Nonsense Channel Terms Associated with the $\boldsymbol{O}_{3,1}$ Partial Wave Expansion

Yasutaro Takao
Department of Physics, Faculty of Science, Shinshu University
(Received October 30, 1971)

Abstract

The matrix element $\mathscr{T}_{j m, j^{\prime} m^{\prime}}^{M \lambda}(g)$ of the representation of the group $S L_{2 C}$ is easily obtained by the bases that Toller has used, but the $M-\sigma$ symmetry ($\lambda=\sigma$; 2σ is an integer.) of the representations is conveniently treated by Gel'fand type representatives. We give this representative to Toller's base vector, and prove the $M-\sigma$ symmetry of the function $d_{j m j^{\prime}}^{M a}(\zeta)$.

1 Introduction

When the $O_{3,1}$ partial wave expansion ${ }^{1)}$ of a $t=0$, equal-mass scattering amplitude is continued analytically to the O_{4} partial wave expansion, the nonsense channel terms appear, which vanish as a whole according to the $M-\sigma$ symmetry of $d_{j m j^{\prime}}^{M o}(\zeta) .{ }^{2)}$

The $M-\sigma$ symmetry is somewhat different in its nature from other symmetry properties of $d_{j m j^{\prime}}^{M \sigma}(\zeta)$, since it is concerned in two inequivalent representations. To obtain the matrix element $d_{j m j^{\prime}}^{M / \zeta}(\zeta)$, we have to use the base vectors of Toller type, ${ }^{3)}$ but the treatment of Gel'fand et al. ${ }^{4)}$ is more favorable to understand the group theoretical properties of the representations. We intend to give a formalism which combines these two types of treatments, and prove the $M-\sigma$ symmetry of the function $d_{j m j^{\prime}}^{M S}(\zeta)$ by this formulation. $\left.{ }^{*}\right)$

2 Representation Spaces of the Group $S L_{2 C}$

Using Toller's notation, ${ }^{3)}$ we denote by K the subgroup which consists of all the elements of the form

$$
k=\left(\begin{array}{cc}
p^{-1} & q \tag{1}\\
0 & p
\end{array}\right) \in K \subset S L_{2 c} .
$$

[^0]Each right coset of $S L_{2 c}$ with respect to K contains a unique element of the form

$$
z=\left(\begin{array}{ll}
1 & 0 \tag{2}\\
z & 1
\end{array}\right)
$$

hence we attach the index z to the coset involving the element z such that $A_{z}=$ $K z$. If we use $S L_{2 C} / K$ as a homogeneous space, the representation spaces are constructed as follows.

Since a function $f\left(A_{z}\right)$ defined on $S L_{2 c} / K$ can be regarded as a function of the element z or a complex number z defined by (2), we can put

$$
f\left(A_{Z}\right)=\varphi(z)
$$

The linear space spanned by these functions $f\left(A_{Z}\right)$ or $\varphi(z)$, which satisfy the conditions of Gel'fand et al. , 4) is the representation space D_{χ}, and the representation T_{ω} on this space is given by the equation

$$
\begin{equation*}
\left[T_{\omega}(g) f\right]\left(A_{Z}\right)=\omega\left(A_{Z}, g\right) f\left(A_{z} g\right), \quad g \in S L_{2 C} \tag{3}
\end{equation*}
$$

where

$$
\begin{equation*}
\omega\left(A_{Z}, g g^{\prime}\right)=\omega\left(A_{Z}, g\right) \omega\left(A_{Z} g, g^{\prime}\right), \quad g, g^{\prime} \in S L_{2 C} \tag{4}
\end{equation*}
$$

If we regard $\varphi(z)$ as a function of the element z, it can be extended to the function defined on the whole group $S L_{2 c}$ by the equation

$$
\begin{equation*}
f(g)=L^{n_{1}-1, n_{2}-1}(k) \varphi(z), \quad k=g z^{-1} \in K \tag{5}
\end{equation*}
$$

where $L^{n_{1}-1, n_{2}-1}(k)=p^{n_{1}-1} \bar{p}^{n_{2}-1}$ for the element k of (1), which is the one-dimensional representation of the subgroup K, and n_{1}, n_{2} are arbitrary complex numbers.

In the following, we use the notation

$$
\begin{equation*}
\chi=\left(n_{1} \mid n_{2}\right)=(M, \lambda), \quad \text { where } \quad n_{2}-n_{1}=2 M, n_{2}+n_{1}=2 \lambda, \tag{6}
\end{equation*}
$$

and write L^{x} or $L^{N R}$ for $L^{n_{1}-1, n_{2}-1}$. Making use of this one-dimensional representation, we can construct a representation which is incluced on $S L_{2 c}$ from it, i. e.

$$
\begin{equation*}
\left[\mathscr{G}^{\prime}(g) f\right](a)=f(a g), \quad a \in S L_{2 C}, \tag{7}
\end{equation*}
$$

taking into account of (5) which shows

$$
\begin{equation*}
f(k g)=L^{\chi}(k) f(g) \tag{8}
\end{equation*}
$$

This representation, however, is the same as the one given by (3) and (4). In
fact, if we write an element g of $S L_{2 c}$ as

$$
g=\left(\begin{array}{ll}
\alpha & \beta \\
\gamma & \delta
\end{array}\right)=\left(\begin{array}{cc}
\delta^{-1} & \beta \\
0 & \delta
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
\gamma / \delta & 1
\end{array}\right), \quad \alpha \delta-\beta \gamma=1
$$

$f(g)$ depends only on the variables γ and δ according to the covariance condition (8), i. e. $f(g)=f(r, \delta)$. Moreover $f(\gamma, \delta)$ is the homogeneous function of the degree ($n_{1}-1, n_{2}-1$), so that (7) can be rewritten as

$$
\begin{equation*}
\left[\mathscr{D}{ }^{x}(g) \varphi p\right](z)=(\beta z+\delta)^{n_{1}-1}(\overline{\beta z+\delta})^{n_{2}-1} \varphi\left(\frac{\alpha z+\gamma}{\beta z+\delta}\right) \tag{9}
\end{equation*}
$$

which is nothing but the equation (3) with

$$
\omega\left(A_{Z}, g\right)=(\beta z+\delta)^{n_{1}-1}(\overline{\beta z+\delta})^{n_{2}-1}
$$

On the other hand the coset A_{Z} contains a unitary element u which is uniquely determined except the uncertainty of $u_{z}(\mu) \in K$, i. e. $A_{Z}=K u$. Thus we can put

$$
\begin{equation*}
f\left(A_{z}\right)=L^{x}\left(k_{1}^{-1}\right) f(u), \quad k_{1} z=u \tag{10}
\end{equation*}
$$

taking account of (5). In order to avoid the uncertainty of the phase in $L^{x}(k)$, we restrict hereafter $2 M$ to be integers. Then (7) or (9) can be rewritten as

$$
\begin{equation*}
\left[\mathscr{D}^{\mathrm{x}}(g) f\right](u)=L^{x}\left(u g(u g)_{0}{ }^{-1}\right) f\left((u g)_{0}\right), \tag{11}
\end{equation*}
$$

where $(g)_{0}$ is a unitary element in A_{Z} containing $g \in S L_{2 C}$.
Let u be factorized in the form

$$
u=\left(\begin{array}{rr}
\bar{a} & -\bar{b} \\
b & a
\end{array}\right)=u_{z}(\mu) u_{y}(\theta) u_{x}(\nu),
$$

then we have

$$
z=b / a=e^{-i v} \tan \frac{\theta}{2}
$$

and so,

$$
\begin{equation*}
L^{n_{1}-1, n_{2}-1}(k)=|a|^{2(M+\lambda-1)} a^{-2 M}=\left(\frac{1+\cos \theta}{2}\right)^{\lambda-1} e^{-i(\mu+\nu) M}, \tag{12}
\end{equation*}
$$

where $k=u z^{-1}$.
The base vectors of D_{x} corresponding to $\Phi_{j m}^{M I}(u)$ used by Toller have the form in Gel'fand type representatives,

$$
\begin{equation*}
\varphi_{j m}^{M \lambda}(z)=(2 j+1)^{1 / 2} e^{i(M-m) \nu}\left(\frac{1+\cos \theta}{2}\right)^{1-\lambda} d_{M m}^{j}(\theta), \tag{13}
\end{equation*}
$$

where

$$
\Phi_{j m}^{M}(u)=(2 j+1)^{1 / 2} R_{M m}^{j}(u), \quad d_{M m}^{j}(\theta) \doteq e^{i M \mu} R_{M m}^{j}(u) e^{i m \nu},
$$

and R^{j} is the ordinary $(2 j+1)$-dimensional representation of $S U_{2}$.
Finally, we give the operators $\partial / \partial z$ and $\partial / \partial \bar{z}$ expressed in terms of μ, θ and ν;

$$
\begin{gather*}
\frac{\partial}{\partial z}=-2 e^{i \nu}\left(\frac{1+\cos \theta}{2}\right)^{3 / 2}\left(\frac{1-\cos \theta}{2}\right)^{1 / 2} \frac{\partial}{\partial \cos \theta}+\frac{i}{2} e^{i \nu}\left(\frac{1+\cos \theta}{2}\right)^{1 / 2}\left(\frac{1-\cos \theta}{2}\right)^{-1 / 2} \frac{\partial}{\partial \nu}, \\
\frac{\partial}{\partial \ddot{z}}=-2 e^{-i \nu}\left(\frac{1+\cos \theta}{2}\right)^{3 / 2}\left(\frac{1-\cos \theta}{2}\right)^{1 / 2} \frac{\partial}{\partial \cos \theta}-\frac{i}{2} e^{-i \nu}\left(\frac{1+\cos \theta}{2}\right)^{1 / 2}\left(\frac{1-\cos \theta}{2}\right)^{-1 / 2} \frac{\partial}{\partial \nu}, \tag{14}
\end{gather*}
$$

which are easily obtained by direct calculations from the equation above (12).

3 Intertwining Operators

When a linear mapping A of a representation space $D_{x_{1}}$ into another space $D_{x_{2}}$ satisfies the relation

$$
\begin{equation*}
A \mathscr{D}^{x_{1}}(g)=\mathscr{D}^{x_{2}}(g) A \tag{15}
\end{equation*}
$$

A is called an intertwining operator. Gel'fand et al. ${ }^{4)}$ showed that in the case of the representation of $S L_{2 c}$ an intertwining operator exists if and only if one of the following conditions is fulfilled:

Case 1) $n_{1}=-m_{1}, n_{2}=-m_{2}, n_{1}, n_{2}$ nonnegative integers;
Case 2) $n_{1}=-m_{1}=1,2,3, \ldots, n_{2}=m_{2}$;
Case 3) $n_{1}=m_{1}, n_{2}=-m_{2}=1,2,3, \ldots$;
Case 4) $n_{1}=-m_{1}, n_{2}=-m_{2}, n_{1}, n_{2}$ not simultaneously nonnegative integers;
Case 5) $n_{1}=m_{1}, \quad n_{2}=m_{2}$,
where $\chi_{1}=\left(n_{1} \mid n_{2}\right)$ and $\chi_{2}=\left(m_{1} \mid m_{2}\right)$. Now we list the intertwining operators in the first three cases, which are concerned with our $M-\sigma$ symmetry:

Case 1) $A=\partial^{n_{1}+n_{2}} / \partial z^{n_{1}} \partial \bar{z}^{n_{2}}$;
Case 2) $A \doteq \partial^{n_{1}} / \partial z^{n_{1}}$;
Case 3) $A=\partial^{n_{2}} / \partial \bar{z}^{n_{2}}$.
Let us calculate the matrix element of A in Case 2). As $n_{1}=\sigma-M$ is a nonnegative integers, we can differentiate $\varphi_{j m}^{M o}(z) n_{1}$ times with respect to z, and we have then

$$
\begin{equation*}
A \varphi_{j m}^{M o}(z)=\frac{\partial^{n_{1}}}{\partial z^{n_{1}}} \varphi_{j m}^{M a}(z)=(-1)^{\sigma-M}\left[\frac{\Gamma(j-M+1) \Gamma(j+\sigma+1)}{\Gamma(j-\sigma+1) \Gamma(j+M+1)}\right]^{1 / 2} \varphi_{j m}^{\sigma M}(z), \tag{16}
\end{equation*}
$$

and, for the matrix element,

$$
\begin{equation*}
A_{j m, j^{\prime} m^{\prime}}=(-1)^{--M}\left[\frac{\Gamma(j-M+1) \Gamma(j+\sigma+1)}{\Gamma(j-\sigma+1) \Gamma(j+M+1)}\right]^{1 / 2} \dot{\partial}_{j j^{\prime}} \delta_{m m m^{\prime}}, \tag{17}
\end{equation*}
$$

where we used the relation

$$
\begin{gathered}
\frac{\partial^{r}}{\partial z^{r}} \varphi_{j m}^{M \sigma}(z)=\sum_{k=0}^{r}(-1)^{k}\binom{r}{k} \frac{\Gamma(\sigma-M-k)}{\Gamma(\sigma-M-r)}\left(\frac{\bar{z}}{1+|z|^{2}}\right)^{r-k}\left[\frac{\Gamma(j-M+1) \Gamma(j+M+k+1)}{\Gamma(j-M-k+1) \Gamma(j+M+1)}\right]^{1 / 2} \\
\times \varphi_{j m}^{M+k, \sigma-k}(z)
\end{gathered}
$$

obtained from (13) and (14).
A similar method can be used for Case 3), but the differentiation must be made with respect to \bar{z} for z in Case 2), and we have then
and

$$
A \varphi_{j m}^{M \sigma}(z)=\left[\frac{\Gamma(j+M+1) \Gamma(j+\sigma+1)}{\Gamma(j-\sigma+1) \Gamma(j-M+1)}\right]^{1 / 2} \varphi_{j m}^{-\sigma,-M(z)}
$$

$$
\begin{equation*}
A_{j m, j^{\prime} n^{\prime}}=\left[\frac{\Gamma(j+M+1) \Gamma(j+\sigma+1)}{\Gamma(j-\sigma+1) \Gamma(j-M+1)}\right]^{1 / 2} \delta_{j j^{\prime} \delta_{m m}} . \tag{18}
\end{equation*}
$$

Finally, Case 1) is the combination of Cases 2) and 3), that is,

$$
A=A_{\text {Case } 3)^{\circ}} \cdot A_{(\text {Case } 2)},
$$

i. e.

$$
\begin{equation*}
A_{j m, j^{\prime} m^{\prime}}=(-1)^{\sigma-M} \frac{\Gamma(j+\sigma+1)}{\Gamma(j-\sigma+1)^{\prime}} \delta_{j j^{\prime}} \delta_{m m m^{\prime}} \tag{19}
\end{equation*}
$$

Using these results, for instance, we can construct the special invariant subspaces denoted by $E_{x_{1}}$ and $F_{x_{2}}$ in Gel'fand's book. ${ }^{\text {4) }}$ If $\sigma+M \geq 0$ in Case 2), then $A \varphi_{j m}^{M o}(z)=0$ for j such that $\sigma>j \geq|M|$. Hence the subspace spanned by these $\varphi_{j m}^{M \sigma}(z)$ is invariant and is just $E_{x_{1}}$. If $\sigma+M<0$, the indices j appearing in the image of A are not smaller than $|M|$, and therefore the image is an invariant subspace of $D_{x_{2}}$, which is just $F_{x_{2}}$.

$$
4 M \cdot \sigma \text { Symmetry of } d_{j m j^{\prime}}^{M a}(\zeta)
$$

For the element

$$
a_{z}(\zeta)=e^{\frac{1}{2} z \zeta}=\left(\begin{array}{cc}
e^{\zeta / 2} & 0 \\
0 & e^{-\zeta / 2}
\end{array}\right)
$$

it has been known that $\mathscr{D}^{x}\left(a_{z}\left(\xi_{z}\right)\right)$ has the form ${ }^{3)}$

$$
\mathscr{D}_{j m, j^{\prime} m^{\prime}}^{x}\left(a_{z}(\zeta)\right)=\delta_{m m^{\prime}} \quad d_{j m j^{\prime}}^{M 2}(\zeta), \quad \chi=(M, \lambda),
$$

which is the definition of the function $d_{j m j^{\prime}}^{M \lambda}(\zeta)$. The symmetry relation to be proved is

$$
\begin{equation*}
d_{j m j^{\prime}}^{M a}(\zeta)=\left[\frac{\Gamma(j+M+1) \Gamma(j-\sigma+1) \Gamma\left(j^{\prime}-M+1\right) \Gamma\left(j^{\prime}+\sigma+1\right)}{\Gamma(j+\sigma+1) \Gamma(j-M+1) \Gamma\left(j^{\prime}-\sigma+1\right) \Gamma\left(j^{\prime}+M+1\right)}\right]^{1 / 2} \quad d_{j m j^{\prime}}^{\sigma M}(\zeta), \tag{20}
\end{equation*}
$$

where $j, j^{\prime} \geq \operatorname{Max}(|M|,|\sigma|)$.
For convenience of verification, we divide the (M, σ) region into four parts.
Region $A ; \sigma-M \geq 0, \sigma+M \geq 0$. In this case (20) is nothing but the partial equivalence of the representations on $D_{x_{1}}$ and $D_{x_{2}}$, i. e. the equivalence of the representations on $D_{x_{1}} / E_{x_{1}}$ and $D_{x_{2}}$, and therefore it can be derived directly from (16) or (17).

Region $B ; \sigma-M \leq 0, \sigma+\geq 0$. If we interchange the roles of M and σ, this region becomes Region A, and (20) is also valid, but in this case

$$
j, j^{\prime} \geq|M|
$$

Region C; $\sigma-M \leq 0, \sigma+M \leq 0$. This is the case in which roles of M and σ are interchanged in Region D, and (20) is also valid.

Region $D ; \sigma-M \geq 0, \sigma+M \leq 0$. In this case $|\sigma| \leq|M|$, and then A maps $D_{x_{1}}$ onto the subspace $F_{x_{2}}$ which is invariant under the transformation $\mathscr{D}^{x_{2}}(g)$, so that (20) is also derived from (17) and

$$
j, j^{\prime} \geq|M|
$$

Thus, the symmetry relation (20) is verified. Of course, M and σ are both integers or half-odd integers, and m must be satisfied with the condition

$$
-\operatorname{Min}\left(j, j^{\prime}\right) \leq m \leq \operatorname{Min}\left(j, j^{\prime}\right)
$$

Above results are all derived by making use of Case 2) in §3, but a similar result can be obtained from Case 3), i. e.

$$
\begin{align*}
d_{j m j^{\prime}}^{M a}(\zeta) & =\left[\frac{\Gamma(j-\sigma+1) \Gamma(j-M+1) \Gamma\left(j^{\prime}+M+1\right) \Gamma\left(j^{\prime}+\sigma+1\right)}{\Gamma(j+M+1) \Gamma(j+\sigma+1) \Gamma\left(j^{\prime}-\sigma+1\right) \Gamma^{\prime}\left(j^{\prime}-M+1\right)}\right]^{1 / 2} d_{j m j^{\prime}}^{-\sigma,-M}(\zeta), \\
& \text { where } j, j^{\prime} \geq \operatorname{Max}(|M|,|\sigma|) . \tag{21}
\end{align*}
$$

For arbitrary λ, however, $d_{j m j^{\prime}}^{M \lambda}{ }^{(\zeta)}$ satisfies the relation ${ }^{2)}$

$$
d_{j m j^{\prime}}^{-M,-\lambda(\zeta)}=\frac{\Gamma(j+\lambda+1) \Gamma\left(j^{\prime}-\lambda+1\right)}{\Gamma(j-\lambda+1) \Gamma\left(j^{\prime}+\lambda+1\right)} d_{j m j^{\prime}}^{M \lambda}(\zeta),
$$

and therefore (21) is equivalent to (20).

References

1) Toller, M., Nuovo Cimento, 53A, 671 (1968).
2) Akyeampong, D. A., Boyce, J.F. and Rashid, M. A., J. Math. Phys. 11, 706 (1970).
3) Sciarrino, A. and Toller, M., J. Math. Phys. 8, 1252 (1967).
4) Gel'fand, I.M., Graev, M.I. and Vilenkin, N. Ya., Generalized Functions, Vol. 5; Integral Geometry and Representation Theory (English transl. : Academic Press, New York and London), (1966).

[^0]: *) This symmetry relation was cited in 2) as it was proved by M. Toller, but we could not know its details.

