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                             Introduction.

   The purpose of this paper is to show the following theorem.

   Theorem. Ilf' X is an arcwise connected ParacomPact (toPological) manifold, then

there exists a metric p by which the toPology of X is given and has the following

(i). X is comPlete as a metric sPace by the metric p.

(ii), ILf x, yEX, then there exists a curve r which 7'oins x and y and its length

  with resPect to the metric p(cf. f2], [4], [6]) is eqztal to p(x, y). Morqover, such

  p is unique uP to the change of Parameters if p(x, y) is szdifcientlN small.

(iii). The Alexander-SPanier n-cochain p(xo, xi) p(xo, x2)･･･p(xo, x.) (n==dim. X)

  doj7nes a Positive Radon measure m==m (p) such that

                  ' m(p) (E) ; O,

  if E is measurable and contains some non-emPty oPen set of X (cf. [4]).

   If X is a smooth manifold, then these has been known, In fact, (ii) is a part

of the theorem of Hopf-Rinow ([5], [8], [12], [13]), (i) is the theorem of Nomizu-

Ozeki ([10]) and (iii) follows from the existence of a Riemannian metric ([17].

For the properties of Radon-measure, we refer [12]). .
                                                    '                                                           '. For the above metric p, we can show the followings which are also parts of

the theorem of Hopf-Rinow ifXis smooth. ･ . .
    Theoren?. p also has following ProPerties. ,
(i). A bounded set of X by the metric p is relative comPact.

(ii). ILIC a curve r, f : [0, 1]-X or g : [0, 1)--÷X satilskes

(a) the length of r.,b, fL,,b : [O, 1]- X or g.,b : [O, 1)- X with resPect to pis p

  (f (a), f(b)) (or p (g (a), g(b))) for any a, b (O $l a<b$1 for n,b an,d O$-a<1

  for gh,b), where L,b (t) is given by .11,,b (t) ==f (a+(b-a) t) (gh,b (t):-:g (a+(bra) t)).

                                                    A    Then either the length of r is iutnite or there is a curve r with injnite length

such that ?satiskes (a) andris written as rA.,b for some a, b., .. /' ' ,



   The outline of this paper is as follows : In g1, we consider the length of a

curverwith respect to ametric p. As in [2], [4] and [6], it is defined to be

the limit

                    m            lim. =p(.f<ti.i), ]C<ti)), O=ti<t,<･･･ <t,,,.i = 1,
            lti"-ti[-O i=1

if r is given by f : I.X(I means the closed interval [0, 1]). If we use the nota-

tion of [4], then we may write

                       '            the length of r with resPeCt tO p = !,P･

    '
After treating some elementary properties of S,p, we consider a metric space X

with metric p which satisfy

(*) For any x, yEX, there exists a curvr r=f(I) such that
   f(O) =-x, f(1) == y, !,p<oo.

   ATbte. This property has been considered in [2] and [6].

   We note although X is an arcwise connected paracompact manifold, (*) is

not fulfi11ed for arbitrary metrics. In fact, if Xc R2 is given by ({x, x sin (11x))

]xlO} u(O, O) with the metric induced from R2, then it does not satisfy (").

   If X and p satisfy ("), then setting

            Ap(x, y) =:= inf. r,r joins x and Y, S,P'

Ap is a metric of X and if X is locally compact, then as in [6], g20, we can show

if p (x, y) is suthciently small, then there exists a curve r which joins x andy and

S,p:=P (X, Y) (Theorem 3. we note that we get

     '                   !rP == SrP'

for any curve r of X).

    g2 and g3 are devoted to show that if X is an arcwise connected para-

compact manifold, then there is a metric p of X by which the topology of X is

given and satisfies ("). In S2, we show that if the structure group of the tangent

microbundle of X is reduced to the group of those (germs of) homeomorphisms of

R" which are expressed by the functions of boundded variations, as an HLk (n)-

bundle (cf. [3]), then X has a metric p which satisfies ("). we note that this can

be also proved as follows : Take the locally finite open covering {U} and homeo-

morphisms {hu}, hu : UeR" and {fo(x)}, fu(x) : R" --+ R" (x E U) such that fu(x)

huhv-tfLt(x)-i is a local homeomorphism of R" which are expressed by the functions

of boundded variations for any U and xE U. Then taking a partition of unity

{eu(x)} subordinated to {U}, we set
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            d(x, y)

            =: = eu(x)eu(y)1 lfu(x)hu(x) - fu(y)hu(N)H,

             x, yEU

where 1 k-vl 1 means the euclidean norm of the vector e-o. Then although d(x, y)

may not be a metric on ,X, d(x, y) is defined on U(ti(X)), a' neighborhood of the

diagonal A(X) in XxX and d(x, y) >=O, d(x, y)=O if and only if x=y, d(x, y) =

d(y, x) and there exists a curve r which joins x and y and ･

                                    '                                                             '                                                     '                                                              '                   ird < cx).

Then to set p(x, y) == inf. r, r joins x and ySrd, p is a metric ofXwhich satisfies

   In g3, we prove that en,(n) is defomed to its subset consisted by those home-

omorphisms g such that each op is represented as

g(x) == (.11(x), h(x), ･･････, L,(x)) where each L･(x) satisfies

            fi(x) is a fttnction of bounded variations and

            {logqlog(2n+2)} -Hblder continuous.
                                                         '     '
   In this proof, we use the axiom of choice and Kolmogorov's representation

theorem of continuous function of several variables by finite sums and superposi-

tion of continuous functions of one variable with its refinement by Sprecher ([9],

[15], cf. [1], [16]), which asserts that there exist n(2n+1) monotonic, {log 211og

(2n+2)} - H61der continuous functions x,r,(x)..glt}.unit interval T= [O, 1] such that

                           on I" == Ix ･ny･ ×2' can be Written asfor any continuous functions f

                                                       '  '
                          r.n +1 ･n
            .IC<xi, ･･････, x.) = :Il ] L･(= xii･(xj)),

                          i-1 j' -1
                                                     '
where each L･(x) is a continuous function determined by f. we.note that the above

fact also sugests us the possibility of the existence of {log qlog(2n + 2)} - H61der

continuous structure on n-dimensional (topological) manifolds (c£ [14]).

   Then together with the result of g2, we get,

   Theorent. I]7C X is an arcwise connected ParacomPact (toPological) manifolb, then

there is a metric p by which the toPology of X is given and has followingProPeties.

(i). p satisies (*) and ijC p (x, y) is szoj7ciently small, then there is a curve r which

            !rP=p(x, y).

   Moreover, such curve is uniqzte uP to the change of Parameters.

(ii). The measure m [== m(p) determined by the n-cochain p(xe, xi)p(xe, x2) ''' p(Xe, Xn)
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is a Positive Radon measure on X and

            m(E) : O,

   if E containes some non emPty oPen set of X.

   Since the most part of the proof of the theorems of Hopf-Rinow uses only

the usual properties of metric and the fact that the geodesic distance of a Riem-

annian manifold satisfies above (i) (cf. [5], [8], [11], [12]), we can show the global

results stated in the beginning of this introduction only with a little modification

of the proofs of the theorems of Hopf-Rinow and Nomizu-Ozeki (note that the

proof of the theorem of Nomizu-Ozeki uses heavily the theorems of Hopf-Rinow,

cf. [10]. These are stated in g4.

   I would like to thank Dr. Kano who teach me the theorem of Kolmogorov.

        g1. Metric space whose any two points can be joined by a curve

           with finite length.

   1. Definition (cfl [2], [4], [6]). Let X be a metric sPace with the metric p, r

=f<I) a curve in X (I == [O, 1], f: f.X is a cotinuous maP), then the length of

r with resPect to p is dofned by

                             m            SrP(X' Y)=il.iMi,i-.i[T-oE, 2=,P(f(a"t)' f(a'))'

' O=ao<ai <･･････< a.-t<a. =1.
   Note. In this definition, r may not be given to be a continuous image of I.

If r is given to be a continuous image of a closed interval [a, b], then we define

the length of r with respect to p by the same way. On the other hand, if r is

given, for example, to be a continuotts image of [O, 1), then to set

            r. -= A(I), fh(t) = flat), O $ a< 1,

we define the length of r with respect.to p to be the limit

            l:'M-iSraP(X' pt)'

   By definietion, if r == f<I) has finite length, then r. (O ;Sla$1) aiso has finite

length and we have

            Sr. P(X, Y) $ Srb P(X, Y), if a ;El{ b.

In general, we know that r has finite length if and only ifthere existsa constant

M such that
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            7n            = p(f(ai.i), flai)) ;-f{; M,

            i=o

for any partitlon O= ae<ai<････`･ <a. =1 of I.

   Lemma 1. The length ofr does not dePend on the choice of the Parametert,

that is, for any (into) homeomorPhism g : I.Ri, we have

            Sf(I) p(x, y) = S f(,-i((.,b)))p(x, y),

            [a, b] :-- y(J).

   Proof. Since op is monotonic, setting

            a = co < ci <･･･ ny ,,< c..i < c. = b,

O == go(Ce)<go(Ci)<･･･<go(c."i)<go(c.) = 1 if go is orientation preserving, and we have

the lemma in this case. On the other hand, since p(flep(ci+i)), flg(ci))) = p(flp(ci)),

flg(Ci+i))), we have

              771
              XP(.f<9(Ci.i)), f(9(Ci)))

              i-o

              ln            ===(f(op(c.-i-i), .1`<q(c.-.i))),

              i--o

and 0 =: g(c.,)<g(e,.-i) <･･･ <pa(ci) <g(co) = 1 is a partition of I if g is orientation

reversing, we get the lemma for orientation reversing g.

   For the length of curves, we obtain by the triang!e inequality

   Lentma 2. For any curve A we have

(i) p(f(O), fli)).$S,p(X, Y)･

   Moreover, setting f(O) == a, we know that fe. defined by (k.p) (x)=p(a, x) is

defined on X and we have

            P == tileaP + lea6P･

Then since S,6le.p= p(a, f<1)) - p(a,f<O)) =: p(a,f(1)), we obtain

   Lemnza 3. We have p(x, y) == p(f<O), f<1)) ijC and only if

(2) S,(lea6P)(X, N) == O,

            (k.6p)(x, y) = p(x, y) - p(a, y) + p(a, x),

   2. In the rest of this g, we assume that X and p satisfy the fol!owing

(X). (cf. [2], [6]).

(bo). For any x, y E X, there exists a curve r =: f<I) such that



(3) f(0)-=x, f(i)=Y, !,p<oo･
                                       '
    Note. Since r is compact, &') is equivalent the following (")'.

(X)'. X is arcwise connected and if p (x, y) is szdi7ciently small, then

  a curve r:=f(T) which satishes (3) for x, y.

    Definition. On X, we set '
(4) P(X, Y) ;=: i'Zf-r==f(i) S,P'

                          f(o)-x, (fi) ==:y

    Theorem 1. P is a metric of X.

   Proof. By (1), we get

(5) fo(x, y)l:p(x, y)>O, ifx;y,
   '         '
a'nd Sf(i)p =Oif f is given by f<t)=x, O;slt.<.-- 1, we also get

            fo(x, x) :== O.

   Since we know

     ' !f(i)P= !fii(i) p, fHi(t) = .f<1 m t),

                                      '
            lo(x, N)=P(y, x). ,, .. .
z..xTOanSdhOfeV :Pi(iZ'xY)su+chAQ(Yt'haXt)Sr'(X' 2), we take for given E>o, two

            f,(O) = x, A(1) -= y, Sf,(bp$.f.(X, Y)+-S-, ''

     ' ytl,(0) == y, .fl,(1) == z, S,,(,)p:$IP(N, z)+:'Se,

                                                            '
and define fb : J-X bN

                                                         '
            fh(t) -f,(2t), o$t$l, fh(t) -n(2t-1), -S-;s{.ts-1.

Then we get

            !f3a)P == !fi(b P+Sf2(i) PSb(X, y) + P(y, z) + e. ･

Hen&eot¥r.e oltitahi:utghheptriisanngoiteaiiiill%ii?l.ttYo'f x, we can'i'define p and it

metric of X if p is an Alexander-Spanier 1-cochain of X such that

there exists

curves A :

become.s a
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(O. p(x, y) 2.l 0 and p(x, y) =0 ij and only if x= y.

(ii). p(x, y)-p(y, x)

(iii). p satishes (-)'.

   Lemma 4. For any curve r, we have

(6) SrP=!rP'

   Proof. By (5), we obtain

            SrP5SrP'

To get the counter inequality, we may assume !,p< oo, and set

            L<t) = f<ai + (ai.i - ai)t), i= O, ･･････, m- 1,

            r is gr'ven by f : I-X, 0:= ao<ai<･･････<a..i<a,. == 1.

Then by the definition of the integral, we get

                      m-1                       ,l=, Sfi(i) P(X, ,).            S, P(x, y) =

Then since !f,a)p(x, y)2P(f(a,.i), f(ai)), we have

(7) "i=iP(f(ai.i), f(ai));;{S,p(x, y),

for any partition O= ae<ai <･-･ <a. = 1.

   Since XP(f(ai.i), f(ai)) is monotone increasing for the refinement of the parti-

tion of I, (7) shows the existence of S,P(x, y) and the inequality

            !rP(X' `") S- S,P("' Y)'

Hence we have the lemma.
   Corollary. 2 is equal to p.

   We consider the following condition (eeee).

(eeac). For any xE X, there exists a comPact set K= K. and a famdy of curves with

  finite length {re, e E KiJ, where each re is Parametlized by its arclength and this

  Parameter rePresentation is denoted by

            re == ft([O, a]), a== S,,P, ft(0)=X'

   which are parametheed continuously by K and for anN e> O,

             U {ft(t)lO :il{ t $e } D U(x).

            EEK
jElere U (x) = q (x) is a neighborhood of x.
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equivTakieenOtretZitZle l51tlpi/odiatot}Lfill}Sd(e#e);mtihneend btyhe,p.toPoiogy of x determined by Ap is

   Proof. By (5), we only need to show ..

                                                              '(8) P(x, y);Il{Lp(x, y), yE U(x), aneighborhood of x,

for each x (Here L may depend on x). But since S,ep=S,e "p, we have

(9)' P(x, ft(t)) ==p(x,.ftt))+o(t), tE[O, a].

tBieeCraeUSeexitshtse tP2r9(Mt.)eg:rchttihSattaken to be the arciength. Hence for each eG K,

(g) p(x, ft(t)g2(x, ft(t)), t.<.=t(e).

Then since K is compact and 1 depends continuously on e, setting

            to = Min. t(g"),

       ･ eEK
to>O. }{ence by (eeac), taking L=2, U(x)= U?, (x), we get (8).

   3. As in [6], we can show the following theorem for P.

is aC #revOererM=3".,Ysi)IcEStLOoCtaiiY COMPact and P(x, y) ts stdiicientiy smaii, then there

(10) r.,. is given by f: I-X, rtO) == x, f(1) == J,,

            !,L,.ib=p(x, y) ,

   Proof. By assumption, we may assume {zlp(x, z) El2a} is comapct for given

x, where a is a positive number, and assume P(x, y)-Sa.

   By the definition of p"(x, y), there exists a series of curves r. such that

each r. starts fromxand ends at y. .
                                                      tt
                                             '
            !,,K;(X' Y) '=: Cn Sl';P(X, Y)+ui}, C:=: 1)(X, Y).

We assume that each r. is parametlized such as ･
                                                     '
            r. is given by L, : l.X, Sf.,,(b a=c.t, O;$lt;:i{ 1.

Then since S,.Ap = c. $. 2c E-Ig 2a, each r. is contained in {zlp(x, z):nyi{: 2aiJ and

                                                  tt tt            fi(L,(t), L,(s)) i;$l lt - slc. $ 2c 1t - s1,

                                     '                                   'because to define L,"S by '
            L,t'S(u) = f;,(t + (S - t)U), u Ei! 7, (t < s),
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we get by (1) and the definition of the parameter of L,,

            P( 11i(t), Li(S)) $' Sf.t,s(f),P7 (S - t)Cn･ .

Hence the family of the functions {L,}, fh : T-X, .fh(O)=x, .11,(1)==y, is uniformly

bounded and equicontinuous. Therefore by the theorem of Ascoli-Arz61a, {L,]･

contains a series {L,,} which converges uniformly to a continuous map f: I.X.

Then we obtain

            flO) - x, fl1) = y,

            Sf(J)P = ,ll'-M-..･.Sfi,.(J) "p - p(x, y).

Hence we have the theorem by taking r.,y =f(I).

   Note, Similarly, if X is compact, then we can show the existence of a curve

r:= r.,, such that rjoins x and y and its length is equal to "p' (x, y) for any x,

yEX (cf. [6]). ･ ･                                               '
                         tt              '  ' g2. Metrics on manifelds. ' .
   4. Let X = {U, hu} is a (paracompact arcwise connected) topological manifold,

where {U} is a (locaily finite) open covering of X, {hu: U.R"} are the homeo-

morphisms by which the manifold structure of X is given, p a metric of X,

                                                                    '                                                                      tt            pU.(e,v)=p(hu,.H'(6), hu,.-i(q)), '

            hu,.(y) == hti(y) -hu(x), x, y'Ei! U, '･

pti. isa metric of R" and we have ' . ,
(11) guv(x)XpU.=pV.,
            guv(X) == hu,xhv,.'i,

(11)' ku,x,yacpUx=PUcr

            ku, x, y == hu, xhu, y-1,

                                   '
where guv(x)MpU. and ku,.,ptoopU. are given by

            guv(x)scRU.(6, rp) ::= pute(guv(.)e, guv(x)rp),

      .. leu,.,pteepU.(6, rp) == pU.(ku,.,y e, leq.,pt rp). ･ ･

Conversely, if there is a collection {pU.}, pU. == pqx), pU: U -- {the' space of(germs

of) metrics of R"}, such that '
(12) gu v(x)' eep U. = pV.,

(12)' leu,x,s,'eeK) Ux = K) UJ,,



where guv(x)' = fu(x)guv(x)fv(x)-i and feu,.,.' = fu(x)hu,.hu,.-'fu(y)-', fu(x) is a con-

tinuous map from U into H3÷(n), then setting

            pu,.(P, q) == pU.(fb(x)hu,.(P), fo(x)hu,.(q)),

pu,. is a metric on U and we obtain

            pu,.(P, q) -= pv,.(P, q),

            pu, .( P, q) = pu. y( P, q),

by (12) and (12)'. Hence we get a (local) metric of X.

   LeinJn'a 5. Ilf {pU.} satishes (12) and '

(12)" 9)u, a:, J,esPUx = PUj,,

where gu,.,. is a local homeomorPhism of R", then we can take {ipu} to satistv

                                         '(13) gvu(x)'gu, ., rvguv(y)' == gv, ., y･

   we note that (13) shows that if opu fix the origin, then {gu} is a connection

of {guv'} (cf. [3]).

   We also know that if pU., yEUis given by (12)" for each U and gu,.,.

satisfies (13), then pU. and pV. satisfies (12) if pU. and pV. satisfy (12).

   Note. By definition, we can also take {gu,.,,} to satisfy

(14) 9u, x, y9u, y,x= 9u, ¢, x, X, Y, 2E U･

   5. Lemma 6. 111' X is ParacomPact and a collection {pU.}, pU.=pqx), pU : U-

{the sPace of (germs of) metrics of R"]･, satiiij7es (12) and (12)'', then there is a

collection pU., pU. = pqx), pU: U.{the sPace of (germs of) metrics of R"}, which

satishes (12) and (12)'. . .･
   Proof. Since X satisfies second axiom of countability, we may assume the

manifold structure of X is given by countable open covering {Ult} of X. We denote

pcr., k.,.,y', etc. instead of p'Ult., ku.,.,y', etc..

   We assume X to be connected. We take xi EX and set

            vi-U q.
                Xl E [1lt
                                  '
If Vl 74 X, then we take x2EVito satisfy there exists some Up such that xi et Up,

x2 E Up and set

            Vh- U Uh.
                x2 E C4e, xl e UB

Repeating this, if xi, ny･････,x. have been taken, Vl,････-･, V;, have been defined and
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if Uli..iVi :/:X, then we take x.,iE IL, to satisfy there exists some Ur such that

       '            Xb '''''', XneUh Xn+1E Uh

            ltl,+i= U Ur･
                 xn+IE O'r,xi, ･･････, xne Ur

Then by assumption, {V],,} is an open covering of X.

   On Vl, we set

            Pay = fea,xi,y" Pexxi, Y E Ua･

Then by (12)", we get

            'pcror = ka,xi,y-iookcr,xi,y'*paxi･

Hence by (13), if Utyi and Utt2 both contains xi, we have

(15) glr,,a, (y)'eepaiy=Pa2y, yE Uht U Uh2.

   At X2, we set

            PBx2 = gl,,B (x2)'ac7iax,,

            xi (l Up, xi e U., x2 E U. n Up.

                                          '
Then by (15), 'p-Bx, is determined by x2 and does not depend on the choice of a.

Using this PSx,, we set
                                   .t
            lbB = leB,x,,ytee ?,Bx2, Y EI Up.

Then by (13), we get
                              '
            PB2rv = gB,,R,(y)'XPRiy, y EI UI?, n Ul?2,

if Uk, and Uh, contains either xi or x2. ･. ･ ･
   Repeating this, if 'p'" has been defined foy those U. that contains either of

xb ･･･`d･, x. and Ur does not contain neither of xi,････i･, x. and x.,iG Ur, then we

set

            Prx.+1 = g.,r(Xn+1)'ac"P'crxn+1,

            U. contains some of xi, ･･････, x., xn+iE UL, n Ur･

Since {Npa.} satisfies (12), this definition does not depend on the choice of a, and

   .settmg
                                                     '                                          '
                                                        '            Pav=ler,xn+i,stac 'P"rx.+i, YEIi Ur, .
    '
                    '



            "p"cr2y == gz,,, r,(y)'X priy, Y E Uri n a･2,

if qi and Ur2 contains either of xi, ･･････, x..i. Hence we can define Pay for all

U. because -[Z,]- is a covering of X, and {pNcr.} satisfies (12) and (12)' by their

definition and (14).

   we also obtain by this proof,

   Lemma 6'. Lle {xi, x2, ･･････} is a countable set of Points ofX such that there

exists a coordinate neighborhood system {U.} of X which satishes ,

(i). Each U. contains some of {xi, x2, ･-････]･.

(ii). For each ct, -[pcrxi]- is d(ptned if xi belongs in U. and {pcrxi} satisfies

   (12) and (12)" for xi, xi G (J..,

Then there is a collection {p'vat.]･, pcr. ==: pcr(x), pcr: Ucr-{the sPace of (germs of)

metrics of K"}, which satisies (12) and (12)'. ,
   6. If p is a (local) metric of R", then to define eptcp by

            q%p(e, v) - P(g(g"'), g(v)),

ofp is a (germ of) metric of R'i if g is a (germ of) homeomorphism of- R". Hence

we can construct a (local) metric of a paracompact manifold by lemrna 6', because

{xb x2, ･･････]･ is a discrete'set.

. In general, we get

   Lemma 7'. lf the structure grouP of the tangent microbundle of X is redttced to

G, a subgrouP of ff},(n), as an H3,(n) -bundle, then X has a (local) metric p such

            pU.(6, rp) rm- H pe(g) - rp(v)1 1, g E G,

where pU.(e, v) is given by

            pU.(e, v) ri- p(hu,.-'fu(x)-t(6), hu,.m'fu(x)'i(v)),

and llg-rplI is the euclidean norm of the vector e-v.

   On the other hand, we know that

(16) Sf(bgcep(X, Y)=!,(f(I))p(X, Y),

Hence we have

   Lemma 8. .lllC p(e, rp) is. gt'ven by '

            p(6, v) - llg)(e) - go(v)1l,

   .pa .is a (local) homeomorPhism of R" rePresented by the junctions with bounded

vartatton
       '
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then !,p(6, rp) is finite if and only if r has finite length by the euclidean metric.

   Since we can extend a local metric of X to a metric of X if it satisfies (X)'

(cf. note in no2), we obtain by lemma8and lemma 7', ,
   Lemma Z A ParacomPact manifbld X has a metric which satiskes (ee)' if the

structure grouP of the tangent microbundle of X is reduced to the subgrouP G of

Hbe(n) which is consisted those (germs of) homeomorPhisms which are rePresented bN

the junctions of bounded variations.

   we note that in this case, the metric consisted by lemma 6' and X satisfy (scX)

because Rn and its euclidean metric satisfies (Xbe). (For example, we can take

Ke == {6 H k- rp H == 1} and re = {8 + t(o - 6) 1 O ;:;.{- t$ 1, rp ci KE} for any g E R").

   Note. SSnce the local metric p of X constructed by lemma 7' for the group G

consisted by the homeomorphisms which are represented by the functions of

bounded variations satisfies

(i). If p (x, y) is suLfiiciently small, then there exists a curve r which ]-oins x and

   y and

            !,P == p(x, y),

(cf. no9). Hence denoting P the metric constructed from p by the method of no2,

the Alexander-Spanier 1-cochain with representation " p is equal to the Alexander-

Spanier 1-cochain with representation p.

                    '
                  '

                       g3. Deformation of Hac(n). .
   7. If g is a (local) homeomorphism of R" which fix the origin, then we can

                 '
            9(Xi, '''''', Xn)=(.flt (Xi,'''''', Xn), '''''', Li(Xi, '''''', Xn)),

            A(O, ･･････, O) =- ･･････-L,(O, ･･････, O)-O,

where each A(xb ･･････, x.) is a continuous function of xi, -･････, x. and defined on

some neighborhood of the origin.

   We assume each L･ is defined on {(xi, ･･･--･, x.)lIxil;i{a}, where a is apositive

constant. Then by Kolmogorov's theorem ([9], cL [1], [15], [16]), we can set

                          ?,n+1 n
(17) fi(xb ･･････, x.)==Lj(=xjk(xh)), i=1, ･･････, n,
                          1'--1 k=-1

where each xjk is a {log (2)11og(2. + 2)}-Hd!der continuous monotonic function and

does not depend' on fi ([15]). We may assume that each zjk satisfies xjk(O) =: O.

  ･ For each L･j, we take a continuous function gi]･ with compact carrier (therefore

defined on Ri) such that its gerrn at the origin is equal to that of fi,･. Then we



set

                 '
(18) giJ･,,(x)= gi,･Xe,(x) ==See..gi,<y)et(x - y)dy,

                          O<t$ 1,

Where e, is given by

            e,(x) = e(l)1!ee..e(-i}')dx,

                                         '            e(x)= exp (xzLl), -1<x<1, e(x) :O, xS-l, or x21 1.

                                                  '

Then if t is sufllciently small, the germ of gih, at the origin is determined by L･j

and does not depend on the choice of gi,･. For example, if f}j (x) is defined on

lxl<b, b>2, and L･j(x) == g,j (x) if ]x];$2, then gij,,(x) is determined by fi,<x)

for all tg1 if ]x]g1.

   It is known that gi,･,t(x) is smooth for all t>O and

            lim. giJ･,,(x)= giJ･(x),

            t-o

where the convergence is uniform. .
   Since each zjk<x) is a {log (2)11og (2n + 2)}-H61der continuous monotonic fune-

tion we obtain
   '
   Lentma 9. To set

                                                    '
                            2na-1 n
(19) .f},t(xi, ･･････, x.)= =gij,t(Xxjk(xk)), i-- 1, ･･････, n,

                            )' --1 k --1

each i,,(xi, ･･ny･･･, x.) is a fuuction of bounded variations and {log(2)11og(2n+2)}

-IIblder continuous. Moreover, the germ ofL,, at the origin is determined by L･

and does not dePend on the choice of gi,･ ift is szdiiciently small and have

            liM･ L,t(Xi, '''''', Xn) :=: i, (Xi,'''''', Xn),

            t-o

if ]xil, i= 1, ･･････, n are szdicient(y small.

   8. We set

(20)' so,(Vi, `-'･･', Xn)

          = (A,t(Xi, '''''', Xn)-JFI,t(O, '''''', O), '''''', Lt,t(Xi, '''''',Xn)-.11t,t(O, '''''', O))･

Then op,(x) is a continuous map from a neighborhood of the origin of R" to a

neighborhood of the origin of R". Hence by the theorem of･Radon-Nykodim (cf.
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[7]), there is a measurable function a(ep,) such that

            !,,(E) dX ;= S. a(go,)dx. .

Moreover, to define a(g) for g similarly, we get

            lim. a(ep,) :=: a(g).
(21)'
            t.-o

   Note. Since g is a homeomorphism, the Lebesgue measure of the set {xla(g

)(x) == O} is equal to O. we also know that a(g);210 if op is orientation preserving

and o(g);SO if g is orientation reversing.

   On the other hand, to set

                             2n+1 n
            L,t,,(xi, ･････-, x.) :== Zgij･,t(M(e,-xjk)(xk)), O<s$i,

                             j' =1 k--1

L･,t,, is a smooth function for s>O and we have ･

            lim. f},t,,=L,,, i-- 1, ･･････, n, t>O.
            s--o

Using these f?,t,,' we define ept,, and a(g,,,) similarly. Then we have

(22) lim. o(ep,,,) == a(p,), t>O.
     s-.O
                                 '
   Since ept,, is a differentiable map if t>O, s>O, o(g,,,) is given by

            6(A,t,s, '''''', 1`;t,t,s) .     6(got,s) =
              6(xb ･･････, x.)

       = iS'il]+igij,,' (]:li;x,･i,, (xt))x,･i,,'(xi), ･･････, 21': ]'+igij,,'(l:li]x,･i,,(xi))zj.,,'(x.)

         i--1 ttT-1 1'--1 t==1
                 i------i--------------i--------i-------------i-+--------i-----------------i

                 --------i-i-------i-t--------------------------------------------t--t------

         2n+1 n 2n+1 n         = ghj,t'(=xji,,(Xi))xji,,'(xi), '''''', = g;,i,t'(:xj･t,,(xD)zj.,,'(x,,) ,

         d=1 i=-:1 i=1 l-=1
where xjk,,(x) means (e,*xjk)(x) and g･j,,' and xjk,,' are mean the derivatives of gi,･,,

and xj･k,s･

xjk aTnhdenw'eS
AnaCvee eaCh Xjk iS a MOnotonic function, we can define a(xjk) for each

            (irm,6 xjk,,' = o(xj･k),

for each zjk. Hence we obtain by (22)
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(23) a(op,) '･ ･ ' '''
             2n+1 n 2n+1 n          = = gij,t'(Xxj･t(xD)o(zjD(xD, ････'', = gij,t'(=xj･i(xD)a(xj.)(x.)

             j--1 l==1 J' =1 l=-1
                   )''''''''''''''''''''''''''''',r'''''''''''''''''''''"'''''''''''l

                   s----t---lt-ny----------t----------i----------------ny------------)

             2n+1 n 2n+1 n'
             ,=. ... , gnJ, t' ( n. i zJ' i(Xi))a(xJ i)(XD, ' ' ' ' ' ' , ,l.Iili.. ]. 1 gnJ, t' (n. ix, t(xt))a(x,.)(x.) ･

   For the right hand side of (23), we note '. ..

(24) 2it+ig,,･,t'(:Si]x,･,(xi))a(x,･ixxi), ･･････, 2it+igi,,t'(iXxJt(xt))o(xjnXxn) '
             i=1 e-=1 1' =1 l==1
                    ,---------t---------------------it-----}----------------------l--                   e)
                    ----t-----------t----------------------------------------------                   ))             2,=/=-",i g.,,,' (i:i.k,z,i(xi))a(x,D(xi), , 1=1"="ii gtJ,t' (*.ixJi("i])o(xJn)(`tn)

                 nn         = gii,t'(ill.llllXil(Xt)), ''''''''''''''''''''', gi,2n+i,t'(pu.IX2n+1,l(Xl)) . .

                    -iny-}i-----------}--t----------------------------t----

                   ! e, ･×･ 1                    ----------------i----}--------ii---i-----------i------                   1s                                             ?t '                 IZ            gnl,t'(=Xll(Xt)), ''''''''''''''''''''', gn,2n+1,t'(=X2n+1,t(Xt)) '

                l-1 l-=1
                                a(Xl1)(Xl), ''''''''''''''''''''''''''', a(71n)(Xn)

                             × t---i-nyt-----------t--------------------t

                                   7 -------------------i----t--------------J

                                   s...,.,,...v'''''''''''1'''''''''''''''1

                                   :----t----t----t}-----------------------t

                                   I-----t---t----ei------------+----------t

                                    --i--i-t------t--i-t-----------i-----;-                                   r)
                                                                '                             ･ O(X2n+i,.1)(Xl), '''''''''''''''-'', a(X2n+I,tt)(Xn) .

where in the right hand side, the first factor is an (n, 2n÷1)-matrix and the
second factor is a (2n + 1, n}matrix. Moreover, the rank of, the secohd factor is

n almost everywhere because xib i-- 1, ･･････, 2n+1, ti=1, ･･････, n, are taken

indel]ieenddeenntoiXetOb>lc.(R,) and c...(Ri) the R-vector spaces consisted by the germs

of continuous (resp. Coe-class) real valued functions of Ri at the origin. Then
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weknow .. . .. ,. ,
     , dimR C.(Ri)IC.Oe(Ri) ,= oo.. . ;.
F.9ngehW, S. a?, Ea.Y.9,f".Si",g. =aX,IOII.l..P.l g.hOlilC9) 3.(iz It,k>,-contmtt: us functions h,,(x) on

     :
(i). Xi,jci,･hij(x) is smooth if and only if each cij is equal. to.o.

     I(ii). Tipe (2n+1)Ty.ectors . .... ., ..,.. . ......,

     ll (hu(*.ixu(xi)) ' ･hi,2n+i(]i.illix2n+i,i(Xt)) ,' .1/

     ll. .. .I . .I
     I h.i(Xzii(xt)) ,'''''''''''''''''''1', hn,2n+i(£x2n+i,i(Xt)) , i

' gze,uae,z: fe,f,eS3'i4g,"t ober..4･ ..'.. '/ '-.･'`1 '･-/.',./

11 'H,,<x)-Sgh,,<t)dt, ''''' ''' ''''' ''' 1'''''''' . ..

h, nd define continuous functions on some neighborhood of'the origifi of R", hi({i,

･,'''' i, `Vn), '''''', hn(Xi, '''''', Xn) by i
            'hi(xi, -･････,'x.) == ii'lii]t+irzj(£xjk(xk)), i= 1, ･･････, n. I'

          t.
fB
uY

nc

//?gfi,/.",iE/O,.:"Lggeg,,Cft./L/r.alii,:{,aO.g.i21,,iiOg`2"'2'4"6'derco"tinuousboundedvariatig.

(20) 'gl'(Xi,' '"'''', Xn) ='(.11,t(Xt, '''''', Xn)-fli,t(O, '''''', O)+thi(Xi, '''''', Xn), '

                      ''''''', L,,t(Xi, '''''', Xn>-Li,t(O, '''''-, O)+thn(xi, '''''', k'n))

1/ ttt ttt ttt tt tt

                                                                     '

(25) lim. g,'(x)=g(x),
            t-,o
                        ttt
                    'a'nd- Since 'we get

   a(gtt)
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2n+1

1'--1

Z (gtj,,t

2n+1

O'=1

IIIili] (g;,j,t' (Z xj,i(xi)) + th

     ngii,t' (XXii(Xi)) + thii(=Xii(Xt))),

    l=1

       -------------      '

       i-}---l------      '

     nn(gni,t' (XXit(Xi)) + thni(XXii(Xi))),

     l=-1 l-1

           AKIRA ASADA

 (= Xj,i(Xi)) + thij(:ZJ･,i(Xi)))a(Zji)(Xi), ････････-････････････'''

  l==1 i=sl
       2n+1 n n
'''''''''

, = (giJ･,t' (X xJ',i(Xt)) + thtJ･ (=xj,i(xi)))a(xJ･,.)(x,,)

       J==1 l-=1 l-1
 -----d------------i---------i-ii---i------------------------------

 ttt--ti-------------i-----------------t-----t-----------------i---

 ---t-----------i--i-t--t------}-t------------ii-------t---------it

             nj (Z zj,i(Xi)))a(xjiXxi), -･･･････-･･･

  l==1 l=1       Zn+1 n n' ' " ' ' ' ' ', Z (g;ti, t' (X Xj, i(Xi)) + thnj (= Xj, i(Xi)))a(xj, .)(Xn)

       1' -=1 l==1 l=1

          ''', (gl,2n+1, i'(=X2n+1,l(Xl)) + thl,2n+1(= X2n+1, l(Xl)))

  l:=:1 l-=1 l-=1
-----i--------------------------i-------i---i------t---t-------i-------i--                                      '
--------i-----------------------------i--------}-i----------------i-ii----                                      '

i- .
'

we have
(26) a(g,') iL O, excePt the set of measure O near the

by (i) and (ii). Here a(ep,') is defined similarly

   9. we set a= log(2)1log(2. + 2).

H61der continuous,

                  2
           lim. xj･k(hcr)= cj,k'+,
           h-+O

                      1
           itlM:, xjk(- (ihl cr) - c,･,-･,

×

(gn,2n+1,tt(=X2+1,l(Xl)) + thn,2n+1(= X2n+t,i(Xl)))

       l--1 l-tl
         a(xll)(Xl), .,.,.,.･.･･.''-''', a(Xln)(Xn)

       ×
             ii--------------i-------------            e1
             -i----------------------------            r1
             -i--i----}---t-----------t----            )1
             --t---i--i--------------------            ))
             ------------ii-i--i------t-,---            r)
             -----ny---}t----i--i---i----t--            ))
         a(X2n+1,1)(Xl), ''''''''', a(Xn,2n+1)(Xn)

           orzgtn,
       as a(9t)･

Then since each xjk(x) is monotonic and a--

'
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both exist and positive for any d, fe. Then to define a homeomorphism 0 of R" by

            e(xi)=sgn(xi)(Ixiit), i= 1, ･-････, n, sgn(x)= t X. L, x :O,

                                          sgn(O) = O,

we have by (26),

            (vo,'0)(x) := A`E,, -･, s. -i- O(IixlI), '

                   X EI Rei, -･, en = {(Xl, '''''', X.)ISgn(Xl) = el''''''

                                           sgn(x.) = e.},

            At : At(X) = Atei, ･-･, E.(X), X E Rei, ･･･, e. A'(O) =O iS a hOMeomorPhiSm,

where ei, ･･････,e. are ±1, Ati･･････. are regular constant matrices and 1lxl1 means

the euclidean norm of x, if llxl1 is sufficiently small.

   Hence (using same method as in the proof of implicit function theorem), q,'

is a homeomorphism if jlxlj$P=P(t). Here we may assume S(t) to be an incre-

asing function of t. ･ .
   On the other hand, since we know
  t/

(21) lim. a(g,')=a(ep),
            t.o
                                              '                                                 tt
                                                        '
gt' is a homeomorphism if Hxl I ;:ll P' for some P' if t$to, te>O. Moreover, since

to define O,' : U×i.R" ×I by

            Cl),'(c, t)=(go,'(x), t),

a' is a continuous map, we obtain

   Lemma 10. g,' is a homeomorPhism if Hxli-h<P and its image contains the

ball {xMxl ISI6}, where P and o" are Positive constants determined by g and does not

dePend on t.

   By lemma lO and (25), We have .
   Theorein.4. if X is ParacomPact, then the structure grouP of the tangent

microbundle of X is redzaced to the grouP that are consisted by those germs of hom-

eon?orPhisms which are rePresented by the junctions of bounded variations as an

H3,(n)-bblndle.

   Note. Lemma 10 shows that Hlje(n) is deformed to its subset consisted by those

germs of homeomorphisms which are represented by those functions such that

log(2)/log(2n + 2)-}l61der continuous and has finite variations. But this set is not

a subgroup of H3e(n), because if f is ct-H61der continuous and g is P-H6!der con-

tinuous, then the composed function f(gi is only evP-H61der continuous and

{ log 21 log(2n + 2) } < 1.

   By theorem 4 and lemma 7, we obtain

    77ieorem 5. Ll'Xis a ParacomPact manifold, then Xhas a metric p which



satisies ("") and( eeX).

    We note that by (16) and (1),

             S,,,, i Ig(6) - g(?)l 1 =-S,,,,b,1 1e-rp1 1 2 l1g(.f<o)) - g(f<1))1 ],

and the equality is hold if and only if g (rtJ)) is given by

            g(]`<t)) - tg(.f<O)) + (1 - t)p(]C<1)), O S t ;:ll 1.

Hence we obtain

    Theorem 6. if X is a ParacomPact (toPological) manifold, then there exists a

metric p ofXby which the toPology of X is given and if p (x, y) is szdiciently

small, then there exists a curve r starts from x, ends at y, and

                          tt
             !,P :p(`v, Jy).

Moreover, such curve is unique uP to the change of Parameters.

   We also note that if g is a homeomorphism of R" which is represented by

the functions of bounded variations, then the Alexander-Spanier n-cochain I ] so(6o)-

ep(6i)11･･････11g(eo) - ep(6i)II defines a non-trivial Radon measure m(g) given by

            M(ep)(E) = !.,vtt,,n.....,.(ffifl'i)2･･････(a.n.)2dx,

where dx means the integration by the Lebesgue measure, g == ()lt, ･･････, L,) and

aih is the measure defined from L(xi, ･･････, x.) fegarding (xi,･･････,xi.i, xi+b･･････,

x.) to be parameters. Hence we also obtain

    tZ7teorem 6'. VVe may consider the metric p given by theorem 6 alsa sats satisies

the followingL To set

            V(Xe, '''''', Xn) = S)(Xo, Xl)P(Xe, X2) '''''' K)(Xo, Xn),

v(xo, ･･････, x.) is a positive Alexander-Spanier n-cochain of X and therefore it

defines a measure m(p) (cf. [4]). This m(p) is a non-trivial positive Radon measure

on X and

            nz(p)(E) X] O,

if E is (m(p)) measurable and contains some non-empty open set of X.

               g4. Theorems of Hopf-RiRow amd Nemizu-Ozelci.

    10. Definition. On a metric sPace X with metric p, we call a curve r to be a

geodesic with resPect to p lf r satishes

             S, lea6P =: O,
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where r is given by f: I-X and a=f<O).

   Note. Foranon closed curvergiven, for example, f: [O, 1)-X, we callr

to be a geodesic with respect to p if we have

            Ii.M.i!r,kabP == O,

                                       '
where a =flO) and r, is given by f, : I-X, L(s) == f(ts), O $;t<1.

   We note that, if r is a geodesic with respect to p, then for any b, c, O<b

< c < 1, rb,, is also a geodesic with respect top, because k.6p is a positive cochain

and therefore we get

            !rb, .ka6P:iSl S,kaO"p･

Here rb,, is given by fb,, : J-X) n,,(t) = .f<b + (c -b)l).

   As was remarked in S1, a curve r satisfies

    '            !,p = p( flo), f(i)),

if and only if it is a geodesic with respect to p. Here r is given by f:I-÷ XL

   On X, we consider the following property (vescbe).
(ecboee). For any xEEiX, there exists e= E(x)>O such that ･[Nlp(x, N) = e}'  is comPact

  and if z satishes p(x, z)$.e, then there exists auniqzce geodesic r with resPect to

  p which joins x and z.

   It is known that (%X") is important in the proofof the theorem of Hopf-Rinow

(cf. [5]), [11]. In fact, the followings are proved only by using (caacee) and usual

properties of metric and curves with minimal length.

(a). LleXis comPlete by the nzetric p, then a geodesic with resPect to is extended

  to a geodesic with resPect to p which has inj7nite length, i. e. iff: I-Xis a

 geodesic, then there exists g : [O, 1) -.Xsuch that

            f == gh, for some O < a < 1, gh(s) = g(as),

            iiHMi Sg,a)kg(O)6P == O' R.M.,i! g,(J)P == OO'

(b). il7C X is comPlete by the metric p, then for any x, y E X, there exists a geodesic

  which 7'oins x and y.

  Note. In (a), gmay not be a1 to 1 map.

   Since the metric p given by theorem 6 satisfies (acscbe), we get

    TVleeorem Z if X is comPlete as a metric sPace by the metric p given by theorem

6, then for any x, yE X, there exists a curve r which ]'oins x and y and



(27) g,p :== p(X, Y)･

   Especially, if X is compact, then for any x, yE X, there exists a geodesic

r with respect to p which joins x and y and satisfies (27) for any metric p given

by theorem 6.

   11. Theorem 8. 11fX is comPlete by the metric p given by theorem 6, then a

bounded set of X by the metric p is relative compact in X.

   Preof. We denote B(x, r)={ylp(x, y)gr} and set

(28) r(x) == suP.{ B(x, r) is comPact}.
                   r

Since X is locally compact, r(x)>O. If r(x) == oo, then the theorem is true. Hence

we assume r(x) l oo.

   We take infinite points {y.]-, y.EB(x, r(x)). If B(x, r(x)-e)n{y.]･ is an

infinite set for some e>O, then {y.} conta!ns a series which converges in X

because B(x, r(x)-e) is compact. Hence we may assume for any e>O, to set

{yp} to be the subset of {y.} sttch that yp satisfies

(29) p(x, Np)>r(x)-e,

{yp} is an infinite set.

   By theorem 7, we can join each yp which satisfies (29) and x by a geodesic rp

with respect to p which satisfies (27). Then by (29), we can take unique point

                                                  '

            p(X, Yp,.) = r(x) - e.

Then since B(x, r(x)-e) is compact, the derived set of {yp,,} is not an empty

                                                     '

   If for any {NBi,,} which cofiverges in X, satisfies

     lim. p(x, o,Bi) ;i{l r(x) - Ft, Lt > O,

     i'oo

then {y.lp(x, y.)>r(x) - di should be a finite set, and therefore {y.} contains a

sequence which converges in X. Hence we may assume that there exists a sequence

{yi,,} contained in {Np,,} such that

            lim. yi,, =:= y,, lim. p(x, yi) == r(x).

            i-oo i-oo

We join y, and x by a curve r, whose length is r(x) - e. Then by (a) of nolO, r,

can be extended to satisfy (2) with arbitrary length. We take one of such extension

r, of r, and take the point y on 7' snch that
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                                                        '            p(x, y) == r(x), fi(pt,, y) == e. '

Then, by the definition of p, if e-e' is sufficient!y small, we have

(3o) g.IM..･ yi,,'=y,',

where yi,,' and y,' are the unique points on ri and - r, which satisfy p(x, yi,e,)==:

p(x, ye,)=r(x)-e'. moreover, by the definition of p, there exists 6>O such that

if (30) is hold and IE'-E''l<b, then

(3o)' k{tLll; Yi･e" ==: Ne"

is hold and 5 does not depend on e'. Hence we have

        . Iim Yi=Y･
            i-oa

Therefore B(x, r(x)) is compact. '
   Then, since B(x, r(x)) is compact, {ylp(x, y)=r(x)} is also compact. Hence

we can tal{eE>Osuch that B(x, r(x)+E) tb be compact, because X is locaily

compact. But this contradicts to the definition of r(x). Therefore r(x) is equal to

oo and we have the theorem.

   Note. If a metric p of X satisfies this theorern, then X is complete with

respect to p. Because if {x.} is a Cauchy sequence, then for some m and r< oo,

we have x. E B(x,., r) for all n. Then, since B(x., r) is compact, a subsequence

of {x.]･ converges in X But since {x.} is a Cauchy sequence, {x.} itself converges

in X.

    12. If X is not complete by the metric p given by theorem 6, then r(x),

d.e.fi",:g b,g,12Z)' ,LS.2,.eO./rgi¥:.zo,:･ .`":o,v,s.:u".ctg::, op,.X, Xs ,5i9],)k.,.Si"ce r(x) > o･

    We set

(31) d(x, y)=Vto(x)tu(y)p(x, N),

then d(x, y) satisfies

(i). d(x, N);O and d(x, y)=O if and only ifx=y.

(ii). d(x, y)=d(y, x).

(iii). ILf X is arcwise connected, then for any x, yEX, there exists a curve r which

    joins x and y and

             !,d< oo.

    Hence to set

             p'(X' Y) :riofg',i.,.andy !rd'



p'(x, y) is a metric on X (cf. no2). Moreover, 'by the definition of p', we obtain

(cf. [10]), ... .. . .    Lemma ll. Setting '
                                                     /t ttt t                                                                        '
         ･ B'(x, a)={ylp'(x, y)Sa}, '
                                                   /t                                                              '                                                            '

                                                '                                '                                              t t tttt ttt(32) B'(x, -i}-)cB(x, rSX)). ･
                                                        '                                                                       '                                                                      '
   We note that, by the definitions of d and p, if y is contained in a coordinate

neighborhood Uofxandris contained in U, then . '･.

            !rd

            ･ =:: SIM. ,1,,i-,=Vip( f(tt))ip( f<ti+i)) I I f(tD-f(t,.,) I l. .

Here f is a continuous rnap from J into R'i sueh that f<O) == hu(x), f(1) = hu(y) and

¢(x) is a positive continuous function on R" (hu means the homeomorphism from
U onto R'i by which the manifold structure of X is given).

   Lenzma 12. Uhader the above assumPtion, there exists a curve r which join hu(x)
S dpahrUEYm)efenrds.giVeS the MMiMal Valzte of S, d and such r is anique "p fo the. change

                                       tt   Proof. If ip is smooth, then

   '' ''･ S,d-Sgip(f(t))V:2:;(d:',(t))2dt, ,.

if r is a smooth curve given by f ; I-R", f<t) =:= .11L(t), ･･････, (L,(t)) where each L is

differentiable. Hence we have the lemma by the theory of calculus of variation.

. If ¢ is not smooth, then as in no7, we set ¢, -- ¢:tse,, and set

(33) ' S,ds
                                                       '                                            '                                '                            '

.-

･ ..... ,=
11'1,ll,,',.,,,...,M, iVfgbs(f(tt))gbs(f(t,,,))Il.lc<t,)-f(t,,,)]I.. , ..

Then, since ¢, is smooth, there exists unique curve r, which gives the minimal
value of !,d,, and by the theorem of Ascoli-Arz61a, lim.s-,ors exists. We set the

limit by ro･

   On the other hand, since there exists a curve r. which gives the minimal
value of S,d (cf. the proof of theorem 3), we approximate r. by smooth curves

r.,,, as follows : Assume r. is given by L, : I.X, .fl,(t) =(fla,i(t) ･･････fL,,.(t)) and set
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             -11z,u,i(t) .
             = .L,,i*e.(t) + (1 - t)(L,i(O) - L,i*e,,(O)) + t(L,i(1) - A,i*e.(1)),

             .          ' z= 1, ･･-･･-, n, O<uSl,
then r.,. is given by jfl,,. : I-e･ X) .fL,,.(t) =(.fla,.,i(t), ･･････, .L,,,,,.(t)). By definition,

liM. tt-+oraJu = ra.

    Then, since

 '
(34) <tfi'.M,' S,","ds=S,.d'

        - zt-O

we have

(35) ired m- !rad'

                              '                                                                       '?,e,Cda.USe jrod)i,.d bY the definitiOn Of ra and S,..,,,ds2}lj,,ds and (34) shows !,.d 2

    If r. is not equal to re, then we have for some to andE

           ' min. 11.ICL,,.(t)-.ICI,(t)l1>6, 1t-tel<e,

for some 5 if u <uo, where uo is a positive constant. Then, since r, converges

uniformly to r, we have

      '    ' ira,ud">Sr,, d"+E, U<Ue` .

BUt thiS ShOWS liM･ i,--oO S,.,.ds>S,,d + e･ This contradicts to (35). Hence we have

the lemma.
                                                                '
    By this lemma, p' also satisfies ('xxee). Therefore we obtain by (32)

    Theorem 9. ILf' X is a ParacomPact arcwise connected (toPological) manifold,

then X has a metric p which has following ProPerties.

(i). X is comPlete als a metric sPace with metric.

(ii). For any x, ye Xr there exists a curve r tvhich foins x and N and

             S,P== p(x, y).

                                                      '                                    '                      tt
   Moreover, szachris unique uP to the change of Parameters if p(x, y) is sdi

ciently smaza. '

(iii). The Alexander-Spanier n-cochain v(p) given by

            V(P)(Xo, Xl, '''''', X.)

             = p(Xo, Xi)p(Xo, X2)''''''p(xo, x.), n=:dim. X,

dofnes a positive Radon measure m = m(p) on X and it satiiYies



              m(p)(E) ; O,

if E is m(p)-measurable and contains some non-emPty oPen set of X (cf: [4]).

                                   References

[1]. ARNoL'D, V. I. : Representation of continuous functions of three variables by the

   superposition of continuous iunctions of two variables, Mat. Sb., 48(1959), 3-74. A,M.S.

   Transl., 2&1963), 61-147.

[2]. AsADA, A. : Representation of loop spaces and fibre bundles, J. Fac, Sc. Shinshu

   Univ.,4(1969), 39-56. '
[3]. AsADA, A. : Conn2ction of topological manifolds, J. Fac. Sc. Shinshu Univ., 5(1970)

[4]. AsADA, A. : Integration of Alexander-Spanier cochains, J. Fac. Sc. Shinshu Univ.,

   5(1970), 79-106.

[5]. CHERN, S. S. : Dijrerential geometry, Chicago, (1952).

[6]. FoMiN, S. B.-KoLMoGoRov, A. N. : Fbundation of the theoz), offlv{nctions and fatnc-

   tional analysis (in Russian), Moscow, (1954). Japanese Translation, Tokyp, 1962.

[7]. HALMos, R. P. : Measure llheory, Princeton, 1950.

[8]. HopF, H.-RiNow, W. : Uber den Begriff der vollsttindigen differential-geometrischen

   Flljche, Comment. math. Hervet., 3(1932), 209-225.

[9]. KoLMoGoRov, A. N. : On the representation of continuous functions of many varia-

   bles by superposition of continuous functions of one variable and addition, Dokl. Akad.

   NaukS.S.S.R., 114(1957), 953-956. A. M. S. Transl., 28(1963), 55-59.

[10]. NoMizu, K.-OzEKI, H. : The existence of complete Riemannian metrics, Proc.

  ･Amer. Math. Soc., 12(1961), 889-891.

[11]. RHAM, G. DE : Sur la reductibilit6 d'un espace de Riemann, Comment. math. Helvet.,

   23(1952), 328-344. .

[12]. RiNow, W. : Die innere Geometrie der metrischen Rdume, Berlin, 1961.

[13]. ScHwARTz, L. : Les measure de Rtzdon dans les espaces topolagiques arbitraires, Paris,

   1964.

L14]. SmKATA, Y. : On Pontrjagin classes, J. of Math. Osaka City Univ., 13(1963), 73-

[15]. SpREcHER, D. A. : On the structure of continuous functions of several variables,

   Trans. Amer. Math. Soc., 115(1965), 340-355. '.
[16]. SpREcHER, D. A. : On admissibility in representations of functions of several varia-

   bles as finite sums of functions of one variable, Numerical solution of Partial Diferential

   E4uations, 95-109, New York, 1966.

[17]. STEENRoD, N. E. : 71he topolagy of Eibre Bundles, Princeton, 1951.


