A Relative Form of Equivariant K-Theory

By Toshimitsu Matsuda

Department of Mathematics, Faculty of Science, Shinshu University (Received October 30, 1970)

Introduction. Let G be a compact Lie group, T a maximal torus of G, W(G) the Weyl group of G and X a compact G-space. Then the following results on the equivariant K-theory will be required from [1] and [2].

Theorem (A). (i) We have a ring homomorphism $R(G) \longrightarrow R(T)$ (by the restriction map) which is injective. R(G) maps (bijectively) onto the ring of invariants of R(T) under the action of W(G).

(ii) The sequence

$$0 \longrightarrow K_G^*(X) \longrightarrow K_T^*(X)$$

is split exact.

((i) is obtained from 4.4 of [1] and (ii) from Proposition (4.9) of [2].)

Now the aim of this paper is to prove the following Theorem:

Theorem (B). We have the following split exact sequences:

$$0 \longrightarrow K^*_{G}(X) \longrightarrow K^*_{T}(X) \longrightarrow K^*_{(G,T)}(X) \longrightarrow 0$$
$$0 \longrightarrow K^*_{G}(X) \longrightarrow K^*_{T}(X)^{W(G)} \longrightarrow K^*_{(G,T)}(X)^{W(G)} \longrightarrow 0$$

where $K^*_{(G,T)}(X)$ is defined in § 1 and $K^*_{T}(X)^{W(G)}$ (respectively, $K^*_{(G,T)}(X)^{W(G)}$) is an abelian group of invariants of $K^*_{T}(X)$ (respectively, $K^*_{(G,T)}(X)$) under the action of W(G).

Note: It has been proved by Mr. HARUO MINAMI (to appear) that if G = U(n) and $K^*_T(X)$ is torsion free, then $K^*_{U(n)}(X)$ and $K^*_T(X)^{W(U(n))}$ are isomorphic. So we predict the following result:

Prediction. If $K^*_T(X)$ is torsion free, then $K^*_T(X)^{W(G)}$ and $K^*_G(X)$ are isomorphic.

Throughout this paper G will denote a compact Lie group, H a closed subgroup of G, X a compact G-space and A a closed G-invariant subspace of X.

I am grateful to Professor S. ARAKI for his kind advice.

§ 1 Definition of $K_{(G,H)}(X,A)$

1.1 Definition. We define $L_{(G,H)}(X, A)$ to be a category as follows: An object of $L_{(G,H)}(X, A)$ is a pair (E, F) of G-vector bundles over X, together with an H-isomorphism

$$\delta: I \times E | I \times A \cup \{0\} \times X \longrightarrow I \times F | I \times A \cup \{0\} \times X$$

such that $\delta |\{1\} \times A : E|A \longrightarrow F|A$ is a G-isomorphism.

The morphism $\varphi: \sigma_0 \longrightarrow \sigma_1$, where $\sigma_i = (E_i, F_i, \delta_i)$ (i=0, 1), is a pair of G-homomorphisms $(f, g): (E_0, F_0) \longrightarrow (E_1, F_1)$ such that the diagram

$$(I \times E_{0})|I \times A \cup \{0\} \times X \xrightarrow{\delta_{0}} (I \times F_{0})|I \times A \cup \{0\} \times X$$

$$\downarrow (id_{I} \times f)|I \times A \cup \{0\} \times X \qquad \downarrow (id_{I} \times g)|I \times A \cup \{0\} \times X$$

$$(I \times E_{1})|I \times A \cup \{0\} \times X \xrightarrow{\delta_{1}} (I \times F_{1})|I \times A \cup \{0\} \times X$$

is commutative. From now on, we put $B = I \times A \cup \{0\} \times X$.

An elementary object in $L_{(G,H)}(X, A)$ is an object of the form (E, E, id). If $\sigma_i = (E_i, F_i, \delta_i)$ (i = 0.1) are in $L_{(G,H)}(X, A)$, their sum is defined by

$$(1. 1. 2) \sigma_0 \oplus \sigma_1 = (E_0 \oplus E_1, F_0 \oplus F_1, \delta_0 \oplus \delta_1).$$

Two objects σ_0 and σ_1 are homotopic in $L_{(G,H)}(X, A)$, in symbols

$$(1. 1. 3)$$
 $\sigma_0 \sim \sigma_1$

if there exists an object $\overline{\sigma} = (\overline{E}, \overline{F}, \overline{\delta})$ of $L_{(G,H)}(X \times I, A \times I)$ such that

$$\bar{\sigma}|\{0\} = \sigma_0 \text{ and } \bar{\sigma}|\{1\} = \sigma_1.$$

i, e.
$$\overline{E}|X \times \{i\} = E_i, \ \overline{F}|X \times \{i\} = F_i \ \text{and} \ \overline{\delta}|B \times \{i\} = \delta_i.$$

Two objects σ_0 and σ_1 are stably homotopic in $L_{(G,H)}(X, A)$, in symbols

$$(1. 1. 4) \sigma_0 \sim \sigma_1,$$

if there exist elementary objects τ_0 and τ_1 such that

$$\sigma_0 \oplus \tau_0 \sim \sigma_1 \oplus \tau_1$$
.

We shall write $[\sigma]$ for the stably homotopic class of σ . The set of such stably homotopic classes is denoted by $K_{(G,H)}(X, A)$.

If $[\sigma_i]$ (i=0, 1) are in $K_{(G,H)}(X, A)$, their sum is defined by

$$(1. 1. 5) \qquad \lceil \sigma_0 \rceil + \lceil \sigma_1 \rceil = \lceil \sigma_0 \oplus \sigma_1 \rceil.$$

Then $K_{(G,H)}(X, A)$ is a semigroup.

Two objects σ_0 and σ_1 are isomorphic in $L_{(G,H)}(X, A)$, in symbols

$$(1. 1. 6) \sigma_0 \cong \sigma_1,$$

if there exists an isomorphism $\varphi: \sigma_0 \longrightarrow \sigma_1$ in $L_{(G,H)}(X, A)$.

1.2 Lemma. If $\sigma_0 \cong \sigma_1$ then $\sigma_0 \sim \sigma_1$.

Proof. From (1.1.6), there exists an isomorphism $(f, g): \sigma_0 \longrightarrow \sigma_1$. We define the G-vector bundles \overline{E} , \overline{F} over $X \times I$ as follows:

$$\overline{E} = E_0 \times \llbracket 0, \ 1/2 \rrbracket \cup E_1 \times \llbracket 1/2, \ 1 \rrbracket \text{ and } \overline{F} = F_0 \times \llbracket 0, \ 1/2 \rrbracket \cup F_1 \times \llbracket 1/2, \ 1 \rrbracket.$$

Moreover we define an *H*-isomorphism $\bar{\partial}: (I \times \bar{E}) | B \times I \longrightarrow (I \times \bar{F}) | B \times I$ as follows:

$$\bar{\delta}|B \times [0, 1/2] = \delta_0 \times id_{[0,1/2]}$$
 and $\bar{\delta}|B \times [1/2, 1] = \delta_1 \times id_{[1/2,1]}$.

Then $\overline{\sigma} = [\overline{E}, \overline{F}, \overline{\delta}]$ is an object of $L_{(G,H)}(X \times I, A \times I)$ and $\overline{\sigma}|\{i\} = \sigma_i$ (i = 0, 1). Hence $\sigma_0 \sim \sigma_1$.

1.3 Lemma. If $[E, F, \delta]$, $[F, Q, \gamma]$ are in $K_{(G,H)}(X, A)$, then we have

$$[E, F, \delta] + [F, Q, \gamma] = [E, Q, \gamma \delta].$$

Proof. We define a *G*-isomorphism $\alpha(t): F \oplus F \longrightarrow F \oplus F$ by

$$lpha(t) = egin{pmatrix} \cos rac{\pi}{2}t & -\sin rac{\pi}{2}t \ \sin rac{\pi}{2}t & \cos rac{\pi}{2}t \end{pmatrix} ext{ for } t \in [0, 1].$$

Then $(E \oplus F, F \oplus Q, (id \oplus \gamma)\alpha(t) (\delta \oplus id))$ is an object of $L_{(G,H)}(X, A)$, and we have

$$(1. 3. 2) (E \oplus F, F \oplus Q, \delta \oplus \gamma) \sim (E \oplus F, F \oplus Q, (id \oplus \gamma)\alpha(1)(\delta \oplus id)).$$

Now the diagram

$$(1.3.3) \qquad (I \times (E \oplus F)) \mid B \xrightarrow{(id \oplus \gamma)\alpha(1)(\delta \oplus id)} \qquad (I \times (F \oplus Q)) \mid B \\ \downarrow id \qquad \qquad \downarrow \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \\ (I \times (E \oplus F)) \mid B \xrightarrow{\gamma \delta \oplus id} \qquad (I \times (Q \oplus F)) \mid B$$

is commutative. Therefor, the result follows from 1.2, (1.3.2) and (1.3.3). **1.4 Lemma.** $K_{(G,H)}(X, A)$ is an abelian group.

Proof. From 1.3, if $[E, F, \delta]$ is in $K_{(G,H)}(X, A)$, we have

Hence $K_{(G,H)}(X, A)$ is an abelian group.

1.5 Definition. We set

$$K^{0}(G,H)(X, A) = K(G,H)(X, A)$$

 $K^{-1}(G,H)(X, A) = K(G,H)(X \times I, A \times I \cup X \times S^{0})$

and inductively

$$K^{-(n+1)}(G,H)(X, A) = K^{-n}(G,H)(X \times I, A \times I \cup X \times S^0)$$
 for $n=1,2,3,4,\dots$

We define $L_G(X, A)$ to be a category as follows: An object of $L_G(X, A)$ is a pair (E, F) of G-vector bundles over X, together with a G-isomorphism over A. The morphism $\varphi: \sigma_0 \longrightarrow \sigma_1$, where $\sigma_i = (E_i, F_i, \beta_i)$ (i = 0, 1), is a pair of G-isomorphisms $(f, g): (E_0, F_0) \longrightarrow (E_1, F_1)$ such that $(g|A)\beta_0 = \beta_1(f|A)$. Then we can define the equivalence relation \sim , \sim , \cong , and the abelian groups $K_G^{-n}(X, A)$ in the same way as 1.1 and 1.5.

Note: $K_G(X, A)$, which is defined in this section, and $K_G(X, A)$, which is defined in [3], are isomorphic.

§ 2 Properties of the elements of $K_G()$ and $K_{(G,H)}()$.

2.1 Lemma. An element of $K_H^{-1}(X, A)$ is represented by an object $(E \times I, E \times I, \beta)$ of $L_H(X \times I, A \times I \cup X \times S^0)$ such that $\beta | X \times \{i\} = id_E$. (Such an object is called a normalized object.)

Proof. If $[\overline{E}, \overline{F}, \beta]$ is in $K_H^{-1}(X, A)$, there exist the H-isomorphisms

$$p: \overline{E} \longrightarrow (\overline{E}|X \times \{1\}) \times I$$
$$q: \overline{F} \longrightarrow (\overline{F}|X \times \{1\}) \times I$$

such that $p|X\times\{1\}=id$ and $q|X\times\{1\}=id$. We define an H-isomorphism β^* by the following composition :

$$\overline{E} \mid Y \xrightarrow{\beta} \overline{F} \mid Y \xrightarrow{q \mid Y} (F \times I) \mid \stackrel{(g \mid Y)^{-1}}{Y} (E \times I) \mid Y \xrightarrow{\beta} \overline{E} \mid Y$$

where $Y = A \times I \cup X \times S^0$, $F = \overline{F}|X \times \{1\}$, $E = \overline{E}|X \times \{1\}$ and $g = \beta |X \times \{1\} \times id_I$. Now the diagrams

$$(2. 1. 1) \qquad \begin{array}{c} \overline{F} \mid Y & \xrightarrow{(p^{-1}g^{-1}q)} \overline{E} \mid Y \\ \downarrow id & \downarrow \downarrow (q^{-1}gp) \mid Y \\ \hline F \mid Y & \xrightarrow{f} \overline{F} \mid Y \end{array} \qquad \begin{array}{c} \overline{E} \mid Y & \xrightarrow{\beta^*} \overline{E} \mid Y \\ \downarrow p \mid Y & \downarrow p \mid Y \\ (E \times I) \mid Y & \xrightarrow{(p^*p^{-1})} Y & \downarrow p \mid Y \\ (E \times I) \mid Y & \xrightarrow{(p^*p^{-1})} Y & \downarrow p \mid Y \\ \end{array}$$

are commutative. Therefore, from (2.1.1), we have

Immediately $(E \times I, E \times I, (p\beta^*p^{-1})|Y)$ is a normalized object of $L_H(X \times I, A \times I \cup X \times S^0)$.

2.2 Lemma. An element of $K^{-1}(G,H)(A)$ is represented by an object $(E \times I, E \times I, \delta)$ of $L_{(G,H)}(A \times I, A \times S^0)$ such that $\delta | I \times A \times \{1\} = id_E$. (Such an object is called a normalized object.)

Proof. This follows in the same way as that of 2.1.

- **2.3 Lemma.** (i) Let E be a G-vector bundle over X, then there exists a complementary G-vector bundle of E.
- (ii) Let E be an H-vector bundle over X, then there exist an H-vector bundle E' over X and a G-vector bundle F over X such that $E \oplus E'$ and F are H-isomorphic.

Proof. (i) (cf. 2.4 Existence of complementary bundles of [3]).

- (ii). From (i), there exist an H-vector bundle E'' over X and an H-module N such that $E \oplus E''$ and $X \times N$ are H-isomorphic. From Corollary 1.1.4 of [3], there exist an H-module N' and a G-module M such that $N \oplus N'$ and M are H-isomorphic. Hence the result follows by defining $E' = E'' \oplus (X \times N')$ and $F = X \times M$.
- **2.4 Lemma.** (i) An element of $K_H^{-1}(X, A)$ is represented by a normalized object $(E \times I, E \times I, \beta)$ of $L_H(X \times I, A \times I \cup X \times S^0)$ such that E has a G-vector bundle structure over X.
- (ii) An element of $K^{-1}_{(G,H)}(A)$ is represented by a normalized object $(E \times I, E \times I, \delta)$ of $L_{(G,H)}(A \times I, A \times S^0)$ such that E is a restriction of a G-vector bundle over X to A.

Proof. This is clear from 2.3.

2.5 Lemma. Let M be a G-module and

$$f: (A \times I \cup X \times \{0\}) \times M \longrightarrow (A \times I \cup X \times \{0\}) \times M$$

a G-isomorphism. Then f is extendable to a G-isomorphism f^* over $X \times I$.

Proof. From Lemma 2.2.1 of [3], there exists a G-invariant neighbourhood $U(U \supset A)$, and $f \mid A \times I$ is extendable to a G-isomorphism f' over $U \times \{0\} \cup A \times I$. Since X is a compact G-space and G is a compact Lie group, so there exists a G-map $\varphi: X \longrightarrow I$ such that $\varphi \mid U^c = 0$ and $\varphi \mid A = 1$. Therefore f^* , which is defined by $f^*(x, t, m) = f'(x, t\varphi(x), m)$ for $(x, t, m) \in X \times I \times M$, is the required extention.

2.6 Lemma. Let (E, E, β) be an object of $L_G(X, A)$. If $[E, E, \beta] = 0$, there exist a G-vector bundle P over X and a G-isomorphism $\beta^* : E \oplus P \longrightarrow E \oplus P$ such

that

$$\beta^* | A = \beta \oplus id_P$$
.

Proof. If $[E, E, \beta] = 0$, from (1.1.4), we have

$$(E \oplus P, E \oplus P, \beta \oplus id_P) \sim (Q, Q, id)$$

for some G-vector bundle P, Q over X. From (1.1.3), there exists an object $\overline{\sigma} = (\overline{E}, \overline{F}, \overline{\beta})$ of $L_G(X \times I, A \times I)$ such that

$$\overline{\sigma}|\{0\} = (E \oplus P, E \oplus P, \beta \oplus id_P)$$

 $\overline{\sigma}|\{1\} = (Q, Q, id).$

Now $\overline{E}|X\times\{0\}=\overline{F}|X\times\{0\}$, so there exist the G-isomorphisms

$$f: \overline{E} \longrightarrow (E \oplus P) \times I$$
$$g: \overline{F} \longrightarrow (E \oplus P) \times I$$

such that

$$f|X\times\{0\}=g|X\times\{0\}=id_{E\oplus P}.$$

We define a G-isomorphism $\tilde{\beta}^*:(E\oplus P)\times I|A\times I\longrightarrow (E\oplus P)\times I|A\times I$ by the following composition:

$$(E \oplus P) \times I \mid A \times I \xrightarrow{f^{-1} \mid A \times I} \overline{E} \mid A \times I \xrightarrow{\bar{\beta}} \overline{F} \mid A \times I \xrightarrow{g \mid A \times I} (E \oplus P) \times I \mid A \times I$$

Then we have

(2. 6. 1)
$$\widetilde{\beta}^* | A \times \{0\} = \beta \oplus id_P$$

$$\widetilde{\beta}^* | A \times \{1\} = (gf^{-1}|X \times \{1\})|A \times \{1\}.$$

Now, from 2.3 (i), we can regard $E \oplus P$ as a trivial G-vector bundle over X. Therefore the result follows from (2.6.1) and 2.5.

2.7 Lemma. Let (E, F, β) be an object of $L_G(X, A)$. If $[E, F, \beta] = 0$, there exist a G-vector bundle P over X and a G-isomorphism $\beta^* : E \oplus P \longrightarrow F \oplus P$ such that

$$\beta^*|A=\beta \oplus id_P$$
.

Proof. If $\lceil E, F, \beta \rceil = 0$, we have

$$(E \oplus P', F \oplus P', \beta \oplus id_{P'}) \sim (Q', Q', id)$$

for some G-vector bundles P', Q' over X. So there exist the G-isomorphisms $f: E \oplus P' \longrightarrow Q'$ and $g: F \oplus P' \longrightarrow Q'$. The diagram

$$(2.7.1) \qquad \begin{array}{c} (E \oplus P')|A & \xrightarrow{f|A} & Q'|A \\ & \downarrow \beta \oplus id_{P'} & \downarrow \beta' = (g|A)(\beta \oplus id_{P'})(f|A)^{-1} \\ & (F \oplus P')|A & \xrightarrow{g|A} & Q'|A \end{array}$$

is commutative.

From 2.6 and (2.7.1), there exists a G-vector bundle P'' over X such that $\beta' \oplus id_{P''}$ is extendable to a G-isomorphism β^* over X. Thus β^* is the required extension.

2.8 Lemma. Let (E, E, δ) be an object of $L_{(G,H)}(X, A)$. If $[E, E, \delta] = 0$, there exists an object $((E \oplus P) \times I, (E \oplus P) \times I, \overline{\delta})$ of $L_{(G,H)}(X, A)$ such that

$$\overline{\delta}|B \times \{0\} = \delta \oplus id_P$$

 $\overline{\delta}|B \times \{1\}$ is a G-isomorphism.

Proof. This can be proved in the same way as in the proof of 2.6.

2.9 Lemma. Let (E, F, δ) be an object of $L_{(G,H)}(X, A)$. If $[E, F, \delta] = 0$, there exist a G-vector bundle P over X and an object $(Q \times I, Q \times I, \overline{\delta})$ of $L_{(G,H)}(X \times I, A \times I)$ such that

$$(E \oplus P, F \oplus P, \delta \oplus id_P) \cong (Q, Q, \overline{\delta} | B \times \{0\})$$

 $\overline{\delta} | B \times 1 \text{ is a G-isomorphism.}$

Proof. This follows from 2.8 in the same way as followed 2.7 from 2.6.

§ 3 Exact sequences.

3.1 Definition. We define the homomorphisms u, v, i^*, j^* as follows:

$$u: K_{(G,H)}(X, A) \longrightarrow K_G(X, A)$$
 by $u(\llbracket E, F, \delta \rrbracket) = \llbracket E, F, \delta | \{1\} \times A \rrbracket$, $v: K_G(X, A) \longrightarrow K_H(X, A)$ induced by an inclusion $H \subset G$, $j^*: K_{(G,H)}(X, A) \longrightarrow K_{(G,H)}(X)$ by $j^*(\llbracket E, F, \delta \rrbracket) = \llbracket E, F, \delta | \{0\} \times X, \rrbracket$ $i^*: K_{(G,H)}(X) \longrightarrow K_{(G,H)}(A)$ by $i^*(\llbracket E, F, \alpha \rrbracket) = \llbracket E | A, F | A, \alpha | A \rrbracket$.

Moreover we can define the following homomorphisms:

$$\Lambda^{n}u \quad K^{-n}{}_{G}(X, A) \longrightarrow K^{-n}{}_{G}(X, A),
\Lambda^{n}v : K^{-n}{}_{G}(X, A) \longrightarrow K^{-n}{}_{H}(X, A),
\Lambda^{n}j^{*} : K^{-n}{}_{(G,H)}(X, A) \longrightarrow K^{-n}{}_{(G,H)}(X),
\Lambda^{n}i^{*} : K^{-n}{}_{(G,H)}(X) \longrightarrow K^{-n}{}_{(G,H)}(A).$$

From 2.4, an element of $K^{-1}H(X, A)$ is represented by a normalized element

 $(E \times I, E \times I, \alpha)$ of $L_H(X \times I, A \times I \cup X \times S^0)$ such that E has a G-vector bundle structure. So we define a (boundary) homomorphism

$$\partial: K^{-1}_H(X, A) \longrightarrow K_{(G,H)}(X, A)$$

by

$$\partial(\lceil E \times I, E \times I, \alpha \rceil) = \lceil E, E, \alpha \mid I \times A \cup \{0\} \times X \rceil.$$

From 2.4, an element of $K^{-1}(G,H)(A)$ is represented by a normalized object $(E\times I,\ E\times I,\ \delta)$ of $L_{(G,H)}$ $(A\times I,\ A\times S^0)$ such that E is a restriction of a G-vector bundle F over X to A. Now δ is an H-isomorphism over $I\times A\times S^0\cup \{0\}\times A\times I$, so we can regard δ as an H-isomorphism over $I\times A$ by an identification $I\times A\times S^0\cup 0\times A\times I\equiv I\times A$. Then we have $\delta|\{0\}\times A=id$ and $\delta|\{1\}\times A$ is a G-isomorphism. We define an H-isomorphism $\gamma:I\times F|B\longrightarrow I\times F|B$ by

$$\gamma | I \times A = \delta$$
 and $\gamma | \{0\} \times X = id$.

Then we define a (boundary) homomorphism

$$\Delta: K^{-1}(G, H)(A) \longrightarrow K(G, H)(X, A)$$

by

$$\Delta(\lceil E \times I, E \times I, \delta \rceil) = \lceil F, F, \gamma \rceil$$

Moreover we can define the following boundary homomorphisms:

$$\Lambda^{n}\partial: K_{H}^{-(n+1)}(X, A) \longrightarrow K^{-n}(G, H)(X, A)$$
$$\Lambda^{n}\partial: K^{-(n+1)}(G, H)(A) \longrightarrow K^{-n}(G, H)(X, A).$$

3.2 Theorem. The sequence

$$K_{(G,H)}(X, A) \xrightarrow{u} K_G(X, A) \xrightarrow{v} K_H(X, A)$$

is exact.

Proof. It is clear that Image $u \subset \text{Kernel } v$, so it is sufficient to prove that Image $u \supset \text{Kernel } v$. Let $[E, F, \beta]$ be an element of $K_G(X, A)$ such that $v([E, F, \beta])=0$. From 2.7, there exist an H-vector bundle P over X and an H-isomorphism $\beta^*: E \oplus P \longrightarrow F \oplus P$ such that $\beta^*|A = \beta \oplus id_P$. We define an H-isomorphism $\delta: (I \times (E \oplus P))|B \longrightarrow (I \times (F \oplus P))|B$ by $\delta|\{0\} \times X = \beta^* \text{ and } \delta|I \times A = id_I \times (\beta \oplus id_P)$. Now, from 2.3 (ii), we can regard P as a G-vector bundle over X. Therefore we have

$$\begin{split} u\left([E \oplus P, F \oplus P, \delta] \right) &= [E \oplus P, F \oplus P, \delta | \{1\} \times A] \\ &= [E \oplus P, F \oplus P, \beta \oplus id_P] = [E, F, \beta]. \end{split}$$

3.3 Theorem. The sequence

$$K^{-1}_H(X,A) \xrightarrow{\partial} K_{(G,H)}(X,A) \xrightarrow{u} K_G(X,A)$$

is exact.

Proof. It is clear that Image $\partial \subset \text{Kernel } u$, so it is sufficient to prove that Image $\partial \supset \text{Kernel } u$. Let $[E, F, \delta]$ be an element of $K_{(G,H)}(X, A)$ such that $u([E, F, \delta])=0$. From 2.7, there exist a G-vector bundle P over X and a G-isomorphism $\beta: E \oplus P \longrightarrow F \oplus P$ such that $\beta | A = (\delta | \{1\} \times A) \oplus id_P$. We define an H-isomorphism

$$\alpha: (I \times (E \oplus P)) | Y \longrightarrow (I \times (E \oplus P)) | Y$$

where $Y = I \times A \cup S^0 \times X$, by the following composition:

$$(I\times (E\oplus P))|\:Y \xrightarrow{\quad \delta^* \quad} (I\times (F\oplus P))|\:Y \xrightarrow{\quad (id_I\times \beta^{-1})|\:Y} (I\times (E\oplus P))|\:Y$$

where δ^* is defined by $\delta^*|\{1\}\times X=\beta$ and $\delta^*|I\times A\cup\{0\}\times X=\delta\oplus id_P$. Then $(I\times(E\oplus P),\ I\times(E\oplus P),\ \alpha)$ is a normalized object of $L_H(I\times X,\ I\times A\cup S^0\times X)$. Now the diagram

$$(3. 3. 2) \qquad (I \times (E \oplus P)) \mid B \xrightarrow{\alpha \mid B} (I \times (E \oplus P)) \mid B$$

$$\downarrow id \qquad \qquad \downarrow (id_I \times \beta) \mid B$$

$$(I \times (E \oplus P)) \mid B \xrightarrow{\delta \oplus i_P} (I \times (F \oplus P)) \mid B$$

is commutative. So, from (3.3.2), we have

$$\begin{split} & \partial(\llbracket I \times (E \oplus P), \ I \times (E \oplus P), \ \alpha \rrbracket) = \llbracket E \oplus P, \ E \oplus P, \ \alpha \mid B \rrbracket \\ & = \llbracket E \oplus P, \ F \oplus P, \ \partial \oplus id_P \rrbracket = \llbracket E, \ F, \ \delta \rrbracket. \end{split}$$

3.4 Theorem. The sequence

$$K^{-1}_{G}(X, A) \xrightarrow{A^{1}v} K^{-1}_{H}(X, A) \xrightarrow{\widehat{\sigma}} K_{(G,H)}(X, A)$$

is exact.

Proof. It is clear that Image $A^1v \subset \text{Kernel } \partial$, so it is sufficient to prove that Image $A^1v \supset \text{Kernel } \partial$. Let $(I \times E, I \times E, \alpha)$ be a normalized object of $L_H(I \times X, I \times A \cup S^0 \times X)$ such that $\partial([I \times E, I \times E, \alpha]) = [E, E, \alpha|\{0\} \times X \cup I \times A] = 0$. From 2.8, there exist a G-vector bundle P over X and an object $((E \oplus P) \times I, (E \oplus P) \times I, \overline{\delta})$ of $L_{(G,H)}(X \times I, A \times I)$ such that $\overline{\delta}|B \times \{1\}$ is a G-isomorphism and $\overline{\delta}|B \times \{0\} = (\alpha|\{0\} \times X \cup I \times A) \oplus id_P$. Now, from 2.3, we can regard $E \oplus P$ as a trivial G-vector bundle over X, Since $\overline{\delta}|\{1\} \times A \times I$ is a G-isomorphism and $\overline{\delta}|\{1\} \times A \times \{0\} = id$,

so from 2.5, there exists a G-isomorphism

$$\delta^*: \langle I \times (E \oplus P) \times I) | \{1\} \times X \times I \longrightarrow (I \times (E \oplus P) \times I) | \{1\} \times X \times I$$

such that $\delta^*|\{1\} \times A \times I = \overline{\delta} |1 \times A \times I$ and $\delta^*|\{1\} \times X \times \{0\} = id$. We define an H-isomorphism

$$\bar{\alpha}: (I \times (E \oplus P) \times I) | (I \times A \cup S^0 \times X) \times I \longrightarrow (I \times (E \oplus P) \times I) | (I \times A \cup S^0 \times X) \times I$$

by

$$\overline{\alpha}|(I \times A \cup \{0\} \times X) \times I = \overline{\delta}|(I \times A \cup \{0\} \times X) \times I$$
$$\overline{\alpha}|\{1\} \times X \times I = \delta^*|\{1\} \times X \times I.$$

Then $(I \times (E \oplus P) \times I, I \times (E \oplus P) \times I, \overline{\alpha})$ is an object of $L_H(I \times X \times I, (I \times A \cup S^0 \times X) \times I)$ and $\overline{\alpha} | (I \times A \cup S^0 \times X) \times \{0\} = \alpha \oplus id_P$. So we have

$$A^{1}v([I\times(E\oplus P), I\times(E\oplus P), \overline{\alpha}|(I\times A\cup S^{0}\times X)\times\{1\}])$$

$$= [I\times(E\oplus P), I\times(E\oplus P), \alpha\oplus id_{P}]$$

$$= [I\times E, I\times E, \alpha].$$

3.5 Theorem. The sequence

$$\cdots \longrightarrow K^{-n}_{G}(X, A) \xrightarrow{\Lambda^{n}v} K^{-n}_{H}(X, A) \xrightarrow{\Lambda^{(n-1)}\partial} K^{-(n-1)}(G, H)(X, A) \xrightarrow{\Lambda^{(n-1)}u} \cdots$$

$$\cdots \xrightarrow{\partial} K_{(G, H)}(X, A) \xrightarrow{u} K_{G}(X, A) \xrightarrow{v} K_{H}(X, A).$$

is exact.

Proof. It follows from 3.2, 3.3 and 3.4.

3.6 Theorem. The sequence

$$\cdots \longrightarrow K^{-n}(G,H)(X) \xrightarrow{A^n i^*} K^{-n}(G,H)(A) \xrightarrow{A(n-1) \Delta} K^{-(n-1)}(G,H)(X,A) \xrightarrow{\Delta^{(n-1)} j^*} \cdots \xrightarrow{j^*} K_{(G,H)}(X) \xrightarrow{j^*} K_{(G,H)}(X) \xrightarrow{j^*} K_{(G,H)}(A).$$

is exact.

Proof. This can be proved by the same methods as in the proof of 3.5.

3.7 **Definition.** Let H' be a clsed subgroup of H, then we define the natural homomorphisms

$$A^n\mu^*: K^{-n}(G, H')(X, A) \longrightarrow K^{-n}(H, H')(X, A)$$
 induced by $(H, H') \subset (G, H')$, $A^n\lambda^*: K^{-n}(G, H)(X, A) \longrightarrow K^{-n}(G, H')(X, A)$ induced by $(G, H') \subset (G, H)$.

Let A^nd be a boundary homomorphism which defined by the following composition:

$$\Lambda^n d: K^{-(n+1)}(H,H')(X, A) \xrightarrow{\Lambda^{(n+1)} u} K^{-(n+1)}(X, A) \xrightarrow{\Lambda^n \partial} K^{-n}(G,H)(X, A).$$

3.8 Lemma. The following diagram is commutative.

$$K^{-(n+1)}G(X, A) \xrightarrow{v} K^{-(n+1)}H'(X, A) \xrightarrow{\partial} K^{-n}(H, H')(X, A) \xrightarrow{v} K^{-(n+1)}H'(X, A) \xrightarrow{u} K^{-(n+1)}H(X, A) \xrightarrow{u} K^{-(n+1)}H(X, A) \xrightarrow{u} K^{-n}G(X, A) \xrightarrow{u} K^$$

Proof. From the definitions of homomorphisms, this is clear.

3. 9 Theorem. The sequence

$$\cdots \longrightarrow K^{-(n+1)}(H,H')(X,A) \xrightarrow{\Lambda^n d} K^{-n}(G,H)(X,A) \xrightarrow{\Lambda^n \lambda^*} K^{-n}(G,H')(X,A) \xrightarrow{\Lambda^n \mu^*} \cdots$$

$$d \longrightarrow K(G,H)(X,A) \xrightarrow{\lambda^*} K(G,H')(X,A) \xrightarrow{\mu^*} K(H,H')(X,A).$$

is exact.

Proof. From 3.5 and 3.8, this is clear.

3.10 Theorem. The following diagrams are commutative, and each row and each colum are exact.

$$\begin{array}{c} \stackrel{\lambda^*}{\longrightarrow} K^{-(n+2)}_{(G,H')}(A) \xrightarrow{\mu^*} K^{-(n+2)}_{(H,H')}(A) \xrightarrow{d} K^{-(n+1)}_{(G,H)}(A) \xrightarrow{\lambda^*} K_{(G,H)}(A) \xrightarrow{\lambda^*} K_{(G,H')}(A) \xrightarrow{d} K^{-(n+1)}_{(G,H')}(X,A) \xrightarrow{d} K^{-(n+1)}_{(G,H)}(X,A) \xrightarrow{d} K^{-n}_{(G,H)}(X,A) \xrightarrow{\lambda^*} K_{(G,H')}(X,A) \xrightarrow{\lambda^*} K_{(G,H')}(X,A) \xrightarrow{\lambda^*} K^{-(n+1)}_{(G,H')}(X) \xrightarrow{d} K^{-n}_{(G,H)}(X) \xrightarrow{h^*} K^{-n}_{(G,H)}(X) \xrightarrow{\lambda^*} K_{(G,H')}(X) \xrightarrow{h^*} K^{-(n+1)}_{(H,H')}(X) \xrightarrow{d} K^{-n}_{(G,H)}(X) \xrightarrow{h^*} K_{(G,H')}(X) \xrightarrow{\lambda^*} K_{(G,H')}(X) \xrightarrow{h^*} K^{-n}_{(G,H)}(X) \xrightarrow{h^*} K^{-n}_{(G,H)}(X) \xrightarrow{h^*} K^{-n}_{(G,H)}(X) \xrightarrow{h^*} K^{-n}_{(G,H)}(X) \xrightarrow{h^*} K_{(G,H')}(X) \xrightarrow{h^*} K^{-n}_{(G,H)}(X) \xrightarrow{h^*} K^{-n}_{(G,H)}(X) \xrightarrow{h^*} K^{-n}_{(G,H)}(X) \xrightarrow{h^*} K_{(G,H')}(X) \xrightarrow{h^*} K^{-n}_{(G,H)}(X) \xrightarrow{h^*} K^{-n}_{($$

Proof. From the above arguments, this is clear.

§ 4
$$(C(G/H), G/H)$$
 coefficient K-theory.

4.1 Theorem. We obtain the following isomorphism:

$$K_{(G,H)}(X, A) \cong K_{G}((C(G/H), G/H) \times (X, A))$$

where C(G/H) is a cone over G/H.

The proof of the Theorem will be broken down into a series of Lemmas.

4.2 Let Y be an H-space. Let $G \underset{H}{\times} Y$ denote the identification space obtained from $G \times Y$ by the equivalence reration:

 $(g_1, y_1) \sim (g_2, y_2)$ if and only if $g_2 = g_1 h^{-1}$ and $y_2 = h y_1$ for some $h \in H$.

Then $G \underset{H}{\times} Y$ admits a G-space structure: we define

$$g(g_1, y) = (gg_1, y)$$

and note that

$$g(g_1h^{-1}, hy) = (gg_1h^{-1}, hy) \sim (gg_1, y) = g(g_1, y).$$

Let E be an H-vector bundle over Y, then $G\underset{H}{\times}E$ admits a G-vector bundle structure over $G\underset{H}{\times}Y$.

If Y is a G-space, $f: (G/H) \times Y \longrightarrow G \times Y$, which defined by

(4. 2. 1)
$$f(gH, y) = [g, g^{-1}y],$$

is a G-homeomorphism.

Let E, F be H-vector bundle over Y and $\alpha: E \longrightarrow F$ an H-isomorphism. Then $\bar{\alpha}: G \underset{H}{\times} E \longrightarrow G \underset{H}{\times} F$, which defined by

$$(4. 2. 2) \overline{\alpha}[(g, e)] = [g, \alpha(e)],$$

is a G-isomorphism.

If Y is a G-space and E, F are G-vector bundles over Y, then $\tilde{\alpha}: (G/H) \times E \longrightarrow (G/H) \times F$, which defined by

(4. 2. 3)
$$\tilde{\alpha}(gH, e) = (gH, g\alpha(g^{-1}e)),$$

is a G-isomorphism. Moreover we have

$$(4. 2. 4) f^*(G \times E) = (G/H) \times E \text{ and } f^*(\overline{\alpha}) = \tilde{\alpha}.$$

4.3 Lemma. Let $l_1: K_H(X, A) \longrightarrow K_G((G/H) \times X, (G/H) \times A)$ be a following composition:

$$K_H(X, A) \xrightarrow{l'_1} K_G(G \times X, G \times A) \xrightarrow{f^*} K_G((G/H) \times X, (G/H) \times A),$$

where l'_1 is defined by $l'_1(E, F, \alpha) = [G \times E, G \times F, \overline{\alpha}]$. Then l_1 is an isomorphism.

Proof. This follows directly from Proposition 1.1.3 of $\lceil 3 \rceil$.

4.4 Lemma. We define $l_2: K_G(X, A) \longrightarrow K_G(C(G/H) \times X, C(G/H) \times A)$ by

$$l_2([E, F, \alpha]) = [C(G/H) \times E, C(G/H) \times F, id \times \alpha].$$

Then l_2 is an isomorphism.

Proof. Since C(G/H) is G-contractible, so the result follows at once.

4.5 Definition. We define $l_3: K_{(G,H)}(X, A) \longrightarrow K_G((C(G/H), G/H) \times (X, A))$ as follows: Let $[E, F, \delta]$ be an element of $K_{(G,H)}(X, A)$. From 1.1, we can construct a G-isomorphism

$$\widetilde{\delta}: (G/H) \times ((I \times E)|B) \longrightarrow (G/H) \times (I \times F)|B)$$

as (4.2.3). Now $\tilde{\delta}(gH, (1, e)) = (gH, g\delta(1, g^{-1}e))$ and $\tilde{\delta}(1 \times A)$ is a G-isomorphism, so we have

(4.5.1)
$$\widetilde{\delta}(gH, (1, e)) = (gH, \delta(1, e)).$$

From (4.5.1), we can regard $\tilde{\delta}$ as a G-isomorphism

$$\widetilde{\delta}: C(G/\widetilde{H}) \times E \mid C(G/H) \times A \cup (G/H) \times X \longrightarrow C(G/H) \times F \mid C(G/H) \times A \cup (G/H) \times X.$$

So we define l_3 by

$$l_{\mathfrak{g}}([E, F, \delta]) = (C(G/H) \times E, C(G/H) \times F, \tilde{\delta}].$$

4.6 Lemma. We obtain the following exact sequence:

$$\cdots \xrightarrow{\partial_1} K_G((C(G/H), G/H) \times (X, A)) \xrightarrow{j_1^*} K_G(C(G/H) \times X, C(G/H) \times A)$$

$$\xrightarrow{i_1^*} K_G((G/H) \times X, (G/H) \times A).$$

Proof. For a triple $(C(G/H) \times X, C(G/H) \times A \cup (G/H) \times X, C(G/H) \times A)$, we have the exact sequence:

Now, from the Excision Theorem, we have the following isomorphism \overline{i}^* :

$$K_G(C(G/H) \times A \cup (G/H) \times X, C(G/H) \times A) \xrightarrow{\bar{i}^*} K_G((G/H) \times X, (G/H) \times A).$$

So the result follows by defining $\partial_1 = \partial (\bar{i}^*)^{-1}$, $i_1^* = i^*i^{\bar{i}}$ and $j_1^* = j^*$.

4.7 Lemma. The diagram

$$K_G(X, A) \xrightarrow{v} K_H(X, A)$$

$$\downarrow l_2 \qquad \qquad \downarrow l_1$$
 $K_G(C(G/H) \times X, C(G/H) \times A) \xrightarrow{i_1^*} K_G((G/H) \times X, (G/H) \times A)$

is commutative.

Proof. Let $[E, F, \alpha]$ be an element of $K_G(X, A)$. Then we have

$$l_1v(\llbracket E, F, \alpha \rrbracket) = l_1(\llbracket E, F, \alpha \rrbracket)$$

$$= \llbracket f^*(G \times E), f^*(G \times F), f^*(\overline{\alpha}) \rrbracket$$

$$= \llbracket (G/H) \times E, (G/H) \times F, id \times \alpha \rrbracket.$$

and

$$i_1*l_2([E, F, \alpha]) = i_1*([C(G/H) \times E, C(G/H) \times F, id \times \alpha])$$

= $[(G/H) \times E, (G/H) \times F, id \times \alpha].$

Therefore $l_1v = i_1*l_2$.

4.8 Lemma. The diagram

$$K_{(G,H)}(X, A) \xrightarrow{u} K_{G}(X, A)$$

$$\downarrow l_{2} \qquad \qquad \downarrow l_{1}$$

$$K_{G}((C(G/H), G/H) \times (X, A)) \xrightarrow{j_{1}^{*}} K_{G}(C(G/H) \times X, C(G/H) \times A)$$

is commutative.

Proof. Let $[E, F, \delta]$ be an element of $K_{(G,H)}(X, A)$. Then we have

$$(4. 8. 1) l_2u(E, F, \delta) = l_2(\llbracket E, F, \delta | \{1\} \times A \rrbracket)$$

$$= \llbracket C(G/H) \times E, C(G/H) \times F, id \times (\delta | \{1\} \times A \rrbracket).$$

and

(4. 8. 2)
$$j_1*l_3(\llbracket E, F, \delta \rrbracket) = i_1*(\llbracket C(G/H) \times E, C(G/H) \times F, \widetilde{\delta} \rrbracket)$$
$$= \lceil C(G/H) \times E, C(G/H) \times F, \widetilde{\delta} \mid C(G/H) \times A \rceil.$$

Now we define a G-isomorphism $\gamma: C(G/H) \times (E \mid A) \times I \longrightarrow C(G/H) \times (F \mid A) \times I$ by

$$\gamma(([t,\ gH\],\ e,\ s)=([t,\ gH\],\ g\delta'((1-t)s+t,\ g^{-1}e),\ s),$$

where δ' is defined by $\delta(t, e) = (t, \delta'(t, e))$. Then we have

$$\gamma | (s = 0) = \tilde{\delta} | C(G/H) \times A \text{ and } \gamma | (s = 1) = id \times (\delta | \{1\} \times A).$$

Therefore, from (4.8.1) and (4.8.2), we have $l_2u = j_1*l_3$.

4.9 Lemma. The diagram

is commutative.

Proof. Let $x = [I \times E, I \times E, \alpha]$ be an element of $K_{H^{-1}}(X, A)$. Then we have

$$\begin{split} &(\overline{i^*})^{-1}l_1(x) = (\overline{i^*})^{-1}(\lfloor G/H) \times I \times E, \ (G/H) \times I \times E, \ \widetilde{\alpha} \rfloor) \\ &= \lfloor C(G/H) \times I \times (E \mid A) \cup (G/H) \times I \times E, \ C(G/H) \times I \times (E \mid A) \cup (G/H) \times I \times E, \ \widetilde{\alpha'} \rfloor, \end{split}$$

where $\tilde{\alpha}'$ is defined by

$$\widetilde{\alpha}'([t, gH], s, e) = ([t, gH], s, g\alpha'((1-t)s+t, g^{-1}e)),$$

where α' is defined by $\alpha(s, e) = (t, \alpha'(s, e))$. Since $(\bar{i}^*)^{-1}l_1(x)$ is also a normalized object, we have

$$\partial_1 I_1(x) = [C(G/H) \times E, C(G/H) \times E, \beta],$$

where $\beta = \tilde{\alpha} \cdot |C(G/H) \times \{0\} \times A \cup (G/H) \times \{0\} \times X$. On the other hand we have

$$l_3 \partial(x) = [C(G/H) \times E, C(G/H) \times E, \tilde{\delta},]$$

where $\tilde{\delta}$ is defined by $\tilde{\delta}([t, gH], e) = ([t, gH], g\alpha(t, g^{-1}e))$. Then, from the definitions of β and $\tilde{\delta}$, $\beta = \tilde{\delta}$. So we have $l_3 \partial = \partial_1 l_1$.

4. 10 Proof of 4. 1 Theorem.

From the above Lemmas, the following diagram is commutative and each row is exact.

Therefore the result follows from Five Lemma.

4.11 Corollary. We obtain the following isomorphism:

$$K^{-n}(G,H)(X, A) \cong K^{-(n+2)}(G,H)(X, A)$$
 (Complex case)

Proof. From 4.1 Theorem, this is clear.

§ 5 Wyel group operations.

5.1 Let G be a compact connected Lie group, T a maximal torus of G and W(G) = N(T)/T the Wyel group. Let E be a T-vector bundle over X. For each $n \in N(T)$, n^*E admits a T-vector bundle structure (we regard n as a continuous map $n: X \longrightarrow X$ by its action on X): we define $h: (n^*E)_x \longrightarrow (n^*E)_{hx}$ by nhn^{-1} :

 $E_{nx} \longrightarrow E_{nhx}$ for all $h \in T$. If n is in T, n*E and E are isomorphic by T-isomorphism n^{-1} . If E is a G-vector bundle, n*E admits a G-vector bundle structure, and n*E and E are isomorphic by G-resomorphism n^{-1} . So the following operation is well defined:

(5. 1. 1)
$$K_{T}(X) \times W(G) \longrightarrow K_{T}(X)$$
$$(\lceil E, F \rceil, \lceil n \rceil) \longrightarrow \lceil n^{*}E, n^{*}E \rceil.$$

Let E, F, be G-vector bundle over X and $\alpha: E \longrightarrow F$ a T-isomorphism. In general the diagram

$$n^*E \xrightarrow{n^*\alpha} n^*F$$

$$\downarrow^{n^{-1}} \qquad \downarrow^{n^{-1}}$$

$$E \xrightarrow{\alpha} F$$

is not commutative, but if n is in T, the diagram is commutative. So the following operation is well defined:

(5. 1. 2)
$$K_{(G, T)}(X) \times W(G) \longrightarrow K_{(G, T)}(X)$$
$$(\lceil E, F, \alpha \rceil, \lceil n \rceil) \longrightarrow \lceil n^*E, n^*F, n^*\alpha \rceil.$$

Similary, we can define the following operations:

(5. 1. 3)
$$K_T^*(X) \times W(G) \longrightarrow K_T^*(X)$$
$$K^*_{(G,T)}(X) \times W(G) \longrightarrow K^*_{(G,T)}(X).$$

Let $K_T^*(X)^{W(G)}$ (respectively $K^*_{(G,T)}(X)^{W(G)}$) be an abelian group of invariants of $K_T^*(X)$ (respectively $K^*_{(G,T)}(X)$) under the action of W(G). Then we have

(5. 1. 4)
$$v(K_G^*(X)) \subset K_T^*(X)^{W(G)} \\ \partial (K_T^*(X)^{W(G)}) \subset K^*_{(G,T)}(X)^{W(G)},$$

and the commutative diagram

$$(5. 1. 5) \qquad \begin{array}{c} K_{G}^{*}(X) \xrightarrow{v} K_{T}^{*}(X) \xrightarrow{\partial} K^{*}_{(G, T)}(X) \xrightarrow{u} K_{G}^{*}(X) \\ \downarrow v \qquad \qquad \downarrow w \qquad \downarrow$$

for all $w \in W(G)$.

5.2 Proof of Maine Theorem (B).

By 3.5 Theorem, Theorem (A), 4.11 Corollary and (5.1.5), the proof will be carried out directly. **Note**: From 4.11 Corollary, the exact sequences of 3.5, 3.6

and 3.9 are extendable to the right side.

References

- [1]. M. F. ATIYAH and F. HIRZEBRUCH, Vector bundles and homogeneous spaces, Proc. Symp. Pure Math. 3, Differential Geometry, 1961, 7-38.
- [2]. M. F. ATIYAH, Bott periodicity and the index of elliptic operators, Quart. J. of Math. (Oxford) (2) 19 (1968), 113-140.
- [3]. M. F. ATIYAH and G. B. SEGAL, Equivariant K-theory, Lectures at Oxford univ. 1965, preprint of Univ. of Warwick.