Note on the Suspension-order of a Some Complex

By Hideyuki Kachi
Department of Mathematics, Faculty of Science, Shinshu University
(Recieved October 30, 1971)

1 Introduction

We shall attempt to compute the suspension-order of a complex

$$
Y_{k+1}=S^{n} \cup e^{n+1} \cup e^{n+2 q(q-1)} \cup e^{n+2(q-1)+1} \cup \cdots \cdots \cup e^{n+2 k(q-1)+1}
$$

with only homology groups $H^{n+2 i(q-1)}\left(Y_{k+1}\right) \approx Z_{q}$ for $i=0,1, \cdots \cdots$, k, where p is odd prime.
H. Toda [4] gave the general properties of the suspension-order. We compute $K_{o}{ }^{*}$ in order to give a lower boundary of the suspension-order of Y_{k+1}. Here, the notation $K_{o}{ }^{*}$ means the reduced group of original K -theory of vector bundles. But, we shall use only the definitions

$$
K_{O}^{-i}(X)=\left[S^{i} X, \quad B_{O}\right] \text { and } K_{U}^{-i}(X)=\left[\begin{array}{ll}
S^{i} X, & B_{U}
\end{array}\right]
$$

and Bott's periodicity [1].

2 Suspension-order of complex Y_{k}

We shall use the following notations. For each topological space, we always associate a base point*. Mapping and homotopies considered are base point presevring. The set of the homotopy classes of mappings $f:(X, *) \longrightarrow(Y, *)$ is denoted by $[X, Y]$.

Let A be a subspace of a topological space X, then X / A is a space obtained by smashing A to a base point. $q: X \longrightarrow X / A$ indicates the smashing map (projection). A reduced product $A \wedge B$ is $A \times B / A \vee B$, where $A \vee B=A \times * \cup * \times B$. We define n -fold suspension $S^{n} X$ of X by the formula $S^{n} X=X \wedge S^{n}\left(S X=S^{1} X\right)$. We denote by 1_{X} and ι_{X} the identity map of space X and its homotopy class and call the order of the homotopy class $c_{S X}$ the suspension-order of X.

Let A and B be topological spaces, and $f: B \longrightarrow A$ a continuous mapping, then we denote by

$$
A \cup C B
$$

a space obtained from a cone $C B$ by identifying its base B with the mapping f into A.

Lemma 2.1. Let $Y=Y_{k}$. Then the class $p_{S Y}$ is represented by a mapping $f: S Y_{k} \longrightarrow S Y_{k}$ satisfying the following conditions; $f\left(S Y_{k}^{n+1}\right) \subset S Y_{k}^{n+i-1}$ for $i=0$, $1, \cdots \cdots, 2(k-1)(p-1)+1$. A mapping $f_{j}: S^{n+2 j(p-1)+1} \longrightarrow S^{n+2(j-1)(p-1)+2}$ given uniqueiy by the commutativity of the diagram

represents a generator of $\pi_{n+2 j(p-1)+1}\left(S^{n+2(j-1)(p-1)+2} ; ~ p\right)$ if and only if $\left(\Delta \beta^{1}-\Im^{1} \Delta\right)$ $H^{n+2 j(p-1)}\left(Y_{k} ; Z_{p}\right)=0$, where $t=2 j(p-1)$ and Δ is mod. p Bockstein operator.

Proof. Let $u: S^{1} \longrightarrow S^{1}$ be a mapping of degree p. Then $p c_{S Y}$ is represented by $1_{Y} \wedge u: S Y_{k} \longrightarrow S Y_{k}$. Let $h=1_{Y} \wedge u$. Since $h_{*}(\alpha)=p \alpha=0$ for $\alpha \in \mathrm{H}_{*}\left(S Y_{k}\right)$, we have that $h_{*}: H_{*}\left(S Y_{k}\right) \longrightarrow H_{*}\left(S Y_{k}\right)$ is trivial for $i>0$. Obviously, $H_{n+t+2}\left(S Y_{k}\right.$, $\left.S Y_{k}^{n+t+1}\right) \approx H_{n+t+2}\left(S Y_{k}\right)=0$, and $H_{n+t+1}\left(S Y_{k}\right) \approx H_{n+t+1}\left(S Y_{k}, S Y_{k}^{n+t+1}\right) \approx Z_{p}$. Applying lemma 1.4 of [4] for $n+t+1=n+2 j(p-1)+1(j=0,1, \cdots \cdots, k-1)$ in place of n in the lemma 1.4 of [4], we get a homotopy $h_{s}: S Y_{k} \longrightarrow S Y_{k}$ such that $\left.h=h_{0}, h_{s}\left(S Y_{k}^{n+2 j(j-1)}\right) \subset S Y_{k}^{n+2 j(p-1)}\right), h_{1}\left(S Y_{k}^{n+2 j(p-1)}\right) \subset S Y_{k}^{n+2(j-1)(p-1)+1}$ and h_{1} $\left(S Y_{k}^{n+2 j(p-1)+1}\right) \subset S Y_{k}^{n+2 j(p-1)}$. We put $f=h_{1}$, then the first condition is satisfied.

Consider complexes $K=S Y_{k} \cup C S Y_{k}$ and $K_{1}=S Y_{k} \cup_{f} C S Y_{k}$. They have the same homotopy type. In fact, we give a homotopy equivalence $F: K \longrightarrow K_{1}$ as follows. A point of $C S Y_{k}$ is represented by a pair $(x, s), x \in S Y_{k}, s \in[0,1]$. Then F is defined by the fomulas

$$
F \mid S Y_{k}=1_{S Y}
$$

and

$$
F(x, s)= \begin{cases}(x, 2 s-1) & \text { for } 1 / 2 \leqslant s \leqslant 1 \\ h_{2 s}(x) & \text { for } 0 \leqslant s \leqslant 1 / 2\end{cases}
$$

F is a cellular map and

$$
\begin{equation*}
F\left(S Y_{k}^{n+2 j(p-1)+1} \bigcup_{h} C S Y_{k}^{n+2 j(p-1)+1}\right) \subset S Y_{k}^{n+2 j(p-1)+1} \cup_{f} C S Y_{k}^{n+2 j(p-1)+1} \tag{1}
\end{equation*}
$$

Let a_{i} and b_{i} be chains in the cell complex K represented by the cells $S e^{n+i}$ and $C S e^{n+i}$, respectively. For suitably chosen orientations of the cells, we have

$$
\begin{aligned}
& \partial a_{2 j(p-1)+1}=p a_{2 j(p-1)}, \\
& \partial a_{2 j(p-1)}=0, \\
& \partial b_{2 j(p-1)+1}=p b_{2 j(p-1)}-p a_{2 j(p-1),}, \\
& \partial b_{2 j(p-1)}=p a_{2 j(p-1)} .
\end{aligned}
$$

Let $a^{\prime}{ }_{i}$ and $b^{\prime}{ }_{i}$ be corresponding chains of K_{1}, then

$$
\begin{aligned}
& \partial a^{\prime}{ }_{2 j(p-1)+1}=p a^{\prime}{ }_{2 j(p-1)}, \\
& \partial a^{\prime}{ }_{2 j(p-1)}=\partial b^{\prime}{ }_{2 j(p-1)}=0, \\
& \partial b^{\prime}{ }_{2 j(p-1)+1}=p b^{\prime}{ }_{2 j(p-1)} .
\end{aligned}
$$

Consider the chain mapping $F_{\#}: C(K) \longrightarrow C\left(K_{1}\right)$ induced by F. From the definition of $F, F_{\sharp}\left(a_{s}\right)=a^{\prime}{ }_{s}$ and $F_{\#\left(b_{s}\right)}=b^{\prime}{ }_{s} \bmod a^{\prime}{ }_{s+1}$. It follows from the relation (1) that $F_{\#\left(b_{2 j(p-1)+1}\right)}=b^{\prime}{ }_{2(p-1)+1}$. By use of the naturality $\partial_{0} \mathrm{~F}_{\#}=F_{\# 0} \partial$, we have that $F_{\#\left(b_{2 j(p-1)}\right)}=b_{{ }_{2 j(p-1)}}^{\prime}+a^{\prime}{ }_{2 j(p-1)+1}$.

Let $\alpha_{i}, \beta_{i}, \alpha_{i}^{\prime}$, and β_{i}^{\prime} be the dual classes $\bmod p$ of $a_{i}, b_{i}, a_{i}^{\prime}$ and b_{i}^{\prime}, respectively. Then they are independent generators and the induced homomorphism $F^{*}: I^{*}\left(K_{1} ; Z_{p}\right) \longrightarrow H^{*}\left(K ; Z_{p}\right)$ satisfies

$$
\begin{aligned}
& F^{*}\left(\alpha_{2 j(p-1)}^{\prime}\right)=\alpha_{2 j(p-1)}, \\
& F^{*}\left(\alpha_{2 j(p-1)+1}^{\prime}\right)=\alpha_{2 j(p-1)+1}+\beta_{2 j(p-1)}, \\
& F^{*}\left(\beta_{i}^{\prime}\right)=\beta_{i} .
\end{aligned}
$$

It is easy to see that $K=S Y_{k} \bigcup_{h} C S Y_{k}=Y_{k} \wedge P^{2}$ for $P^{2}=S^{1} \cup_{u} C S^{1}=* \cup e^{1} \cup e^{2}$. Each cell of Y_{k} and P^{2} represents cohomology class $\bmod p$. Then $\Delta e^{1}=e^{2}, \Delta e^{n+2 j(p-1)}$ $=e^{n+2 j(p-1)+1}$.

Assume that $\mathfrak{F}^{1} e^{n+s}=x_{s} e^{n+s+2(p-1)}$ for some integer $x_{s}\left(0 \leqq x_{s}<p\right)$. Then we have, by Cartan's formula,

$$
\mathfrak{S}^{1}\left(e^{n+s} \times e^{1}\right)=x_{s}\left(e^{n+s+2(p-1)} \times e^{1}\right)
$$

and

$$
\mathfrak{B}^{1}\left(e^{n+s} \times e^{2}\right)=x_{s}\left(e^{n+s+2(p-1)} \times e^{2}\right) .
$$

The projection $q: Y_{k} \times P^{2} \longrightarrow Y_{k} \wedge P^{2}$ induces isomorphisms of $H^{*}\left(Y_{k} \wedge P^{2} ; Z_{p}\right)$ into $H^{*}\left(Y_{k} \times P^{2} ; Z_{p}\right)$ such that

$$
q^{*}\left(\alpha_{s}\right)=e^{n+s} \times e^{1} \text { and } q^{*}\left(\beta_{s}\right)=e^{n+s} \times e^{2} .
$$

By the naturality of the \Re^{1}-operation, we have that

$$
\begin{aligned}
& \mathfrak{P}^{1} \beta_{s}=x_{s} \beta_{s+2(p-1)}, \\
& \mathfrak{F}^{1} \alpha_{s}=x_{s} \alpha_{s+2(p-1)} .
\end{aligned}
$$

By use of the inverse of F^{*}, we have that

$$
\begin{aligned}
& \mathfrak{\beta}^{1} \beta^{\prime}{ }_{s}=x_{s} \beta^{\prime}{ }_{s+2(p-1),} \\
& \mathfrak{\beta}^{1} \alpha^{\prime}{ }_{2 i(p-1)}=x_{2 i(p-1)} \alpha^{\prime}{ }_{2(i+1)(p-1)}, \\
& \mathfrak{\beta}^{1} \alpha^{\prime}{ }_{2 i(p-1)+1}=x_{2 i(p-1)+1} \alpha^{\prime}{ }_{2(i+1)(p-1)+1} \\
& \quad+\left(x_{2 i(p-1)}+x_{2 i(p-1)+1)} \beta^{\prime}{ }_{2(i+1)(p-1)} .\right.
\end{aligned}
$$

The commutativity diagram of the lemma defines a mapping

$$
Q: S Y_{k}^{n+2(j-1)(p-1)+1} \cup_{f} C S Y_{k}^{n+2 j(p-1)} \longrightarrow S^{n+2(j-1)(p-1)+2} \cup_{f_{j}} C S^{n+2 j(p-1)+1}
$$

which induces monomorphisms of cohomology groups \bmod p. $\alpha^{\prime}{ }_{2(j-1)(p-1)+1}$ and $\beta^{\prime}{ }_{2 j(p-1)}$ are the images of Q^{*}. It follows that $\mathfrak{F}^{1} \neq 0$ in $S^{n+2(j-1)(p-1)+2} \cup C S^{n+2 j(p-1)+1}$ if and only if $x_{2 j(p-1)}-x_{2 j(p-1)+1} \equiv 0(\bmod . p p)$. Its means that $\left(\Delta \Re^{1}-\mathfrak{F}^{1} d\right) H^{n+2 j(p-1)}$ $\left(Y_{k} ; Z_{p}\right) \neq 0$.

Proposition 2. 2. Let $n \geqq 2$. The suspension-order of $Y_{k}=\mathrm{S}^{n} \cup e^{n+1} \cup \ldots \ldots$ $\cup e^{n+2(k-1)(p-1)} \cup e^{n+2(k-1)(p-1)+1}$ is a divisor of p^{k}.

Proof. We prove by induction on k. Since we may consider $S Y_{k-1}=$ $S Y_{k}^{n+2(k-2)(p-1)+1}, S Y_{k-1}$ is a subcomplex of $S Y_{k}$. Then, from Theorem 4.4 of [4], the suspension-order of $S Y_{k} / S Y_{k-1}=S^{n+2(k-1)(p-1)+1} \cup e^{n+2(k-1)(p-1)+2}$ is p. From the assumption of induction and Theorem 1.2 of [4], we obtain the result.

3. Computation of $\mathbb{K}_{U}^{*}\left(\mathbf{Y}_{k}\right)$ and $\mathbb{K}_{o}{ }_{o}\left(\mathbf{Y}_{k}\right)$.

We shall use the following exact sequence in K -theory ($K^{n}=K_{O}{ }^{n}$ or $K_{U}{ }_{U}$);

$$
(2) \cdots \cdots \longrightarrow K^{n}(X / A) \xrightarrow{p *} K^{n}(X) \xrightarrow{i *} K^{n}(A) \xrightarrow{\delta} K^{n+1}(X / A) \xrightarrow{p^{p *}} \cdots \cdots
$$

Note that if $X=A \cup_{f} C B$, then the diagram

is commutative, where the suspension homomorphism S is an isomorphism onto.
For a CW-complex Y and a fibering $0 \xrightarrow{D} 0 / U\left(=\Omega^{2} B_{0}\right)$, there is an exact sequence

$$
\begin{equation*}
\cdots \cdots \longrightarrow K_{U}^{n}(Y) \xrightarrow{i *} K_{O}^{n}(Y) \xrightarrow{p *} K_{O}^{n-1}(Y) \xrightarrow{\dot{s}} K_{U}^{n+1}(Y) \longrightarrow \cdots \cdots \tag{3}
\end{equation*}
$$

The sequence commute with homomorphism induced by a mapping $f: Y^{\prime} \longrightarrow Y$ and also the homomorphism in (2).

Let B_{U}^{h} be a $(k-1)$-connected space such that $\Omega^{k-1}\left(B_{U}^{h}\right)$ has the same singular homotopy type as B_{U}.

Lemma 3. 1. (H. Toda [4]) (i) Let L be a CW-complex such that $L^{n-1}={ }^{*}$. Then we have natural isomor phism $k_{U}^{n+i}(L)=\left[S L, B_{U}^{n+i}\right]$ for $i \geq 1$.
(ii) We may take B_{U}^{k} as CW-complex such that the $(k+4)$-skeleton of B_{U}^{k} is S^{k-1} $M_{2}=S^{k+1} \cup e^{k+3}$ if $k \geqq 2$, where M_{2} is the complex projective space.

The values of $K_{U}^{n+i}\left(S^{n}\right)$ and $K_{o}^{n+i}\left(S^{n}\right)$ are as follows
(4) $\begin{array}{lllrrrrrr}K_{U}^{n+i}\left(S^{n}\right) & Z & 0 & Z & 0 & Z & 0 & Z & 0 \\ K_{O}^{n+i}\left(S^{n}\right) & Z & 0 & Z_{2} & Z_{2} & Z & 0 & 0 & 0\end{array}$

Consider $Y_{1}=S^{n} \cup_{u} e^{n+1}$, where $u: S^{n} \longrightarrow S^{n}$ is a mapping of degree p. Then, it follow from the table (4) and exact sequence of (2) that

i	-4	-3	-2	-1	0	1	2	3
$K_{U}^{n+i}\left(Y_{1}\right)$	0	Z_{p}	0	Z_{p}	0	Z_{p}	0	Z_{p}
$K_{o}^{n+i}\left(Y_{1}\right)$	0	Z_{p}	0	0	0	Z_{p}	0	0

Lemma 3. 2. A generator of $K_{U}^{n+1}\left(S^{2(p-1)} Y_{1}\right) \approx\left[S^{2(p-1)} Y_{1}, B_{U}^{n+1}\right] \approx Z_{p}$ is repre. sented by a mapping $h: S^{2(p-1)} Y_{1} \longrightarrow B_{U}^{n+1}$ satisfying the following condition; Let a mapping $\bar{h}: S^{n+2 p-1} \longrightarrow S^{n+2}$ represent a generator of $\pi_{n+2 p-1}\left(S^{n+2}: p\right)$, then the following diagram

is homotopy commutative, where i and j are inclusions $(n \geq 2 p-1)$.

Proof. Let $m=2 p-1$. From the puppe's exact sequence, we have that the homomorphism $i^{*}:\left[S^{m} Y_{1}, S^{n+2}\right] \longrightarrow\left[S^{n+m}, S^{n+2}\right]$ induced by inclusion i is an isomorphism of the p-primary components. Since $\pi_{n+2 \rho}\left(B_{U}^{n+1} / S^{n+2}\right)$ is an infinite cyclic group, we have that the homomorphism $j_{*}:\left[S^{m} Y_{1}, S^{n+2}\right] \longrightarrow\left[S^{m} Y_{1}, B_{U}^{n+1}\right]$ is epmorphism of the p-primary components. Therefore we have the required homotopy commutative diagram.

Consider $K_{U}{ }^{*}$ of a complex Y_{2}.
Proposition 3.3. Let n be sufficientlr large $(n>2 p-2)$.

$$
\begin{equation*}
K_{U}^{n}\left(Y_{2}\right)=0 \text { and } K_{U}^{n+1}\left(Y_{2}\right) \text { has } p^{2} \text {-elements, } \tag{i}
\end{equation*}
$$

$$
\begin{equation*}
\text { If } \Delta ß^{1}-\Re^{1} \Delta \neq 0 \text { in } Y_{2} \text {, then } K_{U}^{n+1}\left(Y_{2}\right) \approx Z_{p^{2}} \tag{ii}
\end{equation*}
$$

Proof. We apply the exact sequence (2) for projection $q: Y_{2} \longrightarrow Y_{2} / Y_{2}^{n+1}$ where we may consider that $Y_{2} / Y_{2}^{n+1}=S^{2(p-1)} Y_{1}$ and $Y_{2}^{n+1}=Y_{1}$. Then the following sequence is exact

$$
0 \longrightarrow K_{U}^{n+1}\left(S^{2 p-2} Y_{1}\right) \xrightarrow{q^{*}} K_{U}^{n+1}\left(Y_{2}\right) \xrightarrow{i^{*}} K_{U}^{n+1}\left(Y_{1}\right) \longrightarrow 0 .
$$

An element $\alpha \in K_{U}^{n+1}\left(Y_{2}\right) \approx\left[S Y_{2}, B_{U}^{n+1}\right]$ of $i^{*}(\alpha) \neq 0$ is represented by a composition $g \circ p_{0}: S Y_{2} \longrightarrow S Y_{2} / S^{n+1} \longrightarrow B_{U}^{n+1}$ where $g\left|S Y_{2} / S^{n+1}=g\right| S^{n+2}: S^{n+2} \longrightarrow$ B_{U}^{n+1} is the injection. Now $p \alpha=\alpha \circ p t_{S Y}$ for $Y=Y_{2}$. By Lemma 2.1, $p l_{S Y}$ is represented by a mapping $f: S Y_{2} \longrightarrow S Y_{2}$ such that $f\left(S Y_{2}^{n+2 p-2}\right) \subset S Y_{2}^{n+1}$ and $f\left(S Y_{2}^{n+1}\right)$ $\subset S Y_{2}^{n}=S^{n+1}$. Then there is a mapping $f^{\prime}: S Y_{2} / S Y_{1} \longrightarrow S Y_{2} / S^{n+1}$ such that the following diagram is commutative

$$
\begin{array}{cllll}
S Y_{2} & \xrightarrow{f} & S Y_{2} & & \\
\downarrow S q & & & \downarrow q_{9} & \\
& & & \\
S Y_{2} / S Y_{1} & \xrightarrow{f^{\prime}} & & S Y_{2} / S^{n+1} & \xrightarrow{g} \\
& B_{U}^{n+1}
\end{array}
$$

where $q_{0}: S Y_{2} \longrightarrow S Y_{2} / S^{n+1}$ is projection.
Thus $p \alpha$ is represented by $g \circ q_{0} \circ f=g \circ f^{\prime} \circ S q$. Thus $p \alpha=q^{*}(\gamma)$ for an element γ of $K_{U}^{n+1}\left(Y_{2} / Y_{1}\right) \approx\left[S Y_{2} / S Y_{1}, B_{U}^{n+1}\right]$ represented by $g_{\circ} f^{\prime}$. We may assume that g is cellular. Then $\left(g_{\circ} f^{\prime}\right)\left(S Y_{2}^{n+2 p-2} / S Y_{1}\right) \subset g\left(S Y_{2}^{n+1} / S^{n+1}\right)=g\left(S^{n+2}\right) \subset S^{n+2} \subset B_{U}^{n+1}$.

Consider the restriction $g_{\circ} f^{\prime} \mid S^{n+2 p-1}$. Then $g_{\circ} f^{\prime}\left|S^{n+2 p-1}=f^{\prime}\right| S^{n+2 p-1}: S^{n+2 p-1} \longrightarrow$ S^{n+2}. By Lemma 2.1. $f^{\prime} \mid S^{n+2 p-1}$ is essential if and only if $\Delta \beta^{1}-\Re^{1} d \neq 0$ in Y_{2}. It follows from Lemma 3.2 that γ is a generator of $K_{U}^{n+1}\left(Y / Y_{2}\right)$, the order of α is
p^{2}, and $K_{U}^{n+1}\left(Y_{2}\right) \approx Z_{p 2}$ if $\Delta \mathfrak{F}^{1}-\mathfrak{F}^{1} \Delta \neq 0$ in Y_{2}.
Theorem 3.4. (i) $K_{U}^{n}\left(Y_{k}\right)=0$,
(ii) The group $K_{U}^{n+1}\left(Y_{k}\right)$ has p^{k}-elements,
(iii) If $\left(\Delta \nexists^{1}-\Re^{1} \Delta\right) H^{n+2 i(p-1)}\left(Y_{k} ; Z_{p}\right)=0$, for integer $i=0,1, \cdots \cdots, k-1$, then $K_{U}^{n+1}\left(Y_{k}\right) \simeq Z_{p k}$.

Proof. It is obvious for $k=1$, by table (5). Then (i) and (ii) are proved by induction on k, using the exact sequence (2) for projection $q: Y_{k} \longrightarrow Y_{k} / Y_{k}^{n+2(k-2)(p-1)+1}$ where we may consider that $Y_{k} / Y_{k}^{n+2 k(k-2)(p-)+1}=S^{2(k-2)(p-1)+1} Y_{1}$ and $Y_{k}^{n+2(k-2)(p-1)+1}=Y_{k-1}$. In fact, the following sequence is exact;

$$
0 \longrightarrow K_{U}^{n+1}\left(Y_{k} / Y_{k-1}\right) \longrightarrow K_{U}^{b^{*}} K_{U}^{n+1}\left(\mathrm{Y}_{k}\right) \longrightarrow K_{U}^{n+1}\left(Y_{k-1}\right) \longrightarrow 0
$$

(iii) Assume that $K_{U}^{n+1}\left(Y_{k}\right)$ is not cyclic. Let i be the maximal intger such that $K_{U}^{n+1}\left(Y_{k} / Y_{i}\right)$ is not cyclic. Then it follows easily that $K_{U}^{n+1}\left(Y_{i+2} / Y_{i}\right)$ is not cyclic and $\left(\Delta \Re^{1}-\beta^{1} d\right) H^{n+2(i-1)(p-1)}\left(Y_{k} ; Z_{p}\right) \neq 0$.

Theorem 3. 5. (i) The group $K_{o}^{n+i}\left(Y_{k}\right)=0$ for $i \neq-3$ and 1 (mod 8), (ii) The group $K_{0}^{n+i}\left(Y_{k}\right)$ has p^{k}-elements if $i \equiv-3$ or $1(\bmod 8)$, (iii) If $\left(\Delta \mathfrak{\beta}^{1}-\mathfrak{ß}^{1} \Delta\right) H^{n+2 j(p-1)}\left(Y_{k} ; Z_{p}\right)$ $=0$ for integers $j=0,1, \cdots \cdots, k-1$, then the groups $K_{O}^{n+1}\left(Y_{k}\right)$ and $K_{O}^{n-3}\left(Y_{k}\right)$ are cyclic.

Proof. (i), (ii). We prove by induction on k. It is obvious for $k=1$, by table (5). Suppose that (i) and (ii) are true for $k-1$. Using the exact sequence (2), we have the following sequence

$$
\cdots \cdots \longrightarrow K_{O}^{n+i-1}\left(Y_{k-1}\right) \longrightarrow K_{O}^{n+i}\left(Y_{k} / Y_{k-1}\right) \longrightarrow K_{o}^{n+i}\left(Y_{k}\right) \longrightarrow K_{O}^{n+i}\left(Y_{k-1}\right) \longrightarrow \cdots \cdots
$$

is exact. We may consider that $Y_{k} / Y_{k-1}=S^{2(k-1)(p-1)} Y_{1}$. From the table (5) and Bott's periodicity, $K_{O}^{n+i}\left(Y_{k} / Y_{k-1}\right) \approx Z_{p}$ for $i \equiv-3$ or $1(\bmod 8)$ and $K_{O}^{n+i}\left(Y_{k} / Y_{k-1}\right)=$ 0 for $i \neq-3$ and $1(\bmod 8)$.

By the inductive assumption and the above exact sequence, (i) and (ii) are true for k.
(iii). Consider the exact sequence (3)

$$
\cdots \cdots \longrightarrow K_{o}^{n+i-2}\left(Y_{k}\right) \longrightarrow K_{U}^{n+i}\left(Y_{k}\right) \xrightarrow{i_{*}} K_{o}^{n+i}\left(Y_{k}\right) \longrightarrow K_{o}^{n+i-1}\left(Y_{k}\right) \longrightarrow \cdots \cdots .
$$

From (i) and (ii), $i_{*}: K_{U}^{n+i}\left(Y_{k}\right) \longrightarrow K_{O}^{n+i}\left(Y_{k}\right)$ is an isomorphism for $i \equiv-3$ or 1
$(\bmod 8)$.
Corollary. Let $n \geq 2 p-1$. If $\left(\Delta \exists^{1}-\xi^{1} \Delta\right) H^{n+2 j(p-1)}\left(Y_{k} ; Z_{p}\right) \neq 0$ for integers $j=$ $0,1, \cdots \cdots, k-1$, then the suspension-order of Y_{k} is p^{k}.

Reference

[1] Bott, R.: The stable homotopy of classical groups, Ann. of Math., 70 (1959), 313-337.
[2] Blakers, A.L.-Massey, W. S.: The homotopy groups of triads: II, Ann. of Math., 55 (1952), 192-201.
[3] Toda. H. : Composition mathods in homotopy groups of spheres, Ann. of Math. Studies 59, Princeton.
[4] Toda. H. : Order of the identity class of a suspension space, Ann. of Math., 78 (1963) 300-325.

