
, jOUR. FAC. SCI.,SHINSHU UNIV, Vol. 4, pp. 39-56, Dec. 1969

Representations of Loop Spaces and Fibre Bundles

      Dedicated to Prof. Keizo Asano for his 60th birth day

By AKIRA ASADA

Department of Mathematics, Faculty of Sclence,

              Shinshu University

             (Received Oct. 31, 1969)

   Imtrodiuction. It is known that if X is arcwise connected, arcwise locally

connected, and semi locally i-connected, then the equivalence classes of principal

bundles over X with structure group G, a tatally disconnected group, are in 1-1

correspondence with the equivalence classes (under inner automorphisms of G) of

homonorphisms of ffi(X) into G ([10], g11).

   The purpose of this paper is to extend this result for general bundles. Our

result, which is given in S3 as theorem 1, is stated as follows : ifXis an arcwise

connected metric sPace and satishes the following condition (*),

  (") for any xEX, there exists a neighborhood U<x) of x such that for any yEii U(x),

   there exists a Path rx,y which has finite length and starts from x ends at y and

   dePend continuously on y by the Path sPace toPology,

and a is a toPologr'cal grouP such that whose Prof'ection. onto the sPace of coniugate

classes of G has local sections, then the equivalence classes of PrinciPal bzendles over

X with structure grouP G are in 1-1 corresPondence with the continuous maPs from

X into the sPace of equivalence classes (under lnner automorPhisms of G) of continuous

homomorPhisms of [SQf(X)] into G. Here 9f(X) means the space of loops with finite

Iength over X and [S2f(X)] is the group obtained from S:Zf(X) by the following

relations (cf. [3]).

     a -- P if a(s) == P(h(s)), hGH'(I), the grozaP of orientation Preserving homeomo-

                         rPhisms of Z ==: [O, 1],

     aiPeP"iev2 tv evia2, where P-i(s) == P(1-s).

   For arbitrary topological group G, we also obtain the following theorem 1'.

Theorern 1'. if X is same as in theorem 1, then the eqttivalence classes of PrinciPal

bundles over X zvith structztre groztP G are in 1-1 corresPondence with the set of

continuous maP z from X into the sPace of eqztivalence classes (under inner automor-

Phisms of G) of continuous homomorPhisms of [S2f'(X)] into G such that there exists

an open covering {U} of X (may be dePend on x) and continttous maP zu from U



into the sPace of continuous homomorPhisms of [S[Zf(X)] into G (with comPact oPen

toPology) for any UE {U} such that

      the class of xu(x) is the value of x(x) for any x E U.

This theorem 1' is also given in g3.

    In g1, we prove the following lemma 1. Leffmma 1. Jlf' g and rp are PrinciPal

G and ff-bundles over X such that rr" (rp) is trivial over Xe, where Xe is the tatal

sPace of 6 and rr is the Pro7'ection from Xe onto X. Then there is a continuous maP

x from X into Hbm. (G, .ff), the sPace of equivalence classes (under inner automor-

Phisms) of continuous homomorPhisms from G into ff such that

(i), there exists an oPen covering {U} of X such that for any UUV) there is a

  continuous maP from UUV into the sPace of contimtozes homomorPhisms of G into

  ,ff (with comPact oPen toPology) such that the class of its value at x is the value of

  x for any xE UU TL

(ii), denoting the transition functions of g and v by {ruv(x)} and {gtJv(x)} ffU} also

  satishes (i) for x), there exists continuobls maP flr : U->H for any UEii U such that

             gtiv(X) == fb(x)xuv(x)(ruv(x))fpr(x)"'.

    In'g2, we prove

(a). [Ef(X)] is a contractible sPace.

(b). [Ef(X)] is the tatal sPace of a PrinciPal [S2Lr(X)]-bundle over X. Here [Ef(X)]

is the quotient space of Ef(X), the space of paths with finite lgngth over X with

a basepoint, defined similarly as [S2f(X)].

    Combining lemma 1 and the above (a), (b), we obtain theorem ! and 1' in

g 3.

   In g3, we treat the differentiable case. In fact, the proof of theorem 1 can

not applied for differentiable case. Because we do not know whether ff'" (?) is

differentiable trivial or not over [Ef(X)] for a differentiable bundle rp over X in

general. Here rr is the projection from [Ef'(X)] onto X. But if we use E2,k,o(X)

and 92,le,o(X) instead of Ef(X) and S2f (X), we obtain similar result for differen-

tiable bundles. Here E2,k,o(X) and 92,h,e(X) are given by

     E2,k,o(X) == {ala : I->X belongs in k-th Sobolev sPace and ev(a) = a(o),

                a(1 - a) = cr(1) lf O :Sl a S; e for some e},

     92,k,e(X)={P]P belongs in E2,le,e(X) and P(O) == P(1) :=*, the base Point},

(cf. [3].) In g3, we also give a differentiable version of lemma 1.

   It has been known that hte topological structure of the loop space 9(X) over

X has deep connection with that of X. But it seems that the results of this paper

and [3] sugest the algebraic structure of 9(X) also has deep connection with the

topological structure of X. In fact, there are some other results to sugest this,
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For example, Chen has shown

(i). if X is a smooth manifbld, and toi, ･･････, o. fbrms 1 -form basis at any Point

 of X (toi(x), ･･･-･･, to.(x) need not be iinear indePendent), then setting

                                                '
            0(ev)=1÷= =                            ait･･･ipXit･･･X)p･･･,
                    P)1 ii,･-,il)

            ait-ip = !.eiiop'''opeip,

 where {Xi, ･･･, X,.} are non -commutative indeterminants, 0 is an into isomorPhism

 from [9(X)] (doj7ned from 9(X) similarly as [S2f(X)] into 9.vS"R[[Xi, ･･･, X.,]], the

 free tensor algebra over R with generators Xi, ･-･, x. ([4], [5])･

(ii). Iog 0(a) is a Lie element fbr anpt a ([4], [9]) and denoting the Lie algebras {log

 0(cu)}, a Ei E(X) and {leg 0(P)}, B E 9(X) by 8[E(X)] and 89(X)], zve have

   '
            S[9(X)]/gD2(£[E(X))]n8[9(X)] !ii! Hi(X, R),

 where S2(8[E(X)]) is the second derived ideal of B[E(X)] ([6]), '

   It seems that these results may have some relations to algebraic homotopy

theory (cf, [7]).

                         g1. Proof of letuma I.

   Let X be a Paracompact normal space, then any fibre bundle over X is

represented by its transition functions ([8]). Hence we may write a bundle by

its transition functions.

   Lemma 1. Let X be a ParacomPact normal sPace, e == {ruv(x)} and rp ={gtJv(x)}

are PrinciPal G and ff -bundles over X such that rc"(o) is trivial over Xe, the tatal

sPace of e and r is the Pro7'ection from Xe onto X, then there is a continuous maP

x from X into Hbm. (G, ff), the sPace of equivalence classes (under inner automo-

rPhisms) of the continuous homomorphisms from G into ff zvith the induced toPlogy

of the comPact oPen toPology, and an oPen covering {U} of X such that

(i), for any UUV, U, VE{U}, there is a continuous maP xuv from LTUV into the

  sPace of continuozas homomorPhisms from G nto " (with comPact oPen toPology)

 such that

            the class of xuv(x) = x(x), x G UU VI

(ii), the transition fbenctions [ruv(x)] of 6 is dofned by the oPen covering {U} aod

  there exists continuous maP fo : U->G for any UE{U} such that

(1) gtrv(x) = fb(x)zuv(x)(ruv(x))fL, (x)-i,

                                                '                     '                                                 '
 for anN Un}xL where {guv(x)} is the transition function of rp.
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   Proof. We denote the elements of X by x, y, ･･･, and the elements of G by

a, P, ･･･, then by assumption, we get

(2) grr(mre(v)(x)=hu(x, a)hv(x, r.(v)n(v)(x)a)"t,

where {U} is an open covering of Xe such that

(a). 6 is trivial on Un(u)nr(v)#T(V) for any UE{U},

(b). each U is written as

            U= rr(U)×S, S is an oPen set of G.

For the simplicity, we denote guv(x), etc., instead of g.(u).(v)(x), etc., in the

rest.

   Since guv(x) does not depend on a, we also have

(2)' guv(x) ==hu,(x, P)hv,(x, ruv(x)P>"i, aSP,

where U', V' may be different from U, V but must satisfy

            z(U) = T(U'), rr( Y) = z( V').

   By (2) and (2)', we get (here P need not be different from a)

            hu(x, a)-'hu,(x, P)= hv(x, ruv(x)cr)nihvi(x, ruv(x)P).

   Hence setting

            0(x, a, P)lfi"i(T(U))= hu(x, a)mihu,(x, P),

0(x, a, P) is a continuous map from Xg,g into ff, where Xe,g is given by

            Xe,e== V(n(U) × G× G)/･-,

            it(U) × G × G iD x × a × P-sJx × ruv(x)ct × ruv(x)atE rr(V) × G × G,

and it is the projection from Xe,e onto X. In the rest, we denote U instead of

-.-i (.(U)).

   By (a), 6 has a cross -section s =su(x) on u.(u)n.(vxcbn(V). Using this s, we

set

            h(x, hi)IT-i(T(U))=0(x, s, at)lrc"i(rc(U)).

Although h(x, ec) might not be defined on Xe but by definition, it is defined on

rr-'(Um(u)nn(v)t,rt(V)). Hence for a fixed x, it is defined for all (x, a), acG.
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            h(x, a)-ih(x, P) =e(x, sdix), of-iO(x, su(x), P)

                         =(hu(x, suCx))-ihuv(x, al)-i(hu(x, su(x))"ihu,(x, P))

                         =laun(x, of-'hu(x, P)

                         =0(x, a, P), '

we get

(3) 0(x, a, P) == h(x, a)-'h(x, P),

on fi"i(nrr(u)nrr(v)iort(")･

   On the other hand, if we get

            0(x, a, P)=h'(x, a)-!h'(x, P)

on some open set VV of ft-i(nrr(u)nrr(v)4,frr(V)), then since

            h'(x, ojh(x, M"i= h'(x, ajh(x, P)-i

for arbitrary a, P, we may set ･

        ･ h'(x, oj == flx)h(x, ed

where f is a continuous map from it(VV) into EIL Hence we can set

(4)' hu(x, di=.fb(x)h(x, ed

   Next we set

            h(x, aP)=x(x, cr)h(x, P),

Then since

            h(x, aPr) = x(x, aP)h(x, r)

                   == x(x, ct)h(x, Pr)

                   == x(x, a)x(x, P)h(x, r),

we have

(4) xrx, aP)==x(x, ajx(x, P).

   We note that setting U== rc(U)× S, we can define xu(x, di by

            hu(x, aP) ==xupt, ofhu(x, P)

43
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if ctp and P both contained in S. Butsince we get .by (4)'

zu(x, oj

   We

xu(x, di = fo(x)x(x,

is defined for

define xv(x, a)

arbitrary

similarly

a)fu(x)"i,

av E G.

as xu(x, di･ Then smce we get

hu(x, aP) = xu(pu,

== hv(x, ruv(x)aP)

a)hu(x,

== xv(x,

= Xv(x,

= Xv(x,

p
)
ruv(x))xv(x,

ruv(x))zv(x,

ruv(x))xv(x,

odhv(x,

a)hu(x,

dixu(x,

p
)
ruv(x)-tp)

ruv(x))-ihu(x, p),

we have

Xu(x, ed == Xv(x, ruv(x))xv(x, a)xu(x, ruv(x))ml.

But since by (4)

zu(x, ap)

=xu(x, ev)xu(x, P)

= xv(x, ruv(x))xv(x,

== xv(x, ruv(x))xv(x,

== xv(x, ruv(x))xv(x,

dixu(x,

aP)xu(x,

dixv(x,

ruv(x))-izv(x, ruv(x))xv(x,

 rvv(x))-i

fi)xu(x, ruv(x))-i,

P)xu(x, ruv(x))-i

we get

xu(x, ruv(x))-ixv(x, ruv(x)) == e,

where e is the identity of EC for arbitrary V (Un YX ¢)･ Hence we can set

(5) Zv(x, of == Puv(x)xu(x, CU)Puv(x)-i,

where Puv(x) is a

   Then since

contmuous map from Ufi V into ff.

guv(x) hu(x, a)hv(x, ruv(x)a)-'

fb(x)h(x, di(fV(x)h(x, ruv(x)a))-i

fZx(x)h(x, ofh(x, ruv(x)a)"if}r(x)-'

fu(x)h(x, di(x(x, ruv(x))h(x, ed)-ih(x)"i

fu(X)x(x, ruv(x))-ih(x)-i,

we obtain

   Note.

the lemma, because x is

If Xe is given by

defined on UnYfip.
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             Xe =:VUxG/--, (x, a)･--(x, aruv(x)),

 then setting

             guv(x) := hu(x, a)-ihv(x, aruv(x)),

             hu(x, a) == h(x, ev)fb(x),

             h(x,aP) == h(x, a)x(x, P),

where h(x, a) is defined similar!y as above, we obtain

(1)' gbv(x)=fo(x)-iz(x, ruv(O).fV(X)･

                        g2. Fiberieng of path spaces.

    We denote by E(X) the path space over X with base point*. The loop space

over X is denoted by 9(X). As in [3], we define an equivalence relation -v for

the paths ct, P, ･･i, of E(X) by

             cr(t) - P(t) if and only if cr(t) = P(h(t)) or

                    a=cricr2 and P == aicr3a3'ia2,

where h is an orientation preserving homeomorphism of g=[O, 1], aia2 means

the product of paths and a-i is the inverse path of cr.

    We denote the class of cr by this relation -- by [a] and the quotient spaces of

E(X) and 9(X) by this relation are denoted by [E(X)] and [9(X)].

    LerRima 2. [a] E [E(X)] is uniquely written in the form

(6) [a] == [crt] ･･･ [a,], cti, ･･･, cr, Ei 9(X)if aE 9(X),

                             cri, ･･-, a,-i E 9(X) if ae 9(X),

where each avi satisfies

(i) cri'i(") is either I or {O}U{1} if criE9(X) and a,-i(") = {O} if a, e 9(X),

(ii) There are no a and e (O <a <1, O <E <1), such that ai (a+t)=[ ==ai(a-t) for

  tG [O, e], unless ai -- e, the unit Path.

   Proof. Since a-i(*) is compact, we set

            a-1(*) = IIU'''Ug,,

where each 4 is either a point or a closed interval. We set

            1'k = [a2k-1], a2k, a2J･ < a2 J･.1, a2.-1 :II a2.. al = O･

If a2:74ai, then we set ai =e, the unit path. If ai=a2, then we set



            ev1'(t) = a(a3t).

If cti' satisfies (ii), then we take cri' as ai. If ai' does not satisfy (ii), then we set

            i == fiU.71i, .ri u .lli == O, J2 ;=: U [ai - eb ai + ei],

                                    i

where ai + Ei <vi.i - ei.i and ai'(ai - t) == evi'(ai + t), t Ei [O, Ei]. Then we set the

lower bound and upper bound of {ai} by a and a and set

            evi(t) =: ai'(t), O ;A:!l: t :IS a, tf a e {ai},

            ai(t) = cri'(((ai - ei)/ai)t), O :gl t ;:Il ai, de = ai,

            Ctl(t) = al'<ai-1 -i- ei-1+((ai - ai p.1 + ei-1 - ED/(ai - ai-1))(t - ai.1)),

                 ai-.i =< t cEll ai,

            cri<t) ==: ai'(t), a 51 t S. 1, if a a {ai},

            cri(t) = ait(ant + e.t -1- ((1 - am - Etn)/(1 - a.))(t - a.))s

                 a. ;:S tg 1, if a= a..

Repeating this method, we obtain the decomposition (6). The uniqueness of the

decomposition (6) foliows from the definitions of ai (1 Slli.fSls).

   !f X is a metric space, then denoting the distance of x, yGX by dis. (x, y),

we can define the length of a path by

                       ln            lim. Xdis. (ev(ai), ct(ai..i)),
            1 ai -ai-il -->O i-i

            O = ae < ai < ･-･ < a.-i <a,. == 1,

if the limit exists. Then if ai and a2 are the paths of X with finite length, the

product avi a2 also has finite length. Hence denoting the subspaces of E(X) and

9(X) consisted by the paths of finite length by Ef(X) and Silf(X) and their quotient

spaces defined similarly as [E(X)] and [2(X)] are by [llf(X)] and [9f(X), ] [S2f(X)]

is a group and operates on [Ef(X)] (cf. [4]).

   Lemama 3. [Ef(X)] is a contractible sPace.

   Proof. By lemma 2, if [a]E[Ef(X)], then we can set

            [cu] = [al] ny '' [ats]e

and by the proof of lemma 2, each ai has finite length. Hence we can define the

canonical parameter of ai by its arclength, that is

            1ai,tl = tlail,

where 1ctl means the length of a and cti,, is given by ai,t(u)= ai(tu), O$t$L
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We denote this path by ai. Then we define the canonical representation a of a

by

                                 i-1 i
             a(") == a,(su -i+ 1), su $-.
                                   ss

Then for a, the path a, given by a,u) =: a(tu) is uniquely determined for O:llt:ilSl.

Hence the map

             [Ef(X)]×IB ([ev], t).[a,] E [Ef(X)]

gives the contraction of [Ef(X)].

    Lemma 4. if X is an arcwise connected metric sPace and satishes

  ("), for each xeX, the,re exists a neighborhood U<x) of x such that for each

    yE U(x), there is a canonicalpath r.,or, r.,,(O)=x, r.,.(1)=y, and has finite

    length and as the maP from U(x) into the Path sPace, r.,. is continuous in y,

then [Ef(X)] is the tatal sPace of a PrinciPal bundle over X with structure grouP

[szf(x)].

    Proof. For each x E X, we fix a path r. with finite length such that

             r.(O) =: *, r.(1) = x.

Such path exists by the arcwise connectedness of X and (').

    We denote the projection from [Ef(X)] onto X by.rr. Then to define the

continuous mappings r." : [9f(X)]->rc-i(x) and r..:rc"i(x)-[9f(X)] by

(7)' r."([ct]) =: [ar.], [a] E [S2f(X)],

(7)'t r.*([a])= [r."ia,] [a] E rr-i(x),

we get r."(r.*([r.ar.-i]))==[a] and r.*(r."([a])):=[a]. Hence rr-t(x) is homeomorphic

to [S2Vc(X)] for each x.

   If U(x) is a neighborhood of x which satisfies the assumption ("), then to

define ru." : ff-i(qx)) -> qx)× [s2f(X)] by

(7) ruiv*([cr]) = (rt(a), r.*(arx, rra-i)),

ruhr" is a homeomorphism from x-i(U<x)) onto U(x) × [9f(X]).

   Since {U(x), xE X} forms an open covering of X, we take asubcovering{U}

of {U(x), xeX} and denote ru,y, ru, Uru*, ru* and ru* instead of r.,y, r., ru.*,

r.* and r." if U== U(x). Then on UnlL the homeomorphism Hrv*7u'-':(UnV) ×

[S2f(X)] --> (UnV)[ × S2f(X)] is given by

            -rv"7u"-'(x([a]), ru*([aran(a)"']))



            == (rr([a]), rv*([crrxre(cr)-i])).

Hence we get

(8) 7v*-ru""i(y, ev) := (y, aruru,yrv,y"irv"i)･

Then since ruru,yrv,y-irv'i is a loop, ru and rv are fixed on UfiV and ru,v and

ru,, both depends continuously on y, we have the lemma.

   Note. If there is a neighborhood U(id(X)) of A(X), the diagonal of XxX, in

XxXsuch that for any (x, y)E U(d(X)), there correspondsa unique path t.,,

with finite length which starts from x ends at y and depends continuously on (x,

y), then setting

            su(x, y) = [ruru,.t.,yru,y-iruHi],

{su(x, N)} is a topological connection of the bundle ([Ef(X)], [S2f(X)], rc, X) (cf.

[1]). On the other hand, if the bundle ([Ef(X)], [S2ij(X)], T, X) has a topological

connection {su(x, y)}, then denoting the canonical representation of su{(x, y) E

{su(x, y)} given by lemma 3 also by su(x, y) for each U, the path t.,, given by

            t.,y= ru,.-iru-isu(x, y)ruru,y,

does not depend on U because we have

            rv,.-irv"isv(x, y)rvrv,y

            == rv,.-irv-i(rv,.rvru,iiru'isu(x, y)ruru,yrv,y"irv"i)rvry,y

            = ru,.-iru-isu(x, y)ruru,y

if each ru, ru,., -･･, is given by ts canonical form. Since t.,y is continuous in

(x, y) and starts from x ends at y, the existence of above t.,pt (and U<d(X))), is

the necessary and sufficient condition for the existence of the topological connec-

tion of the bundle ([Ef(X)], [S[lf(X)], rr, X).

                         g3 Proof of theorem 1.

   Theorem 1. ILICX satishes the assumPtions of lemma 4, then there is a1 to 1

corresponden.ce betzveen the set of the equivalence classes of G -bundles over X and

the set of continuous maPs from X into llbm. ([9f(X)], G), the sPace ofequivalence

classes (under inner automorPhisms) of continuous homomorPhisms from [S2f(X)] into

G (the toPlogies of [9f(X)] ana Hbm. [(S[Zf(X)], G) are both induced toPlogr'es .from

the comPact oPen toPlog'ies of S[lf(X) and the sPace of continuous homomorPlaisms

from [SRf(X)] into G), if the Pro]'ection from G onto the sPace of coniztgnte classes
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ofGhas locag sections. .
   Proof. Ife is aG -bundle over X, then rc"(g) is trivial by lemma 3. Hence

z'ls(6) is obtained by some continuous map from X into the space of continuous

homomorphisms from [S[lf(X)]into G with the equivalence relation under the

inner automorphisms of G by !emma 1 and lemma 4.

   On the other hand, if z is a continuous map from X into Hbm. ([,9f(X)], G),

then by assumption, there exists an open covering {Ui, iEI} of X such that

for any u[f)nev# Uj, there exists a continuous map xi from nq･nulis,Lli into the

space of continuous homomorphisms from [9f(X)] into G (with cornpact open

toplogy), such that whose class at x, xE nuiAuj±.Uj i's equal to the value of x

at x.

   We denote zi,i,' either of ii or i2 for any (ii, i2). Then by assumption, we get

                                                       '
            Xi2i,t =: PI･;IZ･s2 x i,i,t (P;;I.:)-1,

if U},nU}',nUle,7Lip. Here Pg･Z is a continuous map from UiUU}･UUk into G. Then

since we may consider {P}kJ} only on Uevuuk..Ll, we can take Pl･£ to satisfy

            PI･;l･:PiZI･gP:･:Si, == e, the identity of G,

on U}inUle2nU13･ Hence denoting va' the sheaf with base space I (with discreet

topology), stalk atiis the space of continuous maps from Ui into G, PS･( is a 1

                                                               '-cocycle of va with covering system {(i, j')}, where Pg･Z is given by

            IPSt((d) = IPS･L1Uj.

Then since I is discreet, we get

(9) Pl･li-:(i2)=i,i,(i2)(i,i,(i2))-1-

Then we set

            L･j(x) -- (L,･(i))(x), x Eii Ui,

and define

            xiJ･ = L･j"ixilLv,

on UinUj.

   On the other hand, since we may assume the bundle ([Ef(X)], [9f(X)j, T,

X) is trivial on each Ui, iE T, we denote its transition 'functions with covering

system Ui, iEI by {rij(x)}. Then setting



            giJ･(x) = xi,･(x)(riJ･(x)),

{g?j(x)} defines a G -bundle by (9).

   Moreover, if x(6) is the map from X into Hbm. ([9f(X)], G) obtained from e,

a G -bundle over X, then we get

ao) {(x)uv(x)(ruv(x))} -- e,

(10)' x(xuv(x)(ruv(x))) =: x(x),

we have the theorem.

    Corollary ([10]). Ilf X satishes the assumPtions of lemma 4, G is a tatally

disconnected grouP, then there is a 1-1 corresPondence between the set of equivalence

calsses of G -bundles over X and Hbm.(xi(X), G), the set of equivalence classes

(under inner automorPhisms of G) of homomorPhisms from zi(X) into G.

    Proof. If G is tatally disconnected, then we have

(11) Ifom.([S21f(X)], G)= Hbm.(ni(X), G)

and since flbm.(rri(X), G) is also tatally disconnected, any continuous map from

X into Hbm.(rri(X), G) is always a constant map. Hence we have the corollary.

    Note. In theorem 1 we assume that G satisfies
                      '
  ("), the Proiection from G onto the sPace of conjugate classes of G has local sec-

    tions.

But (*) is used onlY to show

  (ik), if x is a continuous maP from X into Hbm.([SZf(X)], G), then there exists

    an oPen covering {U} of X and a set of continuous maPs (from Uinto the sPace

    of continuous homomorPhisms from [S2f(X)] into G (with comPact oPen toPlogy))

    {xu} such that

             the class of xu(x) is the value of x at x, xG U,

             for any U, Ue{U}.

Hence for arbitrary topological group G, we obtain

    Theorem 1'. Ilf X satishes the assumPtions of lemma 4, then there is a 1 to 1

corresPondence between the set of equivalence classes of G -bundles over X and the

set of continuous maPs from X into Hbm.([9(X)], G), such that there exists an

oPen coverin.g{U} ofX and a set of continuous maPs (from U into the sPace of

continuous homomorPhisms from [S[Zf(X)] into G (with comPact oPen toPolagy)) {xu}

sblch that

             the class of xu(x) is the value of x at x, x Effi U,
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for any U, UGi U.

                       g4. The differentiable case.

   If X is a smooth manifold, e and rp are smooth G and H -bundles over X,

the lemma 1 is also true replacing continuous map z by smooth map x if rr* (q) is

differentiably trivial. But since [Ef(X)] is not Cco-smooth although it is a smooth

Banach manifold, we can not know whether rc"(6) is differentiably trivial or not

on [Ef(X)]. Therefore theorem 1 is not extended for smooth bundles,

   On the other hand, if Xe is the tatal space of a differentiable G -bundle over

X, then the cotangent bundle T"(Xe) of Xe is written as

(12)' T*(Xe) = n"(T'(.X')) + T'F,

where rr is the projection from Xe onto X, T"(X) is the cotangent bundle of X.

We denote by Pi and P2 the projections from T'" (Xe) onto the first and the second

components of the right hand side of (12)'. Then for a smooth function f on Xe,

we can write

            cif - Pi(df) + P2(Ctf),

where d is the exterior differential of Xe. We set

            z*(d)f=p,(clf), dRf==P,(drC).

Then T"(d) and dF are defined for arbitrary form g on Xe, because g is written

as Xi.11idxJ, I== (ii, ･･･, i.), locally, and we may set '

            ff*(d)(=hdxD =Xn"(d)fiAdxi,

                 II
            dF(= hdxi) == XdFfi.dxi.

               Jl
Hence the exterior differential d of Xe is written as

(12) d= ff*(d)+ dF.

Although this decomposition is derived from (12)' and in (12)', TF* is not deter-

mined uniquely, dF is determined uniquely because we have

            dF =d-- r"(d),

and d and rr'(d) are both determined uniquely.



   If ? = {guv(x)} is a smooth ff -bundle over X such that T*(rp) is (differentiably)

trivial then we can write on X
     '

            git(u)w(v)(x) = hu(x, cr)hv(x, rn(u)n(v)(x)ev)-i,

where ev is an element of G, {rx(u)n(v)(x)} is the transition functions of 6 and

hu(x, a) is a smooth map. As in the proof of lemma 1, we denote guv(x), ･･･,

instead of gv,(u)n(v)(x), ･･･,. Then since dFguv(x) is eqttal to O, we have

            dF(hu(x, ev))hv(x, ruv(x)a)-'

             =hu(x, a)hv(x, ruv(x)a)-idF(hv(x, ruv(x)ro))hv(x, ruv(x)a)-i.

Hence we can define a smooth 2(ff) -valued functon 0(x, aj on Xe (£(ff) is the

Lie algebra of ff) by

                      '
            0(x, ev)IU== hu(x, at)"idF(hu(x, a)).

   Then if Xe is simply connected and 71i](Xe), the complement bundle of r"(T

(X)) in T(XE) (T(X) and T(XE) are the tangent bundles of X and Xe), has a non

-trivial cross -section, there exists an ff -valued function h(x, di on Xt suchthat

(13) 0(x, ev) == h(x, a)'icli7(h(x, cr)),

because we get

            dFO == -0.0,

on Xe (cf. [2]).

   Moreover, if h'(x, a) also satisfies e(x, a) == h'(x, cr)mtdF(h'(x, a)), then since

            dF(h-th') = -h-iclF(h)h-ih'+h-idF(h') =:= O,

we have

(14) h'(x, ed=flx)h(x, a), f<x) is a smooth maP from Xinto H.

Because a smooth function on Xe depends only on x, xE X, if and only if dof

is equal to O.

   On the other hand, setting

            h(x, crP) =x(x-, dlh(x, P),

we have
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            x(x, crS) == x(x, ojx(x, P),

and

            guv(x) = x(x, ruv(x))-i.

   Moreover, we know that

  (i). x is a snzooth maP from X into the sPace of smooth homomorPhisms from G

   into ff (with Ci -toPology).

                                                         '  (ii). if the coordinates of n is changed, then x is changed as

                            '
            x'(x, a) = P(x)z(x, ev)P(x)-i, a G G,

   where P(x) isasmooth maP fromXinto i7L '
Hence we have the following version of lemma 1 for the smooth bundles.

   Mem!na 1'. Let e== {ruv(x)} and n={guv(x)} are smooth PrinciPal G and ff

-bundles over Xand the tatal sPace Xe ofesatishes . ･ ･
  (i). Xe is a simPly connected sPace.

  (ii). Tp(Xe), the comPlement bzendle of rr*(T(X)) in T(Xe) (rt is the Prol'ection from

   IiiZlatiO cli(osasneseTc;i.:oh.and T(Xe) are the tangent bundies ofx and xe) has a non

Then if z"(rp) is trivial over Xe, there exists a smooth maP x from X into the sPace

of smooth homomorPhisms from G into ff (with Ci -toPology) such that

            guv(x) == x(x)(ruv(x))･

                                                             '

Moreover, i)f z and x' are the maPs from X into the sPace of smooth homomorPhisms

from G into ff obtained from v, then there exists a smooth maP P from X into if

such that

            x'(x, cr) = P(x)z(x, a)P(x)"i, ev E G.

   To use lmma l' for smooth bundles over a smooth manifold X we use
                                                             '
    '
            E2,k,o(X) = {ala : Z-> X belongs in le-th Sobolev sPace and there

                      exists e> O such that cr(a) == *, O;Slla;:Sl e,

                      a(1 - b) = a(1), OSbSE},

            92, le,o(X) = {ala E E2,k,o(X), a(O) = ct(1) ==: *},

where k>n/2, n =: dim. X(cf. 3), instead of Ef(X) and Qf(X). ･We note that

by Sobolev's lemma,. E2,h,o(X) c Ef(X) and 92,k,o(X) cS2f(X) i'f the metric of X is

a Riemannian metric of X.
                                                          '



    In E2,k,o(X), we define an equivalence reiation -- for the paths a, ･･･, by

            a(t) ･- P(t), tf and only if a(t) = fi(h(t)) or

                   a = cria2 and P = aia3ae-ia2,

where h is an orientation preserving Ck-diffeomorphism of I == [O, 1], at, a2 and

a3 are the elements of E2,k,o(X).

    The class of a by this relation is denoted by {a} and the quotient spaces of

E2,le,o(X) and 92,fe,o(X) by this relation are denoted by {E2,k,o(X)} and 92,h,o(X).

    For cr E E2,k,o(X), we set

            int. ev-i(*) :== JbU"'U4,

            Jh == [a2k-1, a2k], a2p<a2p+t, a2g.-1<a2g, a-1 =:: O,

Then we define ai' E 92,k,o(X)(or E E2,h,o(X) if s == 1 and af 92,le,o(X)) by

            ai'(t) = a(((at + a2)/2)t),

If ai' satisfies

(ii)'. There are no a and e, e' (O<a<1, O<e<1, O<e'<1) such that
            ai'(a + t) = ai'(a - t)' for t e [O, e + e'],

            for some tE [O, E], ai'(a + t) 7L ai(a), and

            al'(a + t) = al'(a +e+ e') for tE [e, e+ e'],

then we set ai'=:ai. If ai' does not satisfy (ii)', then setting

            l ::= J!UJb, JinJle == ¢,

            Jli == U[ai - ei - si', ai + ei + Ei'],
                 i
            ai + ei + eit < ai+t - ei+t - ei+ll,

            at1'(ai - t) == al'(ai + t), if t G [O, ei + ei'],

            at'(ai - t) 7<: al'(ai), for some t G [O, ei],

            (Vtt(at - t) = cvlt(ai - et - Eit), if t EII [Ei, ei + eit],

we denote by a- the lower bound of {ai} and by -a the upper bound of {ai}. Then

we define ai E 92,k,o(X) (E E2,h,o(X) if ai' e 92,k,o(X) by

            ai(t) =: ai'(t), OSt;Sla, if a er {ai},

            al(t) = al'(((al - ei - Ei'/2)/al)t), O;;ilt$al, ijC ai = a,

            al(t) =: al'((ainl + Ei--1 + Ei-1'/2) -l-

                   + ((ai - ai.1 -I-- si.1' - Ei + (ei.1' -- ei')/2))/(ai - ai.1))(t - ai-1)),

                     ai-i ;S{ t ;Sl ai,
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            cri(t) = cri'(t), a:-s{gt;:${l 1, if a qE {ai},

            ai(t) == ait((am + en, + e.t/2) + ((1 - a. - e,.t/2)/(1 - a.))(s - a,.)),

            a,. St$ 1, if a. = b.

Repeating this, we obtain

   Lemma 2'. {a}G{E2,fe,o(X)} is uniquely written as

(6)' {ev}= {ai}･･{a,}, ai, ･･･, cr, Eii 92,fe,o(X) if ctE92,h,o(X),

                           ai, ･･･, a,-i E 92,le,o(X) if at qt 92,le,o(X),

where each evi satishes (ii)') and

(i)' ai-i(*) is either I= [O, 1], [O, a] or [O, a]U[b, 1],

            O<a<b<L

   Since X is smooth X allows a Riemannian metric, and by this metric, any

path in E2,h,o(X) has finite length, we obtain by lemma 2'

   Lemma 3'. {E2,h,o(X)} is a contractible sPace.

   We fix a Riemannian metric on X, then for any xEX, there exists aneigh-

borhood U(x) of x such that

 ('). For vny y E U(x), there exists a unique geodesic Px,y (by the given Riemannian

   metric) which starts from x and ends at y.

Then since Px,y depends differentiably on y (as the map from U(x) into E2,fe(X)

regarded x to be the basepoint, where E2,k(X) is the space of paths whichbelongs

in le-th Sobolev space). Although Px,y does not belong in E2,fe,o(X), if we fix a

Coo-class function f: l-> I such that

            f<t) = o, if ost sl a,

            f<ti) < f<t2), if a < ti < t2 < b,

            f<t) == 1, if b$t$l.

Then rx,y given by rx,y(t) = Px,y(f(t)) belongs in E2,le,o(X), and also depends differ-

entiably on y. Similarly, we can take the path r. starts from * ends at x to be

an element of E2,k,o(X). Hence we can take the loop rur(zyrxy'irfi defined simi-

larly as in g2, to be an element of 92,h,o(X) for any U, V and y, and to depend

differentiably on y. Therefore we obtain

   Lernma 4'. {E2,k,o(X)} is a smooth PrinciPal bundle over X with structure grouP

92,k,o(X).

   Note. We set U(d(X)) the neighborhood of id(X) in XxX such that if (x, y) is

in (7<d(X)), then there exists a unique geodesic t'x,y which joins x and y (with

respect to the given Riemannian metric). Then setting



             su(x, y) = {ruru;xtx,yru;pt-irumi},

             tx, y(t) = t'x, y(f(t)), '

{su(x, y)} is a topological connection of the bundle

({E2,k,o(X)}, {92,fe,o(X)}, rr X).

    For the bundle ({E2,k,o(X)}, {92,fe,o(X)}, T, X), we know

(a). {E2,le,o(X)} is a Cco-smooth manijbld (cf. [3], [5], [9]).

(b). {E2,le,o(X)} is a simPly connected sPace.

(c). codim. T"(T(X)) in T({E2,k,o(X)}) is oo,

    Since TKE2,k,o(X)}) is a trivial bundle, there exists a non-trivial vector field

of {E2,fe,o(X)} which is not in T'(T(X)). Hence by (c), we obtain (c)'. The com-

Plement bundle of n"(T(X)) in TKE2,k,o(X)}) has a non-trivial cross-section.

    By lemma 1', lemma 3', lemma 4' and the above (a), (b), (c)', we obtain

    Theorein 2. if X is a smooth manifbld, then there is a 1 to 1 corresPondence

between the set ofequivalence classes of sivaooth G-bundles over X and the set of

equivalence classes of smooth maPs from X into the sPace of smooth homomorPhisms

from {92,h,o(X)} into G (with C'-toPology) with the equivalence relation

(15) x(x, ct) -- P(x)x(x,a)P(x)-i, aEG

where P(x) is a smooth maP from X into G.

    Note. By (15), as the map from X into the space of equivalence classes (under

inner automorphisms of G) of smooth homomorphisms from {92,k,o(X)} into G, x

is uniquely determined.
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