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Introduction.

The purpose of this paper is to show the following theorem,

Theorem. 1f X is an arcwise connected paracompact (fopological) manifold, then
there exists a metric p by which the topology of X is given and has the following
properties,

(). X is complete as a metric space by the metric p.

(i), If x, y € X, then there exists a curve y which joins x and y and its lenglh
with respect to the metric p(cf. [2], [4], [6]) is equal to polx, ). Moreover, such
o is unique up to the change of parameters if p(x, y) is sufficiently small,

(ifi), The Alexander-Spanier n-cochain p(x, %1) p(xe, %a)- o(%o, *,) (n=dim. X)
defines a positive Radon measure m=m (o) such that

m(p) (E)#0,

if E is measurable and contains some non-empty open set of X (cf. [4]).

If X is a smooth manifold, then these has been known., In fact, (ii) is a part
of the theorem of Hopf-Rinow ([5], [8], [12], [13]), (i) is the theorem of Nomizu-
Ozeki ([107) and (iii) follows from the existence of a Riemannian metric ([17].
For the properties of Radon-measure, we refer [12]), .

For the above metric p, we can show the followings which are also parts of
the theorem of Hopf-Rinow if X is smooth,

Theorem. p also has following properties,

(). A bounded set of X by the melric p is relative compact,

(). If @ curve y, f: [0, I1-X or g : [0, I)~X salisfies

(a) the length of 1.4 fas @ [0, 11— X or g, : [0, 1D~ X with respect to p is p
(f (@), f () (or p (g (a) g ) for any a, b (0 <a<b<1 for fo, and 0 <a <1
for g.4), where f,, (1) is given by fo, () =1 (@+(b—0) t) (g, ()=g (a+(b—a) 1),

Then either the length of y is infinite or there is a curve rA with infinite length
such that ? satisfies (a) and 7 is written as fa,b Jor some a, b,



2 AKIRA ASADA

The outline of this paper is as follows : In §1, we consider the length of a
curve y with respect to a metric p. As in [27, [4] and [6], it is defined to be
the limit

m
lim, E P(f(tin)’ f(tz)): 0:t1< 2 < o <tm+1 =1,
fis1-til—0 721
if r is given by f : I—-X (I means the closed interval [0, 1]). If we use the nota-
tion of [4], then we may write

the length of y with respect to p = S 0.
r

After treating some elementary properties of Srp, we consider a metric space X
with metric p which satisfy
(*Y For any x, yeX, there exists a curvy y=j (I) such that

£10) =%, F(D =2 | p<eo,

Note. This property has been considered in [2] and [6].

We note although X is an arcwise connected paracompact manifold, (*) is
not fulfilled for arbitrary metrics, In fact, if X c R? is given by ({x, x sin (1/x))
|40} U0, 0) with the metric induced from R?, then it does not satisfy (¥).

If X and p satisfy (*), then setting

p(x, y) = ini, r, 7 joins x and 3, STP,

Z is a metric of X and if X is locally compact, then as in [6], § 20, we can show
if p (x,) is sufficiently small, then there exists a curve y which joins x and ¥ and
S 0 :To (¥, ) (Theorem 3. we note that we get

T

o=

for any curve y of X),

§2 and §3 are devoted to show that if X is an arcwise connected para-
compact manifold, then there is a metric p of X by which the topology of X is
given and satisfies (*), In §2, we show that if the structure group of the tangent
microbundle of X is reduced to the group of those (germs of) homeomorphisms of
R" which are expressed by the functions of boundded variations, as an H, (n)-
bundle (cf. [3]), then X has a metric p which satisfies (*). we note that this can
be also proved as follows : Take the locally finite open covering {U} and homeo-
morphisms {4y}, Ay ¢ U—-R" and { fy{x)}, fulx) : R"— R* (x € U) such that fy(x)
hyhy fy(x)"t is a local homeomorphism of R* which are expressed by the functions
of boundded variations for any U and x € U, Then taking a partition of unity
{ey(x)} subordinated to {U7}, we set
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d(x, ¥)
= > eg®ey| | fo®hy(x) — L) |,

z, yelU
where ||é-y|| means the euclidean norm of the vector &. Then although d(x, ¥)
may not be a metric on X, d{x, y) is defined on U(4(X)), a neighborhood of the
diagonal 4(X) in X xX and d(x, ») =0, d(x, )= 0 if and only if x =y, d(x, y)=
d(y, x) and there exists a curve y which joins x and y and

Srd< -

Then to set o(x, ¥) =inf. r, v joins x and ygrd, o is a metric of X Which satisfies
(*).

In §3, we prove that H,(#) is defomed to its subset consisted by those home-
omorphisms ¢ such that each ¢ is represented as
olx) = (filx), fax), - ., f4x)) where each fi(x) satisfies

fix) is a function of bounded variations and
{log2/log(2n—+2)} —Holder continuous.

In this proof, we use the axiom of choice and Kolmogofov’s representation
theorem of continuous function of several variables by finite sums and superposi-
tion of continuous functions of one variable with its refinement by Sprecher ([9],
[15], cf. [1], [167), which asserts that there exist n(2n+1) monotonic, {log 2/log
(2n+-2)} — Holder continuous functions y;(x) on unit interval I = [0, 17 such that

. . N o
for any continuous functions f on I" = Ix --- X can be written as
y

241 n

S(xq, oo y X, = g;[ fi(g 2%

where each fi(x) is a continuous function determined by f. we note that the above
fact also sugests us the possibility of the existence of {log 2/log(Zn + 2)} — Holder
continuous structure on z-dimensional (topological) manifolds (cf, [147]).

Then together with the result of §2, we get,

Theorem. If X is an arcwise connected paracompact (topological) manifolb, then
there is a metric p by which the topology of X is given and has following propeties.
(i). p satisfies (*) and if p (x, ¥) is sufficiently small, then there is a curve v which

joins x and y and

Sr 0 = p(%, ).

Moreover, such curve is unique up to the change of parameters,
(ii). The measure m = m(p) determined by the n-cochain plx,, %:1)o(%e, Xs) - o(%g, X,)
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is a positive Radon measure on X and
m(E) # 0,

if E containes some non empty open set of X,

Since the most part of the proof of the theorems of Hopf-Rinow uses only
the usual properties of metric and the fact that the geodesic distance of a Riem-
annian manifold satisfies above (i) (cf. [5], [8], [11], [12]), we can show the global
results stated in the beginning of this introduction only with a little modification
of the proofs of the theorems of Hopf-Rinow and Nomizu-Ozeki (note that the
proof of the theorem of Nomizu-Ozeki uses heavily the theorems of Hopf-Rinow,
cf, [10]. These are stated in §4. '

I would like to thank Dr., Kano who teach me the theorem of Kolmogorov.

§ 1., Metric space whose any two points can be joined by a curve
with finite length,

1. Definition (cf. [2], [4], [6]). Let X be a metric space with the metric p, r
= fUI) a curve in X (I = [0, 11, f: I— X is a cotinuous map), then the length of
v with respect to p is defined by

. m
{ o, )=tim_ Solf(an), fla),
r \ai+1—ai|—0 ;2o

0= ag<ay < Ly < @y =1,

Note. In this definition, y may not be given to be a continuous image of I,
If y is given to be a continuous image of a closed interval [a, b], then we define
the length of y with respect to p by the same way. On the other hand, if r is
given, for example, to be a continuous image of [0, I), then to set

7o =JdD) fll) = flat), 0 =<a<1,

we define the length of y with respect to p to be the limit

Lim. S,ap(x, ).

a—1

By definietion, if y = f{I) has finite length, then 7, (0 <a < 1) also has finite
length and we have

(oot 9= (notx, 9, if aso.

In general, we know that 7 has finite length if and only if there exists a constant
M such that



Existence of Some Metrics on Manifolds 5

m

Z p(f(ai+1), f(az)) _S_M’

i=0

for any partition 0 = qu<la;< +-++ <a,, =1 of I
Lemma 1. The length of y does not depend on the choice of the parametert,
that is, for any (into) homeomorphism ¢ : I — R', we have

Sf(l)ﬂ(x: y) = Sf(tp‘l(fzz,bj))!)(xx ),
La, b] = ¢I).

Proof, Since ¢ is monotonic, setting
a:c()<cl< """ <cm—1<cm:b,

0 = ¢(co)<p(er)< < P(Cm-1)<p(c,n) = 1 if ¢ is orientation preserving, and we have
the lemma in this case, On the other hand, since o(f{e(c;.1), fel)) = o(fglc.),
Sfolcia)), we have

m

E) o{flgleisn)), Slelea))

:i} (f(SD(Cm—i—Q, f(ga(cm—d)))r

=0

and 0 = ¢{c,) < Cp-1) < -+ <wler) <gley) = 1 is a partition of I if ¢ is orientation
reversing, we get the lemma for orientation reversing ¢,

For the length of curves, we obtain by the triangle inequality

Lemma 2. For any curve y, we have

W AS0), S olx, 9

Moreover, setting f(0) = «, we know that k&, defined by (k,0) (x) = pla, x) is
defined on X and we have

p = 0k.p + k0.
Then since Srakap = ola, (1)) — pla, AO) = pla, f(1)), we obtain
Lemma 3. We have o(x, y)= o(f(0), f(1))if and only if
@) |, (kookz, 9= o,
(k.00Xx, ¥) = plx, ¥)— pla, ) + ple, z).

2. In the rest of this §, we assume that X and p satisfy the following

(*). (cf. [2], [6]).
(*). For any x, y & X, there exists a curve v = f(I) such that
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®) FO) =2 F(1) =y, | p<eo,

Note. Since y is compact, (¥) is equivalent the following (*).
(Y. X is arcwise connected and if p (x, y) is sufficiently small, then there exists
a curve y=f(I) which satisfies (3) for x, ¥.
Definition. On X, we set

@) P, 9) = inf. s { o
F=x, )=y

Theorem 1. p is a metric of X,
Proof, By (1), we get

(5) ox, Y= plx, 3)>0, if x4,
and’Sf(Dp = Qif f is given by f{{) = x, Ogt__él, we also get
alx, x)=0.,
Since we know
{iwe =V o £ = A1),
we have

oz, 3) =00, %)

To show o(x, ¥)+ o(y, x) Zo(x, z), we take for given ¢>0, two curves f;:
I—-X and f5: I—X such that

£O)= % D= § a0 <iE g,
F0) =y, FlI) =z, S f2(15 p =00, ZH—%’
and define f3 : I—X by

A= Az, 0<t<-t A=Az -1, gt

Then we get

sta)P = Sfl(l) o JFsz(I) p < px, )+ By, 2)+ e

Hence we obtain the triangle inequality. ‘
Note. Although p is not a metric of X, we can define ¢ and it becomes a
metric of X if p is an Alexander-Spanier I-cochain of X such that
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(i), plx, =0 and plx, y)=0 if and only if x =y,
(ii). polx, 3)=ply, %)
(iii). p satisfies (*),

Lemma 4. For any curve y, we have

o Gl
Proof. By (5), we obtain
Sr‘o = S]’/‘[)

To get the counter inequality, we may assume Srp< co, and set

fl(t) = f(ai + (ai+1 - ai)t)r i = 07 """ , M — 17
risgiven by f: I—X, 0=ay<a,< Ly < 8y = 1,

Then by the definition of the integral, we get

Sr’a (. 2)= ’"Z“l Sf,'a) o(%, ).

i=0

Then since [, o, 3)> (f(a), f(@), we have
m—1
@) Ve, fa) < o )
i=0 T
for any partition 0 = ao <l ay < < @, = 1.
Since Eﬁ( fla;,1), fla;) is monotone increasing for the refinement of the parti-

tion of I, (7) shows the existence of S o{x, ) and the inequality
7

[ o ) < dx, 9.

Hence we have the lemma.
Corollary. 7 is equal to .
We consider the following condition (*¥),
(**). For any x € X, there exists a compact set K = K, and a family of curves with
finite length {y., &€ € K}, where each y; is parametlized by its arclength and this
parameter representation is denoted by

re=1400, @l a={ o £{0)=1x,
which ave parametlized continuously by K and for any ¢ >0,

U {/00<t <3 Ug),
tekK

Here U (x) = U, (x) is a neighborhood of x.
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Theorem 2, If X satisfies (**), then the lopology of X determined by o is
equivalent to the topology of X determined by. p.
Proof. By (5), we only need to show

(®) 2w, )< Lolx, 3), y€ Ux), a neighborhood of ,

for each x (Here L may depend on x), But since SrEp = STe 0, we have
oy olx, feld) =plx, fe)) + olt), t [0, a).

Because the parameter ¢ is taken to be the arclength., Hence for each & & K,
there exists ¢ = #(¢) such that '

Then since K is compact and f; depends continuously on &, setting

ty = min, (&),
tek

t > 0. Hence by (¥¥), taking L =2, Ulx)= U, (x), we get (8).

3. As in [6], we can show the following theorem for £.

Theorem 3. If X is locally compact and g(x, y) is sufficiently small, then there
is a curve y = y,,, such thot ,

(10) T,y 1S Qven by f 1 I-X, flO)=x, f(1)=y,
S p=0l
Tx,y

Proof, By assumption, we may assume {z|p(x, z)<{2a} is comapct for given
x, where a is a positive number, and assume ux, »)=<a,

By the definition of &(», ¥), there exists a series. of curves 7, such that
each v, starts from x and ends at y,

[, #o 9= caile, 9+E0 ¢ =, 3)

We assume that each 7, is parametlized such as

7. is given by f, : I-X, Sf o P=ct 0<t<1.

i

Then since S 0=¢,< 2c < 2a, each 7, is contained in {z|o(x, 2z)< 2a} and

o), FAsHZNE — sle, < Zc|t — s,

because to define 1, by

L) = fit+(s—tw), ucsl {t<s),
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we get by (1) and the definition of the parameter of f,,
HAA, TN Z (s = (5 = e,

Hence the family of the functions {f,}, f.:I—-X, f(0)=x, f(1)=y, is uniformly
bounded and equicontinuous, Therefore by the theorem of Ascoli-Arzéla, {f,}

contains a series {f,,} which converges uniformly to a continuous map f: 71— X,
Then we obtain

A0)==x, f1)=2,

Ve :ji_l%(;Oanu(I) p =70 J).

Hence we have the theorem by taking 7., =f(I).

Note, Similarly, if X is compact, then we can show the existence of a curve
7 = T,y such that 7 joins x and y and its length is equal to p(x, y) for any «x,
ye X (cf. [6]).

§2. Metrics on manifolds, .

4. Let X ={U, hy?} is a (paracompact arcwise connected) topological manifold,

where {U7} is a (locally finite) opén covering of X, {hy: U— R"} are the homeo-

morphisms by which the manifold structure of X is given, p a metric of X,
then setting

pUI(E) 77) = p(hU,x—l(é)r hU,x—l(‘O))r
hy,(9) = hy(y) — hy(x), x, y e U,

eV, is a metric of R” and we have

(11) gUV(x)*ADUI = sz:
guv(%) = hy,hy,. ",
(11), kU,x,y*{on:pUy

ky, e,y = hu,chu, ™

where gyv(x)*pU, and ky, ., ,*pU, are given by
uv(x)*pULAE, 1) = pulguv()E, Suv(x)y),
ky, 2,y 0Vd&, 1) = pVdky, 2,y & kU, 55 7).

Conversely, if there is a collection {pU,}, pV, = pUx), oV : U — {the space of (germs
of) metrics of R"}, such that

(12) gUV(x),*pUx = va;
(12), kUramyl*pUx = pUyy
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where gyp{x) = ful®)guv(®)fv(%)* and ky,.,," = ful@hyhu,,  fuly) Y, fulx) is a con-
tinuous map from U into Hyn), then setting

pu, P, @) = pYfu(®)hy, B), fo()hu, Q)

ou,- is a metric on U and we obtain

pU,:c(pr Q):: pV,z(pr q):
pU,x(p; Q) = (OU,y(py q)y

by (12) and (12). Hence we get a (local) metric of X,
Lemma 5. 1f {pU,} satisfies (12) and

(12)” @U, x, y*PUz = lkor

where ¢y, .,y 15 a local homeomorphism of R", then we can take {;DU} to satisfy

(13) &vulx) 0y, 4, y8uv(Y) = @v, 4, 5

we note that (13) shows that if ¢, fix the origin, then {¢y} is a connection
of {gyy'} (cL.[3]).

We also know that if o¥,, y € U is given by (12)' for each U and ¢y, .,
satisfies (13), then pU, and pv, satisfies (12) if p¥, and eV, satisfy (12).

Note, By definition, we can also take {oy, ., ,} to satisfy

(14) OU, 2, yP0, 3,2 = PU, 2,00 X, )2 E U,

5. Lemma 6. If X is paracompact and a collection {pV.}, pU,=pUx), pV: U—
{the space of (germs of) metrics of R"}, satisfies (12) and (12), then there is a
collection pU,, pU, = oUx), pU: U—{the space of (germs of) metrics of R}, which
satisfies (12) and (12).

Proof. Since X satisfies second axiom of countability, we may assume the
manifold structure of X is given by countable open covering {U,} of X. We denote
0%, ke .4, etc. instead of p‘Uaz, RUa, 2,y €tC..

We assume X to be connected. We take x; € X and set

V1 = U Un-
Xi1€Ux

If Vi+# X, then we take x;= Vito satisfy there exists some U; such that x; €U,
xz € Up and set

o= U U
xe€Up, x16Us

Repeating this, if %y, -+ , %, have been taken, Vi, ----- , V, have been defined and
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if U;‘:1 V,+#£ X, then we take x,,, € V,, to satisfy there exists some U, such that

X1y cereer ’ xniUh Xpe1l € UT:

and set

Vn+1 == U UT'

xa+1€ Uy, %1, e , xn& Ur

Then by assumption, {V,} is an open covering of X.
On V;, we set

0%y = Ro,x1,5% 0%, ¥ € U,
Then by (12)'/, we get
0%y = Ra,x1,57 ke, 11,y 0%,
Hence by (13), if Ua; and Uap both contains x;, we have

(15) Leryar (Y)Y ¥y = 0%y, ¥ € Usy U Uy,

At X, we set
0Pxs = Qu,p (%) ¥0%x,,
x1¢& U x1€U, xo€U, N U,

Then by (15), %y, is determined by x; and does not depend on the choice of a.
Using this 5%, we set

zB = kﬁ,xz,y'* ?‘sz, y & Uﬂ-
Then by (13), we get
P2y = gay, 8:(9) 07y ¥ € Upy N Uy,

if U, and Up, contains either x; or %,
Repeating this, if 7= has been defined for those U, that contains either of
Xy, e , ¥, and U, does not contain neither of %y, ------ , X, and x,,; € U,, then we

-~ 1o
(UTxn+1 = ga,T(xn+1) Xpaxnﬂ,

U, contains some of %y, -+ y X, Xan € U, N U,

Since {p®,} satisfies (12), this definition does not depend on the choice of «, and
setting

,an = kr,xml,y’* OTxnety Y E UT’

we get by (13),
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pazy = fay, Tz(y),* Phyy ye UTI N U?‘z;

if Uy, and U,, contains either of x;, «---+ , ¥,.1. Hence we can define p*, for all
U, because {V,} is a covering of X, and {72} satisfies (12) and (12) by their
definition and (14).

we also obtain by this proof,

Lemma 6'. If (%1, X5 -+ Y} is a countable set of points of X such that therve
exists a coordinate neighborhood system {U,} of X which satisfies
(). FEach U, contains some of {%;, %z, -+ i
(ii). For each w, {p%;} is defined if x; belongs in U, and {p*:,} satisfies

(12) and (12"  for x;, %, & U,.
Then there is a collection {g*.}, p% = px), p*: Us— {the space of (germs of)
metrics of R"}, which satisfies (12) and (12).

6. If o is a (local) metric of R", then to define ¢*p by

P*o(&, 1) = olpl€), ¢ln)

¢*p 1s a (germ of) metric of R* if ¢ is a (germ of) homeomorphism of R*. Hence
we can construct a (local) metric of a paracompact manifold by lemma 6, because
%1, Xg, -0 } is a discrete’ set.

In general, we get

Lemma 7'. If the structure group of the tangent microbundle of X is reduced to
G, a subgroup of Hyn), as an Hy(n) -bundle, then X has a (local) metric p such
that

P& n) = |le€) — el |, ¢ G,
where pUE, ) is given by
pUx(Er 77) = lo(hU,a:_lfU(x)—l(s)! h’U, x—lfU(x)_l(v)):

and | |& — || is the euclidean norm of the vector & — 7.
On the other hand, we know that

(16) Sf(]) e*e(x, ¥) = Sw(f(l))p(x: ),

Hence we have
Lemma 8. If o€, v) is given by

o€ )= [10€) — enl I,

o is a (local) homeomorphism of R" represented by the functions with bounded
variation, '
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then Srp(é, ) is finite if and only if y has finite length by the euclidean metric.
Since we can extend a local metric of X to a metric of X if it satisfies (*)
(cf. note in n°2), we obtain by lemma 8 and lemma 7/, .
Lemma 7. A paracompact manifold X has a metric which satisfies (*) if the
structure group of the tangent microbundle of X is reduced to the subgroup G of
H(n) which is consisted those (germs of) homeomorphisms which are represented by
the functions of bounded variations.
we note that in this case, the metric consisted by lemma 6’ and X satisfy (*¥)
because R* and its euclidean metric satisfies (**). (For example, we can take
Ke={&|||—pl|=1}and 7: = {6+ Hp — &) 0<t L1, e K¢} for any & € R").
Note. Since the local metric p of X constructed by lemma 7' for the group G
consisted by the homeomorphisms which are represented by the functions of
bounded variations satisfies
Q). If p (x, ¥) is sufficiently small, then there exists a curve y which joins x and
y and

Srp = p(x, V),

{cf. n°9). Hence denoting » the metric constructed from g by the method of no2,

the Alexander-Spanier I-cochain with representation p is equal to the Alexander-
Spanier I-cochain with representation p.

§3. Deformation of Hy(n),

7. If ¢ is a (local) homeomorphism of R" which fix the origin, then we can

set
ga(xly """ ’ xn):(fl (xly """ s xn)’ """ » fn(xly """ [} An))r
10, eoeer , 0) = e = £,[0, e , 0)=0,
where each fi(xy, -+ , X, is a-continuous function of x;, «--- , %, and defined on

some neighborhood of the origin.
We assume each f; is defined on {(xy, -+ , x)l1x:]<a}, where a is a positive
constant. Then by Kolmogorov’'s theorem ([97], cf. [17], [15], [16]), we can set

2n4-1 n

(17) fi(xlr """ ’ xn) = Z;[ fz‘j([gl Xjk(xk)): i= 1, """ , A,

where each xj is a {log (2)/log(2, 4 2)}-Hélder continuous monotonic function and
does not depend on Jf: ([15]). We may assume that each y;. satisfies y;(0) = 0.

- For each f;;, we take a continuous function g;; with compact carrier (therefore
defined on R!) such that its germ at the origin is equal to that of f;;, Then we
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set

(18) g1, d%)= el =g elx — ndy,
0<tL1,

Where ¢, is given by

e.)=el)/\ e,

—o0

e(x) = exp (ﬁ), —1<x<1, ex)=0, x<—1, or x> 1.

Then if ¢ is sufficiently small, the germ of g;;, at the origin is determined by f;;
and does not depend on the choice of g;;. For example, if f;; (x) is defined on
[x{<b, 6>2, and fi{x) = g,; (x) if |x|<2, then g (x) is determined by f;{x)
for all ¢t <1 if |x|< 1.

It is known that g;; [(x) is smooth for all >0 and
fi_”.% 8ij, %) = &(%),

where the convergence is uniform.

Since each y;{x) is a {log (2)/log (2n 4 2)}-Holder continuous monotonic func-
tion, we obtain

Lemma 9. To set

2n41 7
(19) fi, l(xly """ ’ xn) = Z gij, !( Xjk(xk))’ Z = 1! """ y 1y
i=1 k=1
each f; (%, - , X,) is a fuuction of bounded wvariations and {log(2}/log(Zn + 2)}

-Holder continuous. Movreover, the germ of f;, at the origin is determined by f;
and does not depend on the choice of g;; if t is sufficiently small and have

5277’16 fi, t(xl» """ 3 xn) = fi (xly """ s xn)y
if x|, i=1, - , n are sufficiently small.
8. We set
(20)’ Sut(xly """ y Xn

= (fl, z(xh ...... ) xn)‘fl, t(()’ ...... , O), ...... s f",t(xl, ...... , x”) _fn, t(o, ...... , 0))

Then ¢,(x) is a continuous map from a neighborhood of the origin of R" to a
neighborhood of the origin of R”. Hence by the theorem of Radon-Nykodim (cf.
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[7]), there is a measurable function o{gp,) such that

Smm dx = SE o(p,)dx.

Moreover, to define a(p) for ¢ similarly, we get
(21) 51_7{10 a(p,) = o(p).

Note. Since ¢ is a homeomorphism, the Lebesgue measure of the set {x|o(p
Yx) = 03} is equal to 0. we also know that o(p) >0 if ¢ is orientation preserving
and a(p) << 0 if ¢ is orientation reversing.

On the other hand, to set

2n--1 n

fi, ts (xh """ ] xn) - 21 8i J» t([ l(es*xfk)(xk»: 0 < N _S__ 17
i= -

e
fis s is a smooth function for s >0 and we have

lim- fi,t,s:fi,t’ 2217 """ s 1, t>0-
s—0

Using these f;,, we define ¢, and (g, ) similarly. Then we have

(22) lim, olg,) = olp), £>0.

Since ¢, is a differentiable map if £ >0, s >0, olp,,) is given by

U(SDt,s) — a(f’l‘ s T ’ fn,t,s)
0(x1, ...... , xn)
2n+-1 9 2n-t+1 7
= Z &1, (ijl,s (679) ST € 7Y MIEELEED , E &ij,¢ (Ele,x(xl))xjn, ()
=1 =i =1 [=1
P PP PP PP PP ,
2n-1 7 2n+-1 7
Z &njt' (2 Lit, g, s (), eeee ) Z} gnj,/(ij'z,s(xz))x;’n,s'(xn) »
=1 =1 =1 =i

where 3, (%) means (esy;)x) and g;;,/ and x5, " are mean the derivatives of g;;,,
and ¥z,

Then, since each y; is a monotonic function, we can define o(y;;) for each
xjz and we have

lim. g = oy
s—0

for each y;. Hence we obtain by (22)
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(23) a(e,)

2n41 n 2n+1
= 2]1 &), (12‘1' Loy )xe), e ,~Z &ij,¢ (ijz(xz (X j )
= =
2nt1 2n+1
21 gnj, Z Xl xl le xl) """ » Z gnj, ZX}Z xl 7]11 )
j= =1
For the right hand side of (23), weé note

2n4-1 2n+1

(24) Z gl], ZX}Z xl) le)(xl)r """ ) Z glj,t (2)(11 xl X/n)( )
=1
2n+1 2n+1
Z} gn/, E//l xl le} xl)’ """ ’ Z} gn],t (Y‘le(xl»o'(x_m)( )
=1 Jj=1 =1

n n
= gll,t,(Z} P 2T.C.7)) NEETITTTRIPPRIRPPPIRR , gl,271+1,z,(ZX2n+1,l(xl»
y 2 ><
&t Z A1l Xy)jy mrrereereeeierianee ] gn,2n+1 t (thl lxl))
U(Xll)(xl)y ........................... s G(Ym)(xn)
X , teeerreemereeea e ,
(X2n+1 1)(x1), """"""""" <X27l+1,7l>(x )

where in the right hand side, the first factor is an (#, 2z + 1)-matrix and the
second factor is a (2n + 1, n)}-matrix. Moreover, the rank of the second factor is
n almost everywhere because y;;, f=1, - ,on+ 1, j=1, e , n, are taken
independently to f.

We denote by Cy(RY) and C~4(R') the R-vector spaces consisted by the germs
of continuous (resp. Ce-—class) real valued functions of R! at the origin. Then
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we know
dimp Cy{(RY) [ CE(RY) = oo,

Hence, we can take (using axiom of choice) n(2n + 1)-continuous functions % (x) on
|x] <@, i=1, - ,n, J=1, e ,2n + 1 such that
(1). Ei,jcijhij(x) is smooth if and only if each c;; is equal to Q.

(). The (2n + 1)-vectors
i

(P (l}] pared) h1,2n+1(12x2n+1,l(xl))
i -1 =1
; 12' ‘ n.
Put (lel(xl)) p s ) h,z,2,1+1(;X2,1+1,z(x1)) )
=1 =1

are linear independent over R,

For these A;;, we set

Hifr)= hiont,

and define continuous functions on some neighbofhood of the origin of R, hyxs,
) xn)) """" ’ hn(xh """ 3 xil) by ‘l

2n+1 n
hi(xl, ...... , x,,) = Z} Hij( Xjk(xk»; 7 = 1’ ...... , N
. ) J=1 k=1

By definition, each #4; is a {log (2)/log(2n + 2)-Holder continuous bounded variatiion
function an_d does not depend on ¢.
Using these hy, ««-- , h,, we set

(20) SDt,(xly """ ) xn) = (fl, t(xi; """ ) xn) - fl, L(O7 """ ) O) + thl(xly """ » xn)’
"""" ) fn,l(xly Ty xn)_fn,t(oy Y, O)+thn(x1) e, xn))

Then we have

(25) lim. ¢/ (x) = ¢(x),
t—0

and- since we get

a(p.’)
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2n+1 n »n
= Zl (g1, (1Z} 2, %) + thy; (2] L KENOOEL), woeeererreremneneneenns
i= =
2n+-1
......... E (glht (Z} XJ, + thlj ZX},l(xl (Xj,n)(xn)
2n+1
Z syt (Z 1, (%)) + thy; ij FCT))) 26T C7) RETTTTERaes
J=1
gn+1
......... , E gnj,t (Z Xj, xl + thn] th (xl (X],n)(xn)
j=

n n n n
=((g11,," (gxu(xz))-l— thn(?_;%u(xz))), oy (g1,2n+1,;'(;}inn,z(xz))+ thl,znu(lZ‘; Yon+1, ((%0))
= =1 =1 =1

n n n n
(81, (lf_lm:(xz)H thnl(lZXu(xl)))y (gn,z,m,z’(leM,z(xz)) + th'n,zn+1<12 Tanvt, (1%2)
= =1 =1 =1

U(Xll)(xl), .................. , a(xln)(x")
X

y e ,

L reerererteiiee e ,

B LT T TS PPN ,

B T PP ,

, et ,
‘T(sz 1, 1)(.96'1), """"" » U(Xn, n+ 1)(xn)

we have
(26) o(p,) %0, except the set of measure O near the origin,
by (i) and (ii). Here ¢(p,’) is defined similarly as o(g,).
9. we set a=log(2)/log(2, 4+ 2). Then since each y;{x) is monotonic and a-
Hoélder continuous,
i

lim. h¥)=c; 4t
A Xjk( ) N E)

1
fj_”"ﬁo wik— (1hl =) = ¢,
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both exist and positive for any j, k. Then to define a homeomorphism ¢ of R* by

ox)=sgn(e)|xilw), i =1, -y m, sgnle) = 5, ¥£0,
sgn(0) = 0,
we have by (26),
(' 0Yx) = Atey, oy sn + O] | 2] ]),
X e Rs;, .y e = {(xh ...... s xn)lsgn(xl) = gy
Sgn(xﬂ) - 671}!

At Alx) = Aley, o %), X E Rey, s, AY0) = 0 is a homeomor phism,

where ¢, -+ ,ep are =1, Afy-eeene , are regular constant matrices and | |x]] means
the euclidean norm of x, if [|x|| is sufficiently small.

Hence (using same method as in the proof of implicit function theorem), ¢,/
is a homeomorphism if ||x|]|< B = f(t). Here we may assume f(f) to be an incre-
asing function of £,

On the other hand, since we know

(21) lim, alp,') = alg),

t—0

@, is a homeomorphism if ||x|| < g for some 8 if ¢ <ty 4, > 0. Moreover, since
to define 3,/ : UXI—R" x I by

@/ (x, )= (p/(x), 1),

&' is a continuous map, we obtain

Lemma 10. o, is a homeomorphism if ||x||<B and its image contains the
ball {x|||x||< 0}, where B and & are positive constants determined by ¢ and does not
depend on t.

By lemma 10 and (25), We have

Theorem 4. If X is paracompact, then the structure group of the tangent
microbundle of X is reduced to the group that are consisted by those geyms of hom-
eomor phisms which ave vepresented by the functions of bounded variations as an
H(n)-bundle.

Note. Lemma 10 shows that Hy(n) is deformed to its subset consisted by those
germs of homeomorphisms which are represented by those functions such that
log(2) / log(2n + 2)-Holder continuous and has finite variations. But this set is not
a subgroup of Hy(n), because if f is «-Holder continuous and g is p-Holder con-
tinuous,- then the composed function flg) is only «B-Holder continuous and
{log 2/log(zn + 2)} < L

By theorem 4 and lemma 7, we obtain

Theorem 5. If X is a paracompact manifold, then X has a wmetric p which
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satisfies (*) and( **),
We note that by (16) and (1),

oo 1€ = el | =§ 116311 = 11el0) - A1,
and the equality is hold if and only if ¢ (f(I)) is given by

Pt = te(f0) + (1 — t)p(A(1)), 0t

Hence we obtain

Theorem 6. If X is a paracompact (topological) manifold, then there exists a
metric p of X by which the topology of X is given and if p (x, ) is sufficiently
small, then there exists a curve y starts from x, ends at y, and

Sr p = p(x, ).

Movreover, such curve is unique up to the change of paramelers.

We also note that if ¢ is a homeomorphism of R” which is represeanted by
the functions of bounded variations, then the Alexander-Spanier #-cochain || g(€)—
Qe [+ | |¢(&o) — @{€1)]| defines a non-trivial Radon measure m{p) given by

where dx means the integration by the Lebesgue measure, ¢ = (fy, , f.) and
o;f; is the measure defined from fj(x,, ----- , %,) regarding (%, - LV Xio1, Xigp,eere ,
x,) to be parameters. Hence we also obtain

Theorem 6'. We may consider the metric p given by theovem 6 also sals satisfies
the following. To set

W(xg, v , %,) is a positive Alexander-Spanier #-cochain of X and therefore it
defines a measure m(p) (cf.[47]). This m(p) is a non-trivial positive Radon measure
on X and

m(pXE) # 0,

if E is (m{p)) measurable and contains some non-empty open set of X.

§ 4. Theorems of Hopf-Rinow and Nomizu-Ozeki.

10. Definition. On a metric space X with metric p, we call a curve v to be a
geodesic with respect to p if v satisfies

S kdp =0,
r
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where y is given by f 1 I — X and a = f(0).
Note. For a non closed curve y given, for example, f : [0, 1)=» X, we call r
to be a geodesic with respect to ¢ if we have

lim, Snkaﬁp -0,
where a = f(0) and 7, is given by f, : I - X, f[(s)= f(ts), 0t 1.

We note that, if 7 is a geodesic with respect to p, then for any b, ¢, 0<b
<e<1, 7, is also a geodesic with respect top, because %60 is a positive cochain
and therefore we get

Srb, tkﬁp_ﬁ_ Srkﬁp.

Here y,,. is given by f,,. : I—= X, f,, )=S0+ (c — b))
As was remarked in §1, a curve 7 satisfies

{ o= elr10), 70),

if and only if it is a geodesic with respect to p. Here y is given by f : I - X
On X, we consider the following property (¥*¥). 4
(¥%%),  For any x=X, there exists e = &(x) >0 such that {y|olx, y)= e} is compact
and if z satisfies p(x, z)< e, then there exists aunique geodesic y with respect to
p which joins x and z.
It is known that (***) is important in the proof of the theorem of Hopf-Rinow
{(cf. [5]), [11]. In fact, the followings are proved only by using (***) and usual
properties of metric and curves with minimal length.
(@), If X is complete by the metric p, then a geodesic with respect to is extended
to a geodesic with respect to p which has infinite length, i. e. if f: I—-Xisa
geodesic, then there exists g : [0, 1) —~ X such that

f =8, for some 0 <a <1, gls)=glas),

lim,

S k ¢ dp =0, lim.
t—1 Y gy

t—1 Sgt(l)p =
(b). If X is complete by the metric p, then for any x, y € X, there exists a geodesic
which joins x and y.
Note. In (a), & may not be a 1 to 1 map.
Since the metric p given by theorem 6 satisfies (¥**), we get
Theorem 7, If X is complete as a metric space by the metric p given by theorem
6, then for any x, y € X, there exists a curve y which joins x and y and
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27 { o= otx, 5

Especially, if X is compact, then for any x, y € X, there exists a geodesic
7 with respect to p which joins ¥ and y and satisfies (27) for any metric p given
by theorem 6.

11. Theorem 8. If X is complete by the metric p given by theorem 6, then a
bounded set of X by the metric o is relative compact in X,

Proof. We denote B(x, #)={y|plx, ¥)<r} and set

(28) r(x) = sup.{ Blx, r)is compact?.

Since X is locally compact, #{(x) > 0. If #(x) = oo, then the theorem is true. Hence
we assume #(x) £ co,

We take infinite points {y.}, ».€ Blx, 7). If Bx, #(x)—e¢) N{y,} is an
infinite set for some ¢>>0, then {y.,} contains a series which converges in X
because B(x, r(x) —¢) is compact. Hence we may assume for any ¢ >0, to set
{¥s} to be the subset of {¥,} such that ys; satisfies

(29) olx, Yoy >r(x)—e¢,

{¥s} is an infinite set.

By theorem 7, we can join each y; which satisfies (29) and x by a geodesic 75
with respect to p which satisfies (27). Then by (29), we can take unique point
¥s,. on 7 such that

P(x, yﬁ,s) = T(x) — &

Then since B(x, 7(x) —e¢) is compact, the derived set of {ys.} is not an empty
set.
If for any {¥p,.} which converges in X, satisfies

llm P(x, y/?i) é 1’(x) - ‘Ll, 42 > O)
oo
then {y.lolx, »,)>#(x) — x} should be a finite set, and therefore {v,} contains a
sequence which converges in X. Hence we may assume that there exists a sequence
{y;,.} contained in {¥s 3} such that
lim. y;. =3, lim. p(x, y;)=rx)
{—oco {—o0
We join y. and x by a curve 7, whose length is #(x) —e. Then by (a) of n°10, 7,

can be extended to satisfy (2) with arbitrary length. We take one of such extension
7. of y. and take the point y on 7° snch that
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olx, ) =r@), oy, I =-

Then, by the definition of p, if ¢ — ¢’ is sufficiently small, we have

(30) hm yi,s/:ysly

j—o0
where ;. and y,” are the unique points on y; and 7y, which satisfy plx, ;. )=

o(x, ye)=r{x) —¢. moreover, by the definition of p, there exists 6 >0 such that
if (30) is hold and |¢’ — ¢'']<d, then

lim. i, e — e’
(30) s Th =Y

is hold and ¢ does not depend on ¢'. Hence we have

lim, y; = y.
oo
Therefore B(x, 7(x)} is compact.

Then, since B(x, #(x)) is compact, {¥|p(x, %) = r(x)} is also compact. Hence
we can take s >0 such that B(x, r(x) +¢) to be compact, because X is locally
compact. But this contradicts to the definition of #(x). Therefore 7(x) is equal to
o and we have the theorem.

Note. If a metric p of X satisfies this theorem, then X is complete with
respect to p. Because if {#,} is a Cauchy sequence, then for some m and » < o,
we have x, € Blx,, 7) for all n. Then, since Blx,, #)is compact, a subsequence
of {x,} converges in X. But since {x,} is a Cauchy sequence, {x,} itself converges
in X.

12. If X is not complete by the metric p given by theorem 6, then r(x),
defined by (28), is a positive continuous function on X (cf. [107]). Since #(x) >0,
we can take a continuous function ex) on X such that e(x) > 1/#(x).

We set

(31) dix, )= ox)o(y)plx, ),

then d(x, y) satisfies

(i). dx, »=0 and d(x, y)=0 if and only if x = y.

(). dx, v =dly, x.

(ii). If X is arcwise connected, then for any x, yeX, there exists a curve y which
joins x and y and

Sd<m.
T
Hence to set

o'lx, 3) = inf. {4

7,7 joins x and y
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o'(x, ») is a metric on X (cf. n°2), Moreover, by the definition of p', we obtain

(cf. [10]), :
Lemina 11. Setting

B'(x, a)={ylp'lx, y)=dj},

2) B, ) Bls, 5,

We note that, by the definitions of d and p, if y is contained in a coordinate
neighborhood U of % and 7 is contained in U, then

Srd

=dm. D W PSENPSE N LSE) S |
ltis1-t;]—0
Here f is a continuous map from I into R" such that f(0) = hy(x), A1) = hy{y) and
¢(x) is a positive continuous function on R" (;, means the homeomorphism from
U onto B* by which the manifold structure of X is given),

Lemma 12. Under the above assumption, there exists a curve y which join hy(x)
and hy(y) and gives the minimal value of Sr d and such 7 is unique up to the change
of paramelers.

Proof. If ¢ is smooth, then

[ a-f: s }]( 10 >2 dt,

if vy is a smooth curve given by f : I—=R", f(f) = filf), -+ , (fiD) where each f; is
differentiable. Hence we have the lemma by the theory of calculus of variation.

If ¢ is not smooth, then as in n°7, we set ¢, = ¢=e,, and set
(33) { a.
7

= lim. 2 WS EN LS E i 1At~ fitian)] .
lti+178i} —0 2 . .

Then, since ¢, is smooth, there exists unique curve 7, which gives the minimal
value of Srd“ and by the theorem of Ascoli-Arzéla, lim. s_.grs exists. We set the
limit by 7,.

On the other hand, since there exists a curve y, which gives the minimal
value of Srd (cf. the proof of theorem 3), we approximate y, by smooth curves
Ta,« @s follows : Assume 7, is given by f, : I — X, fl) = (f,1(t) -+ Fa, o)) and set
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fa,u, z(t)
= fa,t‘*eu(t) + (1 - t)(fa,t(o) - fa,i*eu(o)) + t(fa,i(l) - fa,i*eu(l))9
i_—_l, ...... , n,0<ug1’
then 7,,. is given by f,,. ¢ IT—= X, fo,uf) = (faudl), - s Ja,u,a(f). By definition,

lim- u“'()ra,u = Ya-
Then, since

(34) il—ino Sra’“ds - Srad’
u— 0
we have
(35) Smd = Srad,
because Smdggrad by the definition of y, and Sra udsgsnds and (34) shows Smd >
Srod'

If 7, is not equal to y,, then we have for some #, and

min. || £, t) — LI >0, [t —1]|<e

for some ¢ if # <u,, where u, is a positive constant. Then, since 7, converges
uniformly to 7, we have

STa,ud” > Sru dut ey wtho

But this shows lzm 5= 0 S
w—0
the lemma,
By this lemma, p' also satisfies (**%). Therefore we obtain by (32)
Theorem 9. If X is a paracompact arcwise connected (topological) manifold,
then X has a wmetric p which has following properties.
{). X is complete as a metric space with metric.

d,> Sr d + e. This contradicts to (35). Hence we have
¢

Ta,u

(ii). For any x, y € X, there exists a curve y which joins x and y and

Srp = p(x, )

Movreover, such y is unique up to the change of parameters if p (x, y)is suffi
ciently small.
(ili). The Alexander-Spanier n-cochain v(p) given by

U(P)(xo, Xy, e ’ xn)

= p(xo, xl)p(xﬂy xZ) """ P(xo’ xn): n = dlm- Xy

defines a positive Radon measure m = m(p) on X and it satisfies
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m(o)(E) 7 0,

if E is m(p)-measurable and contains some non-empty open set of X (cf. [4]).
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