A Note on Complex Characters of Finite Groups

By KAORU MOTOSE

Department of Mathematics, Faculty of Science, Shinshu University (Received May 11, 1970)

Let G be a finite group, P a p-Sylow subgroup of G where p is a prime number, and χ and θ complex characters of G. For a natural number m, we set $\chi^{(m)}(g) = \chi(g^m)$ $(g \in G)$. Then $\chi^{(m)}$ is a class function on G. If every irreducible character of G is an induced character of a linear character of a normal subgroup of G, then we call G an M^* -group.

The purpose of this paper is to prove the following

Theorem.¹⁾ If every subgroup of P is an M^* -group, then $\chi^{\langle p \rangle}$ is contained in the character ring of G.

Corollary. If P is abelian, then $\chi^{\langle p \rangle}$ is contained in the character ring of G. We shall need some lemmas to prove this theorem.

Lemma 1. The inner product $(\chi^{(m)}, \theta)$ of $\chi^{(m)}$ and θ is a rational number.

Proof. For g, $h \in G$, let $g \sim h$ if $\langle g \rangle = \langle h \rangle$. It is evident that " \sim " is an equivalence relation and $g \sim h$ if and only if $g = h^i$ for some *i* with $(i, |\langle g \rangle|) = 1$. If C_g is an equivalence class of g with respect to \sim , $\sum_{h \in C_g} \chi(h^m) \theta(h)$ is invariant by all elements of the Galois group of $Q_{|\langle g \rangle|}$ over Q.²⁾ Hence, the assertion is clear.

Lemma 2. Let G be an M^* -group. If χ is irreducible and θ is linear, then $(\chi^{\langle m \rangle}, \theta)$ is an integer.

Proof. Since G is an M^* -group, there exist a normal subgroup H of G and a linear character η of H such that χ is an induced character or η . Let $G = \bigcup_{i=1}^{e} Ha_i$ be the right coset decomposition of G modulo H. Then

$$\begin{split} &(\chi^{\langle m \rangle}, \ \theta) = \frac{1}{|H|} \sum_{g \in G} \eta(g^m) \overline{\theta(g)} \\ &= \frac{1}{|H|} \sum_{i=1}^{e} \sum_{h \in H} \eta((ha_i)^m) \ \overline{\theta(ha_i)} \\ &= \sum_{i=1}^{e} \{\frac{1}{|H|} \sum_{h \in H} (\eta \eta^{a_i} \cdots \eta^{a_i}^{m-1})(h) \overline{\theta(h)}\} \eta(a_i^m) \overline{\theta(a_i)} \end{split}$$

1) Cf. [1, (3, 5)].

2) Q denotes the rational number field and $Q_{|\langle g \rangle|}$ the field of $|\langle g \rangle|^{\text{th}}$ roots of unity over Q.

$$=\sum_{i=1}^{e}(\eta\eta^{a_{i}}\cdots\eta^{a_{i}})^{m-1}, \quad \theta_{H}\rangle_{H}\eta(a_{i})^{m}\overline{\theta(a_{i})}.$$

Therefore, $(\chi^{\langle m \rangle}, \theta)$ is an algebraic integer, and so an integer by Lemma 1.

Lemma 3 If χ is irreducible, θ is linear and (|G|, m)=1, then $(\chi^{\langle m \rangle}, \theta)=0$ or 1.

Proof. Since |G| and *m* are relatively prime, $g \to g^m$ is a permutation on *G* and $(\chi^{\langle m \rangle}, \theta) = (\chi, \theta^k)$ where $mk \equiv 1 \mod |G|$. Since θ^k is an irreducible character, we obtain the assertion.

Proof of Theorem. By Brauer induction theorem and Frobenius reciprocity theorem, it suffices to prove that for an irreducible character ω and a linear character η of an elementary subgroup H of G, $(\omega^{\langle p \rangle}, \eta)$ is an integer. If H is *p*-elementary, then by [1, (6.3)], and Lemma 2, $(\omega^{\langle p \rangle}, \eta)$ is an integer. If H is *q*-elementary $(q \neq p)$, then by Lemma 3, $(\omega^{\langle p \rangle}, \eta)$ is an integer.

Reference

[1] W.FEIT: Characters of finite groups, Benjamin, New York, 1967.