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Throughout the present paper, we assume that 4 isa ring with identity 1, [~
a subring with the same identity whose center contains a field of characteristic
# 2. Further [4: "], = 2 if there exists a right /" -free basis for 4. Then the
followings are well known. ‘

i) If 4, I" are fields, then 4 /I is a Galois extension.

ii) (Jacobson) If 4 is a division ring and I" is a finite dimensional central
division ring, then 4/ is a Galois extension {3].

ili) (Tominaga) If 4 is a simple ring and " is a finite dimensional central
simple algebra, then 4/ is a Galois extension (6. .

Let 4=Q[X]/(X? where @ is the field of rational numbers. Then 4=Q Pa @
is a free @-module of rank 2 where a is the residue class of X modulo (X?). Then
4/Q is non-Galois. For if ¢ is an arbitrary @-automorphism of 4, then ¢ (0)=agq
for some ¢ Q since «®=0. Let M be a maximal ideal of 4 containing « @,
B = qs -+ ags (o, g:=Q) an arbitrary element of 4. Then o(8) — 8 = a (gg; —q)eM.
Hence 4 /@ is non-Galois by Th. 1.3, (f) of [2].

In this paper, we shall give

iv) Necessary and sufficient conditions for 4/I" to be a ¢-Galois extension
for some automorphism ¢ of 4 of order 2 when 4, I' are commutative rings and
4d=1T 4ol is [" projective such that {I® I, a«a® I} is a [y-free basis of 4y, for
each maximal ideal m of I'.

In the subsequent studies, we assume that 4, [’ are commutaive.

Let 4=1T + ol for some « € 4. Then we may assume that a2 € I'. For, if
a® + aypy + 1o= 0 for some 3, nel, {I, f=a-+r/2} forms a system of I’
-generator for 4 and g2 eI,

Hence, in what follows, a system of I' -generator (or a I' -free basis) {1, «}
for 4, we mean such one that a2 = I,

Lemma 1 Let d=10 +al be I' -projective such that {1Q 1, a ® I} is a free
'y -basis for 4y, for each maximal ideal wm of I where I'y is a localization of I' at
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w oand 4y =4 Qr I'y. Then the correspondence o @ vy + asys —> 79 — asyy {70, 71 € 1)
of 4 is an automor phism of 4 (of order 2) and 4° =TI

Proof. Let m be an arbitrary maximal ideal of I". Then the map Iy : 4~
gdm defined by 6-—>(---, d® 1, -)* is a ['y-monomorphism. Now the map ¢ of
{de defined by (-, (7o + @sr) ® 1, ) > (-, (7o — 7)) ® 1, -+-) is a ['y-automorphism.

If potayi=yp Farlyy ri' €0), cllog (o — 10"} + alyy — 1) = o+, {ro — 710’
Ty — VL )= e —1r)—alyy — 'V L )= Hen((ro— 1) — alys — 1)) =0.
Hence 74 — 70/ — a{y1 — 71') = 0. This means that ¢ is well defined, and hence the
following diagram is commutative

Heg

Hydy (exact)

4
laﬁ‘m
0 >4

> w4y, (exact)

Hence o is a ' -automorphism of 4 as a I -module.

Now o((ye + aeys) (ro' + aeri') = olyore’ + i’ -+ alyre’ + ror1') = rore’ + i’ —
alyare’ + 7or1') = (ro — ard (1’ — aeyt') = o (fo+ ay1) o(re’ + ayy’) yields at once ¢ is an
automorphism of 4 of order 2.

Proposition 1. Let I" be a local ving, 4 a free I -module of rank 2 with a I -free
basis {1, a}.

a) 4/I' is a o-Galois extension where o is an automorphism of 4 of order 2 if
and only if a® = U(I'), the group of units of I'.

b) o € JUI'), the Jacobson radical of I, if and only if J(d)R J(")4. Moreover,
if this is the case, J(d)= JUYP al', and 4 is local.

Proof. a) Let 4/I" be a o-Galois extension. Then, since 4/I" is separable and
A= I'TX]/(X?—a?, we can see that X2 —«? is a separable polynomial. Hence a? &
UI') by Cor. 2.4 of [4].

Conversely, let ¢ be the map defined by 7o + asy1 = 70 — acr1 (yo, 71 € I'). Then
¢ is an automorphism of 4 with 4°=1[". Now since a® € U(I"), — (@ Y a(a)e 1/2 +
ateq/2 =1, — (@ YVol@)o(1/2) + a o (a/2) = 0 show that 4/["is a o-Galois extension.

b} Let M be a maximal ideal of 4. If MP|JI), 4 =M + J([)4. Hence, by
Nakayama’s Lemma, we have a contradiction 4 =9  Thus J(I') < n M =J({4),
and hence J(I"4 =D« JIY £ J4). Now, assume that «?e J(I'). Then a? € J(4)
SM for each maximal ideal M of 4 yields « € M and so a € J(4). Consequently,
we have JUMd=]JPaJINS/\Pal' & J(4). On the other hand, if 7o+ aeyy
& J(d), then 7, € J(I') since aey; € J(4). Thus we obtain J(d)= J(I')@® al”. Next, let
7o + a7y and o’ + asyy’ be non units of 4. Then 7, 7 are so in I', and hence
7o + 70’ € JU), since I" is local. From this, we obtain (yo + ary) + (ro’ + ari') = (1o

* Cf, Corollaire I, Chap. 1, §3 of [17.
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+ 71Vt art+rYe DB al = J(4). Thus J(4) is the set of non units of 4.
Converszly, let J(d) 2 J(N4. If o® & J(I'), then o € U{I"), since I' is local. Then
4/T" is Galois by a). But this yields a contradiction /(4)= J(I") 4 by Prop. 7.8 of
L57.

Corollary 1. Let I' be local, 4 a free I'-module of wvank 2. Then the followings
are equivalent.

a) 4/I is a o-Galois extension wheve ¢ is an automorphism of 4 of ovder 2.

by If {1, a«}is al -free basis for 4, then ot < UI).

o) Jid) = J(d.

Proof. a) 2 b), ¢)—>b) are direct consequences of Proposition 1.

a)-—~>c). Since 4/J([4d is a o-Galois extension over ['/J([dnIl', if we. note
that J(Ndnl = J(I"), 4/ (N4 is a -Galois extension over a field '@ N4 /]
(I"d. Hence 4/ J(I"4 is semi-simple. Thus J(d)= J(I")4.

Theorem 1. Let 4 =1"+ al’ be I'-projective such that {1Q 1, a@ 1} is a I'y
-basis of 4y for each maximal ideal m of I Then 4/ is a o-Galois extension
where o is an automorphism of 4 of ovder 2, if and only if, o € U(D).

Proof. By Lemma I, there exists an automorphism ¢ of 4 (of order 2) defined
by o(re + acy1) = 7o — @y and 4 =1, Hence, if o € U({"), we can easily see that
the existence of a o-Galois coordinate system of 4 /1" as similar methods as that
of Proposition 1. Conversely, if 4/" is Galois, then 4/I' is separable. As is
shown in Prop. 2.3 of [4), 4/I" is separable if and only if 4y//"y is separable
for each maximal ideal m of I'.  Since 4/I" is ¢-Galois, so is 4dy/I'y.  Hence
a®1le dy =4Rr"y is contained in U{dy) by Proposition I. Thus 2QRI=1®
a e Uly). This showsthat a®< U(l'), since a & ['—m for each maximal ideal
w of I

Covollary 2. Let d =1+ ol be a free I'-module of rank 2. Then 4/I" is a
o-Galois extension wherve o is an automorphism of 4 of order 2 if and only if
at e U
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