Representations of Loop Spaces and Fibre Bundles

Dedicated to Prof. Keizo Asano for his 60th birth day

By Akira Asada

Department of Mathematics, Faculty of Science, Shinshu University (Received Oct. 31, 1969)

Introduction. It is known that if X is arcwise connected, arcwise locally connected, and semi locally *I*-connected, then the equivalence classes of principal bundles over X with structure group G, a tatally disconnected group, are in *I*-*I* correspondence with the equivalence classes (under inner automorphisms of G) of homonorphisms of $\pi_1(X)$ into G ([10], § 11).

The purpose of this paper is to extend this result for general bundles. Our result, which is given in §3 as theorem 1, is stated as follows: If X is an arcwise connected metric space and satisfies the following condition (*),

(*) for any $x \in X$, there exists a neighborhood U(x) of x such that for any $y \in U(x)$, there exists a path $\gamma_{x,y}$ which has finite length and starts from x ends at y and depend continuously on y by the path space topology,

and G is a topological group such that whose projection onto the space of conjugate classes of G has local sections, then the equivalence classes of principal bundles over X with structure group G are in 1-1 correspondence with the continuous maps from X into the space of equivalence classes (under lnner automorphisms of G) of continuous homomorphisms of $[\Omega_f(X)]$ into G. Here $\Omega_f(X)$ means the space of loops with finite length over X and $[\Omega_f(X)]$ is the group obtained from $\Omega_f(X)$ by the following relations (cf. [3]).

$$\alpha \sim \beta$$
 if $\alpha(s) = \beta(h(s))$, $h \in H^+(I)$, the group of orientation preserving homeomo-
rphisms of $I = [0, 1]$,
 $\alpha_1\beta \cdot \beta^{-1}\alpha_2 \sim \alpha_1\alpha_2$, where $\beta^{-1}(s) = \beta(1 \cdot s)$.

For arbitrary topological group G, we also obtain the following theorem 1'. **Theorem 1'**. If X is same as in theorem 1, then the equivalence classes of principal bundles over X with structure group G are in 1-1 correspondence with the set of continuous map χ from X into the space of equivalence classes (under inner automorphisms of G) of continuous homomorphisms of $[\Omega_f(X)]$ into G such that there exists an open covering $\{U\}$ of X (may be depend on χ) and continuous map χ_U from U into the space of continuous homomorphisms of $[\Omega_f(X)]$ into G (with compact open topology) for any $U \in \{U\}$ such that

the class of $\chi_U(x)$ is the value of $\chi(x)$ for any $x \in U$.

This theorem 1' is also given in § 3.

In §1, we prove the following lemma 1. Lemma 1. If ξ and η are principal G and H-bundles over X such that $\pi^*(\eta)$ is trivial over X_{ξ} , where X_{ξ} is the tatal space of ξ and π is the projection from X_{ξ} onto X. Then there is a continuous map χ from X into Hom. (G, H), the space of equivalence classes (under inner automorphisms) of continuous homomorphisms from G into H such that

- (i), there exists an open covering {U} of X such that for any U∪V, there is a continuous map from U∪V into the space of continuous homomorphisms of G into H (with compact open topology) such that the class of its value at x is the value of γ for any x ∈ U∪V,
- (ii), denoting the transition functions of ξ and η by $\{\gamma_{UV}(x)\}$ and $\{g_{UV}(x)\}$ ($\{U\}$ also satisfies (i) for χ), there exists continuous map $f_U: U \rightarrow H$ for any $U \in U$ such that

$$g_{UV}(x) = f_U(x)\chi_{UV}(x)(\gamma_{UV}(x))f_V(x)^{-1}.$$

In §2, we prove

(a). $[E_f(X)]$ is a contractible space.

(b). $[E_f(X)]$ is the tatal space of a principal $[\Omega_f(X)]$ -bundle over X. Here $[E_f(X)]$ is the quotient space of $E_f(X)$, the space of paths with finite length over X with a basepoint, defined similarly as $[\Omega_f(X)]$.

Combining lemma 1 and the above (a), (b), we obtain theorem 1 and 1' in § 3.

In § 3, we treat the differentiable case. In fact, the proof of theorem 1 can not applied for differentiable case. Because we do not know whether $\pi^*(\eta)$ is differentiable trivial or not over $[E_f(X)]$ for a differentiable bundle η over X in general. Here π is the projection from $[E_f(X)]$ onto X. But if we use $E_{2,k,0}(X)$ and $\mathcal{Q}_{2,k,0}(X)$ instead of $E_f(X)$ and $\mathcal{Q}_f(X)$, we obtain similar result for differentiable bundles. Here $E_{2,k,0}(X)$ and $\mathcal{Q}_{2,k,0}(X)$ are given by

$$E_{2,k,0}(X) = \{ \alpha \mid \alpha : I \to X \text{ belongs in } k \text{-th Sobolev space and } \alpha(a) = \alpha(0), \\ \alpha(1-a) = \alpha(1) \text{ if } 0 \leq a \leq \varepsilon \text{ for some } \varepsilon \}, \\ \Omega_{2,k,0}(X) = \{ \beta \mid \beta \text{ belongs in } E_{2,k,0}(X) \text{ and } \beta(0) = \beta(1) = *, \text{ the base point} \}, \end{cases}$$

(cf. [3].) In §3, we also give a differentiable version of lemma 1.

It has been known that het topological structure of the loop space $\Omega(X)$ over X has deep connection with that of X. But it seems that the results of this paper and [3] suggest the algebraic structure of $\Omega(X)$ also has deep connection with the topological structure of X. In fact, there are some other results to suggest this.

For example, Chen has shown

(i). If X is a smooth manifold, and $\omega_1, \dots, \omega_m$ forms 1 -form basis at any point of X ($\omega_1(x), \dots, \omega_m(x)$ need not be linear independent), then setting

$$\theta(\alpha) = 1 + \sum_{p \ge 1} \sum_{i_1, \cdots, i_p} a_{i_1 \cdots i_p} X_{i_1} \dots X_{i_p} \dots$$
$$a_{i_1 \cdots i_p} = \int_{\alpha} \theta_{i_1} \otimes \cdots \otimes \theta_{i_p},$$

where $\{X_1, \dots, X_m\}$ are non-commutative indeterminants, θ is an into isomorphism from $[\Omega(X)]$ (defined from $\Omega(X)$ similarly as $[\Omega_f(X)]$ into $\mathbb{T}_R[[X_1, \dots, X_m]]$, the free tensor algebra over R with generators X_1, \dots, X_m ([4], [5]).

(ii). log $\theta(\alpha)$ is a Lie element for any α ([4], [9]) and denoting the Lie algebras {log $\theta(\alpha)$ }, $\alpha \in E(X)$ and {leg $\theta(\beta)$ }, $\beta \in \Omega(X)$ by $\mathfrak{L}[E(X)]$ and $\mathfrak{L}\Omega(X)$], we have

$$\mathfrak{L}[\Omega(X)]/\mathfrak{D}^2(\mathfrak{L}[E(X))]_{\cap}\mathfrak{L}[\Omega(X)] \cong H^1(X, \mathbb{R}),$$

where $\mathfrak{D}^{2}(\mathfrak{D}[E(X)])$ is the second derived ideal of $\mathfrak{D}[E(X)]$ ([6]).

It seems that these results may have some relations to algebraic homotopy theory (cf. [7]).

§1. Proof of lemma 1.

Let X be a paracompact normal space, then any fibre bundle over X is represented by its transition functions ([8]). Hence we may write a bundle by its transition functions.

Lemma 1. Let X be a paracompact normal space, $\xi = \{\gamma_{UV}(x)\}$ and $\eta = \{g_{UV}(x)\}$ are principal G and H -bundles over X such that $\pi^*(\eta)$ is trivial over X_{ξ} , the tatal space of ξ and π is the projection from X_{ξ} onto X, then there is a continuous map χ from X into Hom. (G, H), the space of equivalence classes (under inner automorphisms) of the continuous homomorphisms from G into H with the induced toplogy of the compact open topology, and an open covering $\{U\}$ of X such that

(i), for any $U \cup V$, U, $V \in \{U\}$, there is a continuous map χ_{UV} from $U \cup V$ into the space of continuous homomorphisms from G nto H (with compact open topology) such that

the class of
$$\chi_{UV}(x) = \chi(x), x \in U \cup V$$
,

(ii), the transition functions $[\gamma_{UV}(x)]$ of ξ is defined by the open covering $\{U\}$ and there exists continuous map $f_U: U \to G$ for any $U \in \{U\}$ such that

(1)
$$g_{UV}(x) = f_U(x)\chi_{UV}(x)(\gamma_{UV}(x))f_V(x)^{-1},$$

for any $U_{\cap}V$, where $\{g_{UV}(x)\}$ is the transition function of η .

Proof. We denote the elements of X by x, y, \cdots , and the elements of G by α , β , \cdots , then by assumption, we get

(2)
$$g_{\pi(U)\pi(V)}(x) = h_U(x, \alpha)h_V(x, \gamma_{\pi(U)\pi(V)}(x)\alpha)^{-1},$$

where $\{U\}$ is an open covering of X_{ε} such that (a). ξ is trivial on $\bigcup_{\pi(U)\cap\pi(V)\neq\phi}\pi(V)$ for any $U \in \{U\}$, (b). each U is written as

$$U = \pi(U) \times S$$
, S is an open set of G.

For the simplicity, we denote $g_{UV}(x)$, etc., instead of $g_{\pi(U)\pi(V)}(x)$, etc., in the rest.

Since $g_{UV}(x)$ does not depend on α , we also have

(2)'
$$g_{UV}(x) = h_{U'}(x, \beta)h_{V'}(x, \gamma_{UV}(x)\beta)^{-1}, \ \alpha \neq \beta,$$

where U', V' may be different from U, V but must satisfy

$$\pi(U) = \pi(U'), \ \pi(V) = \pi(V').$$

By (2) and (2)', we get (here β need not be different from α)

$$h_U(x, \alpha)^{-1}h_{U'}(x, \beta) = h_V(x, \gamma_{UV}(x)\alpha)^{-1}h_{V'}(x, \gamma_{UV}(x)\beta)$$

Hence setting

$$\theta(x, \alpha, \beta) | \hat{\pi}^{-1}(\pi(U)) = h_U(x, \alpha)^{-1} h_{U'}(x, \beta),$$

 $\theta(x, \alpha, \beta)$ is a continuous map from $X_{\xi,\xi}$ into H, where $X_{\xi,\xi}$ is given by

$$\begin{split} X_{\varepsilon, \varepsilon} &= \bigcup_{U} (\pi(U) \times G \times G) / \sim, \\ \pi(U) \times G \times G & \equiv x \times \alpha \times \beta \sim x \times \gamma_{UV}(x) \alpha \times \gamma_{UV}(x) \alpha \in \pi(V) \times G \times G, \end{split}$$

and $\hat{\pi}$ is the projection from $X_{\xi,\xi}$ onto X. In the rest, we denote U instead of $\hat{\pi}^{-1}(\pi(U))$.

By (a), ξ has a cross -section $s = s_U(x)$ on $\bigcup_{\pi(U) \cap \pi(V) \neq \phi} \pi(V)$. Using this s, we set

$$h(x, \alpha) | \pi^{-1}(\pi(U)) = \theta(x, s, \alpha) | \pi^{-1}(\pi(U)).$$

Although $h(x, \alpha)$ might not be defined on X_{ε} but by definition, it is defined on $\pi^{-1}(\bigcup_{\pi(U)\cap\pi(V)\neq i}\pi(V))$. Hence for a fixed x, it is defined for all (x, α) , $\alpha \subset G$.

Moreover, since

$$\begin{split} h(x, \ \alpha)^{-1}h(x, \ \beta) &= \theta(x, \ s_U(x), \ \alpha)^{-1}\theta(x, \ s_U(x), \ \beta) \\ &= (h_U(x, \ s_U(x))^{-1}h_{U'}(x, \ \alpha))^{-1}(h_U(x, \ s_U(x))^{-1}h_{U'}(x, \ \beta)) \\ &= h_{U''}(x, \ \alpha)^{-1}h_U(x, \ \beta) \\ &= \theta(x, \ \alpha, \ \beta), \end{split}$$

we get

(3)
$$\theta(x, \alpha, \beta) = h(x, \alpha)^{-1}h(x, \beta),$$

on $\widehat{\pi}^{-1}(\cap_{\pi(U)\cap\pi(V)\neq\phi}\pi(V))$.

On the other hand, if we get

$$\theta(x, \alpha, \beta) = h'(x, \alpha)^{-1}h'(x, \beta)$$

on some open set W of $\hat{\pi}^{-1}(\bigcap_{\pi(U)\cap\pi(V)\neq i}\pi(V))$, then since

$$h'(x, \alpha)h(x, \beta)^{-1} = h'(x, \alpha)h(x, \beta)^{-1}$$

for arbitrary α , β , we may set

$$h'(x, \alpha) = f(x)h(x, \alpha)$$

where f is a continuous map from $\hat{\pi}(W)$ into H. Hence we can set

(4)'
$$h_U(x, \alpha) = f_U(x)h(x, \alpha)$$

Next we set

$$h(x, \alpha\beta) = \chi(x, \alpha)h(x, \beta).$$

Then since

$$egin{aligned} h(x, & lphaeta\gamma) &= \chi(x, & lphaeta)h(x, & \gamma) \ &= \chi(x, & lpha)h(x, & eta\gamma) \ &= \chi(x, & lpha)\chi(x, & eta)h(x, & \gamma), \end{aligned}$$

we have

(4)
$$\chi(x, \alpha\beta) = \chi(x, \alpha)\chi(x, \beta)$$

We note that setting $U = \pi(U) \times S$, we can define $\chi_U(x, \alpha)$ by

$$h_U(x, \alpha\beta) = \chi_U(x, \alpha)h_U(x, \beta)$$

if $\alpha\beta$ and β both contained in S. Butsince we get by (4)'

$$\chi_U(x, \alpha) = f_U(x)\chi(x, \alpha)f_U(x)^{-1},$$

 $\chi_U(x, \alpha)$ is defined for arbitrary $\alpha \in G$.

We define $\chi_V(x, \alpha)$ similarly as $\chi_U(x, \alpha)$. Then since we get

$$\begin{split} h_U(x, \ \alpha\beta) &= \chi_U(x, \ \alpha)h_U(x, \ \beta) \\ &= h_V(x, \ \gamma_{UV}(x)\alpha\beta) = \chi_V(x, \ \gamma_{UV}(x))\chi_V(x, \ \alpha)h_V(x, \ \beta) \\ &= \chi_V(x, \ \gamma_{UV}(x))\chi_V(x, \ \alpha)h_U(x, \ \gamma_{UV}(x))^{-1}\beta) \\ &= \chi_V(x, \ \gamma_{UV}(x))\chi_V(x, \ \alpha)\chi_U(x, \ \gamma_{UV}(x))^{-1}h_U(x, \ \beta), \end{split}$$

we have

$$\chi_U(x, \alpha) = \chi_V(x, \gamma_{UV}(x))\chi_V(x, \alpha)\chi_U(x, \gamma_{UV}(x))^{-1}$$

But since by (4)

$$\begin{split} \chi_U(x, \ \alpha\beta) \\ &= \chi_U(x, \ \alpha)\chi_U(x, \ \beta) \\ &= \chi_V(x, \ \gamma_{UV}(x))\chi_V(x, \ \alpha)\chi_U(x, \ \gamma_{UV}(x))^{-1}\chi_V(x, \ \gamma_{UV}(x))\chi_V(x, \ \beta)\chi_U(x, \ \gamma_{UV}(x))^{-1} \\ &= \chi_V(x, \ \gamma_{UV}(x))\chi_V(x, \ \alpha\beta)\chi_U(x, \ \gamma_{UV}(x))^{-1} \\ &= \chi_V(x, \ \gamma_{UV}(x))\chi_V(x, \ \alpha)\chi_V(x, \ \beta)\chi_U(x, \ \gamma_{UV}(x))^{-1}, \end{split}$$

we get

$$\chi_U(x, \gamma_{UV}(x))^{-1}\chi_V(x, \gamma_{UV}(x)) = e,$$

where e is the identity of H, for arbitrary $V(U_{\cap}V \neq \phi)$. Hence we can set

(5)
$$\chi_V(x, \alpha) = P_{UV}(x)\chi_U(x, \alpha)P_{UV}(x)^{-1},$$

where $P_{UV}(x)$ is a continuous map from $U_0 V$ into H.

Then since

$$\begin{split} g_{UV}(x) &= h_U(x, \ \alpha) h_V(x, \ \gamma_{UV}(x)\alpha)^{-1} \\ &= f_U(x) h(x, \ \alpha) (f_V(x) h(x, \ \gamma_{UV}(x)\alpha))^{-1} \\ &= f_U(x) h(x, \ \alpha) h(x, \ \gamma_{UV}(x)\alpha)^{-1} f_V(x)^{-1} \\ &= f_U(x) h(x, \ \alpha) (\chi(x, \ \gamma_{UV}(x)) h(x, \ \alpha))^{-1} f_V(x)^{-1} \\ &= f_U(x) \chi(x, \ \gamma_{UV}(x))^{-1} f_V(x)^{-1}, \end{split}$$

we obtain the lemma, because χ is defined on $U \cap V \neq \phi$. Note. If X_{ε} is given by

Representations of Loop Spaces and Fibre Bundles

$$X_{\xi} = \bigcup_{U} U \times G/\sim, \ (x, \ \alpha) \sim (x, \ \alpha \gamma_{UV}(x)),$$

then setting

$$egin{aligned} g_{UV}(x) &= \mathrm{h}_U(x, \ lpha)^{-1}h_V(x, \ lpha\gamma_{UV}(x)), \ h_U(x, \ lpha) &= h(x, \ lpha)f_U(x), \ h(x, lpha\beta) &= h(x, \ lpha)\chi(x, \ eta), \end{aligned}$$

where $h(x, \alpha)$ is defined similarly as above, we obtain

(1)' $g_{UV}(x) = f_U(x)^{-1}\chi(x, \gamma_{UV}(x))f_V(x).$

§2. Fibering of path spaces.

We denote by E(X) the path space over X with base point^{*}. The loop space over X is denoted by $\Omega(X)$. As in [3], we define an equivalence relation \sim for the paths α , β , \cdots , of E(X) by

$$\alpha(t) \sim \beta(t)$$
 if and only if $\alpha(t) = \beta(h(t))$ or
 $\alpha = \alpha_1 \alpha_2$ and $\beta = \alpha_1 \alpha_3 \alpha_3^{-1} \alpha_2$,

where h is an orientation preserving homeomorphism of I = [0, 1], $\alpha_1 \alpha_2$ means the product of paths and α^{-1} is the inverse path of α .

We denote the class of α by this relation \sim by $[\alpha]$ and the quotient spaces of E(X) and $\mathcal{Q}(X)$ by this relation are denoted by [E(X)] and $[\mathcal{Q}(X)]$.

Lemma 2. $[\alpha] \in [E(X)]$ is uniquely written in the form

(6)
$$[\alpha] = [\alpha_1] \cdots [\alpha_s], \ \alpha_1, \ \cdots, \ \alpha_s \in \mathcal{Q}(X) \text{ if } \alpha \in \mathcal{Q}(X), \\ \alpha_1, \ \cdots, \ \alpha_{s-1} \in \mathcal{Q}(X) \text{ if } \alpha \notin \mathcal{Q}(X)$$

where each α_i satisfies

(i)
$$\alpha_i^{-1}(*)$$
 is either I or $\{0\} \cup \{1\}$ if $\alpha_i \in \Omega(X)$ and $\alpha_s^{-1}(*) = \{0\}$ if $\alpha_s \notin \Omega(X)$,

(ii) There are no a and ε (0 $\langle a \rangle \langle 1, 0 \rangle \langle \varepsilon \rangle \langle 1 \rangle$, such that $\alpha_i (a+t) = = a_i(a-t)$ for $t \in [0, \varepsilon]$, unless $a_i = e$, the unit path.

Proof. Since $\alpha^{-1}(*)$ is compact, we set

$$\alpha^{-1}(*) = I_1 \cup \cdots \cup I_s,$$

where each I_k is either a point or a closed interval. We set

$$I_k = [a_{2k-1}], a_{2k}, a_{2j} < a_{2j+1}, a_{2m-1} \leq a_{2m}, a_1 = 0.$$

If $a_2 \neq a_1$, then we set $\alpha_1 = e$, the unit path. If $a_1 = a_2$, then we set

$$\alpha_1'(t) = \alpha(a_3 t).$$

If α_1' satisfies (ii), then we take α_1' as α_1 . If α_1' does not satisfy (ii), then we set

$$I=J_1\cup J_2, \ \ J_1\cup J_2=\phi, \ \ J_2=\bigcup_i [a_i-arepsilon_i, \ \ a_i+arepsilon_i],$$

where $a_i + \varepsilon_i < p_{i+1} - \varepsilon_{i+1}$ and $\alpha_1'(a_i - t) = \alpha_1'(a_i + t)$, $t \in [0, \varepsilon_i]$. Then we set the lower bound and upper bound of $\{a_i\}$ by a and a and set

$$\begin{aligned} &\alpha_{1}(t) = \alpha_{1}'(t), \ \ 0 \leq t \leq a, \ \ if \ a \notin \{a_{i}\}, \\ &\alpha_{1}(t) = \alpha_{1}'(((a_{1} - \varepsilon_{1})/a_{1})t), \ \ 0 \leq t \leq a_{1}, \ \ ifa = a_{1}, \\ &\alpha_{1}(t) = \alpha_{1}'(a_{i-1} + \varepsilon_{i-1} + \langle (a_{i} - a_{i-1} + \varepsilon_{i-1} - \varepsilon_{i})/(a_{i} - a_{i-1}))(t - a_{i-1})), \\ &a_{i-1} \leq t \leq a_{i}, \\ &\alpha_{1}(t) = \alpha_{1}'(t), \ \ a \leq t \leq 1, \ \ if \ a \notin \{a_{i}\}, \\ &\alpha_{1}(t) = \alpha_{1}'(a_{m} + \varepsilon_{m} + ((1 - a_{m} - \varepsilon_{m})/(1 - a_{m}))(t - a_{m})), \\ &a_{m} \leq t \leq 1, \ \ if \ a = a_{m}. \end{aligned}$$

Repeating this method, we obtain the decomposition (6). The uniqueness of the decomposition (6) follows from the definitions of α_i $(1 \le i \le s)$.

If X is a metric space, then denoting the distance of x, $y \in X$ by dis. (x, y), we can define the length of a path by

$$\lim_{|a_i - a_{i-1}| \to 0} \sum_{i=1}^m dis. \ (\alpha(a_i), \ \alpha(a_{i-1})),$$

$$0 = a_0 < a_1 < \dots < a_{m-1} < a_m = 1,$$

if the limit exists. Then if α_1 and α_2 are the paths of X with finite length, the product $\alpha_1 \alpha_2$ also has finite length. Hence denoting the subspaces of E(X) and $\Omega(X)$ consisted by the paths of finite length by $E_f(X)$ and $\Omega_f(X)$ and their quotient spaces defined similarly as [E(X)] and $[\Omega(X)]$ are by $[E_f(X)]$ and $[\Omega_f(X),] [\Omega_f(X)]$ is a group and operates on $[E_f(X)]$ (cf. [4]).

Lemma 3. $[E_f(X)]$ is a contractible space.

Proof. By lemma 2, if $[\alpha] \in [E_f(X)]$, then we can set

$$[\alpha] = [\alpha_1] \cdots [\alpha_s],$$

and by the proof of lemma 2, each α_i has finite length. Hence we can define the canonical parameter of α_i by its arclength, that is

$$|\alpha_{i,t}| = t |\alpha_i|,$$

where $|\alpha|$ means the length of α and $\alpha_{i,t}$ is given by $\alpha_{i,t}(u) = \alpha_i(tu), 0 \le t \le 1$.

We denote this path by $\hat{\alpha}_{i}$. Then we define the canonical representation $\hat{\alpha}$ of α by

$$\widehat{\alpha}(u) = \widehat{\alpha}_i(su - i + 1), \quad \frac{i - 1}{s} \leq u \leq \frac{i}{s}.$$

Then for α , the path $\hat{\alpha}_t$ given by $\hat{\alpha}_t u = \hat{\alpha}(tu)$ is uniquely determined for $0 \leq t \leq 1$. Hence the map

$$[E_f(X)] \times \boldsymbol{I} \ni ([\alpha], t) \rightarrow [\widehat{\alpha}_t] \in [E_f(X)]$$

gives the contraction of $[E_f(X)]$.

Lemma 4. If X is an arcwise connected metric space and satisfies

(*), for each $x \in X$, there exists a neighborhood U(x) of x such that for each $y \in U(x)$, there is a canonical path $\gamma_{x,y}$, $\gamma_{x,y}(0) = x$, $\gamma_{x,x}(1) = y$, and has finite length and as the map from U(x) into the path space, $\gamma_{x,y}$ is continuous in y,

then $[E_f(X)]$ is the tatal space of a principal bundle over X with structure group $[\Omega_f(X)]$.

Proof. For each $x \in X$, we fix a path γ_x with finite length such that

$$\gamma_x(0) = *, \ \gamma_x(1) = x.$$

Such path exists by the arcwise connectedness of X and (*).

We denote the projection from $[E_f(X)]$ onto X by π . Then to define the continuous mappings $\gamma_x^* : [\Omega_f(X)] \to \pi^{-1}(x)$ and $\gamma_{xx} : \pi^{-1}(x) \to [\Omega_f(X)]$ by

(7)'
$$\gamma_x^*([\alpha]) = [\alpha \gamma_x], \ [\alpha] \in [\Omega_f(X)],$$

(7)"
$$\gamma_x^*([\alpha]) = [\gamma_x^{-1}\alpha,] [\alpha] \in \pi^{-1}(x)$$

we get $\gamma_x^*(\gamma_{x*}([\gamma_x\alpha\gamma_x^{-1}])) = [\alpha]$ and $\gamma_{x*}(\gamma_x^*([\alpha])) = [\alpha]$. Hence $\pi^{-1}(x)$ is homeomorphic to $[\Omega_f(X)]$ for each x.

If U(x) is a neighborhood of x which satisfies the assumption (*), then to define γ_{Ux}^* : $\pi^{-1}(U(x)) \to U(x) \times [\Omega_f(X)]$ by

(7)
$$\gamma_{Ux}^{*}([\alpha]) = (\pi(\alpha), \gamma_{x*}(\alpha\gamma_{x,\pi\alpha}^{-1})),$$

 γ_{Ux}^* is a homeomorphism from $\pi^{-1}(U(x))$ onto $U(x) \times [\Omega_f(X])$.

Since $\{U(x), x \in X\}$ forms an open covering of X, we take a subcovering $\{U\}$ of $\{U(x), x \in X\}$ and denote $\gamma_{U,y}, \gamma_U, \overline{\gamma}_U^*, \gamma_{U*}$ and γ_U^* instead of $\gamma_{x,y}, \gamma_x, \gamma_{Ux}^*, \gamma_{x*}$ and γ_x^* if U = U(x). Then on $U_{\cap}V$, the homeomorphism $\overline{\gamma}_V^* \overline{\gamma}_U^{*-1} : (U_{\cap}V) \times [\Omega_f(X)] \to (U_{\cap}V)[\times \Omega_f(X)]$ is given by

$$\overline{\gamma}_{V} * \overline{\gamma}_{U} * {}^{-1}(\pi([\alpha]), \gamma_{U*}([\alpha\gamma_{U,\pi(\alpha)}]))$$

$$= (\pi([\alpha]), \gamma_{V*}([\alpha\gamma_{V,\pi(\alpha)}^{-1}])).$$

Hence we get

(8)
$$\overline{\gamma}_V * \overline{\gamma}_U * {}^{-1}(y, \alpha) = (y, \alpha \gamma_U \gamma_U, {}_y \gamma_V, {}_y {}^{-1} \gamma_V {}^{-1}).$$

Then since $\gamma_U \gamma_U, y \gamma_{V,y}^{-1} \gamma_V^{-1}$ is a loop, γ_U and γ_V are fixed on $U_{\cap} V$ and $\gamma_{U,y}$ and $\gamma_{U,y}$ both depends continuously on y, we have the lemma.

Note. If there is a neighborhood $U(\mathcal{A}(X))$ of $\mathcal{A}(X)$, the diagonal of $X \times X$, in $X \times X$ such that for any $(x, y) \in U(\mathcal{A}(X))$, there corresponds a unique path $t_{x,y}$ with finite length which starts from x ends at y and depends continuously on (x, y), then setting

$$\mathbf{s}_{U}(x, y) = [\gamma_{U}\gamma_{U,x}t_{x,y}\gamma_{U,y}^{-1}\gamma_{U}^{-1}],$$

 $\{s_U(x, y)\}\$ is a topological connection of the bundle $([E_f(X)], [\Omega_f(X)], \pi, X)$ (cf. [1]). On the other hand, if the bundle $([E_f(X)], [\Omega_f(X)], \pi, X)$ has a topological connection $\{s_U(x, y)\}\$, then denoting the canonical representation of $s_U\{(x, y) \in \{s_U(x, y)\}\$ given by lemma 3 also by $s_U(x, y)$ for each U, the path $t_{x,y}$ given by

$$t_{x,y} = \gamma_{U,x}^{-1} \gamma_{U}^{-1} s_{U}(x, y) \gamma_{U} \gamma_{U,y},$$

does not depend on U because we have

$$\begin{split} \gamma_{V,x}^{-1}\gamma_{V}^{-1}s_{V}(x, y)\gamma_{V}\gamma_{V,y} \\ &= \gamma_{V,x}^{-1}\gamma_{V}^{-1}(\gamma_{V,x}\gamma_{V}\gamma_{U,x}^{-1}\gamma_{U}^{-1}s_{U}(x, y)\gamma_{U}\gamma_{U,y}\gamma_{V,y}^{-1}\gamma_{V}^{-1})\gamma_{V}\gamma_{V,y} \\ &= \gamma_{U,x}^{-1}\gamma_{U}^{-1}s_{U}(x, y)\gamma_{U}\gamma_{U,y} \end{split}$$

if each γ_{U} , $\gamma_{U,x}$, \cdots , is given by ts canonical form. Since $t_{x,y}$ is continuous in (x, y) and starts from x ends at y, the existence of above $t_{x,y}$ (and $U(\mathcal{A}(X))$), is the necessary and sufficient condition for the existence of the topological connection of the bundle ($[E_f(X)]$, $[\Omega_f(X)]$, π , X).

§3 Proof of theorem 1.

Theorem 1. If X satisfies the assumptions of lemma 4, then there is a 1 to 1 correspondence between the set of the equivalence classes of G -bundles over X and the set of continuous maps from X into Hom. ($[\Omega_f(X)]$, G), the space of equivalence classes (under inner automorphisms) of continuous homomorphisms from $[\Omega_f(X)]$ into G (the toplogies of $[\Omega_f(X)]$ and Hom. $[(\Omega_f(X)], G)$ are both induced toplogies from the compact open toplogies of $\Omega_f(X)$ and the space of continuous homomorphisms from $[\Omega_f(X)]$ into G), if the projection from G onto the space of conjugate classes

of G has local sections.

Proof. If ξ is a G -bundle over X, then $\pi^*(\xi)$ is trivial by lemma 3. Hence $\pi^*(\xi)$ is obtained by some continuous map from X into the space of continuous homomorphisms from $[\Omega_f(X)]$ into G with the equivalence relation under the inner automorphisms of G by lemma 1 and lemma 4.

On the other hand, if χ is a continuous map from X into Hom. ($[\Omega_f(X)]$, G), then by assumption, there exists an open covering $\{U_i, i \in I\}$ of X such that for any $\bigcup_{U_i \cap U_j \neq} U_j$, there exists a continuous map χ_i from $\bigcap_{U_i \cap U_j \neq} U_j$ into the space of continuous homomorphisms from $[\Omega_f(X)]$ into G (with compact open toplogy), such that whose class at $x, x \in \bigcap_{U_i \cap U_j \neq} U_j$ is equal to the value of χ at x.

We denote $\chi_{i_1i_2}$ either of i_1 or i_2 for any (i_1, i_2) . Then by assumption, we get

$$\chi_{i_{2}i_{3}}' = P_{i_{2}i_{3}}^{i_{1}i_{2}} \chi_{i_{1}i_{2}}' (P_{i_{2}i_{3}}^{i_{1}i_{2}})^{-1},$$

if $U_{i_1 \cap} U_{i_2 \cap} U_{i_3} \neq \phi$. Here P_{jk}^{ij} is a continuous map from $U_i \cup U_j \cup U_k$ into G. Then since we may consider $\{P_{jk}^{ij}\}$ only on $\bigcup_{Uj \cup U_k \neq J_k} U_k$, we can take P_{jk}^{ij} to satisfy

$$P_{i_{2}i_{3}}^{i_{1}i_{2}}P_{i_{3}i_{1}}^{i_{2}i_{3}}P_{i_{1}i_{2}}^{i_{3}i_{1}}=e, the identity of G,$$

on $U_{i_1} \cap U_{i_2} \cap U_{i_3}$. Hence denoting \mathscr{D} the sheaf with base space I (with discreet topology), stalk at i is the space of continuous maps from U_i into G, \overline{P}_{jk}^{ij} is a 1 -cocycle of \mathscr{D} with covering system $\{(i, j)\}$, where \overline{P}_{jk}^{ij} is given by

$$\overline{P}_{jk}^{ij}(j) = \overline{P}_{jk}^{ij} | U_j.$$

Then since I is discreet, we get

(9)
$$\overline{P}_{i_2i_3}^{i_1i_2}(i_2) = \overline{f}_{i_2i_3}(i_2)(\overline{f}_{i_1i_2}(i_2))^{-1}.$$

Then we set

$$f_{ii}(x) = (f_{ii}(i))(x), \ x \in U_i,$$

and define

$$\chi_{ij} = f_{ij}^{-1} \chi_{ij}' f_{ij},$$

on $U_i \cap U_j$.

On the other hand, since we may assume the bundle $([E_f(X)], [\Omega_f(X)], \pi, X)$ is trivial on each U_i , $i \in I$, we denote its transition functions with covering system U_i , $i \in I$ by $\{\gamma_{ij}(x)\}$. Then setting

$$g_{ij}(x) = \chi_{ij}(x)(\gamma_{ij}(x)),$$

 $\{g_{ij}(x)\}$ defines a G -bundle by (9).

Moreover, if $\chi(\xi)$ is the map from X into Hom. ($[\Omega_f(X)]$, G) obtained from ξ , a G -bundle over X, then we get

- (10) $\{(\chi)_{UV}(x)(\gamma_{UV}(x))\} \sim \xi,$
- (10)' $\chi(\chi_{UV}(x)(\gamma_{UV}(x))) = \chi(x),$

we have the theorem.

Corollary ([10]). If X satisfies the assumptions of lemma 4, G is a tatally disconnected group, then there is a 1-1 correspondence between the set of equivalence calsses of G -bundles over X and Hom. $(\pi_1(X), G)$, the set of equivalence classes (under inner automorphisms of G) of homomorphisms from $\pi_1(X)$ into G.

Proof. If G is tatally disconnected, then we have

(11)
$$Hom. ([\Omega_f(X)], G) = Hom. (\pi_1(X), G)$$

and since Hom. $(\pi_1(X), G)$ is also tatally disconnected, any continuous map from X into Hom. $(\pi_1(X), G)$ is always a constant map. Hence we have the corollary.

Note. In theorem 1, we assume that G satisfies

(*), the projection from G onto the space of conjugate classes of G has local sections.

But (*) is used only to show

(*), if χ is a continuous map from X into Hom. ($[\Omega_f(X)]$, G), then there exists an open covering $\{U\}$ of X and a set of continuous maps (from U into the space of continuous homomorphisms from $[\Omega_f(X)]$ into G (with compact open toplogy)) $\{\chi_U\}$ such that

the class of $\chi_U(x)$ is the value of χ at $x, x \in U$,

for any $U, U \in \{U\}$.

Hence for arbitrary topological group G, we obtain

Theorem 1'. If X satisfies the assumptions of lemma 4, then there is a 1 to 1 correspondence between the set of equivalence classes of G -bundles over X and the set of continuous maps from X into Hom. $([\Omega(X)], G)$, such that there exists an open covering $\{U\}$ of X and a set of continuous maps (from U into the space of continuous homomorphisms from $[\Omega_f(X)]$ into G (with compact open topology)) $\{\chi_U\}$ such that

the class of
$$\chi_U(x)$$
 is the value of χ at $x, x \in U$,

for any $U, U \in U$.

§4. The differentiable case.

If X is a smooth manifold, ξ and η are smooth G and H -bundles over X, the lemma 1 is also true replacing continuous map χ by smooth map χ if $\pi^*(\eta)$ is differentiably trivial. But since $[E_f(X)]$ is not C^{∞} -smooth although it is a smooth Banach manifold, we can not know whether $\pi^*(\xi)$ is differentiably trivial or not on $[E_f(X)]$. Therefore theorem 1 is not extended for smooth bundles.

On the other hand, if X_{ε} is the tatal space of a differentiable G-bundle over X, then the cotangent bundle $T^*(X_{\varepsilon})$ of X_{ε} is written as

(12)'
$$T^*(X_{\xi}) = \pi^*(T^*(X)) + T^*_{F},$$

where π is the projection from X_{ξ} onto X, $T^*(X)$ is the cotangent bundle of X. We denote by p_1 and p_2 the projections from $T^*(X_{\xi})$ onto the first and the second components of the right hand side of (12)'. Then for a smooth function f on X_{ξ} , we can write

$$df = p_1(df) + p_2(df),$$

where d is the exterior differential of X_{ξ} . We set

$$\pi^*(d)f = p_1(df), \quad d_F f = p_2(df).$$

Then $\pi^*(d)$ and d_F are defined for arbitrary form φ on $X_{\mathfrak{k}}$, because φ is written as $\sum_{I} f_I dx_I$, $I = (i_1, \dots, i_n)$, locally, and we may set

$$\pi^*(d)(\sum_I f_I dx_I) = \sum_I \pi^*(d) f_{I \land} dx_I,$$
$$d_F(\sum_I f_I dx_I) = \sum_I d_F f_{I \land} dx_I.$$

Hence the exterior differential d of X_{ε} is written as

(12) $d = \pi^*(d) + d_F.$

Although this decomposition is derived from (12)' and in (12)', T_F^* is not determined uniquely, d_F is determined uniquely because we have

$$d_{\mathbf{F}} = d - \pi^*(d),$$

and d and $\pi^*(d)$ are both determined uniquely.

If $\eta = \{g_{UV}(x)\}$ is a smooth H -bundle over X such that $\pi^*(\eta)$ is (differentiably) trivial, then we can write on X

$$g_{\pi(U)\pi(V)}(x) = h_U(x, \alpha)h_V(x, \gamma_{\pi(U)\pi(V)}(x)\alpha)^{-1},$$

where α is an element of G, $\{\gamma_{\pi(U)\pi(V)}(x)\}$ is the transition functions of ξ and $h_U(x, \alpha)$ is a smooth map. As in the proof of lemma 1, we denote $g_{UV}(x)$, ..., instead of $g_{\pi(U)\pi(V)}(x)$, ..., Then since $d_Fg_{UV}(x)$ is equal to 0, we have

$$\begin{split} d_{F}(h_{U}(x, \alpha))h_{V}(x, \gamma_{UV}(x)\alpha)^{-1} \\ &= h_{U}(x, \alpha)h_{V}(x, \gamma_{UV}(x)\alpha)^{-1}d_{F}(h_{V}(x, \gamma_{UV}(x)\omega))h_{V}(x, \gamma_{UV}(x)\alpha)^{-1}. \end{split}$$

Hence we can define a smooth $\mathfrak{L}(H)$ -valued functon $\theta(x, \alpha)$ on $X_{\mathfrak{E}}$ ($\mathfrak{L}(H)$ is the Lie algebra of H) by

$$\theta(x, \alpha) | U = h_U(x, \alpha)^{-1} d_F(h_U(x, \alpha)).$$

Then if $X_{\mathfrak{k}}$ is simply connected and $T_{F}(X_{\mathfrak{k}})$, the complement bundle of $\pi^{*}(T(X))$ in $T(X_{\mathfrak{k}})$ (T(X) and $T(X_{\mathfrak{k}})$ are the tangent bundles of X and $X_{\mathfrak{k}}$), has a non-trivial cross -section, there exists an H -valued function $h(x, \alpha)$ on $X_{\mathfrak{k}}$ such that

(13)
$$\theta(x, \alpha) = h(x, \alpha)^{-1} d_F(h(x, \alpha)),$$

because we get

$$d_{F}\theta = -\theta_{n}\theta$$
,

on X_{ξ} (cf. [2]).

Moreover, if $h'(x, \alpha)$ also satisfies $\theta(x, \alpha) = h'(x, \alpha)^{-1} d_F(h'(x, \alpha))$, then since

$$d_{\mathbf{F}}(h^{-1}h') = -h^{-1}d_{\mathbf{F}}(h)h^{-1}h' + h^{-1}d_{\mathbf{F}}(h') = 0,$$

we have

(14)
$$h'(x, \alpha) = f(x)h(x, \alpha), f(x)$$
 is a smooth map from X into H.

Because a smooth function on X_{ξ} depends only on $x, x \in X$, if and only if $d_{F}f$ is equal to 0.

On the other hand, setting

$$h(x, \alpha\beta) = \chi(x, \alpha)h(x, \beta),$$

we have

$$\chi(x, \alpha\beta) = \chi(x, \alpha)\chi(x, \beta),$$

and

$$g_{UV}(x) = \chi(x, \gamma_{UV}(x))^{-1}.$$

Moreover, we know that

- (i). χ is a smooth map from X into the space of smooth homomorphisms from G into H (with C¹ -topology).
- (ii). If the coordinates of η is changed, then χ is changed as

$$\chi'(x, \alpha) = P(x)\chi(x, \alpha)P(x)^{-1}, \ \alpha \in G,$$

where P(x) is a smooth map from X into H.

Hence we have the following version of lemma 1 for the smooth bundles.

Lemma 1'. Let $\xi = \{\gamma_{UV}(x)\}$ and $\eta = \{g_{UV}(x)\}$ are smooth principal G and H -bundles over X and the tatal space X_{ξ} of ξ satisfies

- (i). X_{ε} is a simply connected space.
- (ii). $T_F(X_{\epsilon})$, the complement bundle of $\pi^*(T(X))$ in $T(X_{\epsilon})$ (π is the projection from X_{ϵ} onto X and T(X) and $T(X_{\epsilon})$ are the tangent bundles of X and X_{ϵ}) has a non -trivial cross -section.

Then if $\pi^*(\eta)$ is trivial over X_{ξ} , there exists a smooth map χ from X into the space of smooth homomorphisms from G into H (with C¹ -topology) such that

 $g_{UV}(x) = \chi(x)(\gamma_{UV}(x)).$

Moreover, if χ and χ' are the maps from X into the space of smooth homomorphisms from G into H obtained from η , then there exists a smooth map P from X into H such that

$$\chi'(x, \alpha) = P(x)\chi(x, \alpha)P(x)^{-1}, \alpha \in G.$$

To use lmma 1' for smooth bundles over a smooth manifold X, we use

$$\begin{split} E_{2,k,0}(X) &= \{ \alpha \mid \alpha : I \to X \text{ belongs in } k \text{-th Sobolev space and there} \\ exists \ \varepsilon > 0 \text{ such that } \alpha(a) &= *, \ 0 \leq a \leq \varepsilon, \\ \alpha(1-b) &= \alpha(1), \ 0 \leq b \leq \varepsilon \}, \\ \mathcal{Q}_{2,k,0}(X) &= \{ \alpha \mid \alpha \in E_{2,k,0}(X), \ \alpha(0) = \alpha(1) = * \}, \end{split}$$

where k > n/2, n = dim. X (cf. 3), instead of $E_f(X)$ and $\Omega_f(X)$. We note that by Sobolev's lemma, $E_{2,k,0}(X) \subset E_f(X)$ and $\Omega_{2,k,0}(X) \subset \Omega_f(X)$ if the metric of X is a Riemannian metric of X. In $E_{2,k,0}(X)$, we define an equivalence relation \sim for the paths α , \cdots , by

$$\alpha(t) \sim \beta(t)$$
, if and only if $\alpha(t) = \beta(h(t))$ or
 $\alpha = \alpha_1 \alpha_2$ and $\beta = \alpha_1 \alpha_3 \alpha_3^{-1} \alpha_2$,

where h is an orientation preserving C^k -diffeomorphism of I = [0, 1], α_1 , α_2 and α_3 are the elements of $E_{2,k,0}(X)$.

The class of α by this relation is denoted by $\{\alpha\}$ and the quotient spaces of $E_{2,k,0}(X)$ and $\Omega_{2,k,0}(X)$ by this relation are denoted by $\{E_{2,k,0}(X)\}$ and $\Omega_{2,k,0}(X)$.

For $\alpha \in E_{2,k,0}(X)$, we set

$$\begin{split} & \overline{int. \ \alpha^{-1}(*)} = I_0 \cup \cdots \cup I_s, \\ & I_k = [a_{2k-1}, \ a_{2k}], \ a_{2p} < a_{2p+1}, \ a_{2q-1} < a_{2q}, \ a_{-1} = 0, \end{split}$$

Then we define $\alpha_1' \in \Omega_{2,k,0}(X)$ (or $\in E_{2,k,0}(X)$ if s = 1 and $\alpha \notin \Omega_{2,k,0}(X)$) by

$$\alpha_1'(t) = \alpha(((a_1 + a_2)/2)t).$$

If α_1' satisfies

(ii)'.

There are no a and
$$\varepsilon$$
, ε' $(0 < a < 1, 0 < \varepsilon < 1, 0 < \varepsilon' < 1)$ such that
 $\alpha_1'(a + t) = \alpha_1'(a - t)'$ for $t \in [0, \varepsilon + \varepsilon']$,
for some $t \in [0, \varepsilon]$, $\alpha_1'(a + t) \neq \alpha_1(a)$, and
 $\alpha_1'(a + t) = \alpha_1'(a + \varepsilon + \varepsilon')$ for $t \in [\varepsilon, \varepsilon + \varepsilon']$,

then we set $\alpha_1' = \alpha_1$. If α_1' does not satisfy (ii)', then setting

$$I = J_1 \cup J_2, \quad J_1 \cap J_2 = \phi,$$

$$J_2 = \bigcup_i [a_i - \varepsilon_i - \varepsilon_i', \quad a_i + \varepsilon_i + \varepsilon_i'],$$

$$a_i + \varepsilon_i + \varepsilon_i' < a_{i+1} - \varepsilon_{i+1} - \varepsilon_{i+1}',$$

$$\alpha_1'(a_i - t) = \alpha_1'(a_i + t), \quad if \ t \in [0, \ \varepsilon_i + \varepsilon_i'],$$

$$\alpha_1'(a_i - t) \neq \alpha_1'(a_i), \quad for \ some \ t \in [0, \ \varepsilon_i],$$

$$\alpha_1'(a_i - t) = \alpha_1'(a_i - \varepsilon_i - \varepsilon_i'), \quad if \ t \in [\varepsilon_i, \ \varepsilon_i + \varepsilon_i'],$$

we denote by \underline{a} the lower bound of $\{a_i\}$ and by \overline{a} the upper bound of $\{a_i\}$. Then we define $\alpha_1 \in \Omega_{2,k,0}(X)$ $(\in E_{2,k,0}(X)$ if $\alpha_1' \notin \Omega_{2,k,0}(X)$ by

$$\begin{aligned} \alpha_{1}(t) &= \alpha_{1}'(t), \ 0 \leq t \leq a, \ if \ a \notin \{a_{i}\}, \\ \alpha_{1}(t) &= \alpha_{1}'(((a_{1} - \varepsilon_{1} - \varepsilon_{1}'/2)/a_{1})t), \ 0 \leq t \leq a_{1}, \ if \ a_{1} = a, \\ \alpha_{1}(t) &= \alpha_{1}'((a_{i-1} + \varepsilon_{i-1} + \varepsilon_{i-1}'/2) + \\ &+ ((a_{i} - a_{i-1} + \varepsilon_{i-1}' - \varepsilon_{i} + (\varepsilon_{i-1}' - \varepsilon_{i}')/2))/(a_{i} - a_{i-1}))(t - a_{i-1})), \\ &a_{i-1} \leq t \leq a_{i}, \end{aligned}$$

 $\begin{aligned} &\alpha_1(t) = \alpha_1'(t), \quad \bar{a} \leq t \leq 1, \quad \text{if } \bar{a} \notin \{a_i\}, \\ &\alpha_1(t) = a_1'((a_m + \varepsilon_m + \varepsilon_m'/2) + ((1 - a_m - \varepsilon_m'/2)/(1 - a_m))(s - a_m)), \\ &a_m \leq t \leq 1, \quad \text{if } a_m = \bar{a}. \end{aligned}$

Repeating this, we obtain

Lemma 2'. $\{\alpha\} \in \{E_{2,k,0}(X)\}$ is uniquely written as

(6)'
$$\{\alpha\} = \{\alpha_1\} \cdots \{\alpha_s\}, \ \alpha_1, \ \cdots, \ \alpha_s \in \mathcal{Q}_{2, k, 0}(X) \ if \ \alpha \in \mathcal{Q}_{2, k, 0}(X), \\ \alpha_1, \ \cdots, \ \alpha_{s-1} \in \mathcal{Q}_{2, k, 0}(X) \ if \ \alpha \notin \mathcal{Q}_{2, k, 0}(X),$$

where each α_i satisfies (ii)') and

(i)'

$$lpha_i^{-1}(*) ext{ is either } I = [0, 1], [0, a] ext{ or } [0, a] \cup [b, 1], \ 0 < a < b < 1.$$

Since X is smooth X allows a Riemannian metric, and by this metric, any path in $E_{2,k,0}(X)$ has finite length, we obtain by lemma 2'

Lemma 3'. $\{E_{2,k,0}(X)\}$ is a contractible space.

We fix a Riemannian metric on X, then for any $x \in X$, there exists a neighborhood U(x) of x such that

(*). For pny $y \in U(x)$, there exists a unique geodesic $\beta_{x,y}$ (by the given Riemannian metric) which starts from x and ends at y.

Then since $\beta_{x,y}$ depends differentiably on y (as the map from U(x) into $E_{2,k}(X)$ regarded x to be the basepoint, where $E_{2,k}(X)$ is the space of paths which belongs in k-th Sobolev space). Although $\beta_{x,y}$ does not belong in $E_{2,k,0}(X)$, if we fix a C^{∞} -class function $f: I \to I$ such that

$$f(t) = 0, if \ 0 \le t \le a,$$

$$f(t_1) < f(t_2), if \ a < t_1 < t_2 < b,$$

$$f(t) = 1, if \ b \le t \le 1.$$

Then $\gamma_{x,y}$ given by $\gamma_{x,y}(t) = \beta_{x,y}(f(t))$ belongs in $E_{2,k,0}(X)$, and also depends differentiably on y. Similarly, we can take the path γ_x starts from * ends at x to be an element of $E_{2,k,0}(X)$. Hence we can take the loop $\gamma_{U}\gamma_{U,y}\gamma_{V,y}^{-1}\gamma_{V}^{-1}$ defined similarly as in § 2, to be an element of $\Omega_{2,k,0}(X)$ for any U, V and y, and to depend differentiably on y. Therefore we obtain

Lemma 4'. $\{E_{2,k,0}(X)\}$ is a smooth principal bundle over X with structure group $\Omega_{2,k,0}(X)$.

Note. We set $U(\mathcal{A}(X))$ the neighborhood of $\mathcal{A}(X)$ in $X \times X$ such that if (x, y) is in $U(\mathcal{A}(X))$, then there exists a unique geodesic $t'_{x,y}$ which joins x and y (with respect to the given Riemannian metric). Then setting

$$s_{U}(x, y) = \{ \gamma_{U}\gamma_{U,x}t_{x,y}\gamma_{U,y}^{-1}\gamma_{U}^{-1} \},\ t_{x,y}(t) = t'_{x,y}(f(t)),$$

 $\{s_U(x, y)\}\$ is a topological connection of the bundle $(\{E_{2,k,0}(X)\}, \{\Omega_{2,k,0}(X)\}, \pi X).$

For the bundle $(\{E_{2,k,0}(X)\}, \{\Omega_{2,k,0}(X)\}, \pi, X)$, we know

(a). $\{E_{2,k,0}(X)\}$ is a C^{∞} -smooth manifold (cf. [3], [5], [9]).

(b). $\{E_{2,k,0}(X)\}$ is a simply connected space.

(c). codim. $\pi^*(T(X))$ in $T(\{E_{2,k,0}(X)\})$ is ∞ .

Since $T(\{E_{2,k,0}(X)\})$ is a trivial bundle, there exists a non-trivial vector field of $\{E_{2,k,0}(X)\}$ which is not in $\pi^*(T(X))$. Hence by (c), we obtain (c)'. The complement bundle of $\pi^*(T(X))$ in $T(\{E_{2,k,0}(X)\})$ has a non-trivial cross-section.

By lemma 1', lemma 3', lemma 4' and the above (a), (b), (c)', we obtain

Theorem 2. If X is a smooth manifold, then there is a 1 to 1 correspondence between the set of equivalence classes of smooth G-bundles over X and the set of equivalence classes of smooth maps from X into the space of smooth homomorphisms from $\{\Omega_{2,k,0}(X)\}$ into G (with C¹-topology) with the equivalence relation

(15)
$$\chi(x, \alpha) \sim P(x)\chi(x, \alpha)P(x)^{-1}, \ \alpha \in G$$

where P(x) is a smooth map from X into G.

Note. By (15), as the map from X into the space of equivalence classes (under inner automorphisms of G) of smooth homomorphisms from $\{\Omega_{2,k,0}(X)\}$ into G, χ is uniquely determined.

References

- ASADA, A. : Connection of topological fibre bundles, Proc. Japan Acad., 42 (1966), 13– 18.
- [2] ASADA, A. : Connection of flat vector bundles, J. Fac. Sci. Shinshu Univ., 2 (1967), 109-116.
- [3] ASADA, A. : Algebraic cohomology of loop spaces, J. Fac. Sci. Shinshu Univ., 4 (1969), 1–23.
- [4] CHEN, K. T. : Integration of paths, geomteric invariants and a generalized Baker Hausdorff formula, Ann. of Math., 65 (1957), 163-178.
- [5] CHEN, K. T. : Integration of paths, A faithful representation of paths by noncommutative formal power series, Trans. Amer. Math. Soc., 89 (1958), 395-407.
- [6] CHEN, K. T. : Formal differential equations, Ann. of Math., 73 (1961), 110-133.
- [7] CURTIS, E. B. : Some relations between homotopy and homology, Ann. of Math., 82 (1965), 386-413.
- [8] HIRZEBRUCH, F. : Topological methods in algebraic geometry, Berlin, 1966.
- [9] REE, R. : Lie elements and an algebra associated with shuffles, Ann. of Math., 68 (1958), 210-220.
- [10] STEENROD, N. E. : The topology of fibre bundles, Princeton, 1951.