A Note on Complex Characters of Finite Groups

By Kaoru Motose
Department of Mathematics, Faculty of Science, Shinshu University
(Received May 11, 1970)

Let G be a finite group, P a p-Sylow subgroup of G where p is a prime number, and χ and θ complex characters of G. For a natural number m, we set $\chi^{\langle m\rangle}(g)=\chi\left(g^{m}\right) \quad(g \in G)$. Then $\chi^{\langle m\rangle}$ is a class function on G. If every irreducible character of G is an induced character of a linear character of a normal subgroup of G, then we call G an M^{*}-group.

The purpose of this paper is to prove the following
Theorem. ${ }^{1)}$ If every subgroup of P is an M^{*}-group, then $\chi^{\langle p\rangle}$ is contained in the character ring of G.

Corollary. If P is abelian, then $\chi^{\langle\phi\rangle}$ is contained in the character ring of G.
We shall need some lemmas to prove this theorem.
Lemma 1. The inner product $\left(\chi^{\langle m\rangle}, \theta\right)$ of $\chi^{\langle m\rangle}$ and θ is a rational number.
Proof. For $g, h \in G$, let $g \sim h$ if $\langle g\rangle=\langle h\rangle$. It is evident that " \sim " is an equivalence relation and $g \sim h$ if and only if $g=h^{i}$ for some i with $(i,|\langle g\rangle|)=1$. If C_{g} is an equivalence class of g with respect to $\sim, \sum_{h \in C_{g}} \chi\left(h^{m}\right) \theta(h)$ is invariant by all elements of the Galois group of $Q_{\langle\beta\rangle\rangle}$ over Q. ${ }^{2)}$ Hence, the assertion is clear.

Lemma 2. Let G be an M^{*}-group. If χ is irreducible and θ is linear, then $\left(\chi^{\langle m\rangle}, \theta\right)$ is an integer.

Proof. Since G is an M^{*}-group, there exist a normal subgroup H of G and a linear character η of H such that χ is an induced character or η. Let $G={\underset{i=1}{e} H a_{i}}^{i}$ be the right coset decomposition of G modulo H. Then

$$
\begin{aligned}
\left(\chi^{\langle m\rangle}, \theta\right) & =\frac{1}{|H|} \sum_{g \in G} \eta\left(g^{m}\right) \overline{\theta(g)} \\
& \left.=\frac{1}{|H|} \sum_{i=1}^{e} \sum_{h \in H} \eta \eta\left(h a_{i}\right)^{m}\right) \overline{\theta\left(h a_{i}\right)} \\
& =\sum_{i=1}^{e}\left\{\frac{1}{|H|} \sum_{h \in H}\left(\eta \eta^{a_{i}} \cdots \eta^{a_{i}{ }^{m-1}}\right)(h) \overline{\theta(h)}\right\} \eta\left(a_{i}{ }^{m}\right) \theta\left(a_{i}\right)
\end{aligned}
$$

[^0]$$
=\sum_{i=1}^{e}\left(\eta \eta^{a_{i}} \cdots \eta^{a_{i}}{ }^{m-1}, \quad \theta_{H}\right)_{H} \eta\left(a_{i}^{m}\right) \overline{\theta\left(a_{i}\right)} .
$$

Therefore, $\left(\chi^{\langle m\rangle}, \theta\right)$ is an algebraic integer, and so an integer by Lemma 1.
Lemma 3 If χ is irreducible, θ is linear and $(|G|, m)=1$, then $\left(\chi^{\langle m\rangle}, \theta\right)=0$ or 1 .
Proof. Since $|G|$ and m are relatively prime, $g \rightarrow g^{m}$ is a permutation on G and $\left(\chi^{\langle m\rangle}, \theta\right)=\left(\chi, \theta^{k}\right)$ where $m k \equiv 1 \bmod |G|$. Since θ^{k} is an irreducible character, we obtain the assertion.

Proof of Theorem. By Brauer induction theorem and Frobenius reciprocity theorem, it suffices to prove that for an irreducible character ω and a linear character η of an elementary subgroup H of G; $\left(\omega^{\langle p\rangle}, \eta\right)$ is an integer. If H is p-elementary, then by $[1,(6.3)]$, and Lemma 2, $\left(\omega^{\langle\phi\rangle}, \eta\right)$ is an integer. If H is q-elementary $(q \neq p)$, then by Lemma 3, $\left(\omega^{\langle p\rangle}, \eta\right)$ is an integer.

Reference

[1] W.Feit: Characters of finite groups, Benjamin, New York, 1967.

[^0]: 1) $\mathrm{Cf} .[1,(3,5)]$.
 2) Q denotes the rational number field and $Q_{|\langle g\rangle|}$ the field of $|\langle g\rangle|$ th roots of unity over Q.
