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                                 Abstract

   The matrix element 9' ,A･,d,),,j,., (g) of the representation of the group SL2c is

easily obtained by the bases that Toller has used, bttt the M-a symrpetry (2 == o;

2a is an integer.) of the representations is conveniently treated by Gel'fand type

representatives. We give this representative to Toller's base vector, and prove

the M-a symmetry of the function d,A･,4,b,j, (ag).

                              1 Introduction

   When the 03,i partial wave expansioni) of a t=O, equal-mass scattermg am-

plitude is continued analytically to the 04 partial wave expansion, the nonsense

channel terms appear, which vanish as a whole according to the M-if symmetry

of d,th'.,･, (Q.2)

    The M-a symmetry is somewhat different in its nature from other symmetry

properties of dyA-,de.it (C), since it is concerned in two inequivalent representations.

To obtain the matrix element di4,k, (<), we have to use the base vectors of Toller

type, 3) bttt the treatment of Gel'fand et al. 4) is more favorable to understand the

group theoretical properties of the representations. We intend to give a formalism

which combines these two types of treatments, and prove the M-a symmetry of

the function d,A･,4,b,j, (ts") by this formulatioR. ")

                                                                          .
                 2 Represe"tation Spaces of the Group SL2c

    Using Toller's notation,3) we denote by K the subgroup which consists of all

the elements of the form

             k=(P,-i S).K.sL,,.' (i)

*) This symmetry relation was cited in 2) as it was proved by M. Toller, but we could not

   1<now its details.
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Each right coset of SL2c with respect to K contains a unique element of the form

             z-(i 2), (2)
hence we attach the index z to the coset involving the element z such that A7==

he. If we use SL2c!K as a homogeneous space, the representation spaces are con-

structed as follows.

   Since a function f(Az) defined on SL2c,!K can be regarded as a function of the

element 2 or a complex number z defined by (2), we can put

            f(Az) = 9(2).

The linear space spanned by these functions f(Az) or g(2), which satisfy the con-

ditions of Gel'fand et al. ,4) is the representation space D,, and the representation

T. on this space is given by the equation

[T.(g)f](Az) = to(Az, g)f(Azg), g E SL2c,
(
3
)

where

tu(Az, gg') = to(Az, g)to(Azg, g'), g, g' E SL2c.
(
4
)

If we regard

tion defined

 9(2) as

on the

a function of the

whole group SL2c

element z it can be
         '
by the equation

extended to the fune-

f(g) = Lni-1, n2-1(le)if(2), k == gz-i E K,
(
5
)

where
sional

bers.

    In

Lni-1, n2-l(k) =

representatlon

the

pni-i Pn2-i for the element k

 of the subgroup K, and ni,

following, we use the notation

of

n2

(1),

are

which is

arbitrary

the one-dimen-

complex num-

x = (ni 1 n2) =:: (M, Z), where n2 - 711 == 2M, n2 + ni = 22,
(
6
)

 and write

dt tatlOll, We

LX or

'can

 Lma for

construct

Lni-i, n2-i. Making use of

a representation which is

th

ill

is one-dimensional represen-

dttced on SL2c from it, i, e.

[yz(g)f](a) = f(ag), a E SL2c,
(
7
)

taking into account of (5) which shows

f(leg) := Lx(k)f(g).
(
8
)

This representatlon, however, is the same as the one given by (3) and (4). In
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fact, if we write an element g of SL2c as

            g-=(g S)=-(6,"i i.)(,l,, 9), ab-pr-i･

flg) depends only on the variables r and 6 according to the covariance condition

(8), i.e. f(g)=:f(r,b). Moreover f(r, O) is the homogeneous function of the degree

(ni- 1, n2- 1), so that (7) can be rewritten as
                                                         '

            [9 X(g)g](z) ==: (Pz + 6)ni-i(Pz + ti)n2-ipa (f: ++ S), . (9)

which is nothing but the equation (3) with

            (v(Ai, g) = (Pz + 6)ni-1(Pz + ti)n2-1.

   On the other hand the coset Az contains a unitary element u which is uniquely

determined except the uncertainty of uz(pt)E K, i.e. Az = Ktz. Thus we can put

            f(A.) =LX(k,-i)f(u), fe,z=u, (10)

taking account of (5). In order to avoid the uncertainty of the phase in LX(fe), we

restrict hereafter 2M to be integers. Then (7) or (9) can be rewritten as

            [9X(g)f](u) == Li(ug(ug),-i)f((zag)o), (11)

where (g)e is a unitary element in Az containing g e SL2c.

   Let u be factorized in the form

                 a -b            U == (b a)= Ux(pt)Uy(0)U.(V),

then we have

                      ･0            z := bla == e-t"tan-lii-,

and so,

            Lni-1,n2-1(le) .,. tal2(M+a-1)a-2M =, (1 + 2COS e)XJ"ie-i(p+p)M, a2)

where le == uz-i

   The base vectors of Dx corresponding to di,M･. (u) used by Toller have the form

in Gel'fand type representatives,
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             gD･1,3, (2) :=: (21'+1)y2ei(M- ,n)v(1+2COS e) i-Adtl .(o), (13)

                                                    '                                            '
                    '
where

             diJM'm(U) = (21' + 1)lf2 Rii})n(U), dth,.(0)teith Rtl .(u)eiM",

                                                  '
and R' is the ordinary (21' + 1)-dimensional representation of SUIi.

   Fina!ly, we give the operators Olaz and OIOz- expressed in terms of g, 0 and

                     '

     £ = -2eiv (L+ 2COS 0) 3/2(1 - 2COS 0) i12o coOs o+geiv(1 + 2COS 0) if2 (1 ; 2COS 0) Hi12£,

 oOz- =-2e-ip (!+2COS 0)3f2(1 H2COS 0)i12a coas o-.S.e-" (1 +2COS e)i12(1 -2COS 0) -il2 aO. ,

                                                                  (14)

which are easily obtained by direct calculations from the equation above (12).

                       '3 Intertwining Operators

   When a linear mapping A of a representation space D., into another space

Dx2 satisfies the relation

                                                   '                              '
            A9 xi(g)= ,.2' x2(g)A, (15)
A is called an intertwining operator. Gel'fand et al.4) showed.that in the case of

the representation of SL2c an intertwining operator exists if and only if one of

the following conditions is fulfilled:

   Case 1) ni = -mi, n2 == -m2, ni, n2 nbnnegative integers;

   Case 2) ni = -mi = 1, 2, 3, ..., n2 = m2;

   Case 3) nl == ml, n2=-m2 == 1, 2, 3, ...; ,
   Case 4) ni := -mi, n2 = -m2, ni, n2 not simultaneously nonnegative integers;

   Case 5) nl=fnl, n2 == m2, '' ･ ･
where Xi==(niln2) and X2=(milm2). Now we list the intertwining operators in

the first three cases, which are concerned with our M - a symmetry:

   Case 1) A ::= 6ni+n210znia2-n2;

   Case 2) A == 6nilazni;

   Case 3) A = On2102-n2.

   Let us calculate the matrix element of A in Case 2). As ni= o-M is a
nonnegative integers, we can differentiate p9･;Z. (x) ni times with respect to z,

and we have then
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             anl    Ag,A',4,b, (Z)= o,.,9jM' lr,n (2) =

for the matrix element,

       Aim,)'t,n' -- (-1)a-A4[

(-1)a-M[ r(d-M÷1)r(i+ o+1)

and,

F(j-o+1)r(j+M+1)

r( 7' -M+ 1)r( 1' + o+1)
r( 1' -o+1)r( 1' +M+ 1)

]112 rp;,

]i/2tij･iis2nin',

tsz),
(16)

(17)

where we used the relation

,6i? gD･l,S,(z)=}l.l, (-1)k(:
)

;[a. III 2Z--;l ( , mi i,i, ) "-k[

       x p ,A･,4.+k' a+k (z)

r( 1' -M+ 1)r( j' +M+ le+1)

F(j-M-le+1)r(j+M+1)
]lf2

obtained from (13) and (14).

   A similar method can be

made with respect to z- forz

used for Case

in Case 2), and

3), but the differentiation

we have then

must be

AopD･3s,(z) =[ D( 1'+M+l)r( ti+ a+1)

and

Ai,n,j'm' == [

r( 1'-a+1)r( 7'-M+ 1)

r( 7'+M+ 1)r( 1'+a+1)

r( 1'-a+1)r( ]'-M+1)

] i/2 g;.a,, -itd(2),

]i12sij･,6on?n'-
(18)

Finaliy, Case 1) is the combination of Cases 2) and 3), that is,

A == Acase3)" Acase2)s

i. e.

A)'m,i' ,n' = (-1)
a- ME( ]'+a+ 1)

   r( 7L a+ 1)
6iJ''6fnin'. (19)

   Using these results, for instance, we can construct the special invariant

subspaces denoted by Ex, and F.2 in Gel'fand's book.4) If o+M2O in Case 2),

then Ag,M･." (z)=O for 7' such that a>]'>-]M[. Hence the subspace spanned by these

epD･4.a(2) is invariant and is just Ex,. If a+M<O, the indices 1' appearing in the

image of A are not smaller than IM[, and therefore the image is an invariant

subspace of Dx2, which is just Fx2.

4 M-o Symmetry of dl)'3II"td, (4)

For the element

a.(q) == e
exc

,.

(eC82 e-?!2)'
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it has been known that gX(a.(s")) has the form3)

            e,X･,.,jt.,,(a.(C)) = o"mmt ofev.,･, (O, X = (M, 1),

which is the definition of the function d,M･.fi, (q). The symmetry relation

proved is

     d,M. b.i, (o [ P(]'+M+i))r(i'-a+i)r(7"-M+i)D(j"+a+i) ]ii2 d,..,A,z,(o,

to be

                r( ]'+ cr + 1)r( j`-M+ 1)r( dt -a+ 1)r( ]V +M+ 1)

            where Ld' >- Max (IMI, lal). (20)
   For convenience of verification, we divide the (M, a) region into four parts.

   Region A;a-M2O, a+M2O. In this case (20) is nothing but the partial

equivalence of the representations on Dxi and D,,, i,e. the equivalence of the

representations on Dx,fExi and D.2, and therefore it can be derived directly from

(16) or (17).

   Reg'ion B; a-Mf{;O, a+2O. If we interchange the roles of M and a, this

region becomes Region A, and (20) is also valid, but in this case

            i, 1" 2 1M1.

   Region C; a-Mf{ O, o+MgO. This is the case in which roles ofMand

a are interchanged in Region D, and (20) is also valid.

   Region D; a-M}t O, a+ME{ O. In this case Ialf{glM], and then A maps

Dxt onto the subspace Fx2 which is invariant under the transformation 9x2(g), so

that (20) is also derived from (17) and

            7', 1't 2IM1.

Thus, the symmetry relation (20) is verified. Of course, M and a are both integers

or half-odd integers, and m must be satisfied with the condition

            -Min (i d') S m sg Min (j, d').

   Above results are all derived by making use of Case 2) in g3, but a similar

result can be obtained from Case 3), i.e.

               r( 7' - a + i) p( 7' -M+ i)r( i" +M+ i) r( j' + a + 1) ] ii2 di. .z ,- M<o,
      d,M..f,, (4)-

For arbitrary

[
   r( 7'+M+ 1)r( 7'+a+ 1)r( jV -a+ 1)P( 1't -M+ 1)

where 7V 2 Max (IMI, 1aD.

2, however, d,i･LdA.,･, (C) satisfies the relation2)

            P( 7'+2+ 1) r( gV -2+ 1)
di,Y)"'A(() := r(i'-2+i)r(7't+R+i) dY,,ff'(4)'

(21)
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therefore (21) is equivalent to (20).
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