Note on Quadratic Extensions of Rings

By KAZUO KISHIMOTO

Department of Mathematics, Faculty of Science Shinshu University (Received May 9, 1970)

Throughout the present paper, we assume that Δ is a ring with identity 1, Γ a subring with the same identity whose center contains a field of characteristic $\neq 2$. Further $[\Delta: \Gamma]_r = 2$ if there exists a right Γ -free basis for Δ . Then the followings are well known.

i) If Δ , Γ are fields, then Δ/Γ is a Galois extension.

ii) (Jacobson) If Δ is a division ring and Γ is a finite dimensional central division ring, then Δ/Γ is a Galois extension [3].

iii) (Tominaga) If Δ is a simple ring and Γ is a finite dimensional central simple algebra, then Δ/Γ is a Galois extension [6].

Let $\Delta = Q[X]/(X^2)$ where Q is the field of rational numbers. Then $\Delta = Q \oplus \alpha Q$ is a free Q-module of rank 2 where α is the residue class of X modulo (X^2) . Then Δ/Q is non-Galois. For if σ is an arbitrary Q-automorphism of Δ , then $\sigma(\alpha) = \alpha q$ for some $q \in Q$ since $\alpha^2 = 0$. Let \mathfrak{M} be a maximal ideal of Δ containing αQ , $\beta = q_0 + \alpha q_1 (q_0, q_1 \in Q)$ an arbitrary element of Δ . Then $\sigma(\beta) - \beta = \alpha (qq_1 - q_1) \in \mathfrak{M}$. Hence Δ/Q is non-Galois by Th. 1.3, (f) of $\lceil 2 \rceil$.

In this paper, we shall give

iv) Necessary and sufficient conditions for Δ/Γ to be a σ -Galois extension for some automorphism σ of Δ of order 2 when Δ , Γ are commutative rings and $\Delta = \Gamma + \alpha \Gamma$ is Γ projective such that $\{1 \otimes 1, \alpha \otimes 1\}$ is a $\Gamma_{\mathfrak{m}}$ -free basis of $\Delta_{\mathfrak{m}}$ for each maximal ideal \mathfrak{m} of Γ .

In the subsequent studies, we assume that Δ , Γ are commutaive.

Let $\Delta = \Gamma + \alpha \Gamma$ for some $\alpha \in \Delta$. Then we may assume that $\alpha^2 \in \Gamma$. For, if $\alpha^2 + \alpha \gamma_1 + \gamma_0 = 0$ for some γ_0 , $\gamma_1 \in \Gamma$, $\{1, \beta = \alpha + \gamma_1/2\}$ forms a system of Γ -generator for Δ and $\beta^2 \in \Gamma$.

Hence, in what follows, a system of Γ -generator (or a Γ -free basis) $\{1, \alpha\}$ for Λ , we mean such one that $\alpha^2 \in \Gamma$.

Lemma 1 Let $\Delta = \Gamma + \alpha \Gamma$ be Γ -projective such that $\{1 \otimes 1, \alpha \otimes 1\}$ is a free $\Gamma_{\rm m}$ -basis for $\Delta_{\rm m}$ for each maximal ideal ${\rm m}$ of Γ where $\Gamma_{\rm m}$ is a localization of Γ at

KAZUO KISHIMOTO

 \mathfrak{m} and $\Delta_{\mathfrak{m}} = \Delta \otimes_{\Gamma} \Gamma_{\mathfrak{m}}$. Then the correspondence $\sigma : \gamma_0 + \alpha \cdot \gamma_1 \rightarrow \gamma_0 - \alpha \cdot \gamma_1 \ (\gamma_0, \gamma_1 \in \Gamma))$ of Δ is an automorphism of Δ (of order 2) and $\Delta^{\sigma} = \Gamma$.

$$\begin{array}{ccc} 0 & \longrightarrow & \mathcal{A} & \xrightarrow{\Pi \iota_{\mathfrak{M}}} & \Pi_{\mathfrak{M}} \mathcal{A}_{\mathfrak{M}} & (\text{exact}) \\ & & & \downarrow \sigma & & \downarrow \overline{\sigma} \\ 0 & \longrightarrow & \mathcal{A} & \xrightarrow{\Pi \iota_{\mathfrak{M}}} & \mathcal{M}_{\mathfrak{M}} \mathcal{A}_{\mathfrak{M}} & (\text{exact}) \end{array}$$

Hence σ is a Γ -automorphism of Δ as a Γ -module.

Now $\sigma((\gamma_0 + \alpha \circ \gamma_1)(\gamma_0' + \alpha \circ \gamma_1')) = \sigma(\gamma_0 \gamma_0' + \alpha^2 \gamma_1 \gamma_1' + \alpha(\gamma_1 \gamma_0' + \gamma_0 \gamma_1')) = \gamma_0 \gamma_0' + \alpha^2 \gamma_1 \gamma_1' - \alpha(\gamma_1 \gamma_0' + \gamma_0 \gamma_1') = (\gamma_0 - \alpha \gamma_1)(\gamma_0' - \alpha \circ \gamma_1') = \sigma(\gamma_0 + \alpha \circ \gamma_1)\sigma(\gamma_0' + \alpha \gamma_1')$ yields at once σ is an automorphism of \varDelta of order 2.

Proposition 1. Let Γ be a local ring, Δ a free Γ -module of rank 2 with a Γ -free basis $\{1, \alpha\}$.

a) Δ/Γ is a σ -Galois extension where σ is an automorphism of Δ of order 2 if and only if $\alpha^2 \in U(\Gamma)$, the group of units of Γ .

b) $\alpha^2 \in J(\Gamma)$, the Jacobson radical of Γ , if and only if $J(\varDelta) \cong J(\Gamma) \varDelta$. Moreover, if this is the case, $J(\varDelta) = J(\Gamma) \oplus \alpha \Gamma$, and \varDelta is local.

Proof. a) Let Δ/Γ be a σ -Galois extension. Then, since Δ/Γ is separable and $\Delta \cong \Gamma[X]/(X^2 - \alpha^2)$, we can see that $X^2 - \alpha^2$ is a separable polynomial. Hence $\alpha^2 \in U(\Gamma)$ by Cor. 2.4 of [4].

Conversely, let σ be the map defined by $\gamma_0 + \alpha \cdot \gamma_1 \rightarrow \gamma_0 - \alpha \cdot \gamma_1$ ($\gamma_0, \gamma_1 \in \Gamma$). Then σ is an automorphism of Δ with $\Delta^{\sigma} = \Gamma$. Now since $\alpha^2 \in U(\Gamma)$, $-(\alpha^{-1})\sigma(\alpha) \cdot 1/2 + \alpha^{-1} \cdot \alpha/2 = 1$, $-(\alpha^{-1})\sigma(\alpha)\sigma(1/2) + \alpha^{-1}\sigma(\alpha/2) = 0$ show that Δ/Γ is a σ -Galois extension.

b) Let \mathfrak{M} be a maximal ideal of Δ . If $\mathfrak{M} \cong J(\Gamma)$, $\Delta = \mathfrak{M} + J(\Gamma)\Delta$. Hence, by Nakayama's Lemma, we have a contradiction $\Delta = \mathfrak{M}$. Thus $J(\Gamma) \subseteq \cap \mathfrak{M} = J(\Delta)$, and hence $J(\Gamma)\Delta = J(\Gamma) \oplus \alpha J(\Gamma) \subseteq J(\Delta)$. Now, assume that $\alpha^2 \in J(\Gamma)$. Then $\alpha^2 \in J(\Delta)$ $\subseteq \mathfrak{M}$ for each maximal ideal \mathfrak{M} of Δ yields $\alpha \in \mathfrak{M}$ and so $\alpha \in J(\Delta)$. Consequently, we have $J(\Gamma)\Delta = J(\Gamma) \oplus \alpha J(\Gamma) \subseteq J(\Gamma) \oplus \alpha \Gamma \subseteq J(\Delta)$. On the other hand, if $\gamma_0 + \alpha \cdot \gamma_1 \in J(\Delta)$, then $\gamma_0 \in J(\Gamma)$ since $\alpha \cdot \gamma_1 \in J(\Delta)$. Thus we obtain $J(\Delta) = J(\Gamma) \oplus \alpha \Gamma$. Next, let $\gamma_0 + \alpha \cdot \gamma_1$ and $\gamma_0' + \alpha \cdot \gamma_1'$ be non units of Δ . Then γ_0 , γ_0' are so in Γ , and hence $\gamma_0 + \gamma_0' \in J(\Gamma)$, since Γ is local. From this, we obtain $(\gamma_0 + \alpha \gamma_1) + (\gamma_0' + \alpha \gamma_1') = (\gamma_0)$

^{*} Cf. Corollaire I, Chap. II, §3 of [1].

 $+\gamma_0') + \alpha(\gamma_1 + \gamma_1') \in J(\Gamma) \oplus \alpha\Gamma \subseteq J(\Delta)$. Thus $J(\Delta)$ is the set of non units of Δ . Conversely, let $J(\Delta) \supseteq J(\Gamma)\Delta$. If $\alpha^2 \notin J(\Gamma)$, then $\alpha^2 \in U(\Gamma)$, since Γ is local. Then Δ/Γ is Galois by **a**). But this yields a contradiction $J(\Delta) = J(\Gamma) \Delta$ by Prop. 7.8 of [5].

Corollary 1. Let Γ be local, Δ a free Γ -module of rank 2. Then the followings are equivalent.

- a) Δ/Γ is a σ -Galois extension where σ is an automorphism of Δ of order 2.
- **b**) If $\{1, \alpha\}$ is a Γ -free basis for Λ , then $\alpha^2 \in U(\Gamma)$.
- c) $J(\varDelta) = J(\Gamma)\varDelta$.

Proof. a) \geq b), c) \rightarrow b) are direct consequences of Proposition 1.

a) \rightarrow **c**). Since $\Delta/J(\Gamma)\Delta$ is a σ -Galois extension over $\Gamma / J(\Gamma)\Delta_{\cap}\Gamma$, if we note that $J(\Gamma)\Delta_{\cap}\Gamma = J(\Gamma)$, $\Delta / J(\Gamma)\Delta$ is a -Galois extension over a field $\Gamma \oplus J(\Gamma)\Delta / J$ ($\Gamma)\Delta$. Hence $\Delta / J(\Gamma)\Delta$ is semi-simple. Thus $J(\Delta) = J(\Gamma)\Delta$.

Theorem 1. Let $\Delta = \Gamma + \alpha \Gamma$ be Γ -projective such that $\{1 \otimes 1, \alpha \otimes 1\}$ is a $\Gamma_{\mathfrak{n}\mathfrak{l}}$ -basis of $\Delta_{\mathfrak{n}\mathfrak{l}}$ for each maximal ideal \mathfrak{m} of Γ . Then Δ / Γ is a σ -Galois extension where σ is an automorphism of Δ of order 2, if and only if, $\alpha^2 \in U(\Gamma)$.

Proof. By Lemma 1, there exists an automorphism σ of Δ (of order 2) defined by $\sigma(\gamma_0 + \alpha \cdot \gamma_1) = \gamma_0 - \alpha \cdot \gamma_1$ and $\Delta^{\sigma} = \Gamma$. Hence, if $\alpha^2 \in U(\Gamma)$, we can easily see that the existence of a σ -Galois coordinate system of Δ / Γ as similar methods as that of Proposition 1. Conversely, if Δ / Γ is Galois, then Δ / Γ is separable. As is shown in Prop. 2.3 of [4], Δ / Γ is separable if and only if $\Delta_{\rm nt} / \Gamma_{\rm nt}$ is separable for each maximal ideal ut of Γ . Since Δ / Γ is σ -Galois, so is $\Delta_{\rm nt} / \Gamma_{\rm nt}$. Hence $\alpha \otimes 1 \in \Delta_{\rm nt} = \Delta \otimes_{\Gamma} \Gamma_{\rm nt}$ is contained in $U(\Delta_{\rm nt})$ by Proposition 1. Thus $\alpha^2 \otimes 1 = 1 \otimes$ $\alpha^2 \in U(\Gamma_{\rm nt})$. This shows that $\alpha^2 \in U(\Gamma)$, since $\alpha \in \Gamma - {\rm nt}$ for each maximal ideal ut of Γ .

Corollary 2. Let $\Delta = \Gamma + \alpha \Gamma$ be a free Γ -module of rank 2. Then Δ/Γ is a σ -Galois extension where σ is an automorphism of Δ of order 2 if and only if $\alpha^2 \in U(\Gamma)$.

References

- [1] BOURBAKI, N. : ALGÈBRE COMMUTATIVE, Chap. 1-Chap. 2, HERMANN.
- [2] CHASE, S. U., D. K. HARRISON and A. ROSENBERG, : Galois theory and Galois cohomology of commutative rings, Mem. Amer. Math. Soc., No. 52 (1965).
- [3] JACOBSON, N.: A note on two dimensional division ring extensions, Amer. J. Math., Vol. 77 (1955), 593-599.
- [4] JANUSZ, G. J.; Separable algebras over commutative rings, Trans. Amer. Math. Soc., Vol. 122 (1966), 461-479.

Kazuo Kishimoto

- [5] MIYASHITA, Y.: Finite outer Galois theory of non-commutative rings, J. Fac. Sci. Hokkaido Univ., Vol.19 (1966), 114-134.
- [6] TOMINAGA, H.: On a theorem of N. Jacobson, Proc. J. Acad., Vol. 31 (1955), 653-654.