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   Intreduction. Let G be a compact Lie group, T a maximal torus･of G, 9V(G)

the Weyl group of G and X a compact G-space. Then the following results on

the equivariant KJ-theory will be required from [1] and [2].

   Tkeorem (A). (i) VVe have a ring homomorphism R(G)--->R(T) (by the restric-

tion maP) which is inj'ective. R(G) maPs (biiectively) onto the ring of invariants.of

R(T) under the action of VV(G).

   (ii) The sequence

                    O-Kt,*(X) >K.*(X)

is sPlit exact.

((i) is obtained from 4. 4 of [1] and (ii) from ProPosition (4, 9) of [2], )

   Now the aim of this paper is to prove the fol!owing Theorem:

   Theorem (B). VVe have the following sPlit exact sequences:

            OoK*.(X) >K:k.(X)--)pK*(G,T)(X)-O

            O - K*a(X) - K*T(X)W(G) --:->- K*(G, T)(X)W(G) ----> o

where K"(G,T)(X) is de7ined in g 1 and K"T(X)W(G) (resPectively, K'(G,T)(X)rv(G)) is

an abelian group of invarilants of K;"T(X) (resPectively, K"(G,T)(X)) under the action

of VV(G).

   Note : It has been proved by Mr. HARuo MiNAMI (to appear) that if G == U(n)

and K'T(X) is torsion free, then K'u(n)(X) and K"T(X)W(U(n)) are isomorphic. So

we predict the folloing result :

   Prediction. If Kr:lsT(X) is torsion free, then Kr"T(X)TV(G) and K'"G(X) are

isomorphic.

   Throughout this paper G will denote a compact Lie group, Ha closed

subgroup of G, X a compact G-space and A a closed G-invariant subspace of X.

    I am grateful to Professor S. ARAKI for his kind advice.
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                      g 1 Definitien of K(G,H) (.I; A)

   1. 1 Definition. We define L(G,ff)(X, A) to be a category as follows : An object

of L(G,H)(X, A) is a pair (E, F) of G-vector bundles over X, together with an

fl-isomorphism

            o" : I×E1I×Au{o}×X.I×F1I×Au{o}×X

such that o"]{1}×A : E1A-F1A is a G-isomorphism.
The morphism g:ao-ai, where ai=(Ei, Fi, 6i) (i--O, 1), isa pair ofG-homo-

morphisms (L g) : (Eo, Fo)-(Ei, Fi) such that the diagram

                                6o
            (I×Eo)lI×AU{O}×X - (I×Fo)lI×AU{O}×X

(1.1.1) S (id,xf)IJxAU{O}xiX., S (id,xg)llxAU{O}×X

            (IxE,)YxAU{O}xX - (IxF,)llxAu{O}xX

is commutative. From now on, we put B=IxAU{O}xX.
   An elementary object in L(G,ff)(X, A) is an object of the form (E, E, id). If

ai=(Ei, Fi, 6i) (i =O. 1) are in L(G,ll)(X, A), their sum is defined by

(Ll.2) a,eo,=(E,eE. F,eF. 6,eS,).

Two objects ao and ai are homotopic in L(G,ff)(X, A), in symbols

(1. 1. 3) oo -v ab

if there exists an object -a = (E, i7, S) of L(aff)(Xxl, Axl) such that

                   a-1{O} = ao and il{1} = ai.

i, e. EIXx{i}-Ei, ]FilXx{i} == Fi and 6'IBx{i}=6i.
Two objects ao and ai are stably homotopic in L(G,H)(X, A), in symbols

(1. 1. 4) oe rw ab
                      s

if there exist elementary objects To and Ti such that

                   aeero -J aleTl.

We shall write [a] for the stabiy homotopic ciass of a. The set of such stably

homotopic classes is denoted by K(G,ff)(X, A).

     If [ai] (i=O, 1) are in K(aff)(X, A), their sum is defined by

(LL5) [ao]÷[ai]=[aoeai].
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Then K(G,ff)(X, A) is a sernigroup.

Two objects ae and oi are isomorphic in L(G,H)(X, A), in symbols

(L l. 6) ao or ab
if there exists an isomorphism g : ao-oi in L(c,u)(X, A).

   12 Lemma. if ae = ai then ao rN･ ai.

   Proof. From (1. 1. 6), there exists an isomorphism (L gi : ao--)pai･

We define the G-vector bundles E, -F over Xxl as follows :

       E'=Eo×[O, 1/2]UEi×[1/2, 1] and F=Fe×[O, 1/2]UFi×[1/2, 1].

                    fg
Moreover we define an H-isomorphism'6' : (IxE)iB×I-(I×F)1B×J as follows :

          SI B × [O, 1/2] =6e × id[o, il-o] and 5' I B × [1/2, 1] =tii × id[y2, i].

Then U=[E, -F', 5] is an object of L(G,H)(Xxl, Axl) and aMI{i} := ai (i=O, 1).

Hence 6o tv ai.

   1.3 Lemma. ILf [E, F, 6], [F, Q, r] are in K(G,ff)(X, A), then we have

                                                   '
(1. 3. 1) [E, F, 6]+[F, Q, r] == [E, Q, r6],

   Proof. We define a G-isomorphism cr(t) : FeF--->F(DF by

                       T.T              a(t)::-(i,i-M'.l Mi:'II/l)fortE[o,i]

                       22

Then (EeF, FeQ, (idOr)av(t) (fiOid)) is an object of L(G,ll)(X, A), and we have

(1.3.2) (E(DF, FeQ, 6er)-(EOF, FeQ, (idCDr)a(1)(Seid)).

                                                 '
NoW the diagram

                       (ider)a(1)(6eid)
            (Ix(EeF))IB ---- (Ix(I7eQ))iB

(i' 3' 3) Yd ,,eid J(-Oi 8)

            (Ix(Eel7))IB -(Ix(QeF))IB

is commutative. Therefor, the result follows from 1. 2, (1.3. 2) and (1.3. 3).

   1.4 Lemma. K(G,H)(X, A) is an abelian groztp.
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   Proof. From 1.3, if [E, F, o"] is in K(G,H)(X, A), we have

(1.4l) [E, F, b]+[F, E, fi-i] =- [E, E, id]=o.

Hence K(G,ff)(X, A) is an abelian group.

   1. 5 Definition. We set

     KO(G,H)(X, A) == K(G,H)(X, A)

     K-i(G,H)(X, A)=K(G,H)(X'×I, A×IuX×Se)

and inductively

     Km(n+i)(G,ff)(X, A)=K-n<G,u)(Xxl, AxlUX'xSO) for n=1,2,3,4, ,･･i.

   We define LG(X, A) to be a category as follows:An object of Lc(X, A) isa

pair (E, F) of G-vector bundles over X, together with a G-isomorphism over A.

The morphism q: ao-ai, where ai um- (Ei, Fi, Pi) (i=O, 1), is a pair of G-iso-

morphisms (L g) : (Eo, Fe)-(Ei, FD such that (giA)Po=Pi(flA). Then we can

define the equivalence relation --, ･--, ;, and the abelian groups Kb-'t(X,A) in

                              s
the same way as 1.1and 1. 5. ･               '
   Note:Kb(X, A), which is defined in this section, and Kb(X, A), which is

defined in [3], are isomorphic. ･ .

            52 Properties of the elements of KcO and K(G,H)O.

   2.1Lernma. An element of KH-"`(X, A) is rePrese.nted by an ob7'ect (ExL

Exl, P) of Lu(XxJ, AxluXxSO) such that PIXx{i}::=idE. (Such an ob7'ect is

called a normalizea ob7'ect. )

   Proof. If [E, -F, P] is in ICFf-i(X, A), there exist the H-isomorphisms

                  P: li] -)be (EIXx{1})xl ･

                  q:]FXo(]FklXx{1})xf . L
such that PIXx{1}=id and qlXx{1}=id. We define an H-isomorphism P:k by the

following composition :

                P glY (g) Y)-i (pJ Y)-i
           E1 Y- WFl Y- (F × J)1 Y---> (E ×J)] Y- E1 Y
     '

where Y== A×IuXxSO, F == F1Xx･[ll, E= LE1X×{1} and g== MX×-[1}×idi.
Now the diagrams

                (p"ig-iq) B"(2-i･i) al･[dr,d EjsY(q-igp)iy Eilliy (pB,,p:)]yi;iYpiy

        FIY -                        -FiY (Exl)IY -(ExJ)]Y
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are commutative. Therefore, from (2. 1. 1), we have

                   [E', F, P]-[E, rF, P]+rF, F, id]

                 ==[E', -F', P]+[-F, E, (P-ig-'q)IY]

                 ==[E, -E', P*] == [Exl, Exl, (pP*p-i)IY].

Immediateiy (Exl, Exl, (PP"'P"')IY) is a normalized object of LH(Xxl, AxlU

X×so).

   2.2 Lemma. An element of K-'(G,ff)(A) is rePresented by an ob7'ect (ExI,ExL

6) of L(G,H)(Axl, AxSO) such that 61IxAx{1} == idE. (Such an ob7'ect is called a

normalized obl'ect. )

   Proof. This follows in the same way as that of 2. 1.

   2.3 Lemma. (i) Let E be a G-vector bztndle over X, then there exists acomPle-

mentary G-vector bundle of E.

   (ii) Let E be an H-vector bundle over X, then there exist an H-vector bundle

E' over X and a G-vector bundle F over X such that E(IDE' ana F are H-isomorPhic.

   Proof. (i) (cf. 2. 4 Existence of complementary bundles of [3]).

(ii). From (i), there exist an H-vector bundle E" over X and an H-module Nsuch

that EeE" and XxN are H-isomorphic. From C6rollary 1.1.4 of [3], there

exist an H-module N' and a G-module M such that NON' and M are H-isomo-

rphic. Hence the result followsby defining E'=:E"e(XxN') and F=XxMl

   2.4 Lemma. (i) An element of KH-i(X, A) is rePresented by anormalized objuct

(Exl, ExL P) of LH(Xxl, AxluXxSO) such that E has a G-vector bu.ndle
strzacture over X.

   (ii) An element of K"i(G,ll)(A) is rePresented by a normalized ob]'ect (Exl, Ex

I, 6) of L(G,ff)(Axl, AxSO) such that E is a restriction of a G-vector bundle over

X to A.

   Preof. This is clear from 2. 3.

   2.5 Lemma. Let M be a G-module and

            f: (A ×luX×{O}) xMo (A ×IuX×{O}) ×M

a G-isomorPhism. Then f is extendable to a G-isomorPhism f" over XxL

   Preo£ From Lemma 2. 2. 1 of [3], there exists a G-invariant neighbourhood

U(UDA), andflAxl is extendable to a G-isomorphism f' over Ux{O}uAxL

Since X is a compact G-space and G is a compact Lie group, so there exists a

G-map g:X----).I such that gl cr=O and wlA=1, Therefore f", which is defined

by f*(x, t, m) =:f'(x, tg(x), m) for (x, t, m)EXxlxM, is the required extention.

   2.6Lemma. Let (E, E, P) be an ob]'ect of LG(X, A). lye [E, E, P]=O, there

exist a G-vector bundle P over X and a G-isomorPhism P" : ECDP-E(DP szech
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that

              P* 1 A == Peid..

  Proof. If [E, E, P] == O, from'(1.1.4), we have

              (EeP, EeP, Peid.)t-(Q, Q, id)

for some G-vector btmdle P, Q over X. From (1. 1. 3), there exists an object a==

(Eum, umI7, R) of LG (Xxl, Axl) such that

              il{O]--(E(DP, E(DP, POid.)
              ff1{1}-(Q, Q, id).

                                '
Now EIXx{O}=FIXx{O}, so there exist the G-isomorphisms

              f : E' --le (ECDP) × f

              g' : ll i ---> (EeP) ×I

such that

              flX×{oiJ -- g1X×{O]･ :- idE@p.

We define aG-isomorphism P't` :(EeP)×IlA×I-(EeP)×I1A×I by the follow-
mg coMposltlon :･

             f-ilAxl- rp - glAxJ
                                 -･ (EeP)×IlA×I    (EeP)×IlA×I -->                  EIAxl -                           FIAxl

Then we have

(2. 6. 1) A::`IAx{o}=peid.

              P* lA× S,1} - (gf-i1X×{1}) iA×{1]･.

Now, from 2.3 (i), we can regard E(DP as a trivial G-vector bundle over X.

Therefore the result fo11ows from (2. 6. 1) and 2. 5.

  2.7Lemma. Let (E, F, P) be an ･abl'ect of LG(X, A). if [E, F, P]=O, there

exist a G-vector bztndle P over X and a G-isomorPhism P' : EeP-FeP such

that'

              P* 1 A :- Peid..

  Proef. If [E, F, P] == o, we have

              (E(DP', FOP', Peidp･)r-(Q', Q', id)
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for some G-vector bundles P', Q' over X. So there exist the G-isomorphisms

f : EeP' --> O' and g : FeP' ----)p Q'. The diagram

                       flA
           (EePt)IA ---> QtlA
(2･ 7･ i) ipeidp･ g:A S p'-(glA)(Pepidp･)(flA)-i.

           (FOPt)IA - QtlA
ls' commutatlve.

   From 2. 6 and (2.7.1), there exists a G-vector bundle P" over X such that P'eidpn

is extendable to a G-isomorphism P" over X. Thus P* is the required extension.

   2.8LemrRa. Let (E, E, b) be an obl'ect of L(G,u)(X, A). ILf[E, E, ti]=O,

there exists an ob7'ect ((EeP)xl, (EOP)xl, 5) of L(G,ff)(X, A) such that

                  SIB×{O} == S(Did. '

                  SIBx{1} is a G-isomorphism.

   Preof. This can be proved in the same way as in the proof of 2. 6.

   2,9Lemma. Let (E, F, S) be an obiect ofL(G,")(X, A). Lf[E, F, 6]==O, there

existaG-vector bundle P over X and an obi' ect (Qxl, (?xi, E) of L(aH)(Xxl,

Axl) such that

                (EeP, FeP, 6eid.)=(Q, Q, 5-IBx{O})

                SIBx1 is a G-isomorPhism.

   Proof. This follows from 2, 8 in the same way as followed 2. 7 from 2. 6.

                         S 3 Exact sequences.

   3. 1 Definition. We define the homomorphisms u, v, i'*, 1'" as follows :

     u:K(G,H)(X, A)-Kb(X, A) by u([E, F, 5])=[E, F, b'Kl}xA],
     v : KG(X, A)-Kk(X, A) indinced by an inclusion HcG,

     i":K(G,ll)(X, A)-K(aH)(X) by i-k([E, F, 6])-[E, F, til{O}xX,]

     i" : K(G,H)(X)-K(G,ff)(A) by i:"([E, F, ev]) =:: [ElA, FiA, ev1A].

Moreover we can define the following homomorphisms :

           Anu K""(G,ff)(X, A)-Km'ic(X, A),

           A"v : K-"c(X, A)-KM"u(X, A),

           A?ii* : K-,i(G,H)(X, A)-K-n(G,ff)(X),

           Ani* : K-n(G,m(X)- K-'t(G,ff)(A).

                              '                       '
   From 2. 4, an element of K-iH(X, A) is represented by.a normalized element
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(ExJ, Exl, a) of LH(X × I, A × IUX× SO) such that E has a G-vector bundle
structure. So we define a (boundary) homomorphism

                   O:K-iH(X, A)-K(G,H)(X, A)

by

              a([Exl, Exl, a]) == [E, E, allxAu{O}xX].

   From 2.4, an element of K;i(G,ff)(A) is represented by a normalized object

(Exl, Exl, fi) of L(G,H) (Axl, AxSO) such that E is a restriction of aG-vector

bundle F over Xto A. Now 6 is an H-isomorphism over IxAxSeu{O}xAxl,

so we can regard 6 as an H-isomorphism over I× A by an identification JxAx

SeuO×A×I=! l×A. Then we have al{O}×A==id anda]{1}×A is aG-isomorphisrn.
We define an H-isomorphism r:lxF[B--->IxF[B by

                      r]I×A =6 and r]{O}×X == id.

Then we define a (boundary) homomorphism

                   d : K-i(G, H)(A)-K(G,H)(X; A)

by

                   d([Exl, Exl, ti])=[F, F, r].

Moreover we can define the following boundary homomorphisms :

                 A'iO: K.-(n+i)(X, A)-K-n(G,H)(X, A)

                 An" : K-(n+1)(G,H)(A)-K-,i(G,ll)(X, A).

   3.2 Theorem. The sequence

                            uv               K(G,H)(X, A)->Kb(X, A)-KH(X, A)

is exact.

   Proof. It is clear that Image uc Kernel v, so it is sufficient to prove that

Image uDKernel v. Let [E, F, P] be an element of Kb(X) A)such that v([E, F,

P])==O. From 2. 7, there exist an H-vector bundle P over X and an ll-isomorp-

hism P" : EOP-17(DP such that P'IA = Peidp. We de'fine an H-isomorphism

o : (I×(EeP))1B--> (I×(FeP))iB by fi1{o}×X= P* and6]1'×A==idi×(Peidp). Now,

from 2.3 (ii), we can regard P as a G-vector bundle over X. Therefore we have

            u([EeP, FOP, 6])-[EOP, FeP, 6I{1}xA]
            =- [EeP, FeP, POid.] -= [E, F, P].
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   3.3 Theorem. The seqttence

                     O u'
           K- iH(X, A) -----> K(G, H)(X, A) - KG(X, A)

is exact.

   Proof. It is clear' that Image ac Kernel u, so it is sufficient to prove that

Image ODKernel u. Let [E, F, 6] be an element of K(G,H)(X, A) such that u([E,

F, 6])=O. From 2.7, there exist a G-vectorbundlePoverXandaG-isomorphism

P : EeP-----)tvFeP such that PiA==(el{1}xA)(I)idp. We define an H-isomorphism

                  a : (I × (E(I)P)) ] Y- (l × (EeP)) ] }1

where Y=:lxAuSOxX, by the following composition :

                        b* (idixP-i)IY
           (fx(EeP))lY ---)b(lx(FeP))1Y -(lx(EeP))1Y

where 5" is defined by b"l{1}xX==P and S"]IxAu{O}xX=Seidp.

Then (Ix(EeP), Ix(E(DP), a) is a normaiized ob]ect of Lu(IxX, IxAuSOxX).

Now the diagram

                              a]B
          .. (Ix(EOP))IB------------ (Ix(ECDP))IB
(3. 3. 2) . Jid 6ei.                                         S(id,×P)1B

                (I × (EeP)) ] B - (I × (FeP)) 1 B

is commutative. So, from (3.3.2), we have

           a([Ix(E(DP), Ix(EqDP), a])=[E(DP, EeP, at]B]

           == [EOP, I7(DP, fieid.] - [E, F, D].

   3.4 Theorem. The sequence

                      .Aiv a
              K- iG(X, A) --->･ K- iH(X, A) --->･ K(G, ff )(X, A)

is exact.

   Proof. It is clear that Image AivcKernel O, so it is suMcient to prove that

Image A`vDKernel O. Let (IxE, JxE, a) be a normalized object of LH(IxX, lx

AuSOxX) such that O([JxE, IxE, at])=[E, E, al{O}xXUIxA] =r O. From 2. 8,

there exist a G-vector bundle P over X and an object ((EOP)xl, (E(DP)xl, fi)

of L(aH) (Xxl, Axl) such that SIBx{1} is a G-isomorPhism and SIBx{O} =:= (al

{O}xXUIxA)eidp. Now, from 2.3, we can regard EeP as a trivial G-vector

bundle over X, Since 5I{1}xAxl is a G-isomorphism and Sl{1}xAx{O} == id,
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so from 2. 5, there exists a G-isomorphism

         fi* : (I × (EeP) × l) 1 {1} × X × I --->･ (I× (EeP) × I) ] {1} × X× I

such that 6"l{1}×A×I==611×A×I and 6"l{1}×Xx{O}=id. We define an H-

isomprphism . . . .. . .
  '
.･ (-, : (I×(EeP)×I)i(I×AuSO×X)×I-> (I×(EeP)×I)1(IxAuSe×X)×l

by .
          '                              '               '                               '
             rev1(I×Au{O}×X)×I=51(I×Au{o}×X)×I
                                          '
             a1{1}×X×I=5*I{1}×X×L

Then (Ix(EeP)'×I, I×(EOP)×I, ke) is an object of Lu(I×X×I, (IxAuSe×X)×1)

and kei(I×AUSO×X)×{O} =aeidp. So we have

             Aiv(u×(Eep), J×(Eep), a1(I×Auso×x)×{1}])

              = [Ix(EoP), Ix(E(DP), aOidp]

             =[lxE, IxE, cr].

   3.5 Theorem. The sequence

                 A'iv '" 'A(n-i)a A(n-i)u
    ･t･->･K"i.(X,A) -pKH'iH(X,A)-K-(n-i)(G,m(X,A)-･･･

                   0uv                ･･････-K(G,H)(X,A) -----)b･KJ.(X, A) --->K.(X,A).

is exact.
                              '
   Proof. It follows from 3. 2, 3.3 and 3.4.

                              '   3.6 Theorem. The sequence

                   A"i'k A(n-1)id   "''''-K-"(G,H)(x) -Kf-"(G,H)(A) ---.)ip･K-(n-i)(G,H)(x,A)41`:l)!"

             A j'* i* ･          ･･････---->K(G,m(X,A) -K(G,m(X)                                          - K(G,H)(A).

is exact.

   Proof. This can be proved by the same methods as in the proof of 3. 5.

   3.7 Definition. 'Let H' be a clsed subgroup of H, then we define the natural

homomorphisms

    A"/t;ls : K""(G,Ht)(X, A)----->K-"(H,llr)(X, A) induced by (H, H")c(G, H'),

    A"R* : K-"(G,m(X, A)-K-'i(G, H,)(X, A) induced by (G, H')c(G, H).

Let A'id be a boundary homomorphism which defined by the following composition :
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                         A(n+1)u AnO ･
    A"d:K'-(n+i)(H;ll,)(X, A) -K-(n+i)H(X, A) ---->K-n(G,ll)(X, A).

   3.8 Lemma. The following diagram is commutative.

                    K(-n+i)(;(x, A)-fl- K-(n+i)ii,(X, A)!-) K-naff･)(X, A)s

      × .it/X'" X YXX9.,.t5j;/" K
       K- (n+1)(q ll.) (X;                 A) K-{n+i)H<X, A) K-n(G,if･)(X, A)
       / KKh('t"i)cu,ff･l!/Xlx,A)ski})-llJ>･t(G,H)(X.,A).i!'-,,.X})-)i)ln,(x;K)Cls

   Proof. From the definitions of homomorphism's, this is clear.

   3.9 Theorem. The sequence

                     .A'td A,i2* Anpt* ･･･-K-(n+i)(H;H,)(X,A) -K-n(G,m(X,A) -K-n(G,H,)(X,A)->･･･

 ･･･-->･K(G,H)(X,4) -K(G,H,)(X,A) -K(H;H,)(X,A).

                                                  'is exact.

   Proof. From 3.5 and 3.8, this is clear.

   3.10 Theorem. The following diagrams are commutative, and each row and

                                                    '
                                        '                      iF ---l!r'i.-K-(n-ti)(qHi)(A) 4" K-(n+;2)u.J,ff･)(A)L K-(n-ViCG,ff)(A)--u"Kcq."')(A) L' K<ai.,)(A)'J--i-.

 -JK-' "" K-,..Jig,.,.,,(x, A) Lt'rL" K-(.!f,,.,.,,(x, A) 4'K..X.,(x, A) ."H. K,.2,A/x, A) sr*.. K,.i.A,,(x, A>.- ''

  ,* Jjfi ,,* ij* d lj* Sj* ,. V
 -"- K-(n+i)(G, H,)(X) - KH('t+i)(u, ff,)(X) - K-'icG,H)(X) --"-'t> K(G,H)(X) -K(G, u')(X)-m--
  .mkt-.K-(n"+ii)'(.,.,)(A)4" K-(nl+tll(.,.,)(A).!4. K-n(l,i,",)(A)-J--t-J-.K,.,hi,IA)4' K(2f:,)(A)-n-.-

        ld Sd IA Yd ･Vd                      14         L 1 , .. i, .. L. .1
   Proof. From the above arguments, this is clear.

                                                tt
                 g4 (C(G/ll), G/H) coefficient K-theory.

   4. 1 Theorem. VVe obtain the following isomorPhism :

              K(G,H)(X, A) or Kt,((C(G/H), G/H)×(X, A)), '

                                                 'where C(G/H) is a cone over G/HL

   The proof of the Theorem will be broken down into a series of Lemmas.

   4. 2 Let Y be an H-space. Let Gx Y denote the identificatibn' space obtained
                             H
from G× Y by the equivalence reration :

     (gi, Yi) r-- (gli, y2) if and only if gzi ::= gih-i and y2 = hyi for some heHL
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Then GHx Y admits a G-space structure ; we define

                                     '
                       g(gb y) = (ggb y)

              gtg,h-i, hy) =(gg,h-i, hy) r--(gg!, y) =:= g(gi, y).

Let E be an Il-vector bundle over Y, then GxE admits a G-vector bundle stru-
                                    H
cture over G× Y.
                                         '          H
   If Y is a G-space, f: (G/H)×Y----)beG×Y, which defined by
                                 H

(4.2. 1) . f(gH, y) == [g, g-ipt],

isaG-homeomorphism. '

   Let E, F be H-vector bundle over Yand a : E---->F an H-isomorphism. Then

ft : G×E-G×F, which defined by
    ff H
(4.2.2) rv[(g, e)] =[g, cr(e)],
is a G-isomorphism.

   If Y is a G-space and E, F are G-vector bundles over Y, then a: (G/H)xE

-----)p(G/H)xF, which defined by

(4.2.3) a- (gH, e)=(gH, gicx(gHie)),
is a G-isomorphism. Moreover we have

(4. 2. 4) f"(GxE) == (G/H)xE and f"(dr)==a.
                     H

   4. 3 Lemma. Let li : KH(X, A) -> Ka((G/H)x X, (G/H)x A) be a following

                l,, f*     K.(X, A) ->Kc(GifX, G.xA) -K.((G/H)xX, (G/H)xA),

                      tt
where l'i is der7ned by l'i(E, F, a) ==: [GsE, GzF, a]. Then li is an isomorPhism

   Proo£ This follows directly from Proposition 1. 1.3 of [3]. ' ･

   4.4 Lemma. VVe dev7ne l2:Kb(X, A)---> KG(C(G/H)×X,.C(G/H)×A) by

           l,([E, F, cr])=[C(G/H)xE, C(G/H)xF, idxev].

Then l2 is an isomorPhism ' -
   Proof. Since C(G/H) is G-contractible,. so the result follows at once.
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 . 4.5 Definitiozz. We define l3 : K(G,H)(X, A)-KG((C(G/H), G/H)×(X, A)) as
follows : Let [E, F, 6] be an element of K(G,H)(X, A). From 1. 1, we can construct

a G-isomorphism

            a'U : (G/H) × ((f× E) l B) -> (G/ff) × (l × F) 1 B)

as (4. 2. 3). Now 8(iW, (1, e)) == (gll, go'(1, g-ie)) and N611xA is aG-isomorphism, so

we have

(4.5.1) 8(gH, (1, e))-(gEl, o"(1, e)).

From (4. 5. 1), we can regard o"- as a G-isomorphism

    5 : C(G/H) × E l C(G/H) × A u (G/") × X - C(G/H) × F 1 C(G/H) × A U (G/H) × X.

So we define l3 by

           l,([E, F, o"]) = (C(G/ll) × E, C (G/H) × F, S].

  4.6 Lemma. We obtain the following exact sequence:

･-･-->K.((C(G/H), G/H)×(X, A))-K.(C(G/H)×X, C(G/fl)×A)

                             il*
                             -Kb((G/H) × X, (G/H) × A).
                                                '
  Proof. For a triple (C(G/H)xX, C(G/H)xAu(G/H)xX, C(G/H)xA), we have

the exact sequence:

   ･･･-KG((C(G/H), G/H)×(X, A)-->K.(C(G/H)×X, C(G/H)×A)
                         i:i:
                        -KG(C(G/H)×Au(G/Hr)×X, C(G/H)×A).

Now, from the Excision Theorem, we have the following isomorphism 7'" :

                            i'"
    KG(C(G/H) × A U (G/H) × X, C(G/ff) × A) -,- K.((G/H) × X, (G/H) × A).

So the result follows by defining 0i = a(l*)"', ii"" = i'"i*n and 1'i'i` = d".

  4.7Lemma. The diagram ･

                    v         KG(X, A) -K.(X, A)
          ll2 i,,, Jli
    Kc(C(G/H) × X, C(G/H ) × A) - K.((G/H) × X, (G/H) × A)

is commutative.
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  Proof. Let [E, F, a] be an element of KZ](X, A). Then we have

             liv([E, F, cr]) == l,([E, F, a])

             =- [f*(GxE), f*(GxF), f;ls(a)]
                  ff ff
             == [(G/H)×E, (G/H)×F, id×a].

and

        iil2([E, F, ev])-ii"([C(G/H)xE, C(G/H)xF, idxa])

         -: [(G/H)×E, (G/H)×F, id×a].

Therefore liv = ii*l2.

  4.8 Lemma. The diagram

                      u    K(G,H)(X, A) ' -Kc(X, A)
      ll, ].,. Sli
    .KIc((C(G/H), G/H)×(X, A)) .K.(C(G/H)xX, C(G/Hr)xA)

is commutative.

  Proof. Let [E, I7, 6] be an element of K(G,H)(X, A). Then we have

(4. 8. 1) l2u(E, F, 6) -- l,([E, F, 61{1}xA])

             = [C(G/H) × E, C(G/H) × F, id × (b 1 {1} × A]).

and

(4.8.2) 1',*l,([E, F, fi])-i,*([C(G/H)xE, C(G/H)xF, 6])

          =[C(G/H)×E, C(G/H)xF, S1C(G/H)×A].

Now we define a G-isomorphism r : C(G/H)×<ElA)×I-C(G/H)×(FlA)×I by

        r(([t, gH], e, s)=([t, gHr], glS'((1-t)s+t, g"ie), s),

where ti' is defined by 6(t, e) == (t, 6'(t, e)). Then we have

        r1(s -= O) - ti1C(G/H)×A and rKs = 1) - id×(al{1}×A).

Therefore, from (4. 8. 1) and (4. 8. 2), we have l2u =A"l3.

  4.9 Lemma. The diagram

    K.-i(X, A) -K(G,H)(X, A)

    K.e'((G/H)xX, (G/H)xA) oK.((C(G/H), G/ll)×(X, A))

is commutative.
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Proof. Let x=[IxE, IxE, cr] be an element of KH'i(X, A). Then we have

           (tt,)-'li(x) = (tt.)-'([G/H')×I×E, (G/H)×I×E, a'-])

     == [C(G/H)×I×(E1A)u(G/.El)×I×E, C(G/ll)×I×(E1A)u(G/H)×f×E,at],

where ft' is defined by

           ft'([t, gH], s, e)-([t, gH], s, gty'((1-t)s+t, g-ie)),

where a' is defined by ct(s, e) == (t, a'(s, e)). Since (i:k)-ilt(x) is also a normalized

object, we have

                  O,l,(x)=[C(G/H)xE, C(G/H)xE, p],

where P=aN'1C(G/H)×{O}×Au(G/U)×{O}×X. On the other hand we have

                  l,O(x) - [C(G/H)×E, C(G/H')×E, 8,]

where 8is defined by '6- ([t, gH], e)=([t, gH], gtu(t, gT-ie)). Then, from the defi-

nitions of P and oN', S=o"'V. So we have l30=Oili･

   4. 10 Proof of 4.1 Theorem.-

From the above Lemmas, the following diagram is commutative and each row

ls exact.

       ･･･-KH-i(X, A) ---->K(G,H)(X, A) -

       ･---Kt,--i((G/H)×X, (G/U)×A--->･Kb((C(G/H), G/Hr)×(X,A))-

                     v
      Kb(X, A) .I<,,(X, A).
        Sl2 i,,, l, li
      Kb(C(G/H) × X, C(G/H) × A) - Kb((G/H) × X, (G/H) × A).

Therefore the result follows from Five Lemma.

   4. 11 Corollary. We obtain the following isomorPhism :

           K-n(G,H)(X, A) ! Krm(n+2)(G,u)(X, A) (ComPlex case)

   Proof. From 4.1 Theorem this is clear.
                         '

                      S 5 Wyel group operations.

   5.1 Let G be a compact connected Lie group, Ta maximal torus of G and

W(G) == N(T)/T the Wyel group. Let E be a T-vector bundle over X. For each

nG N(T), n"E admits a T-vector bundle structure (we regard n as a continuous

map n:X-X by its action on X): we define h: (n*E).-(n"E)h. by nhn-i :
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E..-E.h. for all hGT. If n is in T, n"'E and E are isomorphic by T-lsomo-

rphism n-i. If E is a G-vector bundle, n"E admits a G-vector bundle structure,

and n"E and E are isomorphic by G-rsomorphism n-i. So the following operation

is well defined :

(5. 1. 1) K.(X)x VV(G)-K.(X)
                        ([E, F], [n]) >[n"'E, n"E].

Let E, F, beG-vector bundle overXanda:E-Fa T-isomorphism. In general

the diagram

                          n*cr
                   n*E ---> n:tr'F
                   Sn'1                                  in-1

                    E a -F

is not commutative, but if n is in T, the diagram is commutative. So the follo-

wing operation is well defined :

(5. 1. 2) K(G,T)(X)x W(G)-K(G, T)(X)
                   ([E, F, a], [n])-[n"E, n"F, n']`a].

Similary, we can define the following operations :

(5. 1. 3) K.*(X)× 9V(G)-K.*(X)
                   K* (G, T)(X) × VPX(G) - K* (G, T)(X).

Let KT'(X)W(G) (respectively K'ts(G,T)(X)ur(G)) be an abelian group of invariants of

KT'ls(X) (respectively K*(G,T)(X)) under the action of wrG). Then we have

(5. 1. 4) v(Kb"(X)) ci Ki`(X)rv(G)
                        0(KT*(X)VV(G))cK*(G,T)(X)PIX(G),

and the commutative diagram

                     v0 u            Kb;ls(X)-K.*(X) oK:it(G,T)(X) -Kb*(X)

                      K.*(X) -K*(G,T)(X)
for all wE W(G).

   5.2 Preof of Maine Theorein (B).

   By 3.5 Theorem, Theorem (A), 4. 11 Corollayy and (5. 1.5), the proof will be

carried out directly. Note:From 4.11 Corollary, the exact seqences of 3.5, 3.6
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and 3.9 are extendable to the right side.
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