A Note on Perfect Rings and Semi-perfect Rings

Kaoru Motose

Depertment of Mathematics, Faculty of Science, Shinshu University
(Received Oct. 31, 1969)

In his paper [1], H. Bass gave characterizations of perfect rings and semiperfect rings. In this paper, we shall give another characterizations of perfect rings and some properties of extension rings over perfect and semi-perfect rings.

Throughout our study, we use the following conventions: Let R be a ring with 1 and J the radicall ${ }^{1}$ of R. An R-module means (unital) left R-module. For a set $A(\neq \phi)$, by $(R)_{A}$ and $R^{(A)}$, we denote the ring of all row finite matrices $\left(x_{i j}\right)(i, j \in A)$ over R and the direct sum of $\# \Lambda^{2}$-copies of left R-module R, thus $(R)_{A}$ can be regarded as the ring of all linear transformations in $R^{(A)}$.

1. We shall first prove the following

Theorem 1. The following conditions are equivalent.
(1) J is left T-nilpotent.
(2) For every R-module $M, J M$ is small in M.
(2') For every free R-module $M, J M$ is small in M.
(3) For every set A, the radical of $(R)_{A}$ is $(J)_{A}$.
(3') For the set Z_{+}of natural numbers, the radical of $(R)_{Z_{+}}$is $(J)_{Z_{+}}$.
Proof. (1) $\Rightarrow(2)$ is due to Bass [1, pp. 473-474.]. Therefore, it suffices that we prove $\left(2^{\prime}\right) \Rightarrow(3)$ and ($\left.3^{\prime}\right) \Rightarrow(1)$.
$\left(2^{\prime}\right) \Rightarrow(3)$: Let X be an element of $(J)_{A}$. Then $R^{(A)}=R^{(A)}(I-X)+J^{(A)}=R^{(A)}(I-X)$ $+J R^{(1)},{ }^{3)}$ Hence $R^{(A)}=R^{(1)}(I-X)$ and for every $\lambda \in A$, there exist vectors $\left(a_{2 v}\right)$ of $R^{(\lambda)}$ such that $E_{\lambda}=\left(a_{\lambda_{1}}\right)(I-X)$, where E_{λ} represents the vector with element 1 in the λ-position and O 's elsewhere. Therefore, $I=Y(I-X)$ where Y is an element of $(R)_{A}$ such that the λ-row of Y coincides with the vector $\left(a_{2,}\right)$. Hence X is left quasi-regular. Accordingly, $(J)_{A}$ is contained in the radical of $(R)_{A}$. By [6, Th. 1] or [8, Th. 1], the assertion is clear.
$\left(3^{\prime}\right) \Leftrightarrow(1)\left(\right.$ Cf. $\left[6\right.$, Th. 5]): Let $\left\{a_{i}\right\}_{i=1,2, \ldots . .}$ be any sequence of elements in J.

[^0]By the assumption, the matrix $\left(\begin{array}{ccc}1-a_{1} & 0\end{array}\right.$ is regular in $(R)_{A}$.

$$
\left(\begin{array}{ccc}
1 & -a_{1} & 0 \\
& 1 & -a_{2} \\
& & 1
\end{array}\right)
$$

Since it's inverse element is a row-finite matrix, there exists a natural number s such that $a_{1} a_{2} \cdots a_{s}=0$. Hence, J is left T-nilpotent.

By virture of Th. 1, we have an following characterizations of perfect rings.
Corollary 1. Let R be a semi-primary ring. ${ }^{4)}$ Then the following conditions are equivalent.
(1) R is left perfect.
(2) For every R-module $M, J M$ is small in M.
(3) For every set A, the radical of $(R)_{A}$ is $(J)_{A}$.

By Th. 1, we give an alternative proof of [7, Th. 1]. In the following Cor. 2, we do not assume that R has the identity.

Corollary 2. $(R)_{A}$ has the radical $(J)_{A}$ if and only if J is left T-nilpotent.
Proof. Let Z be the ring of integers. Then we can constract a ring $R^{\prime}=$ $R+Z$ such that $R_{\cap} Z=0$ and the identity of Z is the identity of R^{\prime}. If we note that J is the radical of $R^{\prime},\left[8\right.$, Th. 1] implies that the radical of $(R)_{A}$ is that of $\left(R^{\prime}\right)_{A}$. the rest is clear.
2. In this section, we shall restrict our attention to the case that J is left T-nilpotent.

Theorem 2.5) Let S be an extension ring of R with the same identity such that $J S$ is an ideal of S. Then $J S$ is contained in the radical of S. In paticular, if R is left perfect and S is finitely generated as an R-module, then S is left perfect.

Proof. Let x be an element of $J S$. Then $S=S(1-x)+J S$. By Th. 1, $S=$ $S(1-x)$ and hence x is left quasi-regular. In the second statement, since $S / J S$ is left Artinian, there exists a natural number k such that $\Im(S)^{k} \subseteq J S$. ${ }^{6)}$ Let M be an S-module and N a submodule of M such that $M=N+\mathcal{S}(S) M$. Then $M=$ $N+\Im(S)^{k} M=N+J S M=N+J M$. Since R is left perfect, $M=N$. Hence, by Cor. 1, S is left perfect.

Combining [3, Th. 1.7.4] with Th. 2, we can see the first part of the following

Corollary 3. (1) The radical of the polynomial ring $R[x]$ is $J[x]$.
(2) Let R be a left perfect ring and G a finite group. Then the group ring $R G$ is a left perfect ring.
3. Concerning Cor. $3(2)$, we establish sufficient conditions for semi-perfectness of a group ring $R G$. In the first part of the follwing theorem, we assume that
4) Cf. [3, pp. 56].
5) Cf. [5, Th. 46.2] and [9, Prop. 3.3 (b)].
6) $\Im(S)$ means the radical of a ring S.
R is semi-primary, $\bigcap_{n=1}^{\infty} J^{n}=0$ and R^{*} is the completion of R with respect to the metric d, where $d(x, y)=\inf _{x \rightarrow y \in j^{n}} 2^{-n}(x, y \in R)$.

Theorem 3. Let G be a finite group. Then we can obtain the following statements.
(1) $R^{*} G$ is semi-perfect.
(2) $R G$ is semi-perfect if G is a p-group, R is a semi-perfect ring and the characteristic of R / J is p.
Proof. (1) By the same method of [2, Lemma 77.4], idempotents of $R^{* *} G$ modulo $\Im\left(R^{*} G\right)$ can be lifted. Then since R is semi-primary, $R^{*} G$ is semi-primary. Hence the assertion is clear.
(2) Let $\left.e=\sum \sum_{g \in G}^{\alpha_{g} g\left(\alpha_{g}\right.} \in R\right)$ be an idempotent element of $R G$ modulo $\Im(R G)$. By [4, Cor. 1], $\sum_{\substack{ \\g \in G}}^{\alpha_{g}}$ is an idempotent element of R modulo J. Hence, there exists an idempotent element f of R such that $f-\sum \sum_{g \in G}^{\alpha_{g} \in J \text {. Then, by [4, Cor. 1], }}$ $f-e$ is contained in $\Im(R G)$. Since $R G$ is semi-primary, the assertion follows.

References

(1) H. BAss; Finitistic dimension and a homological generalization of semi-primary rings, Trans. Amer. Math. Soc. 95 (1960), 466-488.
(2) C. W. Curtis and I. Reiner ; Representation theory of frinte groups and associative algebras, Interscience, 1962.
(3) N. Jacobson ; Structure of rings, Providence, 1956.
(4) K. Motose ; On group rings over semi-primary rings, Math. J. Okayama Univ. 14 (1969), 23-26.
(5) T. Nafayama and G. Azumaya; Algebra II (Theory of rings), Tokyo, 1954 (in Japanese).
(6) E. M. Patterson ; On the radicals of certain rings of infinite matrices, Proc. Royal Soc. Edinburgh 65 (1961), 263-271.
(7) -; On the radicals of rings of row-fnite matrices, Proc. Royal Soc. Edinburgh 66 (1962), 42-46.
(8) A. D. Sands; Primitive rings of infinite matrices, Proc. Edinburgh Math. Soc. 14 (196465), 47-53.
(9) H. Tominaga; Some results on normal bases, Math. J. Okayama Univ. 13 (1968), 111118.

[^0]: 1) Throughout the present paper, the radical means the Jacobson radical.
 2) $\# A$ means the cardinal number of a set A.
 3) I is the identity of (R). .
