On Group Rings over Semi-primary Rings

KAORU MOTOSE

Department of Mathematics, Faculty of Science, Shinshu University (Received October 30, 1971)

In this note, R will represent a ring with 1, and \overline{R} the residue class ring of R modulo its (Jacobson) radical J(R). Further, G will represent a group, H a normal subgroup of G, G^* the residue class group G/H, and RG the group ring of G over R. For an arbitrary ideal I of R and an arbitrary normal subgroup Nof G, $RG \to R/I \cdot G/N$ will denote the ring epimorphism given by $\sum a_o \sigma \to \sum (a_o + I) \sigma N$ ($a_\sigma \in R$, $\sigma \in G$).

In what follows, we shall generalize slightly the previous results obtained in [2]. Our first lemma contains the last assertion of [1, d].

Lemma 1. If G^* is locally finite, then $J(RH)G \subseteq J(RG)$ and hence $J(RG) \cap RH = J(RH)$.

Proof. Evidently, J(RH)G is an ideal of RG. Let $x = \sum_{i=1}^{n} y_i \sigma_i$ ($y_i \in J(RH)$, $\sigma_i \in G$) be an arbitrary element of J(RH)G, and $H' = \langle H, \sigma_1, \dots, \sigma_n \rangle$. Then RH' = RH'(1-x)+J(RH)RH'. Since RH' is a finitely generated RH-module, Nakayama's Lemma implies RH' = RH'(1-x), and hence x is quasi-regular. Thus, $J(RH)G \subseteq J(RG)$. Since RG is a free RH-module, $J(RG) \cap RH = J(RH)$.

If G contains no elements of prime order p, then we call G a p'-group. Concerning a locally finite p'-group, we have the following

Theorem 1. If G is a locally finite p'-group and R is a semiprimary ring with $p\overline{R}=0$, then J(RG) = J(R)G.

Proof. Let $x = \sum_{i=1}^{n} a_i \sigma_i$ $(a_i \in R, \sigma_i \in G)$ be an arbitrary element of J(RG), and $K = \langle \sigma_1, \dots, \sigma_n \rangle$. Since RG is a free RK-module and (|K|, p) = 1, x is contained in $RK \cap J(RG) \subseteq J(RK) = J(R)K$ (cf. [2, Th. 1]) and hence J(RG) = J(R)G by Lemma 1.

The next contains [2, Cor. 1].

Theorem 2. If G is a locally finite p-group and R is a semiprimary ring with $p\overline{R} = 0$, then $J(RG) = Ker(RG \rightarrow \overline{R})$.

Proof. It is clear that
$$J(RG) \subseteq Ker(RG \to \overline{R})$$
. Let $x = \sum_{i=1}^{n} a_i \sigma_i$ $(a_i \in R, \sigma_i \in G)$

KAORU MOTOSE

be an arbitrary element of $Ker(RG \to \overline{R})$, and $K = \langle \sigma_1, \dots, \sigma_n \rangle$. Then, by [2, Cor. 1], x is contained in J(RK) and x is quasi-regular, which means $Ker(RG \to \overline{R}) \subseteq J(RG)$.

Theorem 3. Let G be a locally finite group, H a p-group, G^* a p'-group, and R a semi-primary ring with $p\overline{R}=0$. Then J(RG) = J(RH)G.

Proof. Since G^* is a locally finite p'-group, $J(RG^*) = J(R)G^*$ (Th. 1), and hence $(J(RG))(RG \to RG^*) \subseteq J(RG^*) = J(R)G^*$. On the other hand, by Th. 2, Ker $(RH \to R) \subseteq J(RH)$ and $J(RG) \subseteq (Ker(RH \to R))G + J(R)G \subseteq J(RH)G$. Hence, J(RG) = J(RH)G by Lemma 1.

The proof of the following lemma is quite similar to that of [3, Lemma (a)].

Lemma 2. Let R be primary, and let $G \neq 1$ be periodic. If x is a unit in RG whenever $(x)(RG \rightarrow \overline{R})$ is a unit in \overline{R} , then G is a p-group and $p\overline{R} = 0$.

Proof. Let σ be an arbitrary element of G different from 1, and n the order of σ . If \overline{R} is of characteristic 0, then $(\sum_{i=0}^{n-1} \sigma^i)(RG \to \overline{R}) = n$ is a unit in \overline{R} . However, we have a contradiction $(\sum_{i=0}^{n-1} \sigma^i)(1-\sigma) = 0$. Hence, \overline{R} must be of prime characteristc p. Now, suppose that $n = p^e \cdot n'$ with (n', p) = 1 and n' > 1. Then $(\sum_{j=0}^{n'-1} \sigma^{p^e_j})(RG \to \overline{R}) = n'$ is a unit in R. While, we have $(\sum_{j=0}^{n'-1} \sigma^{p^e_j})(1-\sigma^{p^e}) = 0$. This contradiction means that G is a p-group.

The assertion of the next Cor. 1 and Th. 4 is a genelization of [4, Th. 1]. Moreover, Th. 4 contains [2, Th. 3], too.

Corollary 1. If RG is primary then G is a p-group and R is a primary ring with $p\overline{R} = 0$.

Proof (cf. the proof of [4, Th. 1]). Since $J(RG) = Ker(RG \to \overline{R})$, R is a primary ring and x is a unit in RG whenever $(x)(RG \to \overline{R})$ is a unit in \overline{R} . Now, let σ be an arbitrary element of G different from 1. Then, $\sigma - \sigma^2$ is an element of Ker $(RG \to \overline{R}) = J(RG)$. Recalling that RG is a free $R < \sigma >$ -module, one will easily see that $1 - \sigma + \sigma^2$ is a unit in $R < \sigma >$, whence it follows at once that σ is of finite order. Hence, G is periodic, and then our assertion is clear by Lemma 2.

Theorem 4. Let R be a primary ring. If G is locally finite, and $H \neq 1$, then the following conditions are equivalent:

- (1) H is a p-group and $p\overline{R} = 0$.
- (2) RH is primary.
- (3) x is a unit in RG whenever $(x)(RG \to \overline{R}G^*)$ is a unit in $\overline{R}G^*$.
- (4) x is a unit in RG whenever $(x)(RG \rightarrow RG^*)$ is a unit in RG^{*}.

Proof. (1) \Leftrightarrow (2) is evident by Th. 2 and Cor. 1, and (3) \Leftrightarrow (4) is a consequence of $J(R)G^* \subseteq J(RG^*)$ (Lemma 1). Hence, it remains only to prove (2) \Leftrightarrow (3).

(2) \Rightarrow (3): Since $Ker(RH \rightarrow \overline{R}) = J(RH)$, $Ker(RG \rightarrow \overline{R}G^*) = (Ker (RH \rightarrow \overline{R}))G = J(RH)G \subseteq J(RG)$ (Lemma 1). Now, (3) is evident.

(3) \Rightarrow (2): Obviously, $Ker(RH \rightarrow \overline{R}) \subseteq Ker(RG \rightarrow \overline{R}G^*)$ and $Ker(RG \rightarrow \overline{R}G^*)$ is quasiregular ideal. Noting that RG is a free RH-module, we can readily see that Ker $(RH \rightarrow \overline{R}) = J(RH)$.

References

- [1] T. GULLIKSEN, P. RIBENBOIM and T. M. VISWANATHAN: An elementary note on group-rings, J. Reine Angew. Math., 242(1970), 148-162.
- [2] K. MOTOSE: On group rings over semi-primary rings, Math. J. Okayama Univ., 14 (1969), 23-26.
- [3] A. NAKAJIMA and H. TOMINAGA: A note on group rings of p-groups, Math. J. Okayama Univ., 13(1938), 107-109.
- [4] G. RENAULT: Sur les anneaux de groupes, C. R. Acad. Sc. Paris, 273(1971), 84-87.