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Introduction. Let G be a compact Lie group, 7 a maximal torus of G, W(G)
the Weyl group of G and X a compact G-space. Then the following results on
the equivariant K-theory will be required from [1] and [2].

Theorem (4). (i) We have a rving homomorphism R(G)—> R(T) (by the resiric-
tion map) which is injective. R(G) maps (bijectively) onto the ring of invariants of
R(T) under the action of W(G).

(ii) The sequence

00— KMX)—> K+ X)

is split exact.

(i) is obtained from 4.4 of [1] and (ii) from Proposition (4.9) of [2].)
Now the aim of this paper is to prove the following Theorem :
Theorem (B). We have the following split exact sequences :

0 —> K*g(X)—> K*2(X) —> K*G,75(X) —> 0

00— K¥(X)—> K*p (X)W — K* i (X )WE) —0

where K*@, 1y(X) is defined in § 1 and K* (X)W (respectively, K*gq, T (X)W®)is
an abelian group of invariants of K*(X) (respectively, K*, (X)) under the action
of W(G).

Note : It has been proved by Mr. HARUO MmNAMI (to appear) that if G = Un)
and K*;(X) is torsion free, then K*yu)(X) and K* (X)W are isomorphic. So
we predict the folloing result :

Prediction. If K*,(X) is torsion free, then K*(X)V©® and K* X) are
isomorphic.

Throughout this paper G will denote a compact Lie group, H a closed
subgroup of G, X a compact G-space and A a closed G-invariant subspace of X.

I am grateful to Professor S. ARAKI for his kind advice.
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§ 1 Definition of K, m (X, A)

1. 1 Definition. We define L, 1)(X, A) to be a category as follows : An object

of L, m(X, A)is a pair (E, ') of G-vector bundles over X, together with an

H-isomorphism
J:1 IXE|IXxAU{0IXX —>IXF|IxAU{0}x X

such that 6]{1}xA : E|A—> F|A is a G-isomorphism.

The morphism ¢ :¢y—> ¢, where o;=(E;, F;, §,) (i=0, 1), is a pair of G-homo-

morphisms (f, g):(E,, F,—>(E;, Fy) such that the diagram

dy
UXENIxAU{0}I XX —> ([xF)IxAU{0}IxX
(L1.1) l (i )| Ix AUL0}x X l (id,;x Q)| [x AULO}X X
(X ENWTxAU{0IxX —il—> {IxIYIxAU{0Ix X

is commutative. From now on, we put B =IxAU{0}xX.

An elementary object in L, m)(X, A) is an object of the form (E, E, id).

g, =(E;, I 3)({=0.1) are in L, m)X, A), their sum is defined by
(1.1.2) ooPo1 = (EDE:, FoDFi, 8,Ddy).

Two objects oy and ¢; are homotopic in L, #)X, A), in symbols
(1.1.3) ¢y ~ 0,

if there exists an object ¢ = (E, F, §) of L, i (X xI, AxI) such that

{0} =0y and ¢|{1} = o,.

i, e. E|Xx{i}=E, F|Xx{i}=F,; and §|Bx{i} =0,
Two objects ¢y and ¢, are stably homotopic in L, )X, A4), in symbols

(1. 1. 4) gg —~ 0Oy,

S

if there exist elementary objects ¢, and =; such that

coD7y ~ 61 D71

If

We shall write [o] for the stably homotopic class of . The set of such stably

homotopic classes is denoted by K, m)(X, A).
If [o/] (i=0, 1) are in K, m)(X, A), their sum is defined by

(L1.5) Loo] + [o1] =[oe D oy ]
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Then Kg,my(X, A) is a semigroup.
Two objects ¢y and ¢; are isomorphic in L, (X, A), in symbols

(1. 1. 6) gp = Oy,

if there exists an isomorphism ¢ : 6y —>0; in L, my(X, A).

1.2 Lemma. If oy = o, then 6y ~ 0.

Proof. From (1.1.6), there exists an isomorphism (f, g): gy —> o1
We define the G-vector bundles E, F over X xI as follows :

E = Ey %[0, 1/2]fUE1><[1/2, 1] and F = Fyx[0, 1/27UFx[1/2, 1].
&

Moreover we define an H-isomorphism 3 : (Ix E)|BxI—>(IXF)|BxI as follows :

0| Bx[0, 1/2]1=0ayxidyo,1/21 and 5{Bx[1/2, 11=68; xidpisz,13.

Then o=[F, F, 5] is an object of L, o) (XxI, AxI) and ¢{{i} =0, (i=0, 1)
Hence o4 ~ 0,.
1.3 Lemma. If [E, F, &}, [F, Q, 7] are in K, g)X, A), then we have

('1. 3. i) [E, F, 6]+ [F, @ 7y1=[F, @, 4]

Proof. We define a G-isomorphism «f) : FOF —> FOF by

cos—g—t —sinit
a(t) = for t [0, 1.
. T T
sin—t cos—t
2 p

Then (EDF, FOQ, ({dDrat) (0Did)) is an object of L, m(X, A), and we have
(1.3.2) (EDF, FOQ, oDy~ (EDF, FOQ, (dDr)e1)sdid)).

Now the diagram

({dDr)a(L)oDid)
{IX(EDF)| B > ([X(FO)| B
(L. 3.3) lid (O 1)
10
l rocpid l
(I x(EDF)| B > (IX(QDF))| B

is commutative. Therefor, the result follows from 1.2, (1.3.2) and (L 3.3).
1.4 Lemma. K, m(X, A)is an abelian group.
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Proof. From 1.3, if [E, F, d} is in K, #y(X, A), we have
(1.4. 1) [E,F, 8]+ [F, E, 6 ']=[FE, E, id]=0.

Hence K@, m)(X, A) is an abelian group.
1. 5 Definition. We set

K, o)X, A)= Kg,u\X, A)
Ko m(X, A) = KemXxI, AxIUXxSY

and inductively

K~-0D g gy X, A)=K-7c m(XxI, AXIUXxSY for n=1,2,3,4, ,--.

We define Lg(X, A) to be a category as follows: An object of LgX, A) is a
pair (E, F) of G-vector bundles over X, together with a G-isomorphism over A.
The morphism ¢ : ¢y —> ¢y, where o, = (E;, F;, B,) (i =0, 1), is a pair of G-iso-
morphisms (f, g):(Ey, Fo—>(E), Fy) such that (g|A)8, = f(f]A). Then we can

define the equivalence relation ~, ~, =, and the abelian groups K; (X, 4) in
s

the same way as 1.1 and 1.5,
Note : KX, A), which is defined in this section, and KX, A), which is
defined in [3], are isomorphic.

§ 2 Properties of the elements of K¢ ) and K, m)( ).

2.1 Lemma. An element of Ky Y X, A) is represented by an object (ExI,
ExI, ) of LyXxI, AXIUXxS% such that B|Xx{i}=1idg. (Such an object is
called a normalized object.)

Proof. If [E, F, B is in Kz"Y(X, A), there exist the H-isomorphisms

P E—>(E|Xx{1}hxTI
q: F—>(F|Xx{1phxI
such that p|Xx{1}=id and ¢|Xx{1}=id. We define an H-isomorphism 5* by the

following composition :

8 qlY (gl ¥) (p1Y
E|Y-——>F|Y———>(F><I)|Y——>(E><])]Y———> E|Y

where ¥ = AxIUXxS, F=F|Xx{1}, E=F|Xx{1} and g = | X x{1}xid,.
-1 —lq)

Now the diagrams

_ . g _

o 11 FY ——e > BY Y —— EY

L a ey VOIY pgrpy J{mY
F|Y ——e—y F|Y (ExD)|Y —3> (ExD|Y
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are commutative. Therefore, from (2. 1.1}, we have

|

(E, F, p1=1E, F, f1+LF, F, id]
[ 1 F, AB:I -{“ I:F, Ev (p'lg-lq)IY]
LE, E, "] =[ExI, EXI, (pg*p~)|Y].

s

Il

=

i

Immediately (Ex I, ExI, (pf*p~1|Y) is a normalized object of Ly(XxI, AxIU
X x 89,

2.2 Lemma. An element of K1, uA) is represented by an object (Ex I, ExI,
0) of L, i(AxI, AxSY such that d|Ix Ax{1} = idg. (Such an object is called a
normalized object.)

Proof. This follows in the same way as that of 2. 1.

2.3 Lemma. (i) Let E be a G-vector bundle over X, then there exists a comple-
mentary G-vector bundle of E.

(ii) Let E be an H-vector bundle over X, them there exist an H-vector bundle
E'" over X and a G-vector bundle F over X such that EQDE' and F are H-isomor phic.

Proof. (i) (cf. 2.4 Existence of complementary bundles of [3]).

(ii). From (i)}, there exist an H-vector bundle E” over X and an H-module N such
that EDE" and XxN are H-isomorphic. From Corollary 1.1.4 of [3], there
exist an H-module N' and a G-module M such that NPN' and M are H-isomo-
rphic. Hence the result follows by defining E'=E£"@®X xN’) and F=XxM.

2.4 Lemma. (i) An element of Ky X, A) is rvepresented by a normalized object
(ExI, ExI, B) of Ly(XxI, AxIUXxS% such that E has a G-vector bundle
structure over X.

(iiy An element of K i@, m)(A) is represented by a normalized object (ExI, Ex
I, 8) of L, ay(AxI, AxS® such that E is a restriction of a G-vector bundle over
X to A.

Proof. This is clear from 2. 3.

2.5 Lemma. Let M be a G-module and

FiAXTUXx{OWxM —>(AxITUXx{0hxM

a G-isomorphism, Then f is extendable to a G-isomorphism f* over X xI.

Proof. From Lemma 2.2.1 of [3], there exists a G-invariant neighbourhood
U (UnA), and f|AXI is extendable to a G-isomorphism f' over Ux{0}UAXI.
Since X is a compact G-space and G is a compact Lie group, so there exists a
G-map ¢ : X —>1I such that ¢|U°=0 and ¢|A=1. Therefore /*, which is defined
by f¥x, t, m) = f'(x, to(x), m) for (x, {, m) e X xIx M, is the required extention.

2.6 Lemma. Let (E, E, ) be an object of Li(X, A). If [E, E, ]1=0, there
exist a G-vector bundle P over X and a G-isomorphism f*: EQP —>» EDP such
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that
B*| A = fDidp.
Proof. If [E, E, 1 =0, from (1. 1.4), we have
(E®P, E@QP, pPidp)~(Q, Q, id)

for some G-vector bundle P, @ over X. From (1.1.3), there exists an object 4=
(E, F, B) of Lo (XxI, AxI) such that

a|{0} = (E@P, EDP, pdidp)
ol{1} =(Q, @, id)

Now E|Xx{0}=F|Xx{0}, so there exist the G-isomorphisms

T E—>(E®P)xI
g F—>(E®P)xI
such that
S1Xx{0} = g| X x{0} = ideor.

We define a G-isomorphism f* :(EQP)xI|AxI—>(E®P)xI|AxI by the follow-
ing composition :

SHAXI B glAXI
(E®P)xI|Ax] —> E|AxI —> F|AxI —> (E@P)xI|AxI

Then we have

(2.6.1) 8% | Ax{0} = pdPid
S IAX{1} = (g1 X x {1} Ax{1}.

Now, from 2.3 (i), we can regard E®FP as a trivial G-vector bundle over X.
Therefore the result follows from (2.6.1) and 2.5.

2.7 Lemma. Let (£, F, B) be an object of Li(X, A). If [E, F, 8] =0, there
exist a G-vector bundle P over X and a G-isomorphism [*: EPP—» FDP such
that

B*| A = BDidp.
" Proof. If [E, F, §] =0, we have

(EDF', F@P', pbide)~ @', @', id)
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for some G-vector bundles P’, @' over X. So there exist the G-isomorphisms
f:EPP —> Q" and g: FOP' —>» Q'. The diagram

A
(E®P)A ———> Q'|A
(2.7.1) | seide | & = (el Axpoide ¥ f1 A)
- glA :
(FOP)A ——— Q|4

is' commutative.
From 2.6 and (2.7.1), there exists a G-vector bundle P” over X such that p'@®idp»
is extendable to a G-isomorphism g* over X. Thus #* is the required extension.
2.8 Lemma. Let (E, E, §) be an object of Le,o)X, A). If [E, E, i]=0,
there exists an object (EDP)xI, (E®P)xI, 8 of Lw,m(X, A) such that

31 Bx{0} = i@idp
3| Bx{1} is a G-isomorphism.

Proof. This can be proved in the same way as in the proof of 2.6.

2.9 Lemma. Lel (E, F, &) be an object of L, myX, A). If[E, F, §]=0, there
exist a G-vector bundle P over X and an object @xI, @xI, 3 of L m{XxI,
AxI) such that

(E®P, FOP, odidp) =@, Q, 51 Bx{0})
3| Bx1 is a G-isomor phism.

Proof. This follows from 2.8 in the same way as followed 2.7 from 2.6.

§ 3 Exact sequences.

3

3.1 Definition. We define the homomorphisms #, v, i*, 7* as follows:

u: Ke,mX, A —> KX, A) by w([E, F, §)=[E, F, d|{1}xA],
v: Kg(X, A)—> Kgy(X, A) induced by an inclusion HCG,

7 K, (X, A)—> K, 5 X) by 75(E, F, dly=[E, F, §|{0}xX,]
i* K, 5 X)—> K, m5(A) by i%(E, F, «]) =[E|A, FlA, alA].

Moreover we can define the following homomorphisms :

Au K¢ (X, A)—> K "X, A),
A K76(X, A)—> K "3(X, A),
A'5* K6, X, A)—> K¢, m(X),
A* 0 K", (X)) — K, 1(A).

From 2.4, an element of K™ 14(X, A) is represented by .2 normalized element
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(ExI, ExI, a)of Ly(X xI, A x JTUX x §% such that E has a G-vector bundle
structure. So we define a (boundary) homomorphism
9: K 'y(X, A)—> K, m(X, A)
by
W(ExI, ExXI, a))=[F, E, a|lIxAU{0}IxX].

From 2.4, an element of K % m)(A) is represented by a normalized object
(ExI, ExI, ) of L,y (AxI, AxS% such that E is a restriction of a G-vector
bundle F over X to A. Now 4 is an H-isomorphism over IxAxS'U{0}xAxI,
so we can regard J as an H-isomorphism over I x A by an identification IxAXx

SU0OxAxI=1IxA. Then we have §|{0}x A=id and ]{1}x A is a G-isomorphism.
We define an H-isomorphism y:IXF|B—> IXF|B by

7IIXA =4§ and y]{0}x X = id.
Then we define a (boundary) homomorphism

4: K, m(A)—> K, XX, A)
by
A[ExI, ExI, §)=[F, F, r].

Moreover we can define the following boundary homomorphisms :

A0 1 Ky—ot(X, A)—> K -7q, m(X, A)
A4 K=@+D g my(A)—> K-, my(X, A).

3.2 Theorem. The sequence

[/ v
Ke m(X, A)— KX, A)—> Ky(X, A)

is exact.

Proof. It is clear that Image # < Kernel v, so it is sufficient to prove that
Image u>Kernel v. Let [E, F, §] be an element of Ky X, A)such that o([E, F,
B1)=0. From 2.7, there exist an H-vector bundle P over X and an H-isomorp-
hism g* : EQP —> F@P such that g*|A = Pidp. We define an H-isomorphism
0t (I X(EPP)| B —> (IX{(FGP)|B by 8|{0}x X=p* and 8|1 x A=id;x (fPidp). Now,
from 2.3 (ii), we can regard P as a G-vector bundle over X. Therefore we have

=[EDP, FOP, pdidp] =[E, F, Bl
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3.3 Theorem. The sequence

K-14(X, A) —a—+ K m(X, A) —u> K (X, A)
is exact.

Proof. It is clear that Image @ c Kernel #, so it is sufficient to prove that
Image 0D Kernel #. Let [E, F, ] be an element of K, )X, A) such that u([E,
F, §])=0. From 2.7, there exist a G-vector bundle P over X and a G-isomorphism
B E@QP — FPP such that IA=0|{1} X A)Pidp. We define an H-isomorphism

a: (IxX(E®DP))Y —(IX(EDP)|Y,
where ¥ =IxAUS*x X, by the following composition :

o* (id;x W)Y

IX(EDP)Y ——> I X(FOP)|Y ——— (I X(EDP))| Y

where 0% is defined by §*|{1}xX=8 and ¢*|Ix AU{0}x X=0Didp.
Then ([ X(E@P), Ix(EDP), a) is a normalized object of Ly(IxX, IxAUS'xX).
Now the diagram

a|B
IX(E®P)| B ————— (IX(EPP)|B
(3.3.2) : . .
lzd o, l(zd,x 8)| 8

IX(EDP)|B ——————> (IX(FOP))| B
is commutative. So, from (3.3.2), we have

A IX(EDP), Ix(EDP), a)) = [E®P, E®P, «|B]
= [E@®P, FQP, s®idp] =[E, F, 5.

3.4 Theorem. The sequence

L -
KX, A)ifK-iH(X, A)-iK(G,m(X, A)
is exact.

Proof. It is clear that Image A'wcKernel 9, so it is sufficient to prove that
Image AlvDKernel 3. Let IxXE, IxE, a) be a normalized object of Ly(IxX, Ix
AUS'% X) such that d[IxE, IXE, a})=[E, E, «|{0}xXUIxA]=0. From 2.8,
there exist a G-vector bundle P over X and an object (EDP)xI, (E®P)xI, 3)
of L, my(XxI, AxI) such that §]|Bx{1} is a G-isomorphism and §|Bx{0} = («a|
{0}IXxXUIxA)Pidp. Now, from 2.3, we can regard EPP as a trivial G-vector
bundle over X, Since §|{1}xAxI is a G-isomorphism and §|{1}x A x{0} = id,
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so from 2.5, there exists a G-isomorphism
0 (I X(EPP)xD{1I X X X ——> (IX(EPP)x )| {1}x X x T

such that 6*|{1}xAxXI=0|1xAxI and 0*|{1}xXx{0} =id. We define an H-
isomorphism

a: (IX(EPP)xD|IxAUS' X X)xI—>» [ X(EPP)xD|(Ix AUS*x X)xI
by | '
a|(Ix AU{0Ix X)xT =5|(Ix AU{0Ix X )xT
G X XTI = 5| {1Ix X xI. |
Then (IX(E@P)xI, Ix(E@®P)xI, a)is an object of Ly(IxXxI, (IxAUS*)xX)xI)
and aj({ x AUS* X X)x {0} = a@idp. So we have

AW[IX(EDP), Ix(EDP), a|(IxAUS xX)x{1}])

= [UX(EDP), Ix(EDP), adidp]

=[IxE, IxXE, «].

3.5 Theorem. The sequence
A" " Aw=13g A=y
o> KX, A) ———> K"y(X, A)——> K-0=D g (X, A) ——> -
7 u v
------ —> K, (X, A)———> KX, A)———> Ky(X, A).

is exact.
Proof. It follows from 3.2, 3.3 and 3.4.
3.6 Theorem. The sequence
. Am* A=y A=) g%
...... —>» K", m(X)——> K—n(G,H)(A) ———> K=0=D @ m(X, A) —Prannees
4 j* * :
----- —> K, m(X, A) ——> KG, i (X) ——> K, m)A).
is exact.
Proof. This can be proved by the same methods as in the proof of 3.5.

3.7 Definition. Let H' be a clsed subgroup of H, then we define the natural
homomorphisms

A%* 2 K%, g(X, A)—> K *m, an(X, A) induced by (H, H')c(G, H),
A2k K6, m(X, A)—> K", ayX, A) induced by (G, H')c(G, H).

Let A"d be a boundary homomorphism which defined by the following composition :
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AG+Dy A"
Ad : K—0+D g gpy(X, A)———> K-~0Dg(X, A)——-—K-7c m(X, A).
3.8 Lemma. The following diagram is commutative.

u Ealy, A) L K-omevg(x, 4y Le K-=rar (X, A)—=
A A AN
K“(ﬂ+l)(0,11')(X, Al K-(»H-I)H(X’ A) K”"(G, 11')(X, A)
5 V 3 2 %

K~y ipy(X, A) == K16, 1y(X, A) X K-ng(X, A)

Proof. From the definitions of homomorphisms, this is clear.
3.9 Theorem. The sequence
Ad A7 A p*
"'——">I(—<”+1)(H,H')(X, A)———> I(_”(G,H)(X, A) ———y K-»¢q, H’)(X, Ay—>-.-
d a* ¥
> K, m)(X, A) ——> K, (X, A)———> Kz, a(X, A).
is exact.
Proof. From 3.5 and 3.8, this is clear.
3.10 Theorem. The following diagrams are commutative, and each row and
each colum are exact.

' H '
'

' i 4

i
- 4 e ! p } Voo |
v K-t gry(A) —— K= 0Dy poy(A) —— K040 @G, gy(A) = K@, m)(A) —— K, (A) -~
|4 , |4 |4 |4 4
i* I’ v : d Y 2*
—- = K 0D (X, A) —= K 0D g, (X, A) = K76, (X, A) = Ke,u)(X, A) — K, u(X, Ay
. i+ - ¥ p | ¥ .V
m- = K=, gy X) —> K- g go(X) —= K-#6,m)(X) ------> K@, u%X) —= K, i X)----
" iz* e lz ‘ lz b & L i*
-f KD, gy A) —s K- Dy, g A) — K1, 1) (A) ------= > K, A) ——= K, un(A)-—---
|4 |4 | 4 b4 ¥
1 i H

Proof. From the above arguments, this is clear.

§4 (C(G/H), G/H) coefficient K-theory.
4.1 Theorem. We obtain the following isomorphism :
Ko, m(X, A)= K(CG/H), G/H)x(X, A)),

where C(G/H) is a cone over G/H.
The proof of the Theorem will be broken down into a series of Lemmas.
4.2 Let Y be an H-space. Let G>}<I Y denote the identification space obtained

from GxY by the equivalence reration :

(g1, y1) ~{(gs ¥2) if and only if gs = gkt and y, = hy, for some hcH.
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Then G xY admits a G-space structure : we define
H

&g, y) =(88n J)
and note that
&b, hy) = (ggih™', hy)~(g&, )= &g, I).
Let E be an H-vector bundle over Y, then G;} E admits a G-vector bundle stru-
cture over GI>1<r Y.

If YV is a G-space, f:(G/H)x Y———)GI? Y, which defined by

(4.2.1) fgH, y)=1g g£'y],

is a G-homeomorphism.

Let E, F be H-vector bundle over Y and « : E—>F an H-isomorphism. Then
: GxE———)G;igF, which defined by

H

R

(4.2.2) al(g, e}l =Lg ale)],

is a G-isomorphism.
If Y is a G-space and E, F are G-vector bundles over Y, then a:(G/H)xE
—>»(G/H)x F, which defined by

(4.2.3) algH, e) = (gH, ga(g 'e),
is a G-isomorphism. Moreover we have

(4. 2. 4) f*(GI;;E )= (G/H)XE and f¥@=a.

4.3 Lemma. Lef [, : Ky(X, A)—> Ko(G/H)xX, (G/H)xA) be a following
composition :

A *
K, (X, A) _——1—> KG(G;; X, G[;< A)——— K(G/H)x X, (G/H)x A),
where I'y is defined by I'yE, F, a) = [G;;E, G;}F, al. Then 1y is an isomor phism.

Proef. This follows directly from Proposition 1.1.3 of [3].
4.4 Lemma. We define I, : Ko(X, A)—> K(C(G/H)xX,.C(G/H)x A) by

I{[E, F, al)=[CG/H)XE, C(G/H)xF, idxa].

Then I, is an isomor phism.
Proof. Since C(G/H) is G-contractible, so the result follows at once.
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4.5 Definition. We define /3: K, m(X, A)—> K(CG/H), G/H)x(X, A) as
follows: Let [ £, F, §] be an element of K, X, A). From 1.1, we can construct
a G-isomorphism

31 (G/H)x(Ix E)| B)—> (G/H)x (I x F)| B)

as (4. 2. 3). Now g(gH, (1, e) = (gH, gi(1, g-le) and 5|1x A is a G-isomorphism, so
we have

(4.5.1) dlgH, (1, €)= (gH, i1, e).
From (4. .5. 1), we can regard § as a G-isomorphism
8 : C(G/HYXE|\C(G/H)x AU(G/H)x X —> C(G/H)x F|C(G/H)x AU(G/H)x X.
So we define /3 by
I(E, F, §))=(CG/H)XE,C(G/H)xF, ]
4.6 Lemma. We obtain the following exact sequence :

0, I
K(C(G/H), G/H)x(X, A))—]——>KG(C(G/H)><X, C(G/H)x A)

if(c((c JH)% X, (G/H)x A).

Proof. For a triple (C(G/H)x X, C(G/H)x AU(G/H)x X, C(G/H)x A), we have
the exact sequence :

s K(CIG/H), GJH)X(X, A)—— Ko(CG/H)x X, CG/H)x A)

— K (C(G/H)x AU(G/H)x X, C(G/H)x A).

Now, from the Excision Theorem, we have the following isomorphism #* :

7
KA(CG/H)x AUG/H)Yx X, C(G/H)x A)—> KMG/H)x X, (G/H)x A).
So the result follows by defining d; = d (%)L, 4,* = i** and j;* = 7%

4.7 Lemma. The diagram

KX, A) > Ku(X, A)

Js L

KJCG/H)x X, C(G/H)xA)—> KAG/H)xX, (G/H)xA)

is commuttative.,
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Proof. Let [E, I, a] be an element of K4X, A). Then we have

W(E, F, a])=1{E, F, aj)
=[[MGXE), fHGXF), f*a]
" "
=[(G/H)XE, (G/H)xF, idxa].
and
W[ E, F, a)y=i"[C(G/H)XE, C(G/H)xF, idxa])
=[(G/H)x E, (G/H)xF, idxa).

Therefore v = i1,
4.8 Lemma. The diagram

Ke mX, A) ‘ » Ko(X, A)
llz . lll
KJCG/H), G/H)x(X, A) LN K (CG/HYx X, C(G/H)x A)

is commutative.
Proof. Let [E, F, &) be an element of K, uX, A). Then we have

(4.8.1) LwE, F, 6)=1L{E, F, 5|{1}xA])
=[CG/H)XE, CG/H)xF, idx(|{1}xA)).

and

(4.8.2) IFLCE, F, &) =i"(CG/H)x E, C(G/H)xF, ¥))

= [C(G/H)xE, C(G/HYxF, 3|C(G/H)x A].
Now we define a G-isomorphism 7 : C(G/H)x(E|A)xT —> C(G/H)x (F| A)x I by
(L, gH], e, s)=(t, gH], g'(1-t)s+¢, g7'e), s),
where & is defined by a(f, ¢) = (t, #'(t, ¢). Then we have
s =0)=3|C(G/H)X A and 7|(s = 1) = id x (3] {1} x A).

Therefore, from (4.8.1) and (4. 8. 2), we have lu = j,*I5.
4.9 Lemma. The diagram

K, X, A Ke, m(X, A)
lzl . lza
K. (G/H)x X, (G/H)x A) ! > Ko(C(G/H), G/Hyx(X, A)

is comumutative.
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Proof. Let x =[IXE, IxE, «] be an element of K; (X, A). Then we have
() h(x) = F(G/H)XIXE, (G/H)xIXE, aJ)
= [C(G/HYx I x(E|A)U(G/H)xIXE, CG/H)XIx(E|A)U(G/H)XIXE, '],

where a' is defined by

al[t, g, s, e)=((t, gH], s, ga'{(1—t)s+t, gle),

where a' is defined by a(s, e) = (f, a'(s, ¢€). Since (7*)"Uy(x) is also a normalized
object, we have

0udy(x) = [C(G/H)x E, C(G/H)xE, §],
where 8 = &'|C(G/H)>< {0}x AU(G/H)*x{0}x X. On the other hand we have
L(x) = [C(G/H)x E, C(G/H)XE, 3,]

where 4 is defined by &([t, gH 1, e =t gH], ga{t, g7'¢). Then, from the defi-
nitions of g and 5, 3= 3. So we have ;0 = 94,
4. 10 Proof of 4.1 Theorem.

From the above Lemmas, the following diagram is commutative and each row
is exact.

v
e Ky (X, A) rKG, (X, A) —>

lll lza

Ko G/H)x X, (G/H)x A—>K(C(G/H), G/H)x(X, A)y—>

v
KX, A) —> Ky(X, A).

It i
in*

KJC(G/H)x X, C(G/H)x A) —> KG/H)x X, (G/H)x A).

Therefore the result follows from Five Lemma.
4.11 Corollary. We obtain the following isomor phism :

K-nG,uxX, A) = K- m(X, A) (Complex case)

Proof. From 4.1 Theorem, this is clear.

§ 5 Wyel group operations.

5.1 Let G be a compact connected Lie group, T a maximal torus of G and
W(G) = N(T)/T the Wyel group. Let E be a T-vector bundle over X. For each
ne N(T), n*E admits a T-vector bundle structure (we regard » as a continuous
map #: X—> X by its action on X): we define % : (n*E), —> (n*E);, by nhnt:
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E,.,—> E,;. for all heT. If nis in T, »n*L and E are isomorphic by T-isomo-
rphism n7L. If E is a G-vector bundle, #n*£ admits a G-vector bundle structure,
and »n*E and E are isomorphic by G-rsomorphism #~!, So the following operation
is well defined :

(5.1.1) K (X)x WG)—> KH(X)
((E, F], [n])—>[n*E, n*E].

Let E, F, be G-vector bundle over X and « : E——> I a T-isomorphism. In general
the diagram

nta
n*f ———————— n*kF
ln‘l ln”l
E —% _ »F

is not commutative, but if #» is in 7, the diagram is commutative. So the follo-
wing operation is well defined :

(5.1.2) K, my(X)x W(G)— K@, (X)
((E, F, o, (n])—>[n*E, n*F, n*a].

Similary, we can define the following operations :

(5.1.3) K X)x W(G)—> K%X)
K*@, (X)X W(G)—> K*@, 7y(X).

Let K5 X)W@® (respectively K*@, (X)W ) be an abelian group of invariants of
K5 X) (respectively K*@, (X)) under the action of W(G). Then we have

(5.1.4) WKHX) © KA (X)) O
KM X)WW @) K, (X)),

and the commutative diagram

a 24
KX (X K 5 X e G X)

(5.1.5) \ lw lV
KX ’

>K* G, 7y(X)

for all w e W(G).

5.2 Proof of Maine Theorem (B).
By 3.5 Theorem, Theorem (A), 4.11 Corollary and (5. 1.5), the proof will be
carried out directly. Note : From 4.11 Corollary, the exact segences of 3.5, 3.6
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and 3.9 are extendable to the right side.
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