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Introduction. It is known that if X is arcwise connected, arcwise locally
connected, and semi locally I-connected, then the equivalence classes of principal
bundles over X with structure group &, a tatally disconnected group, are in I-1
correspondence with the equivalence classes (under inner automorphisms of @) of
homonorphisms of #;(X) into & ([10], §11).

The purpose of this paper is to extend this result for general bundles. OQur
result, which is given in §3 as theorem 1, is stated as follows : If X s an arcwise
connected metric space and satisfies the following condition (*),

(*) for any x€X, there exists a neighborhood Ulx) of x such that for any y< U(x),
there exists a path yy, which has finite length and starts from x ends at y and
depend continuously on y by the path space topology,

and G is a topological group such that whose projection onto the space of conjugate
classes of G has local sections, then the equivalence classes of principal bundles over
X with structure group G are in 1-1 corvespondence with the continuous maps from
X into the space of equivalence classes (under Inner automor phisms of &) of continuous
homomor phisms of [2r(X)] into G. Here 27(X) means the space of loops with finite
length over X and [@r(X )j is the group obtained from 2r(X) by the following
relations (cf. [37).

a~ B if als) = AM(s)), heH*(I), the group of orientation preserving homeomo-
rphisms of I =1[0, 1],
arfe By ~ aja, where BY(s) = p(1-9).

For arbitrary topological group &, we also obtain the following theorem 1'.
Theorem 1'. If X is same as in theovem 1, then the equivalence classes of principal
bundles over X with structure group G ave in 1-1 corrvespondence with the set of
continuous map y from X into the space of equivalence classes (under inner automor -
phisms of G) of continuous homomorphisms of [LQr(X)] into G such that there exists
an open covering {U} of X (may be depend on y) and continuous map yy from U
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into the space of continuous homomorphisms of [L2r(X)] into G (with compact open
topology) for any U = {U?} such that

the class of yy(x) is the value of y(x) for any x & U.

This theorem 1’ is also given in §3.
In §1, we prove the following lemma 1. Lemma 1. If & and 7 are principal
G and H-bundles over X such that =* () is trivial over X wheve X: is the latal
space of & and = is the projection from X: onto X. Then there is a continuous map
x Jrom X into Hom. (G, H), the space of equivalence classes (under inner automor-
phisms) of continuous homomor phisms from G into H such that
(i), there exists an open covering {U} of X such that for any UVUV, there is a
continuous map from UUVV into the space of continuous homomorphisms of G into
H (with compact open topology) such that the class of its value at x is the value of
x for any x = UVUYV,
(ii), denoting the tramsition functions of &€ and n by {yyv(%)} and {guv(x)} (U3 also
satisfies (i) for y), there exists continuous map fy : U-H for any UcsU such that

uv(%) = fu(Oxuv(®)ov@) (@)

In §2, we prove
(a). [EA(X)] is a contractible space.

(b). [Er(X)] is the tatal space of a principal [ 2r(X)]-bundle over X. Here [Er(X)]
is the quotient space of Er(X), the space of paths with finite length over X with
a basepoint, defined similarly as [£r(X)]. ‘

Combining lemma 1 and the above (a), (b), we obtain theorem 1 and 1’ in
§3.

In §3, we treat the differentiable case. In fact, the proof of theorem 1 can
not applied for differentiable case. Because we do not know whether =* (y) is
differentiable trivial or not over [Er(X)] for a differentiable bundle 7 over X in
general. Here = is the projection from [Er(X )] onto X. But if we use EroX)
and 2,r,0X) instead of Ef(X) and £y (X), we obtain similar result for differen-
tiable bundles. Here Eo o X) and 2,16 X) are given by

By 1ol X) = {a|la: I+X belongs in k-th Sobolev space and ofa) = «{0),
al —a)=al) if 0=a=<e for some &},
Qo,1,o(X) = {8| B belongs in EzroX) and p0) = (1) ==, the base point},

(cf. [3].) In §3, we also give a differentiable version of lemma 1.

It has been known that hte topological structure of the loop space £(X) over
X has deep connection with that of X. But it seems that the results of this paper
and [3] sugest the algebraic structure of £2(X) also has deep connection with the
topological structure of X. In fact, there are some other results to sugest this.
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For example, Chen has shown
(i). If X is a smooth manifold, and w, +--- , @, forms 1 -form basis at any point
of X (wy(x), «ee , 0,(%x) need not be linear independent), then setting

6l =1+ Z Z,Pair--ii)Xil-"XiP“-y

=1 B SV §

Qjyip = S 0:1 Q- R0is,

where {X,, -+, X,,} are non -commutative indeterminants, 6 is an into isomorphism
Jrom [ X)] (defined from QX) similarly as [2r(X)] into Tr[[ Xy, -, X, 1], the
free tensor algebra over R with generators Xy, -+, X. (4], [5]).

(ii). log O(a) is a Lie element for any « (4], [97)) and denoting the Lie algebras {log
)}, a = E(X) and {leg 8(8)}, B AX) by YLEX)] and LAX)], we have

YLAXYY/DRLEX)]n8LAX)] = HY(X, R),

where DAL E(X)]) is the second derived ideal of L E(X)] ([6]).
It seems that these results may have some relations to algebraic homotopy
theory (cf. [7]. '

§1. Proof of lemma 1.

Let X he a paracompact normal space, then any fibre bundle over X is
represented by its transition functions ((87]). Hence we may write a bundle by
its transition functions.

Lemma 1. Let X be a paracompact normal space, & = {ryy(x)} and y ={gyv(*)}
are principal G and H -bundles over X such that =*(y) is trivial over X, the tatal
space of &€ and = is the projection from X. onto X, then there is a conlinuous map
x Jrom X into Hom. (G, H), the space of equivalence classes (under inner automo-
vphisms) of the continuous homomorphisms from G inte H with the induced toplogy
of the compact open topology, and an open covering {U?} of X such that
(i), for any UVV, U, Ve{U?}, there is a continuous map yyy from UVV into the

space of comtinuous homomorphisms from G nto H (with compact open topology)
such that

the class of yyv(x) = y(x), x = UVV,

(ii), the tramsition functions [yyy (x)] of & is defined by the open covering {U%} aod
there exists continuous map fy: U—>G for any U e {U7} such that

ey uv(%) = fulxuvx) rov@)fr(x) !,

for any UnV, where {gyy(x)} is the transition funclion of 7.
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Proof. We denote the elements of X by %, », -+, and the elements of G by
«, B, -+, then by assumption, we get
(2 Erx(m(E)=hu(x, ahv(%, r==v)E)™,

where {U7} is an open covering of X, such that
(a). & is trivial on Urynz(vy=en(V) for any Ue {U},
(b). each U is written as

U=={U)xS, S is an open set of G.

For the simplicity, we denote gyy(x), etc., instead of gr(uy=(v)(x), etc., in the
rest.
Since gyy(x) does not depend on «, we also have

@ guv(x) = hu(x, Phvi(x, yuv(®)BY, a6,
where U’, V' may be different from U, V but must satisfy
2U) = z(U"), a(V)==(V").
By (2) and (2), we get (here 8 need not be different from «)
hu(x, &) 'ho(x, B) = hv(x, ruvx)a) kv (%, rovx)p).
Hence setting
0, a, B2 (=(U)) = hvlx, a)'ho(x, )
x, «, B)is a continuous map from X . into H, where X, ¢ is given by

Xee= L[}(”(U) XGX G)/~,

f(U)XGXG D xXaXf~xXryy@ax rpy@acn(V)x GX G,
and 7 is the projection from Xg¢ onto X. In the rest, we denote U instead of
2 x(U)).

By (a), & has a cross -section s=sp{x) on U=z(u)n=(vy=sn(V). Using this s, we
set

hx, &)|z~(a(U)) = 0x, s, a)|a~Ya(U)).

Although X{x, «) might not be defined on X but by definition, it is defined on
" Uznns(=a(V). Hence for a fixed x, it is defined for all (x, a), a CG.
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Moreover, since

hx, a) thix, B)= 0(x, su)x), oy 6(x, su(x), p)
= (hu(®, su(®)‘hudx, ) Yhulx, sul)holx, B)
= hye(%, a)hulx, B)
= 0%, a, )

we get
(3) o(x, a, B)= h(x, a)"'h(x, P),

on 7 N xw)nu(vy=ea(V)).
On the other hand, if we get

(%, o, B)=h'(x, &) h'(x, B
on some open set W of YN wyn=(ny=/a(V)), then since
W(x, ahx, B =n'(x, a)i(x, p)!
for arbitrary «, §, we may set
h(x, a) = flo)hix, a
where f is a continuous map from #(W) into H. Hence we can set
) hy(%, ) = fu(X)h(x, a)
Next we set

h(x, “ﬂ): X(x: G{)h(x, 18)‘

Then since
hix, afy) = xx, af)h(x, 7)
= X(x: a)h(xs /37)
= x(x, ay(x, Bh(x, 7)
we have
(4) X{x7 a:B):X(x’ (X)X(x, 18)

We note that setting U = z(U)x S, we can define yy(*, a) by

hU(x! “‘8)=Xu(x, a’)h(/’(xv 18)

43
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if @f and B both contained in S. Butsince we get by (4)
xul®, ) = ful@x, «fvlx),

xul*, @) is defined for arbitrary « € G.
We define yp(x, @) similarly as yy(%, «). Then since we get

hy(x, af) = xu(x, @hylx, B)
= hy(x, ruv®)ap) = v, rov@iv®, ahv(z, )
= (%, ruv®rv®, @hu(x, 7yv(x)'p)
= (% Tov@v® au®, rov) ke, )

we have

xol®, &) = awlx, ror@h(®, ayolr, 7o)

But since by (4)

xu(%, af)

= xvl®%, ajulx, B)

= vl®, rov@vl®, axu®, rovE) ', Tov@, Brul®, ruv(®)!
= (%, Tovi®iv®, afru(®, yuvx)!

= wl®, rov@®, aulx, Brol®, rov),

we get

ol roviE) v, rovx) = e,
where e is the identity of H, for arbitrary V (UnV+ ¢). Hence we can set
(5) w# @) = Pyv(@yu(x, a)Pyy(x),

where Pyy(x) is a continuous map from UnV into H.
Then since

8uv(®) = hyl®, ahy(x, yyyv(*)a)!
= fu@)h(x, a)fvx)(x, ruy(*)a)
= fu@h(x, ahlx, ryv®)a) fyx)?
= ful)h(x, &x(x, rovE)h(x, @) frx)*
= fol(®, ruv®) Urlx)?,
we obtain the lemma, because y is defined on UnV 3£ ¢.
Note. If X, is given by
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Xf = LZ}U'XG/N’ (xy a)'\'(x) arUV(x))y
then setting

Quv(x) = hy(x, o) thylx, aryy(x),
hy(x, a) = h(x, a)fy(x),
Wz, af) = h(x, a)y(x, B),

where X(x, «) is defined similarly as above, we obtain
) Luy(%) = Su(x) (%, ruv(x)fy(x).

§2. Fibering of path spaces.
We denote by E(X) the path space over X with base point*. The loop space
over X is denoted by f(X). As in [3], we define an equivalence relation ~ for
the paths «, 8, -, of E(X) by

aft) ~ Bt if and only if a{t) = F(R(t) or

a=ayy and B = aasos g,

where % is an orientation preserving homeomorphism of ¥ = [0, 1], ajay means
the product of paths and «! is the inverse path of a.

We denote the class of « by this relation ~ by [«] and the quotient spaces of
E(X) and £(X) by this relation are denoted by [E(X)] and [2(X)].

Lemma 2. [o] € [E(X)] is uniquely written in the form

6) L] = [an] -+ [ac], ey, -, & € AX)if a € AX),
ay v, a1 € AX) if a ¢ XX),

where each «; satisfies

(1) a,71(*) is either I or {0W{1} if a;€(X) and a,Y*) = {0} if a, & 2AX),

(i) There are no a and ¢ (0 <a <1, 0 <e <1), such that «; (a+t)= =afa—1) for
te= [0, ¢, unless a; = e, the unit path.

Proof. Since a~4{*) is compact, we set
@) = LV,
where each I, is either a point or a closed interval. We set
Fo=Tlag-1], aa, G <lsjs1, Gomo1 X sy, Q1= 0.

If a,+*a;, then we set a; = ¢, the unit path. If @ = a,, then we set
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ay'(t) = alast).

If o, satisfies (ii), then we take ay' as a;. If ;' does not satisfy (ii), then we set
I=JVJ;, JwwJe=¢, Jo= LZ}[ai — & @ e,

where a; + ¢; <9;41 — €51 and ai'(@; — ) = ai'(@; + £), t [0, &1 Then we set the
lower bound and upper bound of {a;} by ¢ and a and set

ailt) = a'(t), 0=t <a, if aé {a},
afl) = a' (& — e)/a)t), 0Lt <L ay, ifa=a,
a(l) = e'(@;_y + g+ {(a; — @iy + 6oy — &)/(@; — a;))E — a;4)),

G ST,
aft)y = ay/(), a <t <1, if e {a],

al(t) = all(am + Em + ((1 -, 8,,,)/(1 - am))(t . am»a
Qp, g i g 1: lf a = a,,.

Repeating this method, we obtain the decomposition (6). The uniqueness of the
decomposition (6) follows from the definitions of «; (1 <i<s).

If X is a metric space, then denoting the distance of x, y&X by dis. (x, ),
we can define the length of a path by

(g

lim. dis. (ala), ala;.y),

la;—a;_4]—>0i=1

0= ay <a1 < <am-—1 <am - 11

if the limit exists. Then if @, and ay are the paths of X with finite length, the
product ey ap also has finite length. Hence denoting the subspaces of E(X) and
£(X) consisted by the paths of finite length by Er(X) and £¢(X) and their quotient
spaces defined similarly as [E£(X)] and [2(X)] are by [Er(X)] and [27(X), ] [£r(X)]
is a group and operates on [Lr(X)] (cf. [4]).

Lemma 8. [Er(X)] is a contractible space.

Proof. By lemma 2, if [a] € [Er(X)], then we can set

L) = L] - [,

and by the proof of lemma 2, each «; has finite length. Hence we can define the
canonical parameter of a; by its arclength, that is

la, .| = eyl

where |a] means the length of & and «;,, is given by a;,(4) = a;(tu), 0 <1,
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We denote this path by @;. Then we define the canonical representation @ of «
by

alw) = afsu —i+1),

Then for «, the path @, given by @.u) = a(tu) is uniquely determined for 0<#<1.

Hence the map
LEA(X)IXI = ([a], H—[a] e [Er(X)]

gives the contraction of [Er(X)].
Lemma 4. [If X is an arcwise connected metric space and satisfies
(¥), Jfor each x &= X, theve exists a neighborhood Ulx) of x such that for each
y e Ulx), there is a cdnonicalpath Tory Tey0) =%, 1.,.(1)=0y, and has finite
length and as the map from U(x) into the path space, 1., is continuous in y,
then [Ef(X)] is the tatal space of a principal bundle over X with structure group
[24(X)].
Proof. For each x € X, we fix a path y, with finite length such that

72(0) = #, 71.(1) = .

Such path exists by the arcwise connectedness of X and (*).
We denote the projection from [Er(X)] onto X by.x. Then to define the
continuous mappings 7,* : [27(X)]or Yx) and 7, 7" {x)>[Lr(X)] by

7y 1" (Lal) = Lar.], [a] e [2r(X)],
0" ra" L) = [r."'e, ] [a] € 274(x),

we get 7. %7 (7ar: ) =[a] and 7..(r,*((a)=[a]. Hence ="ix) is homeomorphic
to [£27(X)] for each x.

If Ulx) is a neighborhood of x which satisfies the assumption (*), then to
define yu.* : 7" U(x)) > Ulx)x [2¢(X)] by

) rus*(led) = (@), 7aulars, ™))

o™ is a homeomorphism from =~ }U(x)) onto U(x) x [2(X 7).

Since {Ulx), x € X} forms an open covering of X, we take a subcovering {U?}
of {U(x), *€X} and denote yy,,, 7y, 70* Tus and yy* instead of 7.,y 7. 7v."
7.+ and 7.* if U= Ulx). Then on UpV, the homeomorphism 7,*75* 1 : (UnV) x
[Qr(X)] > (Un V[ % 2¢(X)] is given by

7o wlled), ruslaro =)
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= (r{La), rvallarv. = D)
Hence we get

8 v e, @) =, arure.yrvey v Y

Then since ry7u,,7v., 7yt is a loop, yy and 7y are fixed on UnV and 7y,, and
7v,» both depends continuously on y, we have the lemma.

Note. If there is a neighborhood U(4(X)) of 4(X), the diagonal of Xx X, in
XxX such that for any (x, ») € U(4(X)), there corresponds a unique path £,
with finite length which starts from x ends at y and depends continuously on {x,
), then setting

sul®, 3) = [rvrv.elesTvy 7ot

{suy(x, 7} is a topological connection of the bundle ([(EA(X)], [2r(X)], =, X) (cf.
[17). On the other hand, if the bundle ((Ef(X)], [2#(X)], =, X) has a topological
connection {sy{x, 37}, then denoting the canonical representation of sy{(x, ») <
{su(x, 73 given by lemma 3 also by sy(x, ») for each U, the path £, given by

Loy = Tona ru SSul®, Mrutv.w

does not depend on U because we have

v, v isvx, Mrvrv.y
= v v v 2tvT e s o T Su® Yrur. vy iy vy

=1, roTsulx, Mruru.s

if each 7y, 7v.z '+, 18 given by ts canonical form. Since £,y is continuous in
(x, ¥ and starts from x ends at », the existence of above £,y (and U(4(X)), is
the necessary and sufficient condition for the existence of the topological connec-
tion of the bundle ([(Ef(X)], [£2/(X)], =, X).

§ 8 Proof of theorem 1.

Theorem 1. If X satisfies the assumptions of lemma 4, then there is a 1 ito 1
correspondence between the set of the equivalence classes of G -bundles over X and
the set of continuous maps from X into Hom. ((Q2r(X)], @), the space of equivalence
classes (under inner automor phisms) of continuous homomor phisms from [ Qr(X)] into
G (the toplogies of [27(X)] and Hom. [(2r(X)]), G) are both induced toplogies from
the compact open toplogies of Qp(X) and the space of continuous homomor phisms
Jrom [Q7(X)] into &), if the projection from G onto the space of conjugate classes
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of G has local sections.

Proof. If & is a G -bundle over X, then =*¢) is trivial by lemma 3. Hence
=*(&) is obtained by some continuous map from X into the space of continuous
homomorphisms from [£7(X)linto G with the equivalence relation under the
inner automorphisms of ¢ by lemma 1 and lemma 4.

On the other hand, if y is a continuous map from X into Hom. ((2¢(X)], G),
then by assumption, there exists an open covering {U; i I} of X such that
for any Uwnuj= Uj, there exists a continuous map z; from Noauj=,U; into the
space of continuous homomorphisms from [@r(X)] into G (with compact open
toplogy), such that whose class at x, ¥ € Ny;nui=. U; is equal to the value of y
at x.

We denote y;.:,’ either of i; or 4, for any (i, 4). Then by assumption, we get

Xl'zla Pl;lz ! (Pluz) ,

13 XlllZ 2218

if UpnUisnUi~¢. Here P],e is a continuous map from U,VU;VU, into G. Then

since we may consider {P k} only on Uwjuu=,U, we can take P to satisfy

Jle

Pixs pizis pisis — o the identity of G,

talg 13117 t172

on UinUinUi. Hence denoting <& the sheaf with base space I (with discreet
topology), stalk at ¢ is the space of continuous maps from U, into G, ?;;ﬁ isal

-cocycle of &% with covering system {({, 7)}, where P]k is given by
Pi(j) = P U,

Then since I is discreet, we get

9) Piridi)= fi,; (i) Fruialia) ™

Then we set
fif®) = (fi;0)(x), x €U,

and define
Xij = Jij i SFijs

on U;nU,;.

On the other hand, since we may assume the bundle [Ef(X)], [2r(X)], =,
X) is trivial on each U;, i €I, we denote its transition functions with covering
system U, i I by {7:;x)}. Then setting
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&%) = x:(%)(r: (%),

{g:(x)} defines a G -bundle by (9).
Moreover, if y(£) is the map from X into Hom. ([(£r(X)], G) obtained from ¢,
a G -bundle over X, then we get

(10) {W0ov@rovix)} ~ &,
(10) Ko@) ruvx) = (%),

we have the theorem.

Corollary ([100). If X satisfies the assumptions of lemma 4, G is a tatally
disconnected group, then there is a 1-1 correspondence between the set of equivalence
calsses of G -bundles over X and Hom.(ny(X), G), the set of equivalence classes
(under inner automorphisms of &) of homomorphisms from =,(X) into G.

Proof. If G is tatally disconnected, then we have

11) Hom. ([2¢(X)], &)= Hom.(zy(X), G)

and since Hom. (r(X), &) is also tatally disconnected, any continuous map from
X into Hom.(z(X), G) is always a constant map. Hence we have the corollary.
Note. In theorem 1, we assume that ¢ satisfies
(*), the projection from G onto the space of conjugate classes of G has local sec-
tions.
But (*) is used only to show
(B, if x is a continuous map from X into Hom.((2r(X)], G), then there exists
an open covering {U} of X and a set of continuous maps (from U into the space
of continuous homomorphisms from [2p(X)] into G (with compact open toplogy))
{xv} such that

the class of yy(x) is the value of y at x, x & U,
Jor any U, Ue{U}%

Hence for arbitrary topological group &, we obtain

Theorem 1. If X satisfies the assumptions of lemma 4, them there is a 1 to 1
correspondence between the set of equivalence classes of G -bundles over X and the
set of continuous maps from X into Hom. ([(A(X)], G), such that there exists an
open covering {U%} of X and a set of continuous wmaps (from U into the space of
continuous homomor phisms from [ 2r(X)] into G (with compact open topology)) {yv?}
such that

the class of yy(x) is the value of y at x, x = U,
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Jor any U, Ue U.

§4. The differentiable case.

If X is a smooth manifold, £ and » are smooth G and H -bundles over X,
the lemma 1 is also true replacing continuous map y by smooth map y if =*(y) is
differentiably trivial. But since [Er(X)] is not C=.smooth although it is a smooth
Banach manifold, we can not know whether =*(¢) is differentiably trivial or not
on [Ef(X)]. Therefore theorem 1 is not extended for smooth bundles.

On the other hand, if X is the tatal space of a differentiable & -bundle over
X, then the cotangent bundle T*X;) of X, is written as

12y THXe) = aX(THX) + T*r,

where = is the projection from X; onto X, T*X) is the cotangent bundle of X.
We denote by p; and p, the projections from T*(X;) onto the first and the second
components of the right hand side of (12). Then for a smooth function f on X,
we can write

af = p(df) + pdy),
where d is the exterior differential of X.. We set
wd) f = pdf), drf = pdf).

Then n*d) and dp are defined for arbitrary form ¢ on X, because ¢ is written
as Y yfrd«r, I=(y, -, i,), locally, and we may set

=¥(d) (2f 1dx1) = ;n*(d) fIAdXT,

dr(Q ) frdxn) =D drfi dxr.
I H
Hence the exterior differential d of X: is written as
(12) d = =¥d) + dp.

Although this decomposition is derived from (12)' and in (12), TP* is not deter-
mined uniquely, dr is determined uniquely because we have

dp = d — =*(d),

and d and =*(d) are both determined uniquely.
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If » = {guv(*)} is a smooth H -bundle over X such that =%(y) is (differentiably)
trivial, then we can write on X

Ze(ye((®) = holx, @hv(x, rzn=v)E)a)™,

where « is an element of &, {y=()=)(*)} is the transition functions of & and
hy(x, «) is a smooth map. As in the proof of lemma 1, we denote gyy(x), -,
instead of gwy=()(®), +-,. Then since drguv(x) is equal to 0, we have

drlhy(x, ahy(x, rev(®)a)™?
= hy(x, @hy(x, rovx)a) dehy(x, TorEP)hvE, Tov(E)e)

Hence we can define a smooth L(H) -valued functon &%, &) on X; (¥H) is the
Lie algebra of H) by

0x, a)|lU = hy(x, o) drlhy(x, a)).

Then if X, is simply connected and Tr(Xe), the complement bundle of z*(T
(X)) in T(Xe) (T(X) and T(X,) are the tangent bundles of X and X:), has a non
-trivial cross -section, there exists an H -valued function A{x, a) on X; such that

(13) 0(x, @)= hx, o) drlh(z, a),
because we get
drf = —0,0,

on X, (cf. [2]).
Moreover, if 7'(x, «) also satisfies 6(x, «) = A'(x, o) 'dr(h'(x, ), then since

dr(hth') = —h \dp(hh~th' +h dp(h') = 0,
we have
(14) h(x, @) = fx)hx, @), fx)is a smooth map from X into H.

Because a smooth function on X, depends only on %, ¥ & X, if and only if drf
is equal to 0.
On the other hand, setting

Wz, af) = xx, ahlx, B),

we have



Representations of Loop Spaces and Fibre Bundles 53

x% af) = xlx, apxlx, ),

and
guvlx) = xx, ruv(®) L

Moreover, we know that

(i). x is a smooth map from X into the space of smooth homomorphisms from G
into H (with C' -topology).

(ii). If the coordinates of 7 is changed, then y is changed as

(%, @ = Plx)yx, o)Px)!, acq,

where P(x) is a smooth map from X into H.
Hence we have the following version of lemma 1 for the smooth bundles.
Lemma 1'. Let & = {yyvx)} and 7 ={gyy(x)} are smooth principal G and H
-bundles over X and the tatal space X: of € satisfies

(i). X:is a simply connected space.

(ii). Tr(X.), the complement bundle of = T(X)) in T(X:) (x is the projection from
X: onto X and T(X) and T(X.) are the tangent bundles of X and X:) has a non
-trivial cross -section.

Then if n*(y) is trivial over X, there exists a smooth map y from X into the space
of smooth homomorphisms from G into H (with Ct -topology) such that

Guvl®) = 21X ruv().

Moreover, if y and y' ave the maps from X into the space of smooth homomor phisms
Jrom G into H oblained from =), then there exists a smooth map P from X into H
such that

(x, a = Plyx, a)Pk)!, «< 6.
To use Imma 1’ for smooth bundles over a smooth manifold X, we use

EoroX)={ala: I X belongs in k-th Sobolev space and there
exists € >0 such that afa) =+, 0 aLe,
all —b)=al), 0<b <6},

Do, o X) = {a|la € Eo,r,oX), al0)= all) = =},

where & >n/2, n=dim. X (cf. 3), instead of Erf(X) and 2s(X). ‘We note that
by Sobolev’s lemma,. Es o X) C Ef(X) and 22,50 X) C27(X) if the metric of X is

a Riemannian metric of X.
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In EsroX), we define an equivalence relation ~ for the paths @, -+, by

alt) ~ Bt), if and only if oft) = B(h() or

a = oy and B = ayjazoy o,

where & is an orientation preserving C*-diffeomorphism of I = [0, 1], a;, ap and
ay are the elements of Eg z o X).
The class of @ by this relation is denoted by {«} and the quotient spaces of
Eo ko X) and £22,r,0X) by this relation are denoted by {E2 ko X)} and 2o,k o X).
For & € Eo,1,oX), we set

int. a () = TU~V],

5= a1, o, Gop<aapsr, O2g-1< Gag, G_1 =0,

Then we define ay' € 29,1, X )or € Ez,1,olX) if s=1 and a & 22,14 X)) by
ay/(t) = (@1 + a)/2)t).

If @) satisfies

(iny. There are no a and &, & (0<a <1, 0<e<1, 0<¢ < 1) such that
a'la+t)=ala—1t) for t [0, e+ ¢,
Jor some t € [0, €], ai'(@ + t) £ ayla), and
al'le+H=a/lat+e+¢) for tese e+ ¢,

then we set a;' = a;. If @y does not satisfy (ii), then setting

I= J1UJ2, Jindz = P,
Jo=Ula; — e —¢/, @i+ +¢'],

a; + & g <@y g — €t

al@; —t)=ai(a; + 1), if t €0, & +e'],

a(a; — §) == ay/(a;), for some t < [0, ¢,

afla; — ) =eatla; —e; — &), if te e, ¢+ e’

we denote by @ the lower bound of {a;} and by a the upper bound of {&;}. Then
we define a; € 29,1,0X) (€ Ez, 0, X) if o & D2,8,0X) by

aff) = a'(t), 0Lt <a, if a &{a]},
af) = en'((a1 — &1 — &' /2)/as)t), 0Lt L@y, if ay = q,
ay(t) = ay' (@1 + eo1 + 5124'/2) +
+a —aia e — e (el — &)/ 2)/lai — a; )t — a;y)),
a1 St a,
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alt) = a't) a<t<1, if a &{a},
al(t) = all((am + Em + 57711/2) + ((1 — Gy — Eml/z)/(l - am))(s - am))»
Ay, __<__t_£_ 1, 1f a, = a.

Repeating this, we obtain
Lemma 2'. {a} & {EsroX)} is uniquely written as

(6), {a,} — {051}"'{0!5}, ay, e, g AQZ,k,O(X) Zf o e QZ,k.O(X)r
@y, vy, 01 € QZ,IZ,O(X) 'if o % QZ,/@,O(X):

where each «; satisfies (i1)') and

(@) ;") is either T =10, 1], [0, a] or [0, a]V[b, 1],
0<<a<<b<1.

Since X is smooth X allows a Riemannian metric, and by this metric, any
path in E2 o X) has finite length, we obtain by lemma 2

Lemma 8. {EsoX)} is a contractible space.

We fix a Riemannian metric on X, then for any x€X, there exists a neigh-
borhood U(x) of x such that

(*). For ony y € Ulx), there exists a unique geodesic fx,y (by the given Riemannian

metric) which starts from x and ends at y.
Then since By, depends differentiably on ¥ (as the map from U(x) into FEg x(X)
regarded x to be the basepoint, where Ly (X) is the space of paths which belongs
in k-th Sobolev space). Although B:, does not belong in FEo . oX), if we fix a
Ce-class function f:I— I such that

=0, if 05t Lq,
St) < Sfte), if a <ty <t <},
fity=1, if b<t<1.

Then 7,y given by 7x,(f) = B, y(f(f)) belongs in Esq 1o X), and also depends differ-
entiably on y. Similarly, we can take the path 7, starts from = ends at x to be
an element of EzoX). Hence we can take the loop rUfU,er,y‘er“l defined simi-
larly as in § 2, to be an element of 22,0X) for any U, V and y, and to depend
differentiably on y. Therefore we obtain

Lemma 4'. {E2 0o X)} is a smooth principal bundle over X with structure group
22, p,0(X).

Note. We set U(4(X)) the neighborhood of 4(X) in Xx X such that if (x, y) is
in U(4(X)), then there exists a unique geodesic #'y,, which joins ¥ and y (with
respect to the given Riemannian metric). Then setting
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sulx, ¥) = {rurv.stzsrv,y ruh,

Laslt) = U s( S (D)),

{su{x, 37} is a topological connection of the bundle
{E2 20 X)}, {22,8,0X)}, = X).

For the bundle ({Eq o X))}, {8210 X)}, =, X), we know
(@). {E2roX)}is a C=-smooth manifold (cf. [3], [6], [9]).

(B). {E2noX)} is a simply connected space.
(c). codim. ¥(T(X)) in T Es2roX)}) is oo,

Since THEy X)) is a trivial bundle, there exists a non-trivial vector field
of {EgroX)} which is not in #%T(X)). Hence by (c), we obtain (c). The com-
plement bundle of =*(T(X)) in T Es roX)}) has a non-trivial cross-section.

By lemma 1/, lemma 3/, lemma 4' and the above (a), (b), (c), we obtain

Theorem 2. If X is a smooth manifold, then there is a 1 to 1 correspondence
between the set of equivalence classes of smooth G-bundles over X and the set of
equivalence classes of smooth maps from X into the space of smooth homomoy phisms
Srom {8o,r,oX)} into G (with Ci-topology) with the equivalence velation

(15) 1%, @) ~ Px)y(x, a)P(x)t, ac G

where P(x) is a smooth map from X into G.

Note. By (15), as the map from X into the space of equivalence classes (under
inner automorphisms of &) of smooth homomorphisms from {2 X))} into G, x
is uniquely determined.
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