) \text { and } f(a)=0\} .
$$

By definnition, we have

$$
\begin{equation*}
C(U(a))=\boldsymbol{R} \oplus C_{a}(U(a)), \tag{13}
\end{equation*}
$$

where R is the space of constant functions on $U(a)$.
We take a neighborhood system $\left\{V_{n}(a)\right\}$ of a in $U(a)$ such that

$$
V_{n}(a) \Subset V_{n+1}(a), \quad \cap_{n} V_{n}(a)=\{a\},
$$

and denote

$$
C_{n}(U(a))=\left\{f \mid f \text { is continuous on } U(a) \text { and } f \mid V_{n}(a)=0\right\}
$$

Then by lemma 3, $\mathscr{F}\left(S^{n-1}\right)$-smooth functions are dense in $C_{n}(U(a))$ for any n. Hence $\mathscr{F}\left(S^{n-1}\right)$-smooth functions are dense in $C_{a}(U(a))$ because $\cup_{n} C_{n}(U(a))$ is dense in $C_{a}(U(a))$. But, since a constant function is $\mathscr{F}\left(S^{n-1}\right)$-smooth for any $\mathscr{F}\left(S^{n-1}\right)$, $\mathscr{F}\left(S^{n-1}\right)$-smooth functions are dense in $C(U(a))$ by (13).

Foe each $a \in A$, we take a neighborhood $V(a)$ such that $V(a) \Subset U(a)$ and set

$$
V(A)=\bigcup_{a \in A} V(a), \quad U(A)=\bigcup_{a \in A}^{\cup U(a) .}
$$

Then we have

$$
\begin{equation*}
V(A) \Subset U(A) . \tag{14}
\end{equation*}
$$

By lemma 3, we know that $\mathscr{F}\left(S^{n-1}\right)$-smooth functions are dense in $C M-V(A)$), and by 14 , we can set

$$
\begin{aligned}
& f=f_{1}+f_{2}, \text { car. } f_{1} \subset M-V(A), \\
& \quad f_{2}=\sum_{a \in A} f_{2, a}, \text { car. } f_{2, a} \subset U(a),
\end{aligned}
$$

for any continuous function f of M. Hence $\mathscr{F}^{-}\left(S^{n-1}\right)$-smooth functions are dense in $C_{b}(M)$. Since $C_{b}(M)$ is dense in $L^{p_{l o c}}(M), 1 \leqq p \leq \infty$, we have the theorem.

Note. If the tatal measure of M ay $m(\rho)$, the induced measure of ρ, is finite, then $\mathscr{F}\left(S^{n-1}\right)$-smooth functions are dense in $L^{p}(M), 1 \leqq p \leqq \infty$, although M is not compact.
5. We denote the space of $\mathscr{F}\left(S^{n-1}\right)$-smooth functions on M by $C \mathscr{F}\left(S^{n-1}\right)(M)$. If M is not compact, then the subspace of $C . \mathscr{T}\left(S^{n-1}\right)(M)$ consisted by bounded . $\mathscr{F}\left(S^{n-1}\right)$-smooth functions on M is denoted by $C_{. \mathscr{F}}\left(S^{n-1}\right), b^{(M)}$. We assume that $C^{\mathscr{F}_{\left(S^{n-1}\right)}(M) \text { is dense in } C(M) \text {. }}$

Lemma 4. $C_{\mathscr{F}\left(S^{n-1}\right)}(M)$ and $C_{\mathscr{F}\left(S^{n-1}\right), b}(M)$ are both rings with the unit.
Rroof. If f_{1} and f_{2} are $\mathscr{F}\left(S^{n-1}\right)$-smooth at a, then we may set

$$
f_{i}(x)=f_{i}(a)+g_{i}\left(\varepsilon_{a, x}\right) \rho(a, x)+o(\rho(a, x)), \quad i=1, \quad 2, \quad x \in U(a)
$$

Hence we have

$$
\begin{aligned}
& f_{1}(x) f_{2}(x) \\
= & f_{1}(a) f_{2}(a)+\left\{f_{1}(a) g_{2}\left(\varepsilon_{a, x}\right)+f_{2}(a) g_{1}\left(\varepsilon_{a, x}\right)\right\} \rho(a, x)+o(\rho(a, x)),
\end{aligned}
$$

for $x \in U(a)$. Since $f_{1}(a) g_{2}\left(\varepsilon_{a, x}\right)+f_{2}(a) g_{1}\left(\varepsilon_{a, x}\right)$ belongs in $\left(S_{a}\right), f_{1} f_{2}$ is $\mathscr{T}\left(S^{n-1}\right)$-smooth
at a. On the other hand, since we know $d_{\rho} 1=0$, where 1 is the constant function with the value 1,1 is $\mathscr{F}\left(S^{n-1}\right)$-smooth for any $\mathscr{F}\left(S^{n-1}\right)$. Therefore we obtain the lemma.

Definition. A closed operator X defined in $C(M)$ with the range in $C(M)$ is called an $\mathscr{F}\left(S^{n-1}\right)$-vector field of M if it satisfies the following (i), (ii) (iii).
(i). X is defined on $\mathrm{C}_{. \overline{\mathscr{F}}\left(S^{n-1}\right)}(M)$.
(ii). If $|f(x)-f(a)|=o(\rho(a, x))$ at a, then $(X f)(a)$ is equal to 0 .
(iii). $X\left(f_{1} f_{2}\right)=f_{1} X\left(f_{2}\right)+f_{2} X\left(f_{1}\right)$.

Lemma 5. If $\xi=\xi(x)$ is an $\mathscr{F}^{\left(S^{n-1}\right)}$-1-vector field of M, then to set

$$
(X f)(x)=\left\langle\xi(x), d_{\rho} f(x)\right\rangle, x \in M,
$$

X is an. $\mathscr{F}\left(S^{n-1}\right)$-vector field of M. Here $\langle\xi, \varphi\rangle, \xi \in * \mathscr{F}\left(S_{x}\right), \varphi \in \mathscr{F}\left(S_{x}\right)$, means the value of ξ at φ.

Proof. By the definition of d_{ρ}, d_{ρ} has the following properties.
(i). If $\left\{f_{n}\right\}$ converges to f in $C(M)$ and $\left\{d_{\rho} f_{n}\right\}$ converges normally to some, $\bar{T}\left(S^{n-1}\right)$ -

1-cochain φ, then f is $\mathscr{F}\left(S^{n-1}\right)$-smooth and $d_{p} f=\varphi$.
(ii). $\quad\left(d_{p} f\right)(a)=0$ if $|f(x)-f(a)|=o(\rho(a, x))$ at a.
(iii). If f_{1} and f_{2} are both $\mathscr{F}\left(S^{n-1}\right)$-smooth, then

$$
d_{\rho}\left(f_{1} f_{2}\right)=f_{1} d_{\rho} f_{2}+f_{2} d_{p} f_{1}
$$

Hence we have the theorem.
Note. A series of $\mathscr{F}\left(S^{n-1}\right)$-1-cochains $\varphi_{m}(x, y)$ is called convergses normally to $\varphi(x, y)$ if the series of functions on M given by $\left\{\left\|\varphi_{m}(x, y)-\varphi(x, y)\right\|_{x}\right\}$ converges uniformlly to 0 on any compact set of M. Here $\|\varphi(x, y)\|_{x}$ means the norm of $\varphi(x), \varphi(x)(y)=\varphi(x, y)$, in $\bar{T}\left(S_{x}\right)$.

By the definition of $\mathscr{F}\left(S^{n-1}\right)$-vector fields, we have
Lemma 6. If X is an $\mathscr{F}\left(S^{n-1}\right)$-vector field of M, then X satisfies the following (14) and (15).

$$
\begin{align*}
& X_{c}=0 \text {, where } c \text { is a constant function of } M . \tag{14}\\
& \left(X f_{1}\right)(a)=\left(X f_{2}\right)(a) \text {, if }\left|f_{1}(x)-f_{2}(x)\right|=o(o(a, x)) . \tag{15}
\end{align*}
$$

Theorem 2. If X is an $\mathscr{F}\left(S^{n-1}\right)$-vector field of M, then there exists an $\mathscr{F}\left(S^{n-1}\right)$-1-vector field $\xi(x)$ of M such that

$$
\begin{equation*}
(X f)(x)=\left\langle\xi(x), \quad d_{o} f(x)\right\rangle, x \in M . \tag{16}
\end{equation*}
$$

Such $\xi(x)$ is determined uniquely from X if A, the set defined in the proof of theorem 1, is the empty set.

Proof. We use same notations as in the proof of theorem 1 and first assume $x \notin A$. Then the map

$$
d_{\rho, x}: C_{\mathscr{F}\left(S^{n-1}\right)}(M) \rightarrow \mathscr{F}\left(S_{x}\right),
$$

given by $\left(d_{\rho, x} f(y)=d_{p} f(x, y)\right.$, is onto. Then we define

$$
\begin{equation*}
\langle\xi(x), g\rangle=(X f)(x), \quad d_{\rho, x} f=g, g \in \mathscr{F}\left(S^{n-1}\right) . \tag{17}
\end{equation*}
$$

By lemma 2 and (15), (17) is well defined and since $d_{0, x}$ is onto, $\xi(x)$ is an element of $\mathscr{F}^{*}\left(S_{x}\right)$ by closed graph theorem because X is a closed operator. Since $X f$ is continuous for any $f \in C_{\mathscr{F}\left(S^{n-1}\right)}(M), \xi(x)$ is continuous in $x, x \in$ $M-A$. Moreover, since $M-A$ is dense in M and $X f$ is continuous on M, lim. $x_{n} \rightarrow a$ $\xi\left(x_{n}\right)=\xi(a)$ exists as an element of $d_{\rho, a}\left(C_{\mathscr{F}\left(S^{n-1}\right)}(M)\right)^{*}$ for any $a \in A$. Hence (by the theorem of Hahn-Banach), we may consider $\xi(a)$ to be an element of $\mathscr{F}^{*}\left(S_{a}\right)$ and ξ is continuous at a. Therefore we obtain the theorem.

By lemma 4 and theorem 2, there is a 1 to 1 correspondence between the set of $\mathscr{F}\left(S^{n-1}\right)$-vector fields of M and the set of $\mathscr{F}\left(S^{n-1}\right)$-1-vector fields of M. Hence we identify them.

Note 1. If X, Y are $\mathscr{F}\left(S^{n-1}\right)$-vector fields of M such that their compositions $X Y$ and $Y X$ are both deined, then $[X, Y]=X Y-Y X$ also satisfies the conditions (ii), (iii) of $\mathscr{F}\left(S^{n-1}\right)$-vector fields.

Note. 2. Let X be a closed operator with the domain $\mathscr{O}(X) \subset C(M)$ and the range is in $C(M)$ such that
(i). $\mathscr{O}(X)$ is a dense subring of $C(M)$ with the unit.
(ii). If f_{1}, f_{2} are in $\mathscr{D}(X)$, then $X\left(f_{1} f_{2}\right)=f_{1} X\left(f_{2}\right)+f_{2} X\left(f_{1}\right)$.

Then we call X is a generalized vector field of M. If X also satisfies (iii). $\quad(X f)(a)=0$ if $|f(x)-f(a)|=o(\rho(x, a))$,
for a (fixed) metric ρ of M, then we call X is a generalized vector field of M with respect to ρ.

Since X is closed, to define the topology of $\mathscr{D}(X)$ by taking

$$
U(f, V, W)=\{g \mid g \in \mathscr{D}(X), g \in V, X g \in W\}
$$

where V and W are the neighborhoods of f and $X f$ in $C(M)$, as the neighborhood basis of $f \in(X),(X)$ is a complete space and to set

$$
\Im_{a}(X)=\{f \mid f \in \mathscr{D}(X), f(a)=X f(a)=0\},
$$

$\Im_{a}(X)$ is a colsed ideal of $\mathscr{D}(X)$ by this topology. Hence setting

$$
\mathscr{F}_{a}(X)=\left((X) \cap I_{a}(M)\right) / \mathscr{S}_{a}(X), I_{a}(M)=\{f \mid f \in C(M), \quad f(a)=0\},
$$

we can set

$$
X f(a)=<\xi(a), d_{X} f(a)>, \xi(a) \in \mathscr{F}_{a}(X)^{*},
$$

where $d_{X} f(a)$ is the class of $f-f(a)$ in $\mathscr{F}_{a}(X)$.
If X is a generalized vector field of M with respect to ρ, then we have

$$
\Im_{a}(X) \supset\{f|f \in \mathscr{F}(X),|f(x)|=o(\rho(a, x))\} .
$$

6. For an $\mathscr{F}\left(S^{n-1}\right)$-vector field X given by $X f=\left\langle\xi, d_{p} f\right\rangle$ and $t, 0 \leqq t \leqq 1$, we set

$$
\begin{equation*}
U_{x, t}(f)(x)=\left\langle\xi(x), \quad f\left(r_{x, y, t}\right)\right\rangle . \tag{18}
\end{equation*}
$$

Here $f\left(r_{x, y, t}\right)$ is regarded to be a function of $y, y \in S_{x}$. Since f is continuous, $f\left(r_{x, y, t}\right)$ is continuous on S_{x}. Hence $U_{X, t}(f)$ is well defined for any X.

By definition, $U_{X, t}$ is defined on $C(M)$ and a bounded linear operator of $C(M)$ if M is compact. We also know that $\lim _{\text {. } t \rightarrow t_{0}} U_{X, t}(f)$ converges normally to $U_{X, t_{0}}(f)$. Therefore, if M is compact, then $U_{X, t}$ is strongly continuous in t. Moreover, we know

$$
\begin{equation*}
\lim _{t \rightarrow 0} \cdot \frac{1}{t}\left(U_{X, t}-U_{X, 0}\right) f=X f, \text { if } f \in C_{\mathscr{F}\left(S^{n-1}\right)}(M) . \tag{19}
\end{equation*}
$$

We note that

$$
U_{X, 0} f(x)=<\xi(x), \quad 1>f(x),
$$

where 1 is the constant function with the value 1 on S_{x}.
(19) shows that there is a curve in $L(C(M), C(M)$), the spce of (bounded) linear operators of $C(M)$ (with the strong topology), such that whose tangent at its starting point is X.

For $U_{X, t}$, we set

$$
T_{X, a, t}=\exp :\left(\frac{t}{a}\left(U_{X, a}-U_{X, 0}\right)\right), t \geqq 0
$$

Then $\left\{T_{X, a, t}\right\}$ is a 1-parameter semi-group of $C(M)$ with the generating operator $(1 / a)\left(U_{X, a}-U_{X, 0}\right)$. Hence if lim.a力0 $T_{X, a, t}$ exists, then to set its limit by $T_{X, b}$, $T_{X, t}$ is a 1-parameter semi-group with the generating operator X. But this limit does not exists in general. In fact, there exists an $\mathscr{F}\left(S^{n-1}\right)$-vector field which does not generate any 1-parameter semi-group of $C(M)$ or $L^{p}(M), 1 \leqq p \leqq \infty$.

Example. We assume taht M satisfies
(i). $\quad H^{1}(M, R)$ vanishes.
(ii). M is compact.

To define a $C\left(S^{n-1}\right)$-1-form $\varphi(x, y)$ on M by $\varphi(x, y)=\lambda$, an (arbitrary) constant, we get

$$
d_{\rho} \varphi=0
$$

Hence by (i), there exists a $C\left(S^{n-1}\right)$-smooth function n on M such that

$$
\left(d_{p} h\right)(x, \quad y)=\varphi(x, y) .
$$

Let X be the $C\left(S^{n-1}\right)$-vector field on M given by

$$
X f(x)=\left\langle m(x), d_{\rho} f(x)\right\rangle, m(x) \text { is the canonical measure on } S_{x} .
$$

Then we have for the above h,

$$
X h=\lambda \text {, the constant function with the value } \lambda \text { on } M \text {. }
$$

For this h, we set $k=\exp .(h)=\sum_{m}(h)^{m} / m$!. Then we get

$$
X k=\lambda k
$$

This shows λ is a proper value of X in $C(M)$ (or in $L^{p}(M), 1 \leqq p \leqq \infty$, because $C(M)$ is contained in $L^{p}(M)$ since M is compact), Since M is compact), $C(M)$ is a Banach space. Then by the theorem of Hille-Yosida ([17], [18]), X can not generate any (equi-continuous) 1-parameter semi-group of $C(M)$ (or $L^{p}(M)$), because λ is arbitrary.

In general, if an $L^{2}\left(S^{n-1}\right)$-vector field X is given by

$$
X f=\left\langle\xi(x), \quad d_{\rho} f(x)>, \quad \xi(x) \neq 0 \text { for any } x \in M,\right.
$$

and M is compact, then X does not generate any 1-parameter semi-group of $C(M)$ (or $L^{p}(M), 1 \leqq p \leqq \infty$). In fact, in this case, we may set

$$
L^{2}\left(S_{x}\right)=(\xi(x)) \perp \oplus \boldsymbol{R} \xi(x),
$$

and denote the projection to $\boldsymbol{R \xi}(x)$ by $P_{\xi(x)}$. Then a cross-section f of the bundle $U_{x \in X} \boldsymbol{R} \xi(x)$ is considered to be a function f of M by setting

$$
f \mathrm{~h}(x)=a \text {, if } f(x)=a \frac{\xi(x)}{\|\xi(x)\|} \text {. }
$$

(We note that this also shows that a fuction of M always defines a crosssection of $\left.\cup_{x \in X} \boldsymbol{R} \xi(x)\right)$. Then by the befinition of X, we have

$$
X f(x)=||\xi(x)||\left(P_{\xi(x)} d_{\rho} f\right)^{\natural}(x) .
$$

We define $P_{\xi} d_{\rho} f$ by $\left(P_{\xi} d_{\rho} f\right)(x)=P_{\xi(x)} d_{p, x} f$. Then $P_{\varepsilon} d_{\rho} C L^{2}\left(S^{n-1}\right)$ is dense in the space of the cross-sections of $U_{x \varepsilon} X R \xi(x)$, for any constant fuction λ and $\varepsilon>0$, there exists an $L^{2}\left(S^{n-1}\right)$-smooth function $f_{h, e}$ such that

$$
\left\|X f_{\lambda, \varepsilon}-\lambda\right\| \mid<\varepsilon .
$$

This means λ is at least continuous spectre of X, because M is compact. Hence by the theorem of Hille-Yosida, we have the assertion.

Note. The generating operator of a 1-parameter semi-group $\left\{T_{t}\right\}$ is an $\mathscr{F}\left(S^{n-1}\right)$ - vector field of M, if and only if $\left\{T_{t}\right\}$ satisfies

$$
\begin{equation*}
T_{t}\left(f_{1} f_{2}\right)-\left(T_{t} f_{1}\right)\left(T_{t} f_{2}\right)=o(t), \text { if } f_{1}, f_{2} \in C_{\mathscr{F}\left(S^{n-1}\right)}(M) \tag{20}
\end{equation*}
$$

7. In this n^{0}, we give some definitions about X, an $\mathscr{F}\left(S^{n-1}\right)$-vector field on M.

Definition. X is called to be 0 at $a, a \in M$, if $(X f)(a)=0$ for all $\mathscr{F}\left(S^{n-1}\right)$ smooth functions.

By definition, if X is given by $X f=\left\langle\xi(x), d_{r} f(x)\right\rangle$, then X is 0 at a if and only if $\xi(a)=0$ as an element of $\mathscr{F}^{*}\left(S_{a}\right)$. As usual, we set

$$
\text { car. } X=\overline{\{x \mid X \text { is not } 0 \text { at } x\} .}
$$

Definition. For X, we set

$$
\begin{equation*}
C A R .(X)=\overline{x \in M} \overline{\operatorname{Ucar} . \xi(x), \text { if }}(X f)(x)=\left\langle\xi(x), \quad d_{p} f(x)\right\rangle . \tag{21}
\end{equation*}
$$

By definition, CAR. X is a (closed) subset of $s(M)$ and we have

$$
\begin{equation*}
\pi(C A R, X)=\operatorname{car} . X \tag{22}
\end{equation*}
$$

We note that if M is smooth and X is a usual vector field on M regarded to be a $C\left(S^{n-1}\right)$-vector field on M and does not vanish at any point of M, then $C A R$. X is a cross-section of $s(M)$ (cf. $\mathrm{n}^{\circ 9}$).

Definition. X is called to be positive if X is given by $X f=\left\langle\xi(x), d_{n} f(x)\right\rangle$ and

$$
\xi(x) \geqq 0 \text { for any } x \in M
$$

As usual, we call $X \geqq Y$ if $X-Y \geqq 0$. Then since

$$
\left(\sup _{\alpha} .\{X\}\right) f=<\sup _{\alpha} .\left\{\xi_{\alpha}(x)\right\}, \quad d_{p} f(x)>,
$$

if $\left\{X_{\alpha}\right\}$ is upper (or lower) bounded, then $\sup .\left\{X_{\alpha}\right\}$ (or $\inf .\left\{X_{\alpha}\right\}$) exists to be an
$\mathscr{F}\left(S^{n-1}\right)$-vector field. Especially, we may define $X^{+}=\max .(X, 0)$ and $X^{-}=(-X)^{+}$ for any $\mathscr{J}\left(S^{n-1}\right)$-vector field X and we have

$$
\begin{equation*}
X=X^{+}-X^{-} \tag{23}
\end{equation*}
$$

We note that if $X f=\left\langle\xi(x), d_{\rho} f(x)\right\rangle$, then

$$
\left(X^{+} f\right)(x)=\left\langle(\xi(x))^{+}, \quad d_{\rho} f(x)\right\rangle,\left(X^{-} f\right)(x)=\left\langle(\xi(x))^{-}, \quad d_{p} f(x)\right\rangle,
$$

where $(\xi(x))^{+}$is max. $(\xi(x), 0)$ and $(\xi(x))^{-}$is $(\xi(x))^{+}$.
Note. Since the space of $\mathscr{F}\left(S^{n-1}\right)$-vector field of M is a vector space, these shows that this space has the structure of (complete) vector lattice. Hence to fix an $\mathscr{F}\left(S^{n-1}\right)$-vector field $Y, Y f=\left\langle\gamma(x), d_{\rho} f\right\rangle$, the Radon-Nykodim partition of any. $\mathscr{F}\left(S^{n-1}\right)$-vector field $X, X f=\left\langle\xi(x), d_{\rho} f\right\rangle$ with respect to Y is possible. It corresponds to the Radon-Nykodim partition of $\xi(x)$ with respect to $\eta(x)$.

Definition. If $\mathscr{F}\left(S^{n-1}\right)$-vector fields X_{1} and X_{2} are given by $\left(X_{i} f\right)(x)=<\xi_{i}(x)$, $d_{\rho} f(x)>, i=1,2$, and $Y=\left[X_{1}, X_{2}\right]$ is defined to be an $\mathscr{F}\left(S^{n-1}\right)$-vector field of M, then we denote

$$
\begin{equation*}
\gamma_{1}(x)=\left[\xi_{1}(x), \quad \xi_{2}(x)\right] . \tag{24}
\end{equation*}
$$

Here Y is given by $\left(Y f(x)=\left\langle_{r}(x), d_{\rho} f(x)\right\rangle\right.$.
We note that if x is fixed in (24), then (24) defines the bracket product for some elements of $\mathscr{F}^{*}\left(S_{x}\right)$. Or, in other word, $\mathscr{F}^{*}\left(S_{x}\right)$ contains (as a dense subset), a Lie pseudoalgebra.

§ 3. Generalized tangent of a curve.

8. We denote the set of germs of $\mathscr{F}\left(S^{n-1}\right)$-smooth functions of M at a, $a \in M$, by $C_{\mathscr{F}\left(S^{n-1}\right), *, a}(M)$.

Lemma 7. If $\mathscr{F}\left(S^{n-1}\right)$-smooth functions f_{1} andf f_{2} defines same germ inC $\mathscr{\mathscr { F }}\left(S^{n-1}\right)$ (M) and $\left|f_{1}(x)-f_{1}(a)\right|=o\left(\rho(x\right.$, a) $)$, then $\left|f_{2}(x)-f_{2}(a)\right|$ is also $o(\rho(x, a))$.

By this lemma, we can say $|f(x)-f(a)|$ is $o(\rho(x, a))$ although f is regarded to

Definition. A linear map \mathfrak{X} from $C_{\mathscr{F}\left(S^{n-1}\right), *, a}(M)$ to R is called an $\mathscr{F}\left(S^{n-1}\right)$. vector of M at a if it satisfies the following (i), (ii), (iii).
(i).

$$
\mathfrak{x}\left(f_{1} f_{2}\right)=f_{1}(a) \mathfrak{x}\left(f_{2}\right)+f_{2}(a) \mathfrak{X}\left(f_{1}\right) .
$$

(ii). $\quad \mathfrak{X}(f)=0$, if $|f(x)-f(a)|=o(\rho(a, x))$.
(iii). $\quad X^{X}(f)=(X f)(a)$, where X is an $\mathscr{F}\left(S^{n-1}\right)$-vector field of $U(a)$, a neighborhood of a.

By (iii) and theorem 2, we have

Theorem 2^{\prime}. For any $\mathscr{F}\left(S^{n-1}\right)$-vector \mathfrak{X} of M at a, there exists an element ξ of $\mathscr{F}^{*}\left(S_{a}\right)$ such that

$$
\mathfrak{X}(f)=\left\langle\xi, \quad d_{\rho, a} f\right\rangle
$$

and such ξ is determined uniquely by \mathfrak{x}. Conversely, if $\xi \in \mathscr{F}^{*}\left(S_{a}\right)$, then $\left\langle\xi, d_{p, a} f\right\rangle$ is an $\mathscr{K}\left(S^{n-1}\right)$-vector of M at a.

Let γ be a curve of M given by $\varphi: I \rightarrow M$ such that

$$
\begin{align*}
& \varphi(0)=a, \varphi(t) \neq a \text { if } t>0 . \tag{25}\\
& \rho(a, \varphi(t))=0(t) . \tag{25}
\end{align*}
$$

Then we set

$$
\begin{equation*}
\#_{\varphi}(f)=\lim _{s \rightarrow 0} \frac{1}{s}\left[\lim _{h \rightarrow 0} \int_{h}^{s} \frac{1}{t}\{f(\varphi(t))-f(a)\} d t\right], \tag{26}
\end{equation*}
$$

where f is an $\mathscr{F}\left(S^{n-1}\right)$-smooth function at a.
By (25) and (25)', we have

$$
\begin{equation*}
X_{\varphi}(f)=\lim _{s \rightarrow 0} \frac{1}{s}\left[\lim _{h \rightarrow 0} \int_{h}^{s} \frac{\rho(a, \varphi(t))}{t}\left(d_{\rho, a} f\right)\left(\varepsilon_{a, \varphi}(t)\right) d t\right] . \tag{26}
\end{equation*}
$$

Lemma 8. If $\mathfrak{X}_{\varphi}(f)$ exists for all $\mathscr{F}\left(S^{n-1}\right)$-smooth functions at a, then \mathfrak{X}_{φ} is an $\mathscr{F}\left(S^{n-1}\right)$-vector of M at a.

Proof. By (26)', we only need to show (i). But, since we know

$$
\begin{aligned}
& \left(d_{p, a}\left(f_{1} f_{2}\right)\right)\left(\varepsilon_{d, \varphi}(t)\right) \\
= & f_{1}(a)\left(d_{p, a} f_{2}\right)\left(\varepsilon_{a, \varphi(t)}\right)+f_{2}(a)\left(d_{p, a} f_{1}\right)\left(\varepsilon_{a, \varphi(t)}\right),
\end{aligned}
$$

we have (i) by (26)'.
Definition. If \mathfrak{X}_{φ} is defined on $C_{\mathscr{J}\left(S^{n-1}\right),, a}(M)$, then r is called $\mathscr{F}^{-}\left(S^{n-1}\right)$. smooth at a.

By theorem 2^{\prime} and lemma 8, If \mathfrak{X}_{φ} is defined on the space of $\mathscr{F}\left(S^{n-1}\right)$-smooth functions at a, then there exists an element $\xi=\xi(\varphi)$ of $\mathscr{S}^{*}\left(S_{a}\right)$ such that

$$
\mathfrak{x}_{p}(f)=\left\langle\xi(\varphi), \quad d_{p, a}(f)\right\rangle .
$$

We note that since $C^{*}\left(S_{a}\right)$ contains $L^{p}\left(S_{a}\right)$ for all p, we may consider ξ to be a Radon-measure on S_{a}.

Definition. $\xi(\varphi)$ is called the generalized tangent of r at a.
Note. If M is smooth, real analytic or real algebraic, then to take $C^{\infty}\left(S_{a}\right)$, $C^{\omega}\left(S_{a}\right)$ or $C^{a l g} \cdot\left(S_{a}\right)$ as $\mathscr{F}\left(S_{a}\right)$, we may define the generalized tangent for wider class of curves. Here $C^{\text {alg. }}\left(S^{n-1}\right)$, the model of $C^{a l g} \cdot\left(S_{a}\right)$, is given by

$$
C^{a l g} \cdot\left(S^{n-1}\right)=R\left[x_{1}, \cdots \cdots, x_{n}\right] /\left(x_{1}{ }^{2}+\cdots \cdots+x_{n}{ }^{2}-1\right),
$$

which is dense in $C\left(S^{n-1}\right)$ or in $L^{p}\left(S^{n-1}\right)$ (cf. [5], [11]).
9. In this n°, we give some examples of the generalized tangent.

Example 1. We assume γ is smooth at a, that is

$$
\begin{aligned}
& \lim _{t \rightarrow 0} \varepsilon_{a, \varphi}, \varphi(t)=y, \quad y \in S_{a}, \\
& \lim _{t \rightarrow 0} \frac{\rho(a, \varphi(t))}{t}=c, c \text { is a (positive) real number, }
\end{aligned}
$$

both exists and f is $C\left(S^{n-1}\right)$-smooth at a, then we have by the mean value theorem

$$
\begin{aligned}
& \int_{h}^{s} \frac{(a, \varphi(t))}{t}\left(d_{\rho, a} f\right)\left(\varepsilon_{a, \varphi(t)}\right) d t \\
= & \frac{\rho\left(a, \varphi\left(s_{0}\right)\right)}{s_{0}}\left(d_{\rho, a} f\right)\left(\varepsilon_{a, \varphi\left(s_{0}\right)}\right)(s-h), \quad h<s_{0}<s .
\end{aligned}
$$

Hence we have

$$
\ddot{x}_{\varphi}(f)=c\left(d_{\rho, a} f\right)(y) .
$$

Therefore, denoting the Dirac measure of S_{a} concentrated at y by δ_{y}, we get

$$
\begin{equation*}
x_{\varphi}(f)=\left\langle c \delta_{y}, d_{\rho, a} f\right\rangle . \tag{27}
\end{equation*}
$$

We note that if f is smooth at a, then $\mathfrak{X}_{\varphi}(f)$ coincide to the usual definition of the (one-sided) derivation of f along γ.

Note. If M is smooth and X is a usual vector field of M which does not vanish at any point of M, then at any point a of M, X has a smooth integral curve γ_{a} given by $\varphi_{a}: I \rightarrow M, \varphi_{a}(0)=a$, and

$$
(X f)(a)=\mathfrak{X}_{\varphi_{a}}(f) .
$$

Hence we have by (27)

$$
(X f)(a)=\left\langle c(a) i_{y(a)}, \quad d_{\rho, a} f\right\rangle .
$$

Hence we have

$$
\begin{equation*}
C A R . X=\underset{a \in M}{\cup} y(a) . \tag{28}
\end{equation*}
$$

Since y (a) depends continuously on $a, C A R . X$ is a (continuous) cross-section of $s(M)$.
In the following two examples, we need the following

Lemma 9. If $g(t)$ is a continuous periodic function on \boldsymbol{R}^{1} with the period T, then

$$
\begin{equation*}
\lim _{s \rightarrow \infty} s \int_{s}^{\infty} \frac{g(t)}{t^{2}} d t=\frac{1}{T} \int_{0}^{T} g(t) d t . \tag{29}
\end{equation*}
$$

Proof. We define a periodic function $e[a, b] t), 0 \leqq a<b \leqq T$, with the period T by

$$
\begin{aligned}
e[a, b](t) & =1, \quad t \in[a+n T, b+n T], \text { for some integer } n, \\
& =0, \text { otherwise } .
\end{aligned}
$$

Then for $0 \leqq a^{\prime} \leqq a<b \leqq b^{\prime} \leqq T$, to set

$$
v_{m, a^{\prime}, b^{\prime}}^{a, b}=\frac{b^{\prime}-a^{\prime}}{b-a}(t-(m T+a))+m T+a^{\prime}, \quad m T \leqq v_{m, a, b^{\prime}}^{a, b} \leqq(m+1) T
$$

we have

$$
e[a, b]\left(v_{m, a^{\prime}, b^{\prime}}^{a, b}\right)=e\left[a^{\prime}, b^{\prime}\right](t), m T \leqq v_{m, a^{\prime}, b^{\prime}}^{a, b} \leqq(m+1) T
$$

Hence we get

$$
\int_{m T}^{\infty} \frac{e[a, b](t)}{t^{2}} d t=\frac{b-a}{b^{\prime}-a^{\prime}} \int_{m T}^{\infty} \frac{e\left[a^{\prime}, b^{\prime}\right](t)}{t^{2}} d t .
$$

Then, since we know

$$
\lim _{\substack{a^{\prime} \rightarrow 0 \\ b^{\prime} \rightarrow T}} s \int_{s}^{\infty} \frac{e\left[a^{\prime}, b^{\prime}\right](t)}{t^{2}} d t=s \int_{s}^{\infty} \frac{d t}{t^{2}},
$$

we obtain

$$
\lim _{s \rightarrow \infty} s \int_{s}^{\infty} \frac{e[a, b][(t)}{t^{2}} d t=\frac{|b-a|}{T} .
$$

Then, since $g(t)$ is bounded and (uniformly) continuous, we have

$$
\begin{aligned}
& \lim _{s \rightarrow \infty} s \int_{s} \frac{g(t)}{t^{2}} d t \\
= & \lim _{s \rightarrow \infty} .\left[\lim _{\left|a_{i+1}-a_{i}\right| \rightarrow 0} \sum_{i} s \int_{s}^{\infty} g\left(a_{i}\right) \frac{e\left[a_{i}, a_{i+1}\right]}{t^{2}} d t\right) \\
= & \lim _{\left|i_{i+1}-a_{i}\right| \rightarrow 0} \sum_{i} g\left(a_{i}\right)\left[\lim _{s \rightarrow \infty} s \int_{s}^{\infty} \frac{\left[e_{a_{i}, a_{i+1}}(t)\right]}{t^{2}} d t\right]
\end{aligned}
$$

$$
\begin{aligned}
& =\lim _{\left|a_{i+1}-a_{i}\right| \cdots 0} \sum_{i} g\left(\left(a_{i}\right) \frac{\left|a_{i+1}-a_{i}\right|}{T}\right. \\
& =\frac{1}{T} \int_{0}^{T} g(t) d t .
\end{aligned}
$$

Here, $0=a_{0}<a_{1}<\cdots \cdots<a_{n i}<a_{m+1}=T$ is a partition of [0, T].
Example 2. Let M be R^{2} with the euclidean metric, a the origin $O(=(0,0))$ of R^{2} and γ is given by $\varphi: I \rightarrow \boldsymbol{R}^{2}$, where φ is given by

$$
\begin{aligned}
& \varphi(t)=\left(t \cos \left(\frac{1}{t}\right), \quad t \sin \left(\frac{1}{t}\right)\right), t>0 \\
& \varphi(0)=0
\end{aligned}
$$

Hence, if we use the polar coordinate (r, θ) of $R^{2}, r=\sqrt{x^{2}+y^{2}}$ and $\theta=\tan ^{-1}(y / x)$, then r is given by

$$
r 0=1, \quad r>0 .
$$

Then, if $S^{1}=\left\{(x, y) \mid x^{2}+y^{2}=1\right\}$ is parametrized by 0 and g is continuous on S^{1}, we get

$$
\begin{aligned}
& \lim _{s \rightarrow 0} \frac{1}{s}\left[\lim _{h \rightarrow 0} \int_{h}^{s} \frac{\rho(0, \varphi(t))}{t} g\left(\varepsilon_{0, \varphi t)} d t\right]\right. \\
= & \lim _{s \rightarrow 0} . \frac{1}{s}\left[\lim _{h \rightarrow 0} \int_{h}^{s} g\left(\frac{1}{t}\right) d t\right]=\lim _{u \rightarrow \infty} u \int_{u}^{\infty} \frac{g(v)}{v^{2}} d v,
\end{aligned}
$$

Hence by lemma 9, we have

$$
\begin{equation*}
\mathscr{X}_{\varphi}(f)=\frac{1}{2 \pi} \int_{0}^{2 \pi}\left(d_{\rho, 0} f\right)(\theta) d \theta . \tag{30}
\end{equation*}
$$

Or, in other word, the generalized tangent of the curve $r \theta=1$ at 0 is the standard measure of S^{1}.

Example 3. We take M and ρ same as above and take φ to be

$$
\varphi(t)=\left(t, \quad t \sin \left(\frac{1}{t}\right)\right), \quad t>0, \quad \varphi(0)=0, \text { the origin of } R^{2}
$$

By befinition, we have

$$
\frac{\rho(0, \varphi(t))}{t}=\sqrt{1+\sin ^{2}\left(\frac{1}{t}\right)}, \quad \varepsilon_{0, \varphi(t)}=\tan ^{-1}\left(\sin \left(\frac{1}{t}\right)\right) .
$$

Hence we have by lemma 9 ,

$$
\begin{aligned}
& \lim _{s \rightarrow 0} \frac{1}{s}\left[\lim _{h \rightarrow 0} \int_{h}^{s} \frac{\rho(0, \varphi(t))}{t} g\left(\varepsilon_{0, \varphi}(t)\right) d t\right] \\
= & \frac{1}{2 \pi} \int_{0}^{2 \pi} \sqrt{1+\sin ^{2} v g\left(\tan ^{-1}(\sin (v))\right) d v} \\
= & \frac{1}{\pi} \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} g(\theta) \frac{1}{\cos ^{2} \theta \sqrt{\cos (2 \theta)}} d \theta .
\end{aligned}
$$

Therefore, the generalized tangent of the curve $x \sin (1 / x)$ at the origin is the measure on S^{1} concentrated on $-(\pi / 4) \leqq \theta \leqq \pi / 4$ with the weight $(1 / \pi)\left(1 / \cos ^{2} \theta\right.$ $\sqrt{\cos (2 \theta)) .}$

Note. If γ is given by $(-t, t \sin (1 / t)), t>0$, then the generalized tangent of r at the origin is similar as above but has carrier on $3 \pi / 4 \leqq \theta \leqq 5 \pi / 4$.
10. Lemma 10. The generalized tangent of a curve at a is a positive measure on S_{a}.

Proof. If ξ is the generalized tangent of $\varphi: I \rightarrow M$, then we have

$$
\int_{S a} g(y) d \xi=\lim _{s \rightarrow 0} \frac{1}{S}\left[\lim _{h \rightarrow 0} \int_{h}^{s} \frac{\rho(a, \varphi(t))}{t} g\left(\varepsilon_{a, \varphi(t)}\right) d t\right] .
$$

Hence if $g \geqq 0$ on S_{a}, then $\int_{S_{a}} g(y) d \xi \geq 0$. Therefore ξ is a positive measure.
Lemma 11. If the parameter of γ is changed to $c t$ instead of t, c is a comstant, then the generalized tangent ξ of γ at a is changed to $c \xi$. In general, if the parameter of γ is changed to $\alpha(t)$ and

$$
\lim _{t \rightarrow 0} \frac{\alpha(t)}{t}=c,
$$

then the generalized tangent ξ of γ at a changes to $c \xi$.
By this lemma, we may assume the generalized tangent ξ of γ at a satisifes

$$
\begin{equation*}
\xi\left(S_{a}\right)=1 . \tag{31}
\end{equation*}
$$

Theorem 3. If ξ is a positive measure on S_{a}, then there exists a curve of M starts from a such that whose generalized tangent at a is ξ.

Proof. Since the proof for $n=1$ is similar, we assume $n \geqq 2$.
First we note that the problem is local, we may assume $M=\boldsymbol{R}^{n}$ with the euclidean metric and a is the origin $0(=(0, \cdots \cdots, 0))$ of \boldsymbol{R}^{n}. Hence S_{a} is the unit $(n-1)$-sphere S^{n-1}.

We take a positive measure ξ of S^{n-1} such that $\xi\left(S^{n-1}\right)=1$. By lemma 11, this is not restrictive.

We choose a countable dense subset $\left\{y_{p}\right\}$ of S^{n-1} such that

$$
\begin{equation*}
y_{p} \neq \pm y_{q}, \text { if } p \neq q \tag{32}
\end{equation*}
$$

For this $\left\{y_{p}\right\}$, we divide S^{n-1} by Borel sets $\left\{E_{p}{ }^{q}\right\}$ as follows:

$$
\begin{align*}
& S^{n-1}=\bigcup_{p \leqq q} E_{p}{ }^{q}, E_{p},{ }^{q} \cap E_{p \prime \prime}{ }^{q}=\phi \text {, if } p^{\prime} \neq p^{\prime \prime}, \quad y_{p} \in E_{p}^{q} . \tag{33}\\
& \lim _{q \rightarrow \infty} \quad \text { dia. }\left(E_{p}{ }^{q}\right)=0 . \tag{33}
\end{align*}
$$

Here dia. $\left(E_{p}{ }^{q}\right)$ means the diameter of $E_{p}{ }^{q}$. Hence, if $g(y)$ is a continuous function of S^{n-1}, then

$$
\begin{equation*}
\left.\int_{S^{n-1}} g(y) d \xi=\lim _{q \rightarrow \infty} \sum_{p \leq Q} g\left(y_{p}\right) \xi E_{p}{ }^{q}\right) . \tag{34}
\end{equation*}
$$

On the other hand, for the above $\left\{E_{p}{ }^{q}\right\}$ and ξ, we take a series of (positive) real numbers $\left\{t_{q, p}\right\}, p \leqq q$, as follows:

$$
\begin{equation*}
t_{q, p}>t_{q, p+1}, \text { if } p+1 \leqq q, \quad t_{q, q}>t_{q+1,1} \tag{35}
\end{equation*}
$$

$$
\begin{equation*}
\lim _{q \rightarrow \infty} t_{q, p}=0 \tag{35}
\end{equation*}
$$

$$
\begin{equation*}
\sum_{q i t q, p \leqq s} \frac{1}{s}\left|\left(t_{q, p}-t_{q, p+1}\right)-\xi\left(E_{p}^{q}\right)\right| \leqq \frac{s}{2^{p}}, s>0 . \tag{35}
\end{equation*}
$$

This is possible because $\xi\left(S^{n-1}\right)=1$ and $\sum_{p} \sum_{q: t q, p \leq s}(1 / s)\left|t_{q, p}-t_{q, p+1}\right|=1-(s-$ $\left.t_{q_{0}, p_{0}}\right) / s$ is sufficiently near to 1 . Here, $t_{q_{0}, p_{0}}$ is the largest $t_{q, p}$ which is smaller than s.

Using this $\left\{t_{q, p}\right\}$, we set

$$
\begin{aligned}
& \Psi\left(t_{q, p}\right)=t_{q, p} y_{p}, \\
& \Psi(t)=\frac{t_{q, p}-t}{t_{q, p}-t_{q, p+1}} \Psi\left(t_{q, p+1}\right)+\frac{t-t_{q, p+1}}{t_{q, p}-t_{q, p+1}} \Psi\left(t_{q, p}\right), \\
& \text { if } t_{q, p}>t>t_{q, p+1}, \\
& \Psi(t)=\frac{t_{q, q}-t}{t_{q, q}-t_{q+1,1}} \Psi\left(t_{q+1,1}\right)+\frac{t-t_{q+1,1}}{t_{q, q}-t_{q+1,1}} \Psi\left(t_{q, q}\right), \\
& \text { if } t_{q, q}>t>t_{q+1,1}, \\
& \Psi(0)=0 .
\end{aligned}
$$

Then since $\left\|y_{p}\right\|=1$, we have the definition of $\Psi^{\prime}(t)$ and (32),

$$
\begin{align*}
& \| \Psi(t)| | \leqq|t| \tag{36}\\
& \Psi(t) \neq 0, \text { if } t \neq 0
\end{align*}
$$

We also note that by the definition of $\Psi(t), \Psi(t)$ is continuous for all $t, 0 \leqq t \leqq 1$.

By $(36)^{\prime}$, to define $\varphi(t)$ by

$$
\begin{equation*}
\varphi(t)=\frac{\Psi(t)}{\|\Psi(t)\|} t, \quad t>0, \quad \Psi(0)=0 \tag{37}
\end{equation*}
$$

$\varphi(t)$ is also continuous in t and satifises similar conditions as $(36)^{\prime}$ and.

$$
\begin{equation*}
\|\varphi(t)\|=t \tag{36}
\end{equation*}
$$

By (36) and the mean value theorem, if $\left\{y_{p}\right\}$ satisfies

$$
\begin{equation*}
\lim _{p \rightarrow \infty}| | y_{p+1}-y_{p}| |=0 \tag{32}
\end{equation*}
$$

then we have for this $\varphi(t)$,

$$
\begin{aligned}
& \int_{t q, p+1}^{t_{q, p}} \frac{\| \varphi(t)| |}{t} g\left(\varepsilon_{0, \varphi}(t)\right) d t \\
= & g\left(y_{p}\right)\left(t_{q, p}-t_{q, p+1}\right)+o\left(\left|t_{q, p}-t_{q, p+1}\right|\right) .
\end{aligned}
$$

Hence we have

$$
\begin{align*}
& \lim _{s \rightarrow 0} \frac{1}{s}\left[\lim _{h \rightarrow 0} \int_{h}^{s} \frac{\| \varphi(t)| |}{t} g\left(\varepsilon_{0, \varphi}(t)\right) d t\right] \tag{38}\\
= & \lim _{s \rightarrow 0} \frac{1}{s} \sum_{p} g\left(y_{p}\right)\left(\sum_{q ; t q, p \leqq s}\left(t_{q, p}-t_{q, p+1}\right)\right) .
\end{align*}
$$

On the other hand, by $(35)^{\prime \prime}$, we obtain

$$
\begin{aligned}
& \left|\sum_{p \leqq q,} \sum_{t q, p \leqq s} g\left(y_{p}\right) \xi\left(E_{p}^{q}\right)-\frac{1}{s} \sum_{p} g\left(y_{p}\right)\left(\sum_{q ; t, q p \leqq s}\left(t_{q, p}-t_{q, p+1}\right)\right)\right| \\
\leqq & \sum_{p} \frac{s}{2^{p}}=s .
\end{aligned}
$$

Then, by (34) and (38), we get

$$
\begin{aligned}
& \int S^{n-1} g(y) d \xi \\
= & \lim _{s \rightarrow 0} \frac{1}{S}\left[\lim _{h \rightarrow 0} \int_{h}^{s} \frac{\|\varphi(t)\|}{i} g\left(s_{0, \varphi}(t)\right) d t\right],
\end{aligned}
$$

for this $\varphi(t)$. Therefore the curve γ given by $\varphi: I \rightarrow M$, has the generalized tangent at the origin and it is equal to ξ. Hence we have the theorem.

Note. Since $C^{*}\left(S^{n-1}\right)$ contains $L^{p}\left(S^{n-1}\right)$, a positive linear fuctional of $L^{p}\left(S^{n-1}\right)$ always expressed as the generalized tangent of some curve.

Example 1. If ξ is the Dirac measure of S^{n-1} concentrated at $y_{1}, y_{1} \in S^{n-1}$, then $\left\{t_{q, p}\right\}$ is given by

$$
t_{q, 1}=\frac{1}{2^{q}}, \quad t_{q, p}=\frac{1}{2^{q}}-\left(1-\frac{1}{2^{p-1}}\right) \frac{1}{8^{q}}, \quad 2 \leqq p \leqq q .
$$

Example 2. If ξ is the standard measure of S^{n-1}, then we take E_{p}^{q} to satisfy $\xi\left(E_{p}{ }^{q}\right)=1 / q$, Then we can take $\left\{t_{q, p}\right\}$ to be

$$
t_{q, p}=\frac{1}{q+1}+\frac{q+1-p}{p+1}\left(\frac{1}{q(q+1)}\right) .
$$

We note that although the curve $\varphi(t)=y_{1} t$ has the generalized tangent δy_{1}, it is not given by the above method.
11. We denote by $H^{+}(I)$ the group of orientation preserving homeomorphisms of $I=[0,1]$. The subgroup of $H^{+}(I)$ consisted by those homeomorphisms that are the identity map on $[0, \varepsilon]$ for some $\varepsilon>0$, is denoted by $H_{e}(I)$. Then we set

$$
H_{*}^{+}(I)=H^{+}(I) / H_{e}(I) .
$$

$H_{*}{ }^{+}(I)$ is the group of germs of the (orientation preserving) homeomorphisms of I (cf. [2]).

If $\alpha \in H^{+}(I)$, then by the theorem of Radon-Nykodim, there exists a (positive) measurable function m_{α} on I which does not vanish almost everywhere on I, such that

$$
\begin{equation*}
\int_{a}^{b} \mu(\alpha(t)) d t=\int_{\alpha(a)}^{\alpha(b)} \mu(u) m_{\alpha}(u) d u, \tag{39}
\end{equation*}
$$

where $\mu(t)$ is an (arbitrary) measurable function on I. We note that this $m_{\alpha}(t)$ also satisfies

$$
\begin{equation*}
\int_{0}^{1} m_{\alpha}(t) d t=1 \tag{40}
\end{equation*}
$$

Conversely, if $m(t)$ is a positive measurable function on I such that to satisfy (40) and does not vanish almost everywhere on I, then $\int_{0}^{t} m(u) d u$ is an element of $H^{+}(I)$. Moreover, we know that
(i). If $\alpha_{1}, \alpha_{2} \in H^{+}(I)$ and $\alpha_{1}\left(\alpha_{2}\right)$ is the composition of α_{1} and α_{2} in $H^{+}(I)$, then

$$
\begin{equation*}
m_{\alpha_{1}\left(\alpha_{2}\right)}=\alpha_{2}^{*}\left(m_{\alpha_{1}}\right) m_{\alpha_{2}}, \quad x^{*} m(t) \text { means } m(\alpha(t)) . \tag{41}
\end{equation*}
$$

(ii). α belongs in $H_{c}(I)$ if and only if $m_{a}(t)=1,0 \leqq t<\varepsilon$, for some $\varepsilon>0$.

Hence to denote the set of all positive measurable functions on I which do
not vanish almost everywhere on I and satisfy (40) by $\mathscr{C}^{+}(\boldsymbol{I})$ and to define a multiplication $m_{1 *} m_{2}$ for $m_{1}, m_{2} \in \mathscr{H}^{+}(I)$ by

$$
\begin{equation*}
m_{1 *} m_{2}=\alpha_{2}^{* *}\left(m_{1}\right) \mathrm{m}_{2}, \quad \alpha_{2}(t)=\int_{0}^{t} m_{2}(u) d u \tag{42}
\end{equation*}
$$

$\mathscr{A}^{+}(\boldsymbol{I})$ is isomorphic to $H^{+}(I)$ and to set

$$
\mathscr{A}_{e}(\boldsymbol{I})=\left\{m \mid m \in \mathscr{H}_{C}^{+}(\boldsymbol{I}), m(t)=1,0 \leqq t<\varepsilon, \text { for some } \varepsilon>0\right\},
$$

we have

$$
\begin{equation*}
\mathscr{H}_{*}(I) \cong H_{*}{ }^{+}(\boldsymbol{I}), \quad \mathscr{K}_{*}(\boldsymbol{I})={ }^{+}(\boldsymbol{I}) / \mathscr{A}_{e}(\boldsymbol{I}) . \tag{43}
\end{equation*}
$$

For $\varphi: I \rightarrow M$, and $\alpha \in H^{+}(\boldsymbol{I})$, we set

$$
\alpha^{*}(\varphi)(t)=\varphi(\alpha(t)) .
$$

Then the image of φ and $\alpha^{*}(\varphi)$ is same. Moreover, we know if $\alpha \in H_{e}(\boldsymbol{I})$, then φ has the generalized tangent at its starting point if and only if $\alpha^{*}(\varphi)$ has the generalized tangent at its starting point and we have by lemma 10 ,

$$
\begin{equation*}
\mathfrak{X}_{\varphi}(f)=\mathfrak{X}_{\alpha *(\varphi)}(f) . \tag{44}
\end{equation*}
$$

By (44), we have

$$
\begin{equation*}
\mathfrak{x}_{\alpha *(\varphi)}=\mathfrak{X}_{\beta *(\varphi)}, \quad \text { if } \alpha \equiv \beta \bmod . H_{e}(I) . \tag{44}
\end{equation*}
$$

By (43), (44) ${ }^{\prime}$ and theorem 3, we can define an operation of the element m of $\mathscr{\mathscr { H }}{ }_{*}(I)$ to $\mathscr{\mathscr { O }}{ }^{*}{ }_{+}\left(S^{n-1}\right)$, the set of positive linear functionals of $\mathscr{D}\left(S^{n-1}\right)$ by

$$
\begin{equation*}
\langle m(\xi), g\rangle=\mathfrak{x}_{\alpha *(\varphi)}(f), \tag{45}
\end{equation*}
$$

where, assuming the starting point of φ is $a, d_{\rho, a} f=g, \mathfrak{X}_{\varphi}(f)=\langle\xi, g\rangle$ and the class of m in $\mathscr{A}_{*}(I)$ is m. Then, since the change of parameter of γ corresponds to the operation of $\mathscr{A}_{*}(I)$, we may consider the generalized tangent of γ to be an element of $\mathscr{F}^{*}+\left(S^{n-1}\right) / \mathscr{R}_{*}(\mathbb{l})$.

References.

[1]. Asada, A.: Associated vector bundles of microbundles, J. Fac. Sci. Shinshu Univ., 1(1966), 1-13.
[2]. Asada, A. : Algebraic cohomology of Loop spaces, J. Fac. Sci. Shinshu, Univ. 4(1969), 1-23.
[3]. Asada, A. : Integration of Alexander-Spanier cochains, J. Fac. Sci. Shinshu Univ., 5(1970), 79-106.
[4]. Asada, A. : Existence of some metrics on manifolds, J. Fac. Sci. Shinshu Univ., 6(1971), 1-26.
[5]. Cartan, E.: Sur la détermination d'un system orthogonal complet dans un espaces de Riemann symmétrique clos, Rend. Circ. mat. Palermo, 53(1929), 217-252.
[6]. Chevalley, C.: Theory of Lie Grouts, I. Princeton, 1946.
[7]. Feller, W.: The general diffusion operator and positivity presering semigroup in one d!̣mension, Ann. of Math., 60(1954), 417-436.
[8]. Feller, W. : On second order differential operators, Ann. of Math., 61(1955), 90-105.
[9]. Holm, P.: The microbundle representation theorem, Acta Math., 117(1967), 191-213.
[10]. Ito, K.-Mckean, H. P. Jr.: Diffusion process and their sample paths, Berlin, 1965.
[11]. KÔNO, N.-Umemura, Y.: Infinite dimensional Laplacian and spherical harmonics, Publ. of the Res. Inst. Math. Soc., 1(1966), 163-186.
[12]. Milnor, J.: Microbundles, Part I., Topology, 3(1964), 53-80.
[13]. Morimoto, A.: Prolongations of geometric structures, Nagoya, 1969.
[14]. Osborn, H. : Modules of differentials, I. II., Math. Ann., 170(1967), 221-244, 175 (1968), 146-158.
[15]. Osborn, H. : Function algebras and the de Rham theorem in PL, Bull. of the Amer. Math. Soc., 77(1971), 386-391.
[16]. Rham, G. de.: Variétè diffèrentiables, Paris, 1960.
[17] . Sato, K. -Ueno, T. : Multi-dimensional diffusion and the Markov process on the boundary, J. of Math. of Kyoto Univ., 4(1965), 529-605.
[18]. Yosida, K. : Functional Analysis, Berlin, 1966.

