JOUR. FAC. SCI., SHINSHU UNIV., Vol. 6, pp 107-113, Dec., 1971

Nonsense Channel Terms Associated with the $O_{3,1}$ Partial Wave Expansion

Yasutaro Takao

Department of Physics, Faculty of Science, Shinshu University (Received October 30, 1971)

Abstract

The matrix element $\mathscr{D}_{jm,j'm'}^{M\lambda}(g)$ of the representation of the group SL_{2C} is easily obtained by the bases that Toller has used, but the M- σ symmetry ($\lambda = \sigma$; 2σ is an integer.) of the representations is conveniently treated by Gel'fand type representatives. We give this representative to Toller's base vector, and prove the M- σ symmetry of the function $d_{jmj'}^{M\sigma}(\zeta)$.

1 Introduction

When the $O_{3,1}$ partial wave expansion¹⁾ of a t = 0, equal-mass scattering amplitude is continued analytically to the O_4 partial wave expansion, the nonsense channel terms appear, which vanish as a whole according to the M- σ symmetry of $d_{imi'}^{M\sigma}(\zeta)$.²⁾

The M- σ symmetry is somewhat different in its nature from other symmetry properties of $d_{jmj'}^{Ma}(\zeta)$, since it is concerned in two inequivalent representations. To obtain the matrix element $d_{jmj'}^{Ma}(\zeta)$, we have to use the base vectors of Toller type, ³ but the treatment of Gel'fand et al. ⁴ is more favorable to understand the group theoretical properties of the representations. We intend to give a formalism which combines these two types of treatments, and prove the M- σ symmetry of the function $d_{jmj'}^{Ma}(\zeta)$ by this formulation. *)

2 Representation Spaces of the Group SL_{2C}

Using Toller's notation, ³⁾ we denote by K the subgroup which consists of all the elements of the form

$$k = \binom{p^{-1} \quad q}{0 \quad p} \in K \subset SL_{2\mathcal{C}}.$$
(1)

^{*)} This symmetry relation was cited in 2) as it was proved by M. Toller, but we could not know its details.

YASUTARO TAKAO

Each right coset of SL_{2C} with respect to K contains a unique element of the form

$$z = \begin{pmatrix} 1 & 0 \\ z & 1 \end{pmatrix},\tag{2}$$

hence we attach the index z to the coset involving the element z such that $A_Z = Kz$. If we use SL_{2C}/K as a homogeneous space, the representation spaces are constructed as follows.

Since a function $f(A_z)$ defined on SL_{2C}/K can be regarded as a function of the element z or a complex number z defined by (2), we can put

$$f(A_z) = \varphi(z).$$

The linear space spanned by these functions $f(A_z)$ or $\varphi(z)$, which satisfy the conditions of Gel'fand et al.,⁴⁾ is the representation space D_z , and the representation T_{ω} on this space is given by the equation

$$[T_{\omega}(g)f](A_Z) = \omega(A_Z, g)f(A_Zg), \qquad g \in SL_{2C},$$
(3)

where

$$\omega(A_Z, gg') = \omega(A_Z, g)\omega(A_Zg, g'), \qquad g, g' \in SL_{2C}.$$
(4)

If we regard $\varphi(z)$ as a function of the element z, it can be extended to the function defined on the whole group SL_{2C} by the equation

$$f(g) = L^{n_1 - 1, n_2 - 1}(k)\varphi(z), \qquad k = gz^{-1} \in K, \tag{5}$$

where $L^{n_1-1, n_2-1}(k) = p^{n_1-1} \overline{p}^{n_2-1}$ for the element k of (1), which is the one-dimensional representation of the subgroup K, and n_1 , n_2 are arbitrary complex numbers.

In the following, we use the notation

$$\chi = (n_1 | n_2) = (M, \lambda), \text{ where } n_2 - n_1 = 2M, n_2 + n_1 = 2\lambda,$$
 (6)

and write L^{χ} or $L^{M\lambda}$ for L^{n_1-1, n_2-1} . Making use of this one-dimensional representation, we can construct a representation which is induced on SL_{2C} from it, i.e.

$$[\mathscr{D}^{\prime}(g)f](a) = f(ag), \qquad a \in SL_{2C}, \tag{7}$$

taking into account of (5) which shows

$$f(kg) = L^{\chi}(k)f(g).$$
(8)

This representation, however, is the same as the one given by (3) and (4). In

108

fact, if we write an element g of SL_{2C} as

$$g=igg(egin{array}{cc} lphaη\ \gamma&\delta \end{array}igg)=igg(eta^{\delta^{-1}}η\ 0&\delta \end{smallmatrix}igg)igg(egin{array}{cc} 1&0\ \gamma/\delta&1 \end{smallmatrix}igg),\qquad lpha\delta-eta\gamma=1,$$

f(g) depends only on the variables γ and δ according to the covariance condition (8), i.e. $f(g)=f(\gamma, \delta)$. Moreover $f(\gamma, \delta)$ is the homogeneous function of the degree $(n_1 - 1, n_2 - 1)$, so that (7) can be rewritten as

$$\left[\mathscr{D}^{\chi}(g)\varphi\right](z) = (\beta z + \delta)^{n_1 - 1} (\overline{\beta z + \delta})^{n_2 - 1} \varphi \left(\frac{\alpha z + \gamma}{\beta z + \delta}\right), \tag{9}$$

which is nothing but the equation (3) with

$$\omega(A_Z, g) = (\beta z + \delta)^{n_1 - 1} (\overline{\beta z + \delta})^{n_2 - 1}.$$

On the other hand the coset A_z contains a unitary element u which is uniquely determined except the uncertainty of $u_z(\mu) \in K$, i.e. $A_z = Ku$. Thus we can put

$$f(A_Z) = L^{\chi}(k_1^{-1}) f(u), \qquad k_1 z = u, \tag{10}$$

taking account of (5). In order to avoid the uncertainty of the phase in $L^{x}(k)$, we restrict hereafter 2M to be integers. Then (7) or (9) can be rewritten as

$$[\mathscr{D}^{x}(g)f](u) = L^{x}(ug(ug)_{0}^{-1})f((ug)_{0}),$$
(11)

where $(g)_0$ is a unitary element in A_Z containing $g \in SL_{2C}$.

Let u be factorized in the form

$$u = \left(\begin{matrix} \overline{a} & -\overline{b} \\ b & a \end{matrix}\right) = u_z(\mu)u_y(\theta)u_z(\nu),$$

then we have

$$z = b/a = e^{-iv}tan\frac{\theta}{2},$$

and so,

$$L^{n_1-1, n_2-1}(k) = |a|^{2(M+\lambda-1)}a^{-2M} = \left(\frac{1+\cos\theta}{2}\right)^{\lambda-1}e^{-i(\mu+\nu)M},$$
(12)

where $k = uz^{-1}$.

The base vectors of D_x corresponding to $\Phi_{jm}^M(u)$ used by Toller have the form in Gel'fand type representatives,

$$\varphi_{jm}^{M\lambda}(z) = (2j+1)^{1/2} e^{i(M-m)\nu} \left(\frac{1+\cos\theta}{2}\right)^{1-\lambda} d_{Mm}^{j}(\theta), \tag{13}$$

where

$$\Phi^{M}_{jm}(u) = (2j+1)^{1/2} R^{j}_{Mm}(u), \quad d^{j}_{Mm}(\theta) = e^{iM\mu} R^{j}_{Mm}(u) e^{im\nu},$$

and R^{j} is the ordinary (2j + 1)-dimensional representation of SU_{2} .

Finally, we give the operators $\partial/\partial z$ and $\partial/\partial \bar{z}$ expressed in terms of μ , θ and ν ;

$$\frac{\partial}{\partial z} = -2e^{i\nu} \left(\frac{1+\cos\theta}{2}\right)^{3/2} \left(\frac{1-\cos\theta}{2}\right)^{1/2} \frac{\partial}{\partial\cos\theta} + \frac{i}{2}e^{i\nu} \left(\frac{1+\cos\theta}{2}\right)^{1/2} \left(\frac{1-\cos\theta}{2}\right)^{-1/2} \frac{\partial}{\partial\nu},$$
$$\frac{\partial}{\partial z} = -2e^{-i\nu} \left(\frac{1+\cos\theta}{2}\right)^{3/2} \left(\frac{1-\cos\theta}{2}\right)^{1/2} \frac{\partial}{\partial\cos\theta} - \frac{i}{2}e^{-i\nu} \left(\frac{1+\cos\theta}{2}\right)^{1/2} \left(\frac{1-\cos\theta}{2}\right)^{-1/2} \frac{\partial}{\partial\nu},$$
(14)

which are easily obtained by direct calculations from the equation above (12).

'3 Intertwining Operators

When a linear mapping A of a representation space D_{x_1} into another space D_{x_2} satisfies the relation

$$A \mathcal{D}^{x_1}(g) = \mathcal{D}^{x_2}(g)A, \tag{15}$$

A is called an intertwining operator. Gel'fand et al.⁴⁾ showed that in the case of the representation of SL_{2C} an intertwining operator exists if and only if one of the following conditions is fulfilled:

Case 1)
$$n_1 = -m_1$$
, $n_2 = -m_2$, n_1 , n_2 nonnegative integers;

Case 2)
$$n_1 = -m_1 = 1$$
, 2, 3, ..., $n_2 = m_2$;

- Case 3) $n_1 = m_1$, $n_2 = -m_2 = 1$, 2, 3, ...;
- Case 4) $n_1 = -m_1$, $n_2 = -m_2$, n_1 , n_2 not simultaneously nonnegative integers; Case 5) $n_1 = m_1$, $n_2 = m_2$,

where $\chi_1 = (n_1 | n_2)$ and $\chi_2 = (m_1 | m_2)$. Now we list the intertwining operators in the first three cases, which are concerned with our $M - \sigma$ symmetry:

- Case 1) $A = \partial^{n_1+n_2}/\partial z^{n_1}\partial \bar{z}^{n_2};$
- Case 2) $A = \partial^{n_1}/\partial z^{n_1};$
- Case 3) $A = \partial^{n_2}/\partial \bar{z}^{n_2}$.

Let us calculate the matrix element of A in Case 2). As $n_1 = \sigma \cdot M$ is a nonnegative integers, we can differentiate $\varphi_{jm}^{M\sigma}(z) n_1$ times with respect to z, and we have then

Nonsense Channel Terms Associated with the O_{3,1} Partial Wave Expansion 111

$$A\varphi_{jm}^{M\sigma}(z) = \frac{\partial^{n_1}}{\partial z^{n_1}} \varphi_{jm}^{M\sigma}(z) = (-1)^{\sigma-M} \Big[\frac{\Gamma(j-M+1)\Gamma(j+\sigma+1)}{\Gamma(j-\sigma+1)\Gamma(j+M+1)} \Big]^{1/2} \varphi_{jm}^{\sigma M}(z),$$
(16)

and, for the matrix element,

$$A_{jm,j'm'} = (-1)^{\sigma - M} \left[\frac{\Gamma(j - M + 1)\Gamma(j + \sigma + 1)}{\Gamma(j - \sigma + 1)\Gamma(j + M + 1)} \right]^{1/2} \delta_{jj'} \delta_{mm'}, \tag{17}$$

where we used the relation

$$\frac{\partial^{r}}{\partial z^{r}} \varphi_{jm}^{M\sigma}(z) = \sum_{k=0}^{r} (-1)^{k} {r \choose k} \frac{\Gamma(\sigma - M - k)}{\Gamma(\sigma - M - r)} \left(\frac{\overline{z}}{1 + |z|^{2}}\right)^{r-k} \left[\frac{\Gamma(j - M + 1)\Gamma(j + M + k + 1)}{\Gamma(j - M - k + 1)\Gamma(j + M + 1)}\right]^{1/2} \\ \times \varphi_{jm}^{M+k, \sigma - k}(z)$$

obtained from (13) and (14).

A similar method can be used for *Case* 3), but the differentiation must be made with respect to \bar{z} for z in *Case* 2), and we have then

and

$$A\varphi_{jm}^{M\sigma}(z) = \left[\frac{\Gamma(j+M+1)\Gamma(j+\sigma+1)}{\Gamma(j-\sigma+1)\Gamma(j-M+1)}\right]^{1/2} \varphi_{jm}^{-\sigma,-M}(z),$$

$$A_{jm,j'm'} = \left[\frac{\Gamma(j+M+1)\Gamma(j+\sigma+1)}{\Gamma(j-\sigma+1)\Gamma(j-M+1)}\right]^{1/2} \delta_{jj'}\delta_{mm'}.$$
(18)

Finally, Case 1) is the combination of Cases 2) and 3), that is,

$$A = A_{Case^{(3)}} \cdot A_{Case^{(2)}},$$

i. e.

$$A_{jm,j'm'} = (-1)^{\sigma - M} \frac{\Gamma(j + \sigma + 1)}{\Gamma(j - \sigma + 1)} \delta_{jj'} \delta_{mm'}.$$
(19)

Using these results, for instance, we can construct the special invariant subspaces denoted by E_{x_1} and F_{x_2} in Gel'fand's book.⁴⁾ If $\sigma + M \ge 0$ in *Case 2*), then $A\varphi_{jm}^{M\sigma}(z)=0$ for j such that $\sigma>j\ge|M|$. Hence the subspace spanned by these $\varphi_{jm}^{M\sigma}(z)$ is invariant and is just E_{x_1} . If $\sigma + M < 0$, the indices j appearing in the image of A are not smaller than |M|, and therefore the image is an invariant subspace of D_{x_2} , which is just F_{x_2} .

4 *M*- σ Symmetry of $d_{jmj'}^{M\sigma}(\zeta)$

For the element

$$a_{z}(\zeta) = e^{\frac{1}{2}\sigma_{z}\zeta} = \begin{pmatrix} e^{\zeta/2} & 0\\ 0 & e^{-\zeta/2} \end{pmatrix},$$

it has been known that $\mathscr{D}^{\chi}(a_{z}(\zeta))$ has the form³⁾

$$\mathscr{D}_{jm,\,j'm'}^{x}(a_{z}(\zeta))=\delta_{mm'} \ d_{jmj'}^{M\lambda}$$
 (ζ), $\chi=(M,\,\lambda),$

which is the definition of the function $d_{jmj'}^{M\lambda}(\zeta)$. The symmetry relation to be proved is

$$d_{jmj'}^{M\sigma}(\zeta) = \left[\frac{\Gamma(j+M+1))\Gamma(j-\sigma+1)\Gamma(j'-M+1)\Gamma(j'+\sigma+1)}{\Gamma(j+\sigma+1)\Gamma(j-M+1)\Gamma(j'-\sigma+1)\Gamma(j'+M+1)}\right]^{1/2} d_{jmj'}^{aM}(\zeta),$$

where $j, j' \ge Max (|M|, |\sigma|).$ (20)

For convenience of verification, we divide the (M, σ) region into four parts. Region $A; \sigma - M \ge 0, \sigma + M \ge 0$. In this case (20) is nothing but the partial equivalence of the representations on D_{x_1} and D_{x_2} , i.e. the equivalence of the representations on D_{x_1}/E_{x_1} and D_{x_2} , and therefore it can be derived directly from (16) or (17).

Region B; $\sigma - M \leq 0$, $\sigma + \geq 0$. If we interchange the roles of M and σ , this region becomes Region A, and (20) is also valid, but in this case

$$j, j' \geq |M|$$
.

Region C; $\sigma - M \leq 0$, $\sigma + M \leq 0$. This is the case in which roles of M and σ are interchanged in Region D, and (20) is also valid.

Region D; $\sigma - M \ge 0$, $\sigma + M \le 0$. In this case $|\sigma| \le |M|$, and then A maps D_{x_1} onto the subspace F_{x_2} which is invariant under the transformation $\mathscr{D}^{x_2}(g)$, so that (20) is also derived from (17) and

$$j, j' \geq |M|$$
.

Thus, the symmetry relation (20) is verified. Of course, M and σ are both integers or half-odd integers, and m must be satisfied with the condition

$$-\operatorname{Min}(j, j') \le m \le \operatorname{Min}(j, j').$$

Above results are all derived by making use of Case 2) in §3, but a similar result can be obtained from Case 3), i.e.

$$d_{jmj'}^{M\sigma}(\zeta) = \left[\frac{\Gamma(j-\sigma+1)\Gamma(j-M+1)\Gamma(j'+M+1)\Gamma(j'+\sigma+1)}{\Gamma(j+M+1)\Gamma(j+\sigma+1)\Gamma(j'-\sigma+1)\Gamma(j'-M+1)}\right]^{1/2} d_{jmj'}^{-\sigma,-M}(\zeta),$$

where $j, j' \ge Max (|M|, |\sigma|).$ (21)

For arbitrary λ , however, $d_{jmj'}^{M\lambda}(\zeta)$ satisfies the relation²⁾

$$d_{jmj}^{-M}; \ ^{-\lambda}(\zeta) = \frac{\Gamma(j+\lambda+1)\Gamma(j'-\lambda+1)}{\Gamma(j-\lambda+1)\Gamma(j'+\lambda+1)} d_{jmj'}^{M\lambda} (\zeta),$$

112

and therefore (21) is equivalent to (20).

References

- 1) TOLLER, M., Nuovo Cimento, 53A, 671 (1968).
- 2) AKYEAMPONG, D.A., BOYCE, J.F. and RASHID, M.A., J. Math. Phys. 11, 706 (1970).
- 3) SCIARRINO, A. and TOLLER, M., J. Math. Phys. 8, 1252 (1967).
- 4) GEL'FAND, I.M., GRAEV, M.I. and VILENKIN, N.Ya., *Generalized Functions*, Vol. 5; Integral Geometry and Representation Theory (English transl.: Academic Press, New York and London), (1966).