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                              Introduction.

    It is known that if g is a closed 1-form on a smooth (connected) manifold X,

then the period of g, that is the valtte of g on r, a closed path on X, defines a

homomorphism from zi(X) into F (F=R or C either g is real valued or complex

valued) and denoting

                   x(<g>) (<r>) = Sr9･

where <ip> is the de Rham class of g and <r> is the homotopy class of r, x is the

isornorphism from Hi(X, F) onto Hom.(ni (X), F). This is, for example, the

base of the theory of Picqrd varieties ([4]). The purpose of this paper is to gen-

eralize this relation for higher degree forms.

   Roughly speaking, this gen-"vralization is done as follows : Denoting E(X) the

path space over X (for the convenience, we assume that the end point of a path

is the base point), then E(X) is a contractible smooth Banach manifold ([1], [5],

[7]). Hence denoting z the projection from E(X) onto X, rr" (g) is written as dgi

on E(X) if g is closed. Then the period of gt with respect to 9(X), that is gi(cv*rp)

- gi(ev) is not equal to 0 in general, but digi(av*n) - gi(a)) is equal to 0 because

n"(g) is invariant under the operation of 9(X). Hence we may set

            9i(a*rp) - 9i(a) = dg2<a, rp)

on E(X). Moreover, if the value of gi ((ct*7)*C) is equal to g! (cr*(if*'.")), then

            d(92(av*Vt, n2) - 92(a, Vi*rp2) + 92(a, ni)) r= O･

Repeating this, we can construct (P-r)-form g. (ev, vi,･･･,v.-D for r;:SIP and we

get

                             ab-1
            d(gp(a*vi, rp2, ''', epp)+:(-1)igp(ct, rpi, ''', Vi*rpi+i, ''', rpp)+

                             i-1



            +(-1)Pgp(ev, tyi, ･･･, vp.i)) = O･

                       '
                            plTherefore gp(a*Ul, Vl, ''', rpP)+=i=1                              (-1)'spp(ev, )7i, ･･･, )7i*vi+t, ･--, rpp)+ (-1)Pgop(ev, o7i, ･･･,

rpp.i) should be constant in a and setting ,

            Cp(rpi, ''', rpP)

                              b-1
            =spp(CV*m, T2,･･･,Vp)+=(-1)iSDp(nv, Vi,-･-,rpi:kVi,i,･･･,rpp)+

                              i=1
              +(-1)P9p(at, Vi, ･･･, Vp-i),

cp(rpi, ･･･, vp) must be the period of g. We remark that this construction is similar

the construction of double cochain in harmonic integrals ([10]).

   Of course, this discussion needs several justifications. For example, since the

multiplication of 9(X) is not associative, we cannot expect gi((cr*v)*C) == gi(a*(rp*<))

in general. But since the quotient space [9(X)] =(X)/Il"(I), where H"(I) is the

group of orientation preserving homeomorphisms of I=[O, 1] and hff H'(I)

operates 9(X) by h'(cr)(s)=a(h(s)), has associative multiplication, the above discus-

sion may be done if we c3n construct each gi to be the formson [E(X)]×[9(X)]

×･･･×[9(X)], where [E(X)] = E(X)/ll"(i). The possibility of this construction is

proved in g4. Then the period of op is defined to be an element of P-th algebraic

cohomology group of [9(X)] with coeflicient in F (55). Here the P-th algebraic

cohomology group of [g(X)] is defined as 'follows:Set CP([9(X)], F) the group

                               t-i}"--h
of all (continuous) maps from [9(X)]×･･･×[9(X)] into F, the coboundary homo-
morphism o" : CP[(9(X)], F) ->･ C"'([9(X)], F) is given by

              (fiCf,)([)7i], ･･-, [)7p+i])

                                 p
            =cp([v2], ･･･, [rpp+t])+=(-1)icp([qi], ･･･, [qi*oi+i], ･･･, [vp.!])+

                                i-1
              +(-i)P+icp([vi], -･･, [rpp]),

where [q] means the class of rp in [9(X)], then BP([9(X)], F)/ZP([9(X)], F) is

the p-th algebraic cohomology group HgP(X, F) with coethcient in F. (In this

paper, we denote 9P(X, F) insteadofCP([9(X)], F), g2). Thenour maintheorem

(g5, Theorem 4) assert that the above construction of period 7.(g) of g give the

isomorphism from Hlr' (X, F) onto HeP(X, F) for P2.1. Since we get HkeO(X,

F) =Fif Xis connected (S2, Theorem 1), we have

            x : Hi'(X, .F) ::: Hk?P(X, 17')

for all P if X is a (connected) smooth manifold. We note that for arbitrary
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(topological) abelian group G, we can define HPe(X, G) by the same method for

arbitrary topological space X. Then since HP(X, G) can be defined for qny topo-

logical space X, the similar isomorphism may be expected for any X and G. Btit

the authour has no proof (or counterexample) for this problem.

    The outline of this paper is as'follows:In S1, we treat the properties of

[E(X)] and [9(X)]. Then we define Hs?P(X, G) in g2. In g2, we also define the

group HkP(X, F) as the cohomology group with cochain the (continuous) function

f: [E(.X)]×[9(X)]×･･- ×[9(X)]->F and the cobotrndary homomorphism 6 is given

by

               (af)([a], [ni], ･-･, [Tp+i])

             ==.IC<[cr'nyi], [T2], ''', [rpp+i])+

                 p
               +N(rm!)i]`<[ev], [)7i], ''', [,7i*)7i+i], ''', ['7p+i])-F

                i. ;-: 1

               A-(-1)P+ifl[ev], [rp,], ･･･, [vp])･

In g3, we prove HEP(X, F)==O, P2.lill under the assumption of X is a (topological)

manifold (Theorem 3). It seems that this may be true for arbitrary X, but the

authour has no proof (or counterexample) for this problem. The vanishing of

IlllEP(X, F) is tised in the proof of 'theorem 4. g4 is devoted to the study of a

class of differential forms on E(X), which includes the ff"-images of the differ-

ential forms on X. Then in g5, we define the period of higher order forms on

X and prove the main theorem (Theorem 4).

    We note that in ss4 and g5, we use E2,k,o(X) (fe>dim.X/2) instead of E(X),

where E2,k, o(X) is given by

           E2,k, e(X)={ctlcr : I-->X, a belongs in fe-th Sobolev space aRd

                     cu(s)=xo if s>1-E for some e}.

                  g1. Tke spaces [E(X)] axxd [st(X)].

    1. Let X be a (connected) topological space with base point xo, then we denote

by 9(X) and E(X) the loop space and path space over X ([7]). For the con-

venience, in E(X), we assume ct(1) = xe, where a : F>X, I is the closed interval

[O, 1], is an element of E(X). The projection from E(X) onto X defined by

E(X)Da->cy(O)EX is denoted by z. The multiplication of paths at and P is denoted

by cr:i:P if i't is possible. If OStgl, then we set e

            cr,(s) = ty(l - t + ts), cr E E(X),

ct, is also an element of E(X) and (vi=a, (uo=:e, where e is given by e(s)=xe,



OSsKL
    We denote H"(I) the group of orientation preserving homeomorphisms of L

Then we set

            h"(a)(s) = a(h(s)), h E H' (I), a G E(X).

Since h"(a) belongs in E(X) and if rpE9(X), then h"(v) also belongs in 9(X),

H"(I) operates 9(X) and E(X).

   Lemma 1. if ev*P is Possible, then (hi" (ct))*(h2'ls (P)) is also Possible and there is

an hEH'(I) such that

(1) h:ts(cv*P) = (h,*(ev))*(h,*(P)).

   Proof. Since hi"(a)(1) = ct(hi(1)) := cx(1) == P(O) = P(h2(O)) ::= h2'(P)(O), (hi:k(cr))*(h2*(P)) is

possib!e. Then we have (1) if we set

                  1 11 1            h(s) =7hi(2s), O;g{s$s, h(s)=i(h2(2s-1)+1), 7:${s.<..1.

   Note. Similarly, if we set

                  11            hi(s)=sh-'(2h(s)), O$s$so=h-i(i),

                  1
            h,(s)=-(h"(2h(s) - 1) + 1), s, S. s S; 1,
                 2

we obtain

(1)' h"(a*P) == ht*((h*(a)):k(h:"(P)).

   Lemma 2. The quotient sPace 9(X)/H"(J) is a semi-groztP by the multiplication

induced from 9(X) and it oPerates associatively on E(X)/H'(I).

   Proof. By (1) and (1)', the multiplication in 9(X) indttces a multiplication of

9(X)/H"(I) and it operates on E(X)/H"(I).

   If (ct*P)*r is possible, then a:k(P*r) is also possible and to define hEH"(I) by

                          1 11                                                1
            h(s)=2s, OSs;$l-, h(s)--+s, -;Ss:$;-,
                          44                                         42

       e lsl            h(s) == -+-, -;sls g{1,
                     22                 2

we have

            h'((cv*P)*r) ==: a*(P*r)･
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This proves the associativity.

   Definition. We denote the quotient sPaces E(X)/H'(I) and 9(X)/H'(l) by [E(X)]

and [9(X)]. The classes of cyGE(X)and rpE9(X) mod. H"(I) are denoted by [a]

and [rp]. The multiPlications in [E(X)] and [9(X)] are also denoted by - .

   Note. h'(cr) is homotopic to a. Hence there is a homomorphism p from [9(X)]

onto zi(X) and a continuous map p from [E(X)] onto 31f, where XN is the universal

covering space of X.

   Proof. By the theorem of Radon -Nikodym ([2]), there is a positive measur-

able function m(s) on I such that

            h(s) := Sim(u)dza, O ;sll s ;sl. 1.

Then to define h,(s) (O.<...tS-1) by

            h,(s) == Sl(m(u))tdza /Si(m(u))tdu,

each h, belongs in H'(I) and we get hi == h, ho(s) ==s for al! s (O;:S;s;;{1) and h,(s)

is continuous intand s. Hence h*(a) is homotopic to ev.

   2. Definltion. in E(X), we set

(2) E,(X)={ala(s) 74 x,, s7! 1}U{e}.

   By definition, we have

   Lemma 3. Eo(X) has fbllowing Properties.

(i). E,(X) is contractible by the contraction Eo(X) ×ID(a, t)->cr, ff Eo(X).

(ii). Eo(X)n9(X) =e.

(iii). 11f crEE,(X) and a' Ea mod. H'(I), then cr' Eii Eo(X).

   By lemma 3, (iii), we can define the quotient space of Ee(X) by H'(I). It is

also denoted by [Eo(X)].

    Lemma 4. if X satishes

(*). For any xciX, there exists a neigizbourhood U(x) of X such that for anN yEii

    U(x), it is possible to determine uniquely a Path

    r=r(S), OIE{s$1, r(1) =x, r(O)=pt, r(s)7!xe, O<s<1, then there is a homeo-

morPhism cu(.); U(x)-->Eo(X) such that

(3) neu(.)(N) == y, yE U(x),

ijc' x 71] Xe･

    Note. If X is a topological manifold with manifold structure {(U, hu)}, hu

is the homeomorphism from U onto R'Z, x ff U, then taking



           r(s) == h.ut(shu(x) + (1 - t)hu(y)),

X satisfies ("). Moreover, if X is a smooth manifold, then E(X) is a smooth

Banach manifold ([1], [5]), and we can take cur.) to be a diffeomorphism by

takingrto be the geodesic. ,
   By (3), the indueed map [cu(.)] : U<x)-->[Eg(X)] is also a hQmebmorphism. In

fact, we have the following commutative diagrarn.

                       v
                  Eo(X) -> [Eo<X)]
             /ifnt'tli'la',inA

            U(x) -ewx),
where w is the natural map and p is the induced map from p. If X is smooth,

tlten we can take eu(.) and [tu(.)] both to be diffeomorphisms.

   DefinltioEi. bi S?(X), zve set

(2)' 9o(X)={vio(s) 7L x,, slO, 1}U{e},

and denote [9o(X)] the quotient sPace 9e(X)/fl'(I).

   For any aG E(X), we set

                  2k-1
           a-' i(xo) := u [si, si.i], O g si g ･-･ ;:sll s2k = 1,

                   i--1
                             S2j･ SS2i,1, 1' = 1, -･･ , fe - 1,

and define avo Eii Eo(X), rpi, ･･･, 7kmi ei me(X) and rpi,o, ･･-, rpk-i,oE 9o(X) by

           ao(s) = av(sls), sl X O,

           VJ'(S) = a(S2i-i + (S2J'+1 - S2J'-1)S),

           rpj', e(S) = a(S2J･ + (S2j･+1 - s21･)s), ]' -- 1, ,,., k- 1.

Then we get

(4) [ev] ::= [ao]*[qi]*-･･ ;ls[nhHi], Si;O,

           [cr] = [oi]*'''*[?k-i], si = O, [a] == [ae], si = i.

(4)' [OJ']=[?"',e], S2j'-1=SbJ', [Vj] =:' [e]*[rpbo], S2J'-1 7! S2j･

Therefore [E(X)] is generated by [Eo(X)] and [9o(X)] and we have

(5) [E(X)] == [Eo(X)]U([Eo(X)]*[9(X)])U[9(X)],
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   For the convenience, we introduce the notation ¢ such that

            ¢*[a] == [a]:kip = [cz],

then (5) is rewritten

          '(5)t [E(X)]V{di}-([E(X)]U{ip}*[(9(X)]U{ip}). '

   3. Lemma 5. Let f be a contint{ozts maP from E(X) to Y(resP from 9(X) to

such that

(6) f(h"(a))=f<a), hEH'(I),

then

(7) .lf(cr*e;kP) := f(cr*P),

where Y is a toPological sPace and either cr or P may be equal to ¢.

   Proof. Shince the method is similar, we assume cr;ip, P 7L¢. Then by

we can take

                                  1 11            (cr:ke*P)(s) = a(4s), O l!{l sg z-, (ct*e*P)(S) = Xo, -2i-$- S ;$-T2',

            (a*epxs) == p(2s - i), l f-{: s s; i.

                             2･
                                 11            (a*P)(s) == cr(2s), Osls S. -, (a*P)(s) == P(2s - 1), -Ss ;;l 1.

                                 2 2ua
We define h, E H'(I)(1 ;$ t S. 2) by

                                                        '

                                                tl 1                            11            h,(s) = ts, o :-s{ s ;S z, ht(s) == (2 - t)S rf 7+ i, Tii{-; S :$i

                     1
            h,(s) = s, -S. s;S 1.
                     2

Then by (6), we have

            f(h,"(a*e*P)) = .f<cr*e*P). 1 :.S t < 2.

On the other hand, by the definition of h, and the continuity of L we have

            lim. .IC<h,'k(ev*e*P)) = f<a*P).

            t->2

Therefore we have (7).

 7

Y)

(6),



   As usual, for at E E(X), we set ev-' by ev"(s) == av(1 - s), then we have

   Lemma 6. if a continuous man f: E(X) -> Y sati{vies (6) and

(8) rtav*a-i*P)=rtp),

then fis written as T*g, g:X->Y if and only ijC

(9) f<av;]`o)=]C<cr), for any nEEi 9(X).

' Proof. Since z"g satisfies (6), (8) and (9), we only need to prove suthciency.

   If cr(O) = P(O) =x Ei X, then ev-i*P == v is defined and belongs in 9(X). Then

by (8) and (9), we obtain

           f(ev) == ]r(cr*n) == f(ev*awwi*P) :=: f<P).

Therefore the value of f at cr is deterniined only by ev(O). Hence we get

           f = z"g, g(x) = flnv), a(O) = x.

This proves the lemma.

                S2. The groups ffS (X] G) and Hle"(X, G).

   4. Definition. Let G be a toPological abelian group, then the set of all continuous

              .----- P -nyx
maPs f: E(X) × 9(X) × ･-･ × 9(X) ->G zvhich satishes

(i) f<ho"(a), hi*(?i), ･'', hp'(?p)) := f<ct, Vi, ''', Vp),

           hi E H+ (I), i rm- O, 1, --･, P,

           aE E(X), rpj Eii 9(X), j= 1, ･･･, P,

(ii) .f<av*a-'*P, opi, ''', rpp)=f<fi, rpi, ''', rpp),

is denoted by EP(X, G).

   Defnition. Let G be a toPological abelian grouP, then the set of all continuous

       nps
mmps g : 9(X) × ･･･ × 9(X) ->.G which satisy7es

(i)' g(ht"(rpi), ･･･, hp'(rpp)) := g(vi, `･･, rpp),

           h, E H+(I), i -- 1, ･･･, P, nyj E 2(X), f= 1, ･･･, P,

is denoted by 9P(X, G) forPl;ll1, ,IfP=O, then we set

           90(X, G) == G.

   Note. If X is a smooth manifold, then 9(X) and E(X) are also smooth
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(Banach) manifolds ([1], [5]). Hence if G is a Lie group, we can define the smooth

maps f: E(X)×9(X)×･･･×9(X)->G andg: 9(X)×･･･×9(X)-->G. Then using smooth
maps, we can define similar sets. They are also denoted by EP(X, G) and 9P(X,

G).

   By definition, EP(X, G) and 9P(X, G) are modules and setting

(10) e(gi(a, rpi, ･･･, vp) ==: g(rpi, ･'', Vp),

e: 9P(X, G) --> EP(X, G) is an into isomorphism for all Pli.lm O.

   Lemma 7. 9(X) oPerates associatively on EP(X, G) by the oPeration

(11) fn(a, oi, ･･･, op)=flcv:tsrp, v, ･'', rpp)-

   Preof. if hEH'(J), then to define h'EH'(I) by

                 111           h'(s) ==-h(2s), O :i$ s !.$ -, h'(s) == s, -;$ sg. 1,

                 222
we have h*(a)*o = h'"(ct*o). Hence f satisfies (i).

   Since we know by lemma 2,

           ([av]*[a't]*[P]>*[v] = [a]*[cr-'i]*([P]*[n]),

f satisfies (ii).

   If hE H'(I), then to define h" E H'(I) by

                             11                    1     h"(s) = s, O$s ;S -, h"(s) = -(h(2s - 1) + 1), -;:ll s ;.S 1,

                    222
we get cr*h"(v) = h""(cr*v). Therefore we have

(12) fn == .1 h*(v), hE H'(I).

On the other hand, since we know

(13) (fo)C .. fe*c,

we have the associativity by lemma 2.

   By lemma 2, we also obtain

   Lemma 8. If fG EP(X, G) (resP. gE 9P(X, G)), then for any i (1 :S i S- P),

we have

(14) .IC<cr, )7i, ･･･, ,7i-i, ((;i*412)*Cl3, ,7i+i, ･･･, 07p)

           =]f<cr, vb ･･･, ni-i, 4i*(42*43), rpi,i, ･･･, rpp),
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(14)i g(vi, ･-･, nyi..i, (Ci*C2)*g3, rpi+i, ''', VP)

         =g(vl, ･･･, ni-1,qT:Lt(C2*43), rpi,1, ･･･, vp)･

  5, Definitiom. We dofne the homomorPhisms 6:EP(X, G)->EP'i(X, G) and

6: 9P(X, G) -> 9P+i(X, G) by

(15) (6f)(cr, ob ''', vp")

                       p         =fVi(ec, v2, ･･･, rpf,+i)+X(-1)'.f(ct, rpi, ･･･, rpi*Vi+b ･-･, rpp+i) FiT

                      i-1
          +(-1)P'if(a, rpi, ･-･, vp), P}l 1,

          (tif)(cr, rpi) == fOi(cr) " f(.),

(15)' (6g)(ni, ･･･, rpp+i)

                    p         =g(v2, ･･･, rpp,i)+=(-1)'g(vt, ･･･, ni*?i.i, ･･･, vp+i)+

                    i-1
          +(-1)P'ig(rpi, ･･･, rpp), P211,

          (o"g)(vi) - O.

  By definition, we have the following commutative diagram.

         Ep(x, G) 3 Ep+i(x, G)

          tl, s cl,
          9P(X, G) ----> 9P+i(X, G).

  By lemma 7 and lemma 8, we have
  Lemma 9. ti(tif) and ti(6g) are equal to O for any fEEP(X, G) and gE9P(X,

G), P 211; O･

  By iemma 9, we can define

  Definition. For each P2O, we set

(16) Hlr'(X, G)
         == ker. [b : EP(X, G) --> EP'`(X, G)]/OEP"'(X, G), Pk} 1,

          HlilO(X, G) == leer. [6 : EO(X, G) -> E`(X, G)].

(16), Hk?P(X, G)
         == ker. [6 : 9P(X, G) --> 9P'i(X, G)]/69P"i(X, G), p;}). 1,,

          HleO(X, G)=ker. [6:90(X, G)->9'(X, G)]. .

                    '  Theorem 1. VVe have

(17)i HIEO(X, G)m`-C(X, G),

(17)ii Hk?O(X, G) cir G,
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(17)iii Hlgi(X, G)=tHom.([9(X)], G),

where C(X, G) is the modtile of continuous (or smooth) maps from X to G.

   Proof. (17)ii follows from the definition.

   Since we have

                                '
           6g(rpi, n2) = g(n2) - g(?i*n2 )+ g(vi),

we obtain (17)iii because 690(X, G) = O.

   Since 5Lf<cr, v) is equal to O if and only if fv(ev)=f<ev) for all rpE9(X), we

have (17)i by lemma 6.

   By theorem 1, we have

           HgO(X, G)fz.yHO(X, G),

           p"(Hl?i(X, G)) - H'i(X, G),

where p* is the homomorphism induced from p.

                                   p                 S3. Calctdation of ,U2e (I, G), p;ll 1.

   6.Definition. For an element gof 9P(X, G), we dqline an operation g#o of

as) (g#v)(4b ･･･, gp)
                            '                         p-1
           == g(v*4i, -･･, <p)+=(-1)'g(q, Ct, -･-, Ci*Ci,i, ･･･, 4p)+

                         i--1
             +(-i)'g(rp, 4i, ''', Cpn), Pl.}L l,

            g#o == g, P=O.

   We donote 9#P(X, G) if we consider 9P(X, G) together with the above ope-

ration of 9(X).

   Definition. We define the homomorPhisms 6# : Eg(X, 9#P(X, G)) Eg+t(X, 9#p(X,

G)) and 6#:9q(X, S2#P(X, G))-->9q+i(X, 9#P(X, G)) by

                             '                                    '
(19) (a#f)(a, qb -･, v,+i)
                             a           =fVi(a, v2, ･･･, rpa+i)+Z(-1)qf@ Vi, ''', Vi*Vi+i, ''', Vq+i)+

                            i--1
            +(-1)q'tf(ev, vt, ･･･, qq)#vq+t, q21ilL l,

            (o"#f)(ev, vi) = fni(cr) - flev)#vi,

(19)' (6#g)(rpb ''', rpq"i)

                         a           = g(rp2, ･･･, rpq+i)+X(-1)'g(oi, -･t, rpi*rpi+i, ･-･, vg+i) +

                         i-1
                        '
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          +(-1)q"ig(7b ･･･, rpq)#oq+i, qlllli 1,

          (b#g)(vi) == g - g#vi･

  We define the homomor phisnis 1':Eq(X, 9#P(X, G))-Eq'P(X, G) and j':9g(X,

9#P(X, G))->9q+P(X, G) by

(20) (ff)(ev, rp1, ''', rpq, rpg+1, "', rpg+fJ)

         == .lf<cr, rp1, ''', rpq)(rpq+1, ''', qg+P),

(20)' (Y'g)(rp1, ''', rpq, Oq+1, ''', Vg+p) == g(Vl, ''', rpq)(Vq+1, ''',rpq+P)'

Then we have

(21) 6(jif)(a, vl, ''', rpq, Vg+b rpq+"., ''', rpq+p+1)

         == (fi#f)(a, rpl, ''', rpq, rpq+1)(Vq+2, ''', Vq+P+1),

(21)' 6(]'g)(?1, ''', rpq, rpq+i, rpg+2, ''', ?q+p+1)

         == (fi#g)(qi, ''', Vq, Vq+1)(qq+2, ''', rpq+P+1)'

  By (21) and (21)', we obtain

  Lemma 10. For anpt fEEg(X, 9#P(X, G)) and gE9q(X, 9#P(X, G)), we have

6#(6#f) = O and 6#(o"#g) = O.

  Corollary. [9(X)] oPerates on 9#P(X, G) as a semigrouP, that is, we have

(22) (g#rpi)#02 = g#(rpi*rp2),

fbs any gE 9P(X, G) and tyi, rp2 E 9(X).

  Proof. By lemma 10, we have

         O = (b#(6#g))(vi, rp2)

          = (6#g)(v2) - (6#g)(rpi*v2) + ((6#gi#rp2Xvi)

          == g"(vi*rp2) - (g#?i)#o2･

This shows (22).

  By lemma 10, we can define the groups HE#g(X, 9g(X, G)) and Hn#g(X, 9P(X,

G)) by

(23) HE#q(X, S2P(X, G))
          feer. [6#:Eg(X, 9#P(X, G))->Eg+i(X, 9#P(X, G))]
                                         , q2 1,                    6#Eg-i(X, 9#P(X, G))

          ,llE#O(X-, 9P(X, G))

         == ker. [o"# : EO(X, 9#P(X, G))->Ei(X, 9#P(X, G))],

(23)' Iilk?#q(X, 9P(X, G))
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                                                    , q2 1,
                        6#9g-i(X, 9#P(X, G))

             llk?#O(X, 9P(X, G))

           = feer. [i#:90(X, 9#P(X,, G))-->9i(X, 9#P(X, G))].

   Then by (21) and (21)', we have

   Theorem 2 ([3]). 111C q->-" 1, we get for all P2-}i O,

(24) H]E#g(X, 9P(X, G)):]tH]Eg+P(X, G),

(24)r Hle#q(X, 9P(X, G))[)tH2q+P(X, G).

   7. Since HkP(X, G) :):: HIE#i(X, "P'"i(X, G)) if P21 by theorem 2, to calculate

HIEP(X, G), it is sufficient to calculate Uk#i(X, 9a(X, G)), q20. IffffEi(X,

9#q(X, G)) satisfies S#f == O, then we have '

           flev*e, v) = f<cv e:lsny) - f<ev, e)#v

                   =(ogi@ rp),

where g(cy)=g(a, e) and g(ev*7) == f<a, e*v) if we fix evEE(X). Then since we

know f(a*e, rp) = flev, rp) by lemma 5, for a fixed ev Eii E(X), we get

(25) rtcr, rp)=(6gi(cr, o), where g(at*rp) =fla, e*rp).

   Although g is defined only on cr*9(X) in general, if X satisfies the condition

(*) of-lemma 4, then by the condition (ii) of nO4 and (5), we can define g== gu to

be continuous (or smooth) on cu(U(x)):ts9(X), where U<x) is a neighborhood of xEX

(in X) and x== cv(O). Then since we know by (ii) of n04 that the vaiue offis

determined by the value on UxEblu(.)(U(x))*9(X), we may assume that'for a

suitable covering {U} of E(X) such that

            U*9(X)cU, ge(U, Z) tHP(9<X), Z), P210,

we obtain {gu}, gti E Ei(U, 9#P(X, G)) such that

            6#gu = fl U.

    Then since 6fi(gv - gv) is equal to O on UA V, {huv}, huv=: gu - gv on UAV

defines a 1-codycle with coefficients in u4E(9#P(X, G)) on E(X). Here muEO(9#P

(X, G)) means the sheaf of germs of the continuous (or smooth) maps from E(X)

to ker. 6# in uElO(X, 9#P(X, G)). Then since we know

(26) Hi(E(X), e"Eo(""P(X, G)))



             )t {the set of equivalence c!asses of topological (or differentiable)

              leer. [ti# : 9#P(X, G) -> 9#P"`(X, G)]-bundle over E(X)},

we obtain

(26)t Hi(E(X), ca'EO(e#P(X, G)))=O,

for any P, because E(X) is contractible.

   By (26)', there exists a refinement {U'} of {U} and {hu,}, h.t : U' -> 9#P(X,

G), fi#hu, =O such that

(27)t huvlU'nV' := hut-hvt.

                      '                                                 '
Then to define gEEO(X, 9#P(X, G)) by glU' := gu1U' -hu,, we get

(27) f= ti#g･

Hence we have
   TheoreEn 3. I(EP(X, G) vanishes for Plf 1 ijC X satisies the condition (:t:) of

lemma 4. Especially, ij' X is a toPological manijbld, then HliP(X, G) vanishes for

P})L
   Note. Since E(X) is not Coo-smooth ([1]), hu, o"27)' is not smooth although

huv is smooth. But settmg

            E2, k(X) =: {crla : I->X and ev belongs in k-th Sobolev space over L

                    a(1) = Xo, }

we know that E2,le(X) is Coo-smooth ([1]) and E2,k(X) is contained in E(X) if

fe>dim. X12 (8). Then we set

            92, k(X) = 9(X) n E2, k(X).

Although 92,k(X) does not operates on E2,k(X), setting

            E2, k, e(X) = {dj crclE2,k(X), cv(s) = xe if s>1-e for some e},

            S?2, k, o(X) =] S?2, k(X) A E2, k, e(X),

92,fe,e(X) operates on E2,k,e(X). Moreover, denoting H+,k(I) the group of orien-･

tation preservlng Ck-diffeom,orphisms of L H+,k(I) operates on E2,k,o(X) and we

obtain same results as in g1 and ss2 for E2,k,e(X) and 92,k,o(X) except lemma

6. But lemma 6 is also true because if (v(O) ;=: P(O), then there exists P. such that

t"
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            lim. P. =Pin E2,k,o(X), a-i*P. belongs in E2,k,e(X) for all n.
           n--)poo

Then since E2,k, e(X) is a Coe-smooth (Fr6chet) manifold and contractible, we can

take each hu, of (27)' to be smooth if each huv, is smooth ([1], [9]). Hence in

(27), we can take g to be smooth if f is smooth. Therefore we obtain

   Theorem 3'. 111C X is smooth and fEEP2,k,o(X, G) is a smooth maP and of=O,

then there exists a smooth maP gGEP"i2,k,e(X, G) such that f=fig ije q->.nl

and G is a Lie groztP. Llere EP2,k,,(X).means the set of continuotts nzaPs from

         .Pim--M-M"N
E2,k,o(X) ×92,k,o(X)×･･･×92,k,e(X) into G zvhich satisies the condition (i), (ii) of

nO4 where H'(I) is changed by H+,k(I).

                        g4. The medule Ap･q(X).

   8. In the rest, we assume X to be a paracompact arcwise connected smooth

manifold. For the simplicity, we denote E(X), 9(X), EP(X, G), 9P(X, G), [E(X)],

[9(X)] and H'(I) instead of [E2,k,o(X)], [92,k,o(X)], E'2,k,o(X, G), 9P2,k,o(X, G),

[E2,k,o(X)], [92,k,e(X)] and H÷･k(I). Here 9P2,k,e(X, G) is defined similarly as

EP2,k,o(X, G), [E2,k,o(X)] and [92,k,o(X)] are the quotient spaces of E2,k,o(X)

and 92,k,o(X) mod. H+･k(I).

   Since E(X) is a smooth (Fr6chet) manifold, we denote the group of (real or

complex valued) P-forms on E(X) by CP(E(X)). Denoting the cotangent bundle of

E(X) by T"(E(X)), we know that CP(E(X)) = F(E(X), AP(T"(E(X))). Since E(X) is

contractible, we can define a homomorphism fe : CP(E(X)) --> CPHi(E(X)) by

(28) kg =:: P.S:i(il}) (F*g)dt, P-1,

             <ui A ･･･ A up.b kg>

            = P*Sg<P"ui A ･･･ A P*up.!, i(:Ii)(F*g) > dt, p > 1,

where ui means a vector field on E(X), F: E(X)xl-> E(X) is the contraction of

E(X) given by F(cr, t)= ctt and P: E(X)xl-> E(X) is the projection ([6]). Then

we know that

            (dk + led)g == g, Pll. 1･

   We denote the induced bundle from APT;"(E(X)) on E(X)× 9(X)× ･･･× 9(X)

also byAPT"(E(X)). Then a cross -section of APT"(E(X)) on E(X)×9(X) × ･･･ × 9(X)

is a p-form on E(X) ×9(X)×･･･×9(X) and denoting di the exterior differentiation

in E(X) -direction, we get

            d,(r(,Ei(X)×,Q(X) × ･･･ × 9(X), APT*(E(X)))
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           cl"(E(X) × 9(X) × ･･･ × 9(X), AP'tT*(E(X))).

Moreover, we can define k for the elements of

l](ErX) × 9(X) ×･･･× 9)IY), APT"(E(X))) because we know

           <v, g>=O, gE r(E(X) × 9(X) ×･･･× 9(X), APT*(E(X))),

                     if v er I"(E(X) × 9(X) ×･･･× 9(X), APT(E(X))),

where T(E(X)) is the tangent bundle of E(X), and we have

           k(r(E(X) × 9(X) ×･･･× 9(X), APT*(E(X)))

           cl'(E(X) × 9(X) ×･･･× 9(X), AP-iT*(E(X))),

           (d,k + led,)g == g, P 211 1･

                                                  /.-m-.-. a ------..
   Definition. The set of all g such that g beloitgs in r(E(X) × 9(X) ×･･･× 9(X),

APT'ls(E(X)) and satiiy7et the following conditions (i) and (ii) is denoted by Ap･a(X).

(i) g(ho*(cr), hi'(rpi), ''', hg"(rpg)) == 9(cr, ni, ''', nyg),

           hi E H"(I), O$i .f$ q, ex E E(X), rpj E 9(X), 1Sj <= q,

(ii) (a*a"'i*P, vi, ･･･, rp,) == (P, rpi, ･･･, v,) if crH'*PEE(X).

   By definition, AP･q(X) is a module, and denoting ff : E(X)×9(X) x ･･･ × s?(X)-->

Xx9(X)×･-･×9(X) the projection induced by n : E(X)-> ×, n*(r(X × 9(X) × ･･･ ×

2(X), APT*(X)) is contained in AP･a(X). Here T*(X) is the cotangent bundle of

X and APT'(X) is the induced bundle from APT'(X) on X × 9(X) ×･･･× 9(X).

   Lemma 6'. opEAP･a(X) belongs inrc'-image if and only if

(9)' g(at;kv, qi, ny･･, rp,) == g(ev, qb ･･-, rp,), for any rp E 9(X),

   9. Lemma 11. if op belongs in AP,a(X) and hG H'(I), then

(29) g((h"a)t(S), rpb ･'', v,)
           = g(a(h(1 - t) + (1 - h(1 - t))S), ?i, ''', rp,), t>O,

where h, E H'(I) is given by

                h(1 -t+ ts) - h(1 - t)
           h,(s)- 1.h(IHt) , t>O･

            '
   Proof. By the definition, we have h,"(a(h(1 - t) + (1 - h(1 - t))s)) == (h'a),(s).

Hence we have the lemma by (i).

   Lerrnma 12. le maPs AP･a(X) into AP-i･a(X).

   Proof. By the definition of k, we have by.lemma 11,
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              <(UiA"'AUp-i)@), le9(h"@(S)), hi(Vi), "', hg(?g))>

               1O         =,l-i>MsS.<(P'"iA"`AP""p-i)@ t), i(bi)(9(h*cr)t(S), hi(vt), "', hq(vq)))>dt

         -(tltmL6Sl<(P*"t A･･･A p*u,..,xcr, t),

                      o
                    i(b'i)(g(cr(h(1 - t) + (1 ru h(1 - t))s), ni, ･-･, n,))>dt

         = gt4mb !1<(P'ui A ･･･ A P*ec,- ,)(te, t),

                     .a
                    t( o(1 " h(1 um t)) )(P(cr(h(1 m t) + (1 - h(1 - t))s), rp,, ...

                    "', rpq)) > d(1 - h(1 - t))

               1O         =:,l,tltMIL6!,,<(P'"tA'''AP*"p-i)@ t), i(mi)(9@, vi, "', ng))>dt

                                                       '         == <(uiA ･･･ A upLi)(a), leg(ct, vi, ･･', qg)>,

where E' =1-h(1-e). Hence le satisfies (i) if PZ2. The proof for P=1 is

similarly.

   To show le satisfies (ii), we set r = a*a-i*P and assume

                                                 11                               1
            r(s) = a(4s), O ;!li s $ -, r(s) = cr(2 - 4s), -$ s S.-,
                                                42                               4

                           1
            r(s) = P(2s - 1), -$ s E-{;1.
                           2

Then we get by (i) and (ii),

                                                  1
(30) 9(rt, nt, "', Vg) =P(P2t, Vb ''', Vq), OStS- li}-,

                                                  13
            g(rt, ni, '`', ne) = 9(P*(aH')4t-2, rpi, ''', Vg), 'li$t ;-!{Z-,

                                                 3
            g(rt, ?i, ･･', rpg) == 9(P*(a-t)4-it, nii ･･･, rpq), i$t S-1`

Hence we have

              <(UiA･"Attp-i)(ri, k9(r, rpi, '", rpq)>

     =!i<(P"uiA"'AP"up-i)(r, t), i(&)(g(rt, rpb ･･･, n,))>dt

     =!S<p"utA･･･AP'up-i)(r, t), i(Ejili)(g(P2t, rpi, "', ?g))>dt+

        e

l7

done
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                          '      +Silf(p'uiA"1'A'p"upllxr･ t)･ t(i'j,)iep'(k"(crLt)4't-i･ rpi･ "'･ rpg))>in +

      +S{<(P"UiA'''AP"Up-i)(r, t), i(b-i)(g(P*(ec-i)4-4t, rpt, ''', rpg))>dt.

Then since we have

      s        <(P'UiA'''AP"Ltp.i)(r, t), i(bui)(9(P2t, rpi, ''', ?g))>dt

       o
     ==S'<(p'"uiA-･･Ap'up.i)(r, t), i(Ejl)(g(Pt, vi, ''', rpq))>dt,

       o
      Si<(P'Zt]A'''AP"Up--i)(r, ti i(oOt)(g(P*((y-')4tm2, rpi, ''', rp,))>dt

       7                                     tt
     ==S<(P'UiA'''AP'Up--i)(r, t), i(6t)(g(P'k(cXJi)t, vi, ''', v,))>dt, '

       o
      S,<(P""iA'''AP"Up-D(r, t), i(ot)(g(P'i`(cr-i)4-4t, vi, '･', v,))>dt.

       T
     L-S'<(P*uiA'''AP'up.i)(r, t), i(aOt)(g(P"(ev'"')t, vi, ''', rpg))>dt,

        o
                            tt                               ttwe obtain

            <(uiA･･･AUp.i)(r), feg(r, rpi, ''', rpq)>

           =<(UiA'''AUp-i)(r), k9(P, rpi, ''', Vq)>･

This shows le satisfies (ii) for P2L 2. The proof for P = 1 is done similarly,

   Coroilary. 11f gE AP,a(X) is di-closed, then we can write

                                         '(31) q=dip, ¢EAPi･a(X), PZI.

   10. We can define the homomorphism O : AP･q(X)->Ab,a+i(X) by

(15)" (tif)(cr, Vi, ''', rpg+i)

                            p           == fVi(at, rp2, ･･･, ?q.i)+=(nd 1)i.IC<ct, rpb ''', rp,i*rpi+bVp+1)+

                   t i-ml
            +(- 1)P+if(av, rpi, ･･･, rpp), P}ll,

            (tif)(., rp) .. fvi(a) n f(cr)'

                                         'where fv(cr, rpi, t･･, vg)=f(ct:kv, vi, ･･･, rp,). Then we can define the cohomology

groups HEP･q(X, F) by ･' ･ ･ ･
          HEa･P(X, F) = ker. [6 : AP･a(X)-->Ap･a+i(X)/fiApFa-i(X)], q;.1,

          HEO･P(X, F) = ker, [o" ; Ap･O(X) -> AP･i(X)].
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Here ,P'=:R if real valued forms are considered and F =C if complex valued

forms are considered.

   Lemma 13. Denoting tyPical fibre of T"(E(X)) by .s;7'*, we have

(32) AP･q(X) = Eg(X, AP.Ee/ *)).

   Proof. Since T"(E(X)) is trivial, a cross -section of APT"(E(X)) is a (smooth

or continuotts) function on E(X)×9(X)× -･･ ×9(X) with values in AP("Y-). Hence

we have the lemma by the definitions of Ab･Q(X) andEg(X, AP(yczr-*)).

   Corollary. I"or each P}i.iO, Gk:O, we have

(33) Hba･p(X, F)-Ubg(X, AP(f*)).

   By this corollary, theorem 1 and theorem 3, we obtain

   Theorem 3". For each P2O, we get

(17>i, IfpO･P(X, FJ=tCP(X),

(34) Hlcq･p(X, F) =: O, qz. 1.

   Note 1. Since AO(.se/ ") = Ii', we have for all q

(33)' HIEa･O(X, F)-H]itq(X, F).

   Note 2. In theorem 3", we may consider each AP･e(X) is consisted by smooth

forms by theorem 3'.

                    g5. Period of higher order forrns,

   11. Let g be a closed P-form on X, then T"(g) belongs in AP,O(X) and we

                                                                     '

            n*(op) = di(kn"(g))･

   By lemma 12, kn*(op) belongs in APmai,O(X), Then by lemma 6', if 6krt"(g)=o,

that is kn'@) is invariant under the operation of 9(X), kz'(g) comes from CP-i(X).

Thereforegis exact on X. But since we know ･

(35) di(¢e)=(diip)v, ?G9(X),

for any differential form on E(X)×9(X)× ･･･× 9(X), we get

(36) d,(6ha*(g)) -= 6(d,kT*(rp)) - O.
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In general, by (35), we get

(35)' di(6¢) == fi(d,q).

Hence Setting

goo = T*(9), 9i == le9e, ''', 92r == 692r--1, 92r+1 == k92r, ''',

we have

(37)

k36),

g2.GAP-r･"(X), g?.r+iEAb-r-i,r(X),

d192r = O, ti92r = O,

because dig2, = di6febg2,･-2･

   By (37), g2p belongs in AO･P(X) and by (36)', dig2p is equal

?i, ･･･, ?p) is constant in a. Since AO,P(X) =EP(X, F), there is

hism e:9P(X, F)-->EP(X, F) and g2p belongg in c-image. Then

to O. Hence p2p(cu,

 an lnto lsomorp-

since the diagram

EP(X,

e
J
9P(X,

    b
F) --->

    ii
F) -->

EP+i(X, F)
     eJ

nP+i(X, F)

is commutative by the definition of ti
            '

denoting c""i(92p) -" ip2P, we obtain by (36)t

(38) ti¢2P == O.

Hence ¢2p defines an element <ip2p> of L[s?P(X, F), Moreover, since

X implies bha"(g) == O, <¢2p> is determined by the de Rham class <g>

we can define a homomorphism x : H]'(X, F)--)-IlleP(X, F) by

go is

 of

exact on

g. Hence

(39) X(<9>) :- <ip2P>･

   Definition. VVe call

   12. Theorem 4. x ts

   Proof. Let <c2p> be

since die(c2p) is equal to

x(<g>) the period of g.

an isomorPhism.

 an element of Hk?P(X, F) with representation

O, we can construct a senes to2p-1, ca2pff2, ..., wo

C2P,

by

then

e(C2p) = tiw2p-1, ''',

6C02pm2r-1 = CV2p-2r,

dlQ)2p.-2r+1 = (V2p-2r,

-i-
p

because

equal to

6Cti2p-2r == 6di(t)2p-2r+i = di6([)2p-2r+1 = diQ)2p-2r = O

O, then ca2p-2. is written as 6bl2p.2..1 (r<P,

 and by

cf. note 2

(34)

 of

if bto2p.2r iS

nOIO). Then
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we get

            tu2p-2r+i E A"-'i,P-r, te2p-2. E Ar,p-r,

Therefore wo belongs in AP,e and since

(40) d,to, == O, 6to, == O,

tuo is written as rr*(tu). Although bl2p.2,.i is not determined unique!y by tu2p.2., if

6tu'2p-2r-i=te2p-2" then to'2p-2tr-i == to2p-2r-i+6e by theorem 3". Hence by (35)',

tu' 2p-2r-B is taken as to2p.2r.3+di6. Therefore the de Rham class of w is deter-

mined uniquely by the cohomology class of c2p, Moreover, by the definitions of

xand o, we get

            X(<di>) = <C2P>･

Hence z is onto. Moreover, since we can take tu2p-i to satisfy dto2p-i ==O if <C2p>

                     rv n"=O, the correspondence to(<c2p>) == <to> defines a homomorphism bl : HlaP(X, F)->

HP(X, F), PZ1. Then by the definitions x and bi, we obtain

            N tv            toX(<9>) == <P>, Xto(<C2p>) == <C2p>.

Therefore x and toN a.re both isomorphisms and we have the theorem.

   Corollary 1. 11f X is a Paracompact arczvise connected smooth manijbld, then

(41) HP(X, F)orHkaP(X, F)

for all P 2 O.

   Proof. If P=O, then we obtain the corollary by (17)ii. For P;ll, the corollary

follows from theorem 4.

   Corollary 2. Ille fis a homomorPhism from [9(X)] to F, then f is induced .from

a homomorphism from rri(X) to 17 if X i.s a ParacoinPact arcwise connected smooth

manijbld.

   Proof, Since we know

            Hi(X, F)=Hom. (rr,(X), F),

'we get the coroilary by (17)iii and the above corollary 1.

   Note 1. Since 92,k,o(X) is different from 9(X), Hka2,k,oP(X, F), the cohomo-

logy group constructed by 9P2,k,e(X, F), may be different from ttsual HgP(X, F).

But since 92,k,o(X) and E2,k, e(X) are dense subsets of 9(X) and E(X) and deno-

ting i" : 9P(X, F)-->9P2,k,e(X, F) the map induced from the inclusion, we obtain

   Lemma 14. There is a homomorPhism i# : HiP(X, F)->Hle2,k,oP(X, Ii') for all P.



    Then since x is defined as the map from HP(X, F) to

the following commutative diagram by the definition of i#.

                         x
               HP(X, F)-HP(X, F)
                    XX t#l

                     bl Hk?2,k,oP(X, F).

                                        '
Therefore x is also an (into) isomorphism in this case.

   Note 2. Since we know

            HleP(X, F)=Hle#i(X, 9P-i(X, F)), P211,

by theorem 2, we have

(42) HP(X, F)ttHs?#i(X, 9P"i(X, F)), p21,

                                 '                               '
if X is a compact arcwise connected smooth manifold. We

tation f of an element <f> of Hs?#i(X, 9P-'(X, F)) satisfies

            flrpi*rp2) = fl7i)#n2 + flV2),

and the class of f is equal to O if f is written as

            flv) =- g - g#rp,

where g is an element of 9#P"i(X, F).

HlaP(X,

note

F), we

that a

obtain

represen-
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