Algebraic Cohomology of Loop Spaces

By Akira Asada
Department of Mathematics, Faculty of Science, Shinshu University
(Received Apr. 30, 1969)

Introduction.

It is known that if φ is a closed 1 -form on a smooth (connected) manifold X, then the period of φ, that is the value of φ on γ, a closed path on X, defines a homomorphism from $\pi_{1}(X)$ into $\boldsymbol{F}(\boldsymbol{F}=\boldsymbol{R}$ or \boldsymbol{C} either φ is real valued or complex valued) and denoting

$$
\chi(\langle\varphi\rangle)(\langle r\rangle)=\int_{r} \varphi,
$$

where $\langle\varphi\rangle$ is the de Rham class of φ and $\langle\gamma\rangle$ is the homotopy class of γ, χ is the isomorphism from $H^{1}(X, F)$ onto Hom. $\left(\pi_{1}(X), \boldsymbol{F}\right)$. This is, for example, the base of the theory of Picard varieties ([4]). The purpose of this paper is to generalize this relation for higher degree forms.

Roughly speaking, this generalization is done as follows: Denoting $E(X)$ the path space over X (for the convenience, we assume that the end point of a path is the base point), then $E(X)$ is a contractible smooth Banach manifold ([1], [5], [7]). Hence denoting π the projection from $E(X)$ onto $X, \pi^{*}(\varphi)$ is written as $d \varphi_{1}$ on $E(X)$ if φ is closed. Then the period of φ_{1} with respect to $\Omega(X)$, that is $\varphi_{1}(\alpha * \eta)$ - $\varphi_{1}(\alpha)$ is not equal to 0 in general, but $d\left(\varphi_{1}(\alpha * \eta)-\varphi_{1}(\alpha)\right)$ is equal to O because $\pi^{*}(\varphi)$ is invariant under the operation of $\Omega(X)$. Hence we may set

$$
\varphi_{1}(\alpha * \eta)-\varphi_{1}(\alpha)=d \varphi_{2}(\alpha, \eta)
$$

on $E(X)$. Moreover, if the value of $\varphi_{1}((\alpha * \eta) * \zeta)$ is equal to $\varphi_{1}(\alpha *(\eta * 5))$, then

$$
d\left(\varphi_{2}\left(\alpha * \eta_{1}, \quad \eta_{2}\right)-\varphi_{2}\left(\alpha, \quad \eta_{1} * \eta_{2}\right)+\varphi_{2}\left(\alpha, \quad \eta_{1}\right)\right)=0 .
$$

Repeating this, we can construct $(p-r)$-form $\varphi_{r}\left(\alpha, \eta_{1}, \cdots, \eta_{r-1}\right)$ for $r \leqq p$ and we get

$$
d\left(\varphi_{p}\left(\alpha * \eta_{1}, \eta_{2}, \cdots, \eta_{p}\right)+\sum_{i=1}^{p-1}(-1)^{i} \varphi_{p}\left(\alpha, \eta_{1}, \cdots, \eta_{i}^{*} \eta_{i+1}, \cdots, \eta_{p}\right)+\right.
$$

$$
\left.+(-1)^{p} \varphi_{p}\left(\alpha, \eta_{1}, \cdots, \eta_{p-1}\right)\right)=0 .
$$

Therefore $\varphi_{p}\left(\alpha * \eta_{1}, \eta_{1}, \cdots, \eta_{p}\right)+\sum_{i=1}^{p 1}(-1)^{i} \varphi_{p}\left(\alpha, \eta_{1}, \cdots, \eta_{i} * \eta_{i+1}, \cdots, \eta_{p}\right)+(-1)^{p} \varphi_{p}\left(\alpha, \eta_{1}, \cdots\right.$, $\left.\eta_{p-1}\right)$ should be constant in α and setting

$$
\begin{aligned}
& c_{p}\left(\eta_{1}, \cdots, \eta_{p}\right) \\
& =\varphi_{p}\left(\alpha * \eta_{1}, \eta_{2}, \cdots, \eta_{p}\right)+\sum_{i=1}^{p-1}(-1)^{i} \varphi_{p}\left(\alpha, \eta_{1}, \cdots, \eta_{i} * \eta_{i+1}, \cdots, \eta_{p}\right)+ \\
& \quad+(-1)^{p} \varphi_{p}\left(\alpha, \eta_{1}, \cdots, \eta_{p-1}\right),
\end{aligned}
$$

$c_{p}\left(\eta_{1}, \cdots, \eta_{p}\right)$ must be the period of φ. We remark that this construction is similar the construction of double cochain in harmonic integrals ([10]).

Of course, this discussion needs several justifications. For example, since the multiplication of $\Omega(X)$ is not associative, we cannot expect $\varphi_{1}((\alpha * \gamma) * \zeta)=\varphi_{1}(\alpha *(\eta * \zeta))$ in general. But since the quotient space $[\Omega(X)]=(X) / H^{+}(I)$, where $H^{+}(\boldsymbol{I})$ is the group of orientation preserving homeomorphisms of $\boldsymbol{I}=[0,1]$ and $h \in H^{+}(\boldsymbol{I})$ operates $\Omega(X)$ by $h^{*}(c)(s)=\alpha(h(s))$, has associative multiplication, the above discussion may be done if we can construct each φ_{i} to be the forms on $[E(X)] \times[\Omega(X)]$ $\times \cdots \times[\Omega(X)]$, where $[E(X)]=E(X) / H^{+}(I)$. The possibility of this construction is proved in $\S 4$. Then the period of φ is defined to be an element of p-th algebraic cohomology group of $[\Omega(X)]$ with coefficient in $F(\S 5)$. Here the p-th algebraic cohomology group of $[\Omega(X)]$ is defined as follows: Set $C^{p}([\Omega(X)], F)$ the group of all (continuous) maps from $[\Omega(X)] \times \cdots \times[\Omega(X)]$ into F, the coboundary homomorphism $\delta: C^{p}[(\Omega(X)], \boldsymbol{F}) \rightarrow C^{p+1}([\Omega(X)], \boldsymbol{F})$ is given by

$$
\begin{aligned}
& \left(\delta c_{p}\right)\left(\left[\eta_{1}\right], \cdots,\left[\eta_{p+1}\right]\right) \\
= & c_{p}\left(\left[\eta_{2}\right], \cdots,\left[\eta_{p+1}\right]\right)+\sum_{i=1}^{p}(-1)^{i} c_{p}\left(\left[\eta_{1}\right], \cdots,\left[\eta_{i} * \eta_{i+1}\right], \cdots,\left[\eta_{p+1}\right]\right)+ \\
& +(-1)^{p+1} c_{p}\left(\left[\eta_{1}\right], \cdots,\left[\eta_{p}\right]\right)
\end{aligned}
$$

where $[\eta]$ means the class of η in $[\Omega(X)]$, then $B^{p}([\Omega(X)], F) / Z^{p}([\Omega(X)], F)$ is the p-th algebraic cohomology group $H_{s}{ }^{p}(X, F)$ with coefficient in F. (In this paper, we denote $\Omega^{p}(X, F)$ instead of $\left.C^{p}([\Omega(X)], F), \S 2\right)$. Then our main theorem ($\$ 5$, Theorem 4) assert that the above construction of period $\chi(\varphi)$ of φ give the isomorphism from $H^{p}(X, F)$ onto $H_{g^{p}}(X, F)$ for $p \geqq 1$. Since we get $H_{a^{0}}(X$, $\boldsymbol{F})=\boldsymbol{F}$ if X is connected ($\$ 2$, Theorem 1), we have

$$
\chi: H^{p}(X, \quad F) \simeq H g^{p}(X, F)
$$

for all p if X is a (connected) smooth manifold. We note that for arbitrary
(topological) abelian group G, we can define $H^{p_{s}}(X, G)$ by the same method for arbitrary topological space X. Then since $H^{p}(X, G)$ can be defined for any topological space X, the similar isomorphism may be expected for any X and G. But the authour has no proof (or counterexample) for this problem.

The outline of this paper is as follows: In § 1, we treat the properties of $[E(X)]$ and $[\Omega(X)]$. Then we define $H_{a^{p}}(X, G)$ in $\S 2$. In $\S 2$, we also define the group $H_{E}{ }^{p}(X, F)$ as the cohomology group with cochain the (continuous) function $f:[E(X)] \times[Q(X)] \times \cdots \times[\Omega(X)] \rightarrow F$ and the coboundary homomorphism δ is given by

$$
\begin{aligned}
& (\delta f)\left([\alpha],\left[\eta_{1}\right], \cdots,\left[\eta_{p+1}\right]\right) \\
= & f\left(\left[\alpha * \eta_{1}\right],\left[\eta_{2}\right], \cdots,\left[\eta_{p+1}\right]\right)+ \\
& +\sum_{i=1}^{p}(-1)^{i} f\left([\alpha],\left[\eta_{1}\right], \cdots,\left[\eta_{i} * \eta_{i+1}\right], \cdots,\left[\eta_{p+1}\right]\right)+ \\
& +(-1)^{p+1} f\left([\alpha],\left[\eta_{1}\right], \cdots,\left[\eta_{p}\right]\right) .
\end{aligned}
$$

In §3, we prove $H_{E}{ }^{p}(X, F)=0, p \geqq 1$ under the assumption of X is a (topological) manifold (Theorem 3). It seems that this may be true for arbitrary X, but the authour has no proof (or counterexample) for this problem. The vanishing of $H_{E}{ }^{p}(X, F)$ is used in the proof of theorem $4 . \$ 4$ is devoted to the study of a class of differential forms on $E(X)$, which includes the π^{*}-images of the differential forms on X. Then in $\$ 5$, we define the period of higher order forms on X and prove the main theorem (Theorem 4).

We note that in $\S 4$ and $\S 5$, we use $E_{2, k, 0}(X)(k>\operatorname{dim} . X / 2)$ instead of $E(X)$, where $E_{2, k, 0}(X)$ is given by

$$
\begin{aligned}
& E_{2, k, 0}(X)=\{\alpha \mid \alpha: I \rightarrow X, \alpha \text { belongs in } k \text { - th Sobolev space and } \\
&\left.\alpha(s)=x_{0} \text { if } s>1-\varepsilon \text { for some } \varepsilon\right\} .
\end{aligned}
$$

§ 1. The spaces $[E(X)]$ and $[\Omega(X)]$.

1. Let X be a (connected) topological space with base point x_{0}, then we denote by $\Omega(X)$ and $E(X)$ the loop space and path space over $X([7])$. For the convenience, in $E(X)$, we assume $\alpha(1)=x_{0}$, where $\alpha: I \rightarrow X, I$ is the closed interval [0, 1], is an element of $E(X)$. The projection from $E(X)$ onto X defined by $E(X) \ni \alpha \rightarrow \alpha(0) \in X$ is denoted by π. The multiplication of paths α and β is denoted by $\alpha * \beta$ if it is possible. If $0 \leqq t \leqq 1$, then we set

$$
\alpha_{t}(s)=\alpha(1-\mathrm{t}+t s), \quad \alpha \in E(X),
$$

α_{t} is also an element of $E(X)$ and $\alpha_{1}=\alpha, \quad \alpha_{0}=e$, where e is given by $e(s)=x_{0}$,
$0 \leqq s \leqq 1$.
We denote $H^{+}(\boldsymbol{I})$ the group of orientation preserving homeomorphisms of \boldsymbol{I}. Then we set

$$
h^{*}(\alpha)(s)=\alpha(h(s)), \quad h \in H^{+}(\boldsymbol{I}), \quad \alpha \in E(X) .
$$

Since $h^{*}(\alpha)$ belongs in $E(X)$ and if $\eta \in \Omega(X)$, then $h^{*}(\eta)$ also belongs in $\Omega(X)$, $H^{+}(I)$ operates $\Omega(X)$ and $E(X)$.

Lemma 1. If $\alpha * \beta$ is possible, then $\left(h_{1}^{*}(\alpha)\right) *\left(h_{2}^{*}(\beta)\right)$ is also possible and there is an $h \in H^{+}(\boldsymbol{I})$ such that

$$
\begin{equation*}
h^{*}(\alpha * \beta)=\left(h_{1}{ }^{*}(\alpha)\right) *\left(h_{2}^{*}(\beta)\right) . \tag{1}
\end{equation*}
$$

Proof. Since $h_{1}{ }^{*}(\alpha)(1)=\alpha\left(h_{1}(1)\right)=\alpha(1)=\beta(0)=\beta\left(h_{2}(0)\right)=h_{2}{ }^{*}(\beta)(0), \quad\left(h_{1}{ }^{*}(\alpha)\right) *\left(h_{2}{ }^{*}(\beta)\right)$ is possible. Then we have (1) if we set

$$
h(s)=\frac{1}{2} h_{1}(2 s), \quad 0 \leqq s \leqq \frac{1}{2}, \quad h(s)=\frac{1}{2}\left(h_{2}(2 s-1)+1\right), \quad \frac{1}{2} \leqq s \leqq 1 .
$$

Note. Similarly, if we set

$$
\begin{aligned}
& h_{1}(s)=\frac{1}{2} h^{-1}(2 h(s)), \quad 0 \leqq s \leqq s_{0}=h^{-1}\left(\frac{1}{2}\right), \\
& h_{1}(s)=\frac{1}{2}\left(h^{-1}(2 h(s)-1)+1\right), \quad s_{0} \leqq s \leqq 1,
\end{aligned}
$$

we obtain

$$
\begin{equation*}
h^{*}(\alpha * \beta)=h_{1}^{*}\left(\left(h^{*}(\alpha)\right) *\left(h^{*}(\beta)\right) .\right. \tag{1}
\end{equation*}
$$

Lemma 2. The quotient space $\Omega(X) / H^{+}(I)$ is a semi-group by the multiplication induced from $\Omega(X)$ and it operates associatively on $E(X) / H^{+}(I)$.

Proof. By (1) and (1)', the multiplication in $\Omega(X)$ induces a multiplication of $\Omega(X) / H^{+}(I)$ and it operates on $E(X) / H^{+}(I)$.

If $(\alpha * \beta) * \gamma$ is possible, then $\alpha *(\beta * \gamma)$ is also possible and to define $h \in H^{+}(I)$ by

$$
h(s)=2 s, \quad 0 \leqq s \leqq \frac{1}{4}, \quad h(s)=\frac{1}{4}+s, \quad \frac{1}{4} \leqq s \leqq \frac{1}{2},
$$

$$
h(s)=\frac{1}{2}+\frac{s}{2}, \frac{1}{2} \leqq s \leqq 1
$$

we have

$$
h^{*}((\alpha * \beta) * \gamma)=\alpha *(\beta * \gamma) .
$$

This proves the associativity.
Definition. We denote the quotient spaces $E(X) / H^{+}(I)$ and $\Omega(X) / H^{+}(I)$ by $[E(X)]$ and $[\Omega(X)]$. The classes of $\alpha \in E(X)$ and $\eta \in \Omega(X)$ mod. $H^{*}(I)$ are denoted by $[\alpha]$ and $[\eta]$. The multiplications in $[E(X)]$ and $[\Omega(X)]$ are also denoted by*.

Note. $h^{*}(\alpha)$ is homotopic to α. Hence there is a homomorphism ρ from $[\Omega(X)]$ onto $\pi_{1}(X)$ and a continuous map ρ from $[E(X)]$ onto \widetilde{X}, where \tilde{X} is the universal covering space of X.

Proof. By the theorem of Radon -Nikodym ([2]), there is a positive measurable function $m(s)$ on I such that

$$
h(s)=\int_{0}^{s} m(u) d u, \quad 0 \leqq s \leqq 1 .
$$

Then to define $h_{t}(s)(0 \leqq t \leqq 1)$ by

$$
h_{t}(s)=\int_{0}^{s}\left(m(u)^{t} d u \int_{0}^{1}(m(u))^{t} d u\right.
$$

each h_{t} belongs in $H^{+}(\boldsymbol{I})$ and we get $h_{1}=h, h_{0}(s)=s$ for all $s(0 \leqq s \leqq 1)$ and $h_{t}(s)$ is continuous in t and s. Hence $h^{*}(\alpha)$ is homotopic to α.
2. Definition. In $E(X)$, we set

$$
\begin{equation*}
E_{0}(X)=\left\{\alpha \mid \alpha(s) \neq x_{0}, \quad s \neq 1\right\} \cup\{e\} . \tag{2}
\end{equation*}
$$

By definition, we have
Lemma 3. $E_{0}(X)$ has following properties.
(i). $\quad E_{0}(X)$ is contractible by the contraction $E_{0}(X) \times I \ni(\alpha, t) \rightarrow \alpha_{t} \in E_{0}(X)$.
(ii). $\quad E_{0}(X)_{n} \Omega(X)=e$.
(iii). If $\alpha \in E_{0}(X)$ and $\alpha^{\prime} \equiv \alpha$ mod. $H^{+}(\boldsymbol{I})$, then $\alpha^{\prime} \in E_{0}(X)$.

By lemma 3, (iii), we can define the quotient space of $E_{0}(X)$ by $H^{+}(I)$. It is also denoted by $\left[E_{0}(X)\right]$.

Lemma 4. If X satisfies
(*). For any $x \in X$, there exists a neighbourhood $U(x)$ of X such that for any $y \in$
$U(x)$, it is possible to determine uniquely a path
$\gamma=\gamma(s), 0 \leqq s \leqq 1, \gamma(1)=x, \gamma(0)=y, \gamma(s) \neq x_{0}, 0<s<1$, then there is a homeomorphism ${ }^{U(x)} ; U(x) \rightarrow E_{0}(X)$ such that

$$
\begin{equation*}
\pi \iota_{U(x)}(y)=y, \quad y \in U(x), \tag{3}
\end{equation*}
$$

if $x \neq x_{0}$.
Note. If X is a topological manifold with manifold structure $\left\{\left(U, h_{U}\right)\right\}, h_{U}$ is the homeomorphism from U onto $R^{n}, x \in U$, then taking

$$
\gamma(s)=h_{U}^{-1}\left(s h_{U}(x)+(1-t) h_{U}(y)\right)
$$

X satisfies (*). Moreover, if X is a smooth manifold, then $E(X)$ is a smooth Banach manifold ([1], [5]), and we can take ${ }^{\iota_{U(x)}}$ to be a diffeomorphism by taking γ to be the geodesic.

By (3), the induced map $\left[{ }^{\iota} U(x)\right]: U(x) \rightarrow\left[E_{0}(X)\right]$ is also a homeomorphism. In fact, we have the following commutative diagram.

where ν is the natural map and ρ is the induced map from ρ. If X is smooth, then we can take ${ }^{\iota}{ }_{U(x)}$ and $\left[{ }^{(} \mathcal{U (x)}\right]_{\text {both }}$ to be diffeomorphisms.

Definition. In $\Omega(X)$, we set
$(2)^{\prime}$

$$
\Omega_{0}(X)=\left\{\eta \mid \eta(s) \neq x_{0}, s \neq 0,1\right\} \cup\{e\}
$$

and aenote $\left[\Omega_{0}(X)\right]$ the quotient space $\Omega_{0}(X) / H^{+}(I)$.
For any $\alpha \in E(X)$, we set

$$
\begin{aligned}
& \alpha^{-1}\left(x_{0}\right)=\bigcup_{i=1}^{2 k-1}\left[s_{i},\right.\left.s_{i+1}\right], \quad \\
& 0 \leqq s_{1} \leqq \cdots \leqq s_{2 k}=1 \\
& s_{2 j} \neq s_{2 j+1}, \quad j=1, \cdots, k-1
\end{aligned}
$$

and define $\alpha_{0} \in E_{0}(X), \eta_{1}, \cdots, \eta_{k-1} \in \Omega(X)$ and $\eta_{1}, 0, \cdots, \eta_{k-1},{ }_{0} \in \Omega_{0}(X)$ by

$$
\begin{aligned}
& \alpha_{0}(s)=\alpha\left(s_{1} s\right), \quad s_{1} \neq 0 \\
& \eta_{j}(s)=\alpha\left(s_{2 j-1}+\left(s_{2 j+1}-s_{2 j-1}\right) s\right) \\
& \eta_{j},{ }_{0}(s)=\alpha\left(s_{2 j}+\left(s_{2 j+1}-s_{2 j}\right) s\right), \quad j=1, \cdots, k-1
\end{aligned}
$$

Then we get

$$
\begin{align*}
& {[\alpha]=\left[\alpha_{0}\right] *\left[\eta_{1}\right]_{*} \cdots *\left[\eta_{k-1}\right], s_{1} \neq 0,} \tag{4}\\
& {[\alpha]=\left[\eta_{1}\right] * \cdots *\left[\eta_{k-1}\right], s_{1}=0,[\alpha]=\left[\alpha_{0}\right], s_{1}=1 .} \\
& {\left[\eta_{j}\right]=\left[\eta_{j}, 0\right], s_{2 j-1}=s_{2 j}, \quad\left[\eta_{j}\right]=[e] *\left[\eta_{j}, 0\right], s_{2 j-1} \neq s_{2 j} .}
\end{align*}
$$

$(4)^{t}$
Therefore $[E(X)]$ is generated by $\left[E_{0}(X)\right]$ and $\left[\Omega_{0}(X)\right]$ and we have

$$
\begin{equation*}
[E(X)]=\left[E_{0}(X)\right] \cup\left(\left[E_{0}(X)\right] *[\Omega(X)]\right) \cup[\Omega(X)] \tag{5}
\end{equation*}
$$

For the convenience, we introduce the notation ϕ such that

$$
\phi *[\alpha]=[\alpha] * \phi=[\alpha],
$$

then (5) is rewritten

$$
\begin{equation*}
[E(X)] \cup\{\phi\}=([E(X)] \cup\{\phi\} *[(\Omega(X)] \cup\{\phi\}) . \tag{5}
\end{equation*}
$$

3. Lemma 5. Let f be a continuous map from $E(X)$ to $Y($ resp from $\Omega(X)$ to $Y)$ such that

$$
\begin{equation*}
f\left(h^{*}(\alpha)\right)=f(\alpha), \quad h \in H^{+}(\boldsymbol{I}), \tag{6}
\end{equation*}
$$

then

$$
\begin{equation*}
f(\alpha * e * \beta)=f(\alpha * \beta), \tag{7}
\end{equation*}
$$

where Y is a topological space and either α or β may be equal to ϕ.
Proof. Shince the method is similar, we assume $\alpha \neq \phi, \beta \neq \phi$. Then by (6), we can take

$$
\begin{aligned}
& (\alpha * e * \beta)(s)=\alpha(4 s), \quad 0 \leqq s \leqq \frac{1}{4}, \quad(\alpha * e * \beta)(s)=x_{0}, \frac{1}{4} \leqq s \leqq \frac{1}{2}, \\
& (\alpha * e \beta)(s)=\beta(2 s-1), \quad \frac{1}{2} \leqq s \leqq 1 . \\
& (\alpha * \beta)(s)=\alpha(2 s), \quad 0 \leqq s \leqq \frac{1}{2}, \quad(\alpha * \beta)(s)=\beta(2 s-1), \quad \frac{1}{2} \leqq s \leqq 1 .
\end{aligned}
$$

We define $h_{t} \in H^{+}(I)(1 \leqq t \leqq 2)$ by

$$
\begin{aligned}
& h_{t}(s)=t s, \quad 0 \leqq s \leqq \frac{1}{4}, \quad h_{t}(s)=(2-t) s-\frac{1}{2}+\frac{t}{2}, \frac{1}{4} \leqq s \leqq \frac{1}{2} \\
& h_{t}(s)=s, \quad \frac{1}{2} \leqq s \leqq 1 .
\end{aligned}
$$

Then by (6), we have

$$
f\left(h_{t}^{*}(\alpha * e * \beta)\right)=f(\alpha * e * \beta) . \quad 1 \leqq t<2 .
$$

On the other hand, by the definition of h_{t} and the continuity of f, we have

$$
\lim _{t \rightarrow 2} f\left(h_{t}^{*}(\alpha * e * \beta)\right)=f(\alpha * \beta) .
$$

Therefore we have (7).

As usual, for $\alpha \in E(X)$, we set α^{-1} by $\alpha^{-1}(s)=\alpha(1-s)$, then we have
Lemma 6. If a continuous man $f: E(X) \rightarrow Y$ satisfies (6) and

$$
\begin{equation*}
f\left(\alpha * \alpha^{-1} * \beta\right)=f(\beta), \tag{8}
\end{equation*}
$$

then f is written as $\pi^{*} g, g: X \rightarrow Y$ if and only if

$$
\begin{equation*}
f(\alpha * \eta)=f(\alpha), \quad \text { for any } \eta \in S(X) \tag{9}
\end{equation*}
$$

Proof. Since $\pi^{*} g$ satisfies (6), (8) and (9), we only need to prove sufficiency. If $\alpha(0)=\beta(0)=x \in X$, then $\alpha^{-1} * \beta=\eta$ is defined and belongs in $\Omega(X)$. Then by (8) and (9), we obtain

$$
f(\alpha)=f(\alpha * \eta)=f\left(\alpha * \alpha^{-1} * \beta\right)=f(\beta) .
$$

Therefore the value of f at α is determined only by $\alpha(0)$. Hence we get

$$
f=\pi^{*} g, \quad g(x)=f(\alpha), \quad \alpha(0)=x .
$$

This proves the lemma.
§ 2. The groups $\boldsymbol{H}_{E}^{\boldsymbol{p}}(\boldsymbol{X}, G)$ and $\boldsymbol{H}_{a}{ }^{p}(X, G)$.
4. Definition. Let \boldsymbol{G} be a topological abelian group, then the set of all continuous maps $f: E(X) \times \widetilde{\Omega(X)}^{n} \cdots \times \Omega(X) \rightarrow \boldsymbol{G}$ which satisfies

$$
\begin{align*}
& f\left(h_{0}^{*}(\alpha), \quad h_{1}^{*}\left(\eta_{1}\right), \cdots, h_{p}^{*}\left(\eta_{p}\right)\right)=f\left(\alpha, \eta_{1}, \cdots, \eta_{p}\right), \tag{i}\\
& h_{i} \in H^{+}(I), \quad i=0, \quad 1, \cdots, p \\
& \alpha \in E(X), \quad \eta_{j} \in \Omega(X), \quad j=1, \cdots, p, \\
& f\left(\alpha * \alpha^{-1} * \beta, \quad \eta_{1}, \cdots, \eta_{p}\right)=f\left(\beta, \quad \eta_{1}, \cdots, \eta_{p}\right), \tag{ii}
\end{align*}
$$

is denoted by $E^{p}(X, G)$.
Defnition. Let G be a topological abelian group, then the set of all continuous maps $g: \widetilde{\Omega(X)}^{p} \times \cdots \times \Omega(X) \rightarrow \boldsymbol{G}$ which satisfies

$$
\begin{align*}
& g\left(h_{1}^{*}\left(\eta_{1}\right), \cdots, h_{p}^{*}\left(\eta_{p}\right)\right)=g\left(\eta_{1}, \cdots, \eta_{p}\right), \tag{i}\\
& h_{i} \in H^{+}(\boldsymbol{I}), \quad i=1, \cdots, p, \quad \eta_{j} \in \Omega(X), f=1, \cdots, p,
\end{align*}
$$

is denoted by $\Omega^{p}(X, \boldsymbol{G})$ for $p \geqq 1$. If $p=0$, then we set

$$
\Omega_{0}^{0}(X, G)=G
$$

Note. If X is a smooth manifold, then $\Omega(X)$ and $E(X)$ are also smooth
(Banach) manifolds ([1], [5]). Hence if G is a Lie group, we can define the smooth maps $f: E(X) \times \Omega(X) \times \cdots \times \Omega(X) \rightarrow G$ and $g: \Omega(X) \times \cdots \times \Omega(X) \rightarrow G$. Then using smooth maps, we can define similar sets. They are also denoted by $E^{p}(X, G)$ and $\Omega^{p}(X$, G).

By definition, $E^{p}(X, G)$ and $\Omega^{p}(X, G)$ are modules and setting

$$
\begin{equation*}
\iota(g)\left(\alpha, \eta_{1}, \cdots, \eta_{p}\right)=g\left(\eta_{1}, \cdots, \eta_{p}\right), \tag{10}
\end{equation*}
$$

$\iota: \Omega^{p}(X, G) \rightarrow E^{p}(X, G)$ is an into isomorphism for all $p \geqq 0$.
Lemma 7. $\Omega(X)$ operates associatively on $E^{p}(X, G)$ by the operation

$$
\begin{equation*}
f \eta\left(\alpha, \eta_{1}, \cdots, \eta_{p}\right)=f\left(\alpha * \eta, \eta, \cdots, \eta_{p}\right) . \tag{11}
\end{equation*}
$$

Proof. if $h \in H^{+}(\boldsymbol{I})$, then to define $h^{\prime} \in H^{+}(\boldsymbol{I})$ by

$$
h^{\prime}(s)=\frac{1}{2} h(2 s), \quad 0 \leqq s \leqq \frac{1}{2}, \quad h^{\prime}(s)=s, \frac{1}{2} \leqq s \leqq 1,
$$

we have $h^{*}(\alpha) * \eta=h^{\prime *}(\alpha * \eta)$. Hence f satisfies (i).
Since we know by lemma 2 ,

$$
\left.\left([\alpha] *\left[\alpha^{-1}\right] *[\beta]\right) *[\eta]=[\alpha] *\left[\alpha^{-1}\right] * *[\beta] *[\eta]\right),
$$

f satisfies (ii).
If $h \in H^{+}(\boldsymbol{I})$, then to define $h^{\prime \prime} \in H^{+}(\boldsymbol{I})$ by

$$
h^{\prime \prime}(s)=s, \quad 0 \leqq s \leqq \frac{1}{2}, \quad h^{\prime \prime}(s)=\frac{1}{2}(h(2 s-1)+1), \quad \frac{1}{2} \leqq s \leqq 1,
$$

we get $\alpha * h^{*}(\eta)=h^{\prime *}(\alpha * \eta)$. Therefore we have

$$
\begin{equation*}
f^{n}=f^{h *(\eta)}, h \in H^{+}(\boldsymbol{I}) . \tag{12}
\end{equation*}
$$

On the other hand, since we know

$$
\begin{equation*}
\left(f_{n}\right)^{\zeta}=f_{n}^{* * \zeta}, \tag{13}
\end{equation*}
$$

we have the associativity by lemma 2 .
By lemma 2, we also obtain
Lemma 8. If $f \in E^{p}(X, G)$ (resp. $g \in \Omega^{p}(X, G)$), then for any $i(1 \leqq i \leqq p)$, we have

$$
\begin{align*}
& f(\alpha, \eta_{1}, \cdots, \eta_{i-1}, \tag{14}\\
&=\left(\zeta_{1} * \zeta_{2}\right) * \zeta_{3},\left.\eta_{i+1}, \cdots, \eta_{p}\right) \\
&=f(\alpha, \eta_{1}, \cdots, \eta_{i-1}, \\
& \zeta_{1} *\left(\zeta_{2} * \zeta_{3}\right), \eta_{i+1}, \cdots, \\
&\left.\eta_{p}\right)
\end{align*},
$$

$(14)^{\prime}$

$$
\begin{aligned}
& g\left(\eta_{1}, \cdots, \eta_{i-1},\left(\zeta_{1} * \zeta_{2}\right) * \zeta_{3}, \quad \eta_{i+1}, \cdots, \eta_{p}\right) \\
&= g\left(\eta_{1}, \cdots, \eta_{i-1}, \zeta^{\top} *\left(\zeta_{2} * \zeta_{3}\right),\right. \\
&\left.\eta_{i+1}, \cdots, \eta_{p}\right) .
\end{aligned}
$$

5. Definition. We define the homomorphisms $\delta: E^{p}(X, \boldsymbol{G}) \rightarrow E^{p+1}(X, \boldsymbol{G})$ and $\delta: \Omega^{p}(X, G) \rightarrow \Omega^{p+1}(X, G)$ by
(15) ${ }^{\prime}$

$$
\begin{align*}
& (\delta f)\left(\alpha, \eta_{1}, \cdots, \eta_{p+1}\right) \tag{15}\\
= & \left.f^{\eta_{1}\left(\alpha, \eta_{2}\right.}, \cdots, \eta_{p+1}\right)+\sum_{i=1}^{p}(-1)^{i} f\left(\alpha, \eta_{1}, \cdots, \eta_{i} * \eta_{i+1}, \cdots, \eta_{p+1}\right)+ \\
& +(-1)^{p+1} f\left(\alpha, \eta_{1}, \cdots, \eta_{p}\right), p \geqq 1, \\
& (\delta f)\left(\alpha, \eta_{1}\right)=f^{\eta_{1}(\alpha)-f(\alpha),} \\
& (\delta g)\left(\eta_{1}, \cdots, \eta_{p+1}\right) \\
= & g\left(\eta_{2}, \cdots, \eta_{p+1}\right)+\sum_{i=1}^{p}(-1)^{i} g\left(\eta_{1}, \cdots, \eta_{i} * \eta_{i+1}, \cdots, \eta_{p+1}\right)+ \\
& +(-1)^{p+1} g\left(\eta_{1}, \cdots, \eta_{p}\right), p \geqq 1, \\
& (\delta g)\left(\eta_{1}\right)=0 .
\end{align*}
$$

By definition, we have the following commutative diagram.

By lemma 7 and lemma 8, we have
Lemma 9. $\delta(\delta f)$ and $\delta(\delta g)$ are equal to 0 for any $f \in E^{p}(X, G)$ and $g \in \Omega^{p}(X$,
G), $p \geqq 0$.

By lemma 9, we can define
Definition. For each $p \geqq 0$, we set
$(16)^{\prime}$

$$
\begin{align*}
& H_{E^{p}}(X, \boldsymbol{G}) \tag{16}\\
= & \operatorname{ker} .\left[\delta: E^{p}(X, \boldsymbol{G}) \rightarrow E^{p+1}(X, \boldsymbol{G})\right] / \delta E^{p-1}(X, \boldsymbol{G}), p \geq 1, \\
& H_{E} 0(X, \boldsymbol{G})=\operatorname{ker} .\left[\delta: E^{0}(X, \boldsymbol{G}) \rightarrow E^{1}(X, \boldsymbol{G})\right] . \\
& H_{\Omega^{p}}(X, \boldsymbol{G}) \\
= & \operatorname{ker} .\left[\delta: \Omega^{p}(X, \boldsymbol{G}) \rightarrow \Omega^{p+1}(X, \boldsymbol{G})\right] / \delta \Omega^{p-1}(X, \boldsymbol{G}), p \geq 1,, \\
& H_{\Omega^{o}(X, \boldsymbol{G})=\operatorname{ker} .\left[\delta: \Omega^{0}(X, \boldsymbol{G}) \rightarrow \Omega^{1}(X, \boldsymbol{G})\right] .} .
\end{align*}
$$

Theorem 1. We have
(17)ii

$$
\begin{align*}
& H_{E}{ }^{0}(X, \boldsymbol{G}) \simeq C(X, \boldsymbol{G}), \tag{17}\\
& H_{\Omega^{0}}(X, \boldsymbol{G}) \simeq \boldsymbol{G},
\end{align*}
$$

$$
H_{\Omega^{1}}(X, \boldsymbol{G}) \simeq \operatorname{Hom} \cdot([\Omega(X)], \boldsymbol{G})
$$

where $C(X, \boldsymbol{G})$ is the module of continuous (or smooth) maps from X to \boldsymbol{G}.
Proof. (17)ii follows from the definition.
Since we have

$$
\delta g\left(\eta_{1}, \quad \eta_{2}\right)=g\left(\eta_{2}\right)-g\left(\eta_{1} * \eta_{2}\right)+g\left(\eta_{1}\right)
$$

we obtain (17) iii because $\delta \Omega^{0}(X, G)=0$.
Since $\delta f(\alpha, \eta)$ is equal to 0 if and only if $f^{\eta}(\alpha)=f(\alpha)$ for all $\eta \in \Omega(X)$, we have (17)i by lemma 6.

By theorem 1, we have

$$
\begin{aligned}
& H_{\Omega}(X, G) \simeq H^{0}(X, \boldsymbol{G}), \\
& \rho^{*}\left(H_{\Omega}(X, G)\right)=H^{1}(X, \boldsymbol{G}),
\end{aligned}
$$

where ρ^{*} is the homomorphism induced from ρ.

§3. Calculation of $\boldsymbol{H}_{E}{ }^{\boldsymbol{p}}(X, G), p \geqq 1$.

6. Definition. For an element g of $\Omega^{P}(X, G)$, we define an operation $g \# \eta$ of $\eta \in \Omega(X) b y$

$$
\begin{align*}
& \left(g^{\sharp} \eta\right)\left(\zeta_{1}, \cdots, \zeta_{p}\right) \tag{18}\\
& =g\left(\eta * \zeta_{1}, \cdots, \zeta_{p}\right)+\sum_{i=1}^{p-1}(-1)^{i} g\left(\eta, \zeta_{1}, \cdots, \zeta_{i} * \zeta_{i+1}, \cdots, \zeta_{p}\right)+ \\
& \quad+(-1)^{p} g\left(\eta, \zeta_{1}, \cdots, \zeta_{p-1}\right), \quad p \geqq 1, \\
& \\
& g^{*} \eta=g, \quad p=0 .
\end{align*}
$$

We donote $\Omega_{\sharp}{ }^{p}(X, G)$ if we consider $\Omega^{p}(X, G)$ together with the above operation of $\Omega(X)$.

Definition. We define the homomorphisms $\delta_{\sharp}: E^{q}\left(X, \Omega_{\sharp}{ }^{p}(X, \boldsymbol{G})\right) E^{q+1}\left(X, \Omega_{\#}{ }^{p}(X\right.$, $\boldsymbol{G})$) and $\delta_{\sharp}: \Omega^{q}\left(X, \Omega_{\sharp} p(X, \boldsymbol{G})\right) \rightarrow \Omega^{q+1}\left(X, \Omega_{\sharp}^{p}(X, \boldsymbol{G})\right)$ by

$$
\begin{align*}
& \left(\delta_{\#} f\right)\left(\alpha, \eta_{1}, \cdots, \eta_{q+1}\right) \tag{19}\\
& =f^{\eta} \eta_{1}\left(\alpha, \eta_{2}, \cdots, \eta_{q+1}\right)+\sum_{i=1}^{q}(-1)^{q} f\left(\alpha, \eta_{1}, \cdots, \eta_{i}^{*} \eta_{i+1}, \cdots, \eta_{q+1}\right)+ \\
& +(-1)^{q+1} f\left(\alpha, \eta_{1}, \cdots, \eta_{q}\right)^{\#} \eta_{q+1}, \quad q \geqq 1, \\
& \left(\delta_{\#} f\right)\left(\alpha, \eta_{1}\right)=f^{\eta_{1}}(\alpha)-f(\alpha) \eta_{\# \eta_{1}}, \\
& \left(\delta_{\#} g\right)\left(\eta_{1}, \cdots, \eta_{q}{ }^{+}{ }_{1}\right) \tag{19}\\
& =g\left(\eta_{2}, \cdots, \eta_{q+1}\right)+\sum_{i=1}^{q}(-1)^{i} g\left(\eta_{1}, \cdots, \eta_{i}^{*} \eta_{i+1}, \cdots, \eta_{q+1}\right)+
\end{align*}
$$

$$
\begin{aligned}
& +(-1)^{q+1} g\left(\eta_{1}, \cdots, \eta_{q}\right)^{\#} \eta_{q+1}, q \geqq 1, \\
& (\delta \# g)\left(\eta_{1}\right)=g-g^{\#} \eta_{\eta_{1}} .
\end{aligned}
$$

We define the homomor phisms $j: E^{q}\left(X, \Omega_{\sharp} p(X, G) \rightarrow E^{q+p}(X, G)\right.$ and $j: \Omega^{q}(X$, $\left.\Omega_{\#}{ }^{p}(X, G)\right) \rightarrow \Omega^{q+p}(X, G)$ by
$(20)^{\prime}$

$$
\begin{align*}
& (f f)\left(\alpha, \eta_{1}, \cdots, \eta_{q}, \eta_{q+1}, \cdots, \eta_{q+p}\right) \tag{20}\\
= & f\left(\alpha, \eta_{1}, \cdots, \eta_{q}\right)\left(\eta_{q+1}, \cdots, \eta_{q+p}\right),
\end{align*}
$$

$$
(j g)\left(\eta_{1}, \cdots, \eta_{q}, \eta_{q+1}, \cdots, \eta_{q+p}\right)=g\left(\eta_{1}, \cdots, \eta_{q}\right)\left(\eta_{q+1}, \cdots, \eta_{q+p}\right) .
$$

Then we have

By (21) and (21)', we obtain
Lemma 10. For any $f \in E^{q}\left(X, \Omega_{\sharp}^{p}(X, G)\right)$ and $g \in \Omega_{\Omega^{q}}\left(X, \Omega_{\sharp}^{p}(X, G)\right)$, we have $\delta_{\#}\left(\delta_{\#} f\right)=0$ and $\delta_{\#}\left(\delta_{\#} g\right)=0$.

Corollary. $[\Omega(X)]$ operates on $\Omega_{\#}{ }^{p}(X, G)$ as a semigroup, that is, we have

$$
\begin{equation*}
\left(g^{*} \eta_{1}\right)^{\#} \eta_{2}=g^{\#}\left(\eta_{1} * \eta_{2}\right), \tag{22}
\end{equation*}
$$

fos any $g \in \Omega^{p}(X, G)$ and $\eta_{1}, \eta_{2} \in \Omega(X)$.
Proof. By lemma 10, we have

$$
\begin{aligned}
0 & =(\delta \#(\delta \# g))\left(\eta_{1}, \eta_{2}\right) \\
& =(\delta \# g)\left(\eta_{2}\right)-(\delta \# g)\left(\eta_{1} * \eta_{2}\right)+\left((\delta \# g) \#_{2}\right)\left(\eta_{1}\right) \\
& =g \#\left(\eta_{1} * \eta_{2}\right)-\left(g \# \eta_{1}\right) \#_{2} .
\end{aligned}
$$

This shows (22).
By lemma 10 , we can define the groups $\mathrm{H}_{E \#^{q}}\left(X, \Omega^{q}(X, G)\right)$ and $H^{a} \#^{q}\left(X, \Omega^{p}(X\right.$, G)) by

$$
\begin{align*}
& H_{E \sharp^{q}\left(X, \Omega^{p}(X, G)\right)} \tag{23}\\
= & \frac{k e r .\left[\delta_{\sharp}: E^{q}\left(X, \Omega_{\sharp}^{p}(X, G)\right) \rightarrow E^{q+1}\left(X, \Omega_{\sharp}^{p}(X, G)\right)\right]}{\delta_{\sharp} E^{q-1}\left(X, \Omega_{\sharp}{ }^{p}(X, G)\right)}, q \geq 1, \\
& H_{E \sharp^{0}\left(X, \Omega^{p}(X, G)\right)}^{=} \\
& k e r .\left[\delta^{\sharp}: E^{0}\left(X, \Omega_{\sharp}{ }^{p}(X, G)\right) \rightarrow E^{1}\left(X, \Omega_{\left.\left.\sharp^{p}(X, G)\right)\right],}\right.\right. \\
& H_{g \sharp^{q}(X,}\left(X, \Omega^{p}(X, G)\right)
\end{align*}
$$

$$
\begin{align*}
& \delta(j f)\left(\alpha, \eta_{1}, \cdots, \eta_{q}, \eta_{q+1}, \eta_{q+2}, \cdots, \eta_{q+p+1}\right) \tag{21}\\
& =\left(\partial_{\#} f\right)\left(\alpha, \eta_{1}, \cdots, \eta_{q}, \eta_{q+1}\right)\left(\eta_{q+2}, \cdots, \eta_{q+p+1}\right) \text {, } \\
& \delta(j g)\left(\eta_{1}, \cdots, \eta_{q}, \eta_{q+1}, \eta_{q+2}, \cdots, \eta_{q+p+1}\right) \tag{21}\\
& =\left(\delta_{\ddagger g}\right)\left(\eta_{1}, \cdots, \eta_{q}, \eta_{q+1}\right)\left(\eta_{q+2}, \cdots, \eta_{q+p+1}\right) \text {. }
\end{align*}
$$

$$
\begin{aligned}
= & \frac{k e r .\left[\delta_{\sharp}: \Omega^{q}\left(X, \Omega_{\sharp} p(X, G)\right) \rightarrow \Omega^{q+1}\left(X, \Omega_{\sharp}^{p}(X, G)\right)\right]}{\delta_{\sharp} \Omega^{q-1}\left(X, \Omega_{\sharp}{ }^{p}(X, G)\right)}, q \geq 1, \\
& H_{Q \sharp^{0}\left(X, \Omega^{p}(X, G)\right)}=k e r .\left[\delta_{\sharp}: \Omega^{0}\left(X, \Omega_{\sharp} p(X, G)\right) \rightarrow \Omega^{1}\left(X, \Omega_{\sharp}^{p}(X, G)\right)\right] .
\end{aligned}
$$

Then by (21) and (21)', we have
Theorem 2 ([3]). If $q \geqq 1$, we get for all $p \geqq 0$,

$$
\begin{align*}
& H_{E \#^{q}}\left(X, \Omega^{p}(X, G)\right) \simeq H_{E}^{q+p}(X, G), \tag{24}\\
& H_{\Omega \#^{q}}\left(X, \Omega^{p}(X, G)\right) \simeq H_{a^{q+p}}(X, G) . \tag{24}
\end{align*}
$$

7. Since $H_{E}{ }^{p}(X, G) \simeq H_{E \sharp^{1}}\left(X, \Omega^{p-1}(X, G)\right)$ if $p \geqq 1$ by theorem 2 , to calculate $H_{E}{ }^{p}(X, G)$, it is sufficient to calculate $H_{E \sharp^{1}\left(X, \Omega^{q}(X, G)\right), q \geq 0 \text {. If } f \in E^{1}(X, ~ ; ~, ~}^{\text {, }}$ $\left.\Omega_{\neq q}^{q}(X, G)\right)$ satisfies $\delta_{\#} f=0$, then we have

$$
\begin{aligned}
f(\alpha * e, \quad \eta) & =f\left(\alpha e e^{*} \vDash \eta\right)-f(\alpha, \quad e) \neq \eta \\
& =(\delta g)(\alpha, \eta),
\end{aligned}
$$

where $g(\alpha)=g(\alpha, e)$ and $g(\alpha * \eta)=f(\alpha, e * \eta)$ if we fix $\alpha \in E(X)$. Then since we know $f(\alpha * e, \eta)=f(\alpha, \eta)$ by lemma 5 , for a fixed $\alpha \in E(X)$, we get

$$
\begin{equation*}
f(\alpha, \eta)=(\delta g)(\alpha, \eta), \text { where } g(\alpha * \eta)=f(\alpha, e * \eta) . \tag{25}
\end{equation*}
$$

Although g is defined only on $\alpha * \Omega(X)$ in general, if X satisfies the condition (*) of lemma 4, then by the condition (ii) of $\mathrm{n}^{0} 4$ and (5), we can define $g=g_{U}$ to be continuous (or smooth) on $\tau_{U}(U(x)) * \Omega(X)$, where $U(x)$ is a neighborhood of $x \in X$ (in X) and $x=\alpha(0)$. Then since we know by (ii) of $\mathrm{n}^{0} 4$ that the value of f is determined by the value on $U_{x \in \omega^{\omega}}^{U(x)}(U(x)) * Q(X)$, we may assume that for a suitable covering $\{U\}$ of $E(X)$ such that

$$
U_{*} \Omega(X) \subset U, \quad H^{p}(U, \quad Z) \simeq H^{p}(\Omega(X), Z), \quad p \geq 0,
$$

we obtain $\left\{g_{U}\right\}, g_{U} \in E^{1}\left(U, \Omega_{\sharp}^{p}(X, G)\right)$ such that

$$
\delta_{\sharp} g_{U}=f \mid U .
$$

Then since $\delta_{\#}\left(g_{U}-g_{V}\right)$ is equal to 0 on $U \cap V,\left\{h_{U V}\right\}, h_{U V}=g_{U}-g_{V}$ on $U \cap V$ defines a 1-codycle with coefficients in $\mathscr{S} E\left(\Omega_{\sharp}{ }^{p}(X, G)\right)$ on $E(X)$. Here $\mathscr{B}^{0} E^{0}\left(\Omega_{\sharp}^{p}\right.$ (X, G) means the sheaf of germs of the continuous (or smooth) maps from $E(X)$ to ker. $\delta_{\#}$ in $E^{0}\left(X, \Omega_{\sharp}{ }^{p}(X, G)\right)$. Then since we know

$$
\begin{equation*}
H^{1}\left(E(X), \mathscr{S}^{0} E^{0}\left(\Omega_{\sharp}^{p}(X, G)\right)\right) \tag{26}
\end{equation*}
$$

$\simeq\{$ the set of equivalence classes of topological (or differentiable)
ker. $\left[\delta_{\#}: \Omega_{\#}{ }^{p}(X, G) \rightarrow \Omega_{\#}^{p+1}(X, G)\right]$-bundle over $\left.E(X)\right\}$,
we obtain

$$
\begin{equation*}
H^{1}\left(E(X), \quad \mathscr{B}^{(} E^{0}\left(\Omega_{\mathbb{*}}{ }^{p}(X, G)\right)\right)=0, \tag{26}
\end{equation*}
$$

for any p, because $E(X)$ is contractible.
By $(26)^{\prime}$, there exists a refinement $\left\{U^{\prime}\right\}$ of $\{U\}$ and $\left\{h_{U^{\prime}}\right\}, h_{U^{\prime}}: U^{\prime} \rightarrow \Omega_{\sharp}{ }^{p}(X$, $G), \delta_{\#} h_{U^{\prime}}=0$ such that

$$
\begin{equation*}
h_{U V} \mid U^{\prime} \cap V^{\prime}=h_{U^{\prime}}-h_{V^{\prime}} . \tag{27}
\end{equation*}
$$

Then to define $g \in E^{0}\left(X, \Omega_{\sharp}^{p}(X, G)\right)$ by $g\left|U^{\prime}=g_{U}\right| U^{\prime}-h_{U^{\prime}}$, we get

$$
\begin{equation*}
f=\delta_{\sharp} g . \tag{27}
\end{equation*}
$$

Hence we have
Theorem 3. $H_{E}{ }^{p}(X, G)$ vanishes for $p \geqq 1$ if X satisfies the condition (k) of lemma 4. Especially, if X is a topological manifold, then $H_{E}{ }^{p}(X, G)$ vanishes for $p \geqq 1$.

Note. Since $E(X)$ is not C^{∞}-smooth ([1]), $h_{U^{\prime}}$ of $(27)^{\prime}$ is not smooth although $h_{U V}$ is smooth. But setting

$$
\begin{aligned}
E_{2, k}(X)= & \{\alpha \mid \alpha: \boldsymbol{I} \rightarrow X \text { and } \alpha \text { belongs in } k \text {-th Sobolev space over } \boldsymbol{I}, \\
& \left.\alpha(1)=x_{0},\right\}
\end{aligned}
$$

we know that $E_{2},{ }_{k}(X)$ is C^{∞}-smooth ([1]) and $E_{2, k}(X)$ is contained in $E(X)$ if $k>\operatorname{dim} . X / 2$ (8). Then we set

$$
\Omega_{2, k}(X)=\Omega(X) \cap E_{2, k}(X) .
$$

Although $\Omega_{2, k}(X)$ does not operates on $E_{2},{ }_{k}(X)$, setting

$$
\begin{aligned}
& E_{2, k, 0}(X)=\left\{\alpha \mid \alpha \in E_{2},{ }_{k}(X), \alpha(s)=x_{0} \text { if } s>1-\varepsilon \text { for some } \varepsilon\right\}, \\
& \Omega_{2, k},{ }_{0}(X)=\Omega_{2},{ }_{k}(X) \cap E_{2},{ }_{k}, 0(X),
\end{aligned}
$$

$\Omega_{2, k},{ }_{0}(X)$ operates on $E_{2},{ }_{k},{ }_{0}(X)$. Moreover, denoting $H^{+, k}(\boldsymbol{I})$ the group of orientation preserving C^{k}-diffeomorphisms of $I, H^{+, k}(I)$ operates on $E_{2}, k, 0(X)$ and we obtain same results as in $\S 1$ and $\S 2$ for $E_{2},{ }_{k},{ }_{0}(X)$ and $\Omega_{2, k, 0}(X)$ except lemma 6. But lemma 6 is also true because if $\alpha(0)=\beta(0)$, then there exists β_{n} such that
$\lim _{n \rightarrow \infty} \beta_{n}=\beta$ in $E_{2, k,{ }_{0}}(X), \alpha^{-1} * \beta_{n}$ belongs in $E_{2, k},{ }_{0}(X)$ for all n.
Then since $E_{2}, k, 0(X)$ is a C^{∞}-smooth (Fréchet) manifold and contractible, we can take each $\mathrm{h}_{U^{\prime}}$ of (27)' to be smooth if each $h_{U V}$ is smooth ([1], [9]). Hence in (27), we can take g to be smooth if f is smooth. Therefore we obtain

Theorem 3^{\prime}. If X is smooth and $f \in E^{p}{ }_{2, k},{ }_{0}(X, G)$ is a smooth map and $\delta f=0$, then there exists a smooth map $g \in E^{p-1}{ }_{2},{ }_{k},{ }_{0}(X, G)$ such that $f=\delta g$ if $q \geq 1$ and G is a Lie group. Here $E^{p}{ }_{2},{ }_{k}, 0(X)$ means the set of continuous maps from $E_{2, k},{ }_{0}(X) \times \overbrace{\Omega_{2, k}, 0(X)} \times \cdots \times \Omega_{2, k}, 0(X)$ into G which satisfies the condition (i), (ii) of $n^{0} 4$ where $H^{+}(\boldsymbol{I})$ is changed by $H^{+}, k(\boldsymbol{I})$.

§4. The module $A^{p, q}(X)$.

8. In the rest, we assume X to be a paracompact arcwise connected smooth manifold. For the simplicity, we denote $E(X), \Omega(X), E^{\mu}(X, G), \Omega^{p}(X, G),[E(X)]$, $[\Omega(X)]$ and $H^{+}(\boldsymbol{I})$ instead of $\left[E_{2},{ }_{k},{ }_{0}(X)\right],\left[\Omega_{2},{ }_{k},{ }_{0}(X)\right], E^{p}{ }_{2},{ }_{k},{ }_{0}(X, G), \Omega_{2}{ }_{2},{ }_{k},{ }_{0}(X, G)$, $\left[E_{2},{ }_{k},{ }_{0}(X)\right],\left[\Omega_{2},{ }_{k},{ }_{0}(X)\right]$ and $H^{+}, k(\boldsymbol{I})$. Here $\Omega^{2}{ }_{2},{ }_{k},{ }_{0}(X, \boldsymbol{G})$ is defined similarly as $E^{p_{2},{ }_{k},{ }_{0}(X, G),\left[E_{2},{ }_{k},{ }_{0}(X)\right] \text { and }\left[\Omega_{2},{ }_{k},{ }_{0}(X)\right] \text { are the quotient spaces of } E_{2},{ }_{k},{ }_{0}(X), ~(X)}$ and $\Omega_{2},{ }_{k},{ }_{0}(X) \bmod . H^{+, k}(I)$.

Since $E(X)$ is a smooth (Fréchet) manifold, we denote the group of (real or complex valued) p-forms on $E(X)$ by $C^{p}(E(X)$. Denoting the cotangent bundle of $E(X)$ by $T^{*}(E(X))$, we know that $C^{p}(E(X))=\Gamma\left(E(X), \quad \Lambda^{p}\left(T^{*}(E(X))\right.\right.$. Since $E(X)$ is contractible, we can define a homomorphism $k: C^{p}(E(X)) \rightarrow C^{p-1}(E(X))$ by

$$
\begin{align*}
& k \varphi=P_{*} \int_{0}^{1} i\left(\frac{\partial}{\partial t}\right)\left(F^{*} \varphi\right) d t, \quad p=1 \tag{28}\\
& \left\langle u_{1} \wedge \cdots \wedge u_{p-1}, \quad k \varphi\right\rangle \\
= & P^{*} \int_{0}^{1}\left\langle P^{*} u_{1} \wedge \cdots \wedge P^{*} u_{p-1}, \quad i\left(\frac{\partial}{\partial t}\right)\left(F^{*} \varphi\right)\right\rangle d t, \quad p>1,
\end{align*}
$$

where u_{i} means a vector field on $E(X), F: E(X) \times I \rightarrow E(X)$ is the contraction of $E(X)$ given by $F(\alpha, t)=\alpha_{t}$ and $P: E(X) \times I \rightarrow E(X)$ is the projection ([6]). Then we know that

$$
(d k+k d) \varphi=\varphi, \quad p \geqq 1
$$

We denote the induced bundle from $A^{p} T^{*}(E(X))$ on $E(X) \times \Omega(X) \times \cdots \times \Omega(X)$ also by $A^{p} T^{*}(E(X))$. Then a cross -section of $A^{p} T^{*}(E(X))$ on $E(X) \times \Omega(X) \times \cdots \times \Omega(X)$ is a p-form on $E(X) \times \Omega(X) \times \cdots \times \Omega(X)$ and denoting d_{1} the exterior differentiation in $E(X)$-direction, we get

$$
d_{1}\left(\Gamma\left(E(X) \times \Omega(X) \times \cdots \times \Omega(X), A^{p} T^{*}(E(X))\right)\right.
$$

$$
\subset \Gamma\left(E(X) \times \Omega(X) \times \cdots \times \Omega(X), \quad A^{p+1} T^{*}(E(X))\right)
$$

Moreover, we can define k for the elements of $\left.\Gamma(E(X) \times \Omega(X) \times \cdots \times \Omega) X), \Lambda^{p} T^{*}(E(X))\right)$ because we know

$$
\begin{aligned}
\langle v, \varphi\rangle=0, & \varphi \in \Gamma\left(E(X) \times \Omega(X) \times \cdots \times \Omega(X), \quad \Lambda^{p} T^{*}(E(X))\right), \\
& \text { if } v \notin \Gamma\left(E(X) \times \Omega(X) \times \cdots \times \Omega(X), \quad A^{p} T(E(X))\right),
\end{aligned}
$$

where $T(E(X))$ is the tangent bundle of $E(X)$, and we have

$$
\begin{aligned}
& k\left(\Gamma\left(E(X) \times \Omega(X) \times \cdots \times \Omega(X), \quad \Lambda^{p} T^{*}(E(X))\right)\right. \\
& \subset I^{\prime}\left(E(X) \times \Omega(X) \times \cdots \times \Omega(X), \quad \Lambda^{p-1} T^{*}(E(X))\right), \\
& \left(d_{1} k+k d_{1}\right) \varphi=\varphi, \quad p \geqq 1 .
\end{aligned}
$$

Definition. The set of all φ such that φ belongs in $\Gamma(E(X) \times \overbrace{\Omega(X) \times \cdots \times \Omega(X)}^{a}$, $A^{p} T^{*}(E(X))$ and satisfiet the following conditions (i) and (ii) is denoted by $A^{p, a(X)}$.

$$
\begin{align*}
& \varphi\left(h_{0}^{*}(\alpha), h_{1}^{*}\left(\eta_{1}\right), \cdots, h_{q}^{*}\left(\eta_{q}\right)\right)=\varphi\left(\alpha, \eta_{1}, \cdots, \eta_{q}\right), \tag{i}\\
& h_{i} \in H^{+}(\boldsymbol{I}), 0 \leqq i \leqq q, \alpha \in E(X), \eta_{j} \in \Omega(X), 1 \leqq j \leqq q \\
& \left(\alpha * \alpha^{-1} * \beta, \quad \eta_{1}, \cdots, \eta_{q}\right)=\left(\beta, \quad \eta_{1}, \cdots, \eta_{q}\right) \text { if } \alpha^{-1 *} * \beta \in E(X) .
\end{align*}
$$

By definition, $A^{p, q}(X)$ is a module, and denoting $\pi: E(X) \times \Omega(X) \times \cdots \times \Omega(X) \rightarrow$ $X \times \Omega(X) \times \cdots \times \Omega(X)$ the projection induced by $\pi: E(X) \rightarrow \times, \pi^{*}(\Gamma(X \times \Omega(X) \times \cdots \times$ $\Omega(X), A^{p} T^{*}(X)$) is contained in $A^{p, q}(X)$. Here $T^{*}(X)$ is the cotangent bundle of X and $A^{p} T^{*}(X)$ is the induced bundle from $A^{p} T^{*}(X)$ on $X \times \Omega(X) \times \cdots \times \Omega(X)$.

$$
\begin{equation*}
\varphi\left(\alpha * \eta, \eta_{1}, \cdots, \eta_{q}\right)=\varphi\left(\alpha, \eta_{1}, \cdots, \eta_{q}\right), \text { for any } \eta \in \Omega(X) \tag{9}
\end{equation*}
$$

9. Lemma 11. if φ belongs in $A^{p, q}(X)$ and $h \in H^{+}(\boldsymbol{I})$, then

$$
\begin{align*}
& \varphi\left(\left(h^{*} \alpha\right)_{t}(s), \eta_{1}, \cdots, \eta_{q}\right) \tag{29}\\
= & \varphi\left(\alpha(h(1-t)+(1-h(1-t)) s), \quad \eta_{1}, \cdots, \eta_{q}\right), t>0,
\end{align*}
$$

where $h_{t} \in H^{+}(\boldsymbol{I})$ is given by

$$
h_{t}(s)=\frac{h(1-t+t s)-h(1-t)}{1-h(1-t)}, t>0 .
$$

Proof. By the definition, we have $h_{t}^{*}(\alpha(h(1-t)+(1-h(1-t)) s))=\left(h^{*} \alpha\right)_{t}(s)$. Hence we have the lemma by (i).

Lemma 12. k maps $A^{p, q}(X)$ into $A^{p-1, a(X) .}$
Proof. By the definition of k, we have by lemma 11,

$$
\begin{aligned}
& \quad\left\langle\left(u_{1} \wedge \cdots \wedge u_{p-1}\right)(\alpha), k \varphi\left(h^{*}(\alpha(s)), h_{1}\left(\eta_{1}\right), \cdots, h_{q}\left(\eta_{q}\right)\right)\right\rangle \\
& \left.=\lim _{\varepsilon \rightarrow 0} \int_{0}^{1}\left\langle\left(P^{*} u_{1} \wedge \cdots \wedge P^{*} u_{p-1}\right)(\alpha, t), \quad i\left(\frac{\partial}{\partial t}\right)\left(\varphi\left(h^{*} \alpha\right)_{t}(s), h_{1}\left(\eta_{1}\right), \cdots, h_{q}\left(\eta_{q}\right)\right)\right)\right\rangle d t \\
& =\lim _{\varepsilon \rightarrow 0} \int_{0}^{1}\left\langle\left(P^{*} u_{1} \wedge \cdots \wedge P^{*} u_{p-1}\right)(\alpha, t),\right. \\
& \\
& \left.\quad i\left(\frac{\partial}{\partial t}\right)\left(\varphi\left(\alpha(h(1-t)+(1-h(1-t)) s), \eta_{1}, \cdots, \eta_{q}\right)\right)\right\rangle d t \\
& =\lim _{\varepsilon \rightarrow 0} \int_{0}^{1}\left\langle\left(P^{*} u_{1} \wedge \cdots \wedge P^{*} u_{p-1}\right)(\alpha, t),\right. \\
& \quad i\left(\frac{\partial}{\partial(1-h(1-t))}\right)\left(\varphi \left(\alpha(h(1-t)+(1-h(1-t)) s), \eta_{1}, \cdots\right.\right. \\
& \left.\left.\left.\quad \cdots, \eta_{q}\right)\right\rangle\right\rangle d(1-h(1-t)) \\
& =\lim _{\varepsilon^{\prime} \rightarrow 0} \int_{\varepsilon^{\prime}}^{1}\left\langle\left(P^{*} u_{1} \wedge \cdots \wedge P^{*} u_{p-1}\right)(\alpha, t), i\left(\frac{\partial}{\partial t}\right)\left(\varphi\left(\alpha_{t}, \eta_{1}, \cdots, \eta_{q}\right)\right)\right\rangle d t \\
& =\left\langle\left\langle u_{1} \wedge \cdots \wedge u_{p-1}\right)(\alpha), k \varphi\left(\alpha, \eta_{1}, \cdots, \eta_{q}\right)\right\rangle,
\end{aligned}
$$

where $\varepsilon^{\prime}=1-h(1-\varepsilon)$. Hence k satisfies (i) if $p \geq 2$. The proof for $p=1$ is done similarly.

To show k satisfies (ii), we set $\gamma=\alpha * \alpha^{-1} * \beta$ and assume

$$
\begin{aligned}
& r(s)=\alpha(4 s), \quad 0 \leqq s \leqq \frac{1}{4}, \quad r(s)=\alpha(2-4 s), \quad \frac{1}{4} \leqq s \leqq \frac{1}{2}, \\
& r(s)=\beta(2 s-1), \quad \frac{1}{2} \leqq s \leqq 1 .
\end{aligned}
$$

Then we get by (i) and (ii),

$$
\begin{align*}
& \varphi\left(\gamma_{t}, \eta_{1}, \cdots, \eta_{q}\right)=\varphi\left(\beta_{2 t}, \eta_{1}, \cdots, \eta_{q}\right), 0 \leqq t \leqq \frac{1}{2}, \tag{30}\\
& \varphi\left(\gamma_{t}, \eta_{1}, \cdots, \eta_{q}\right)=\varphi\left(\beta *\left(\alpha^{-1}\right)_{4 t-2}, \eta_{1}, \cdots, \eta_{q}\right), \frac{1}{2} \leqq t \leqq \frac{3}{4}, \\
& \varphi\left(\gamma_{t}, \eta_{1}, \cdots, \eta_{q}\right)=\varphi\left(\beta *\left(\alpha^{-1}\right)_{4-1 t}, \eta_{1} ; \cdots, \eta_{q}\right), \frac{3}{4} \leqq t \leqq 1 .
\end{align*}
$$

Hence we have

$$
\begin{gathered}
\left\langle\left(u_{1} \wedge \cdots \wedge u_{p-1}\right)(r), \quad k \varphi\left(\gamma, \quad \eta_{1}, \cdots, \eta_{q}\right)\right\rangle \\
=\int_{0}^{1}\left\langle\left(P^{*} u_{1} \wedge \cdots \wedge P^{*} u_{p-1}\right)(r, \quad t), \quad i\left(\frac{\partial}{\partial t}\right)\left(\varphi\left(r_{t}, \eta_{1}, \cdots, \eta_{q}\right)\right)\right\rangle d t \\
\left.=\int_{0}^{\frac{1}{2}}\left\langle P^{*} u_{1} \wedge \cdots \wedge P^{*} u_{p-1}\right)(\gamma, \quad \mathrm{t}), \quad i\left(\frac{\partial}{\partial t}\right)\left(\varphi\left(\beta_{2 t}, \quad \eta_{1}, \cdots, \eta_{q}\right)\right)\right\rangle d t+
\end{gathered}
$$

$$
\begin{aligned}
& +\int_{\frac{1}{2}}^{\frac{3}{4}}\left\langle\left(P^{*} u_{1} \wedge \cdots \wedge P^{*} u_{p-1}\right)(\gamma, t), \quad i\left(\frac{\partial}{\partial t}\right)\left(\varphi\left(\beta *\left(\alpha^{-1}\right)_{4 t-2}, \eta_{1}, \cdots, \eta_{q}\right)\right)\right\rangle d t+ \\
& +\int_{\frac{3}{4}}^{1}\left\langle\left(P^{*} u_{1} \wedge \cdots \wedge P^{*} u_{p-1}\right)(\gamma, t), \quad i\left(\frac{\partial}{\partial t}\right)\left(\varphi\left(\beta *\left(\alpha^{-1}\right)_{4-4 t}, \quad \eta_{1}, \cdots, \eta_{q}\right)\right)\right\rangle d t
\end{aligned}
$$

Then since we have

$$
\begin{aligned}
& \int_{0}^{\frac{1}{2}}\left\langle\left(P^{*} u_{1} \wedge \cdots \wedge P^{*} u_{p-1}\right)(\gamma, t), \quad i\left(\frac{\partial}{\partial t}\right)\left(\varphi\left(\beta_{2 t}, \eta_{1}, \cdots, \eta_{q}\right)\right)\right\rangle d t \\
= & \int_{0}^{\frac{1}{2}}\left\langle\left(P^{*} u_{1} \wedge \cdots \wedge P^{*} u_{p-1}\right)(\gamma, t), i\left(\frac{\partial}{\partial t}\right)\left(\varphi\left(\beta_{t}, \quad \eta_{1}, \cdots, \eta_{q}\right)\right)\right\rangle d t, \\
& \int_{\frac{1}{2}}^{\frac{3}{4}}\left\langle\left(P^{*} u_{1} \wedge \cdots \wedge P^{*} u_{p-1}\right)(\gamma, \quad t), i\left(\frac{\partial}{\partial t}\right)\left(\varphi\left(\beta *\left(\alpha^{-1}\right)_{4 t-2}, \quad \eta_{1}, \cdots, \eta_{q}\right)\right)\right\rangle d t \\
= & \int_{0}^{1}\left\langle\left(P^{*} u_{1} \wedge \cdots \wedge P^{*} u_{p-1}\right)(\gamma, t), i\left(\frac{\partial}{\partial t}\right)\left(\varphi\left(\beta *\left(\alpha^{-1}\right)_{t}, \eta_{1}, \cdots, \eta_{q}\right)\right)\right\rangle d t, \\
& \int_{\frac{3}{4}}^{1}\left\langle\left(P^{*} u_{1} \wedge \cdots \wedge P^{*} u_{p-1}\right)(\gamma, t), i\left(\frac{\partial}{\partial t}\right)\left(\varphi\left(\beta *\left(\alpha \alpha^{-1}\right)_{4-4}, \quad \eta_{1}, \cdots, \eta_{q}\right)\right)\right\rangle d t \\
= & -\int_{0}^{1}\left\langle\left(P^{*} u_{1} \wedge \cdots \wedge P^{*} u_{p-1}\right)(\gamma, \quad t\rangle, i\left(\frac{\partial}{\partial t}\right)\left(\varphi\left(\beta *\left(\alpha^{-1}\right)_{t}, \quad \eta_{1}, \cdots, \eta_{q}\right)\right)\right\rangle d t,
\end{aligned}
$$

we obtain

$$
\begin{aligned}
& \left\langle\left(u_{1} \wedge \cdots \wedge u_{p-1}\right)(\gamma), \quad k \varphi\left(\gamma, \eta_{1}, \cdots, \eta_{q}\right)\right\rangle \\
= & \left\langle\left(u_{1} \wedge \cdots \wedge u_{p-1}\right)(\gamma), \quad k \varphi\left(\beta, \eta_{1}, \cdots, \eta_{q}\right)\right\rangle .
\end{aligned}
$$

This shows k satisfies (ii) for $p \geq 2$. The proof for $p=1$ is done similarly.
Corollary. If $\varphi \in A^{p, q}(X)$ is d_{1}-closed, then we can write

$$
\begin{equation*}
\varphi=d \psi, \quad \psi \in A^{p 1, a}(X), \quad p \geqq 1 \tag{31}
\end{equation*}
$$

10. We can define the homomorphism $\delta: A^{p, a}(X) \rightarrow A^{p, a+1}(X)$ by

$$
\begin{align*}
& (\delta f)\left(\alpha, \eta_{1}, \cdots, \eta_{q+1}\right) \tag{15}\\
= & f^{\eta_{1}\left(\alpha, \eta_{2}, \cdots, \eta_{q+1}\right)+\sum_{i=1}^{p}(-1)^{i} f\left(\alpha, \eta_{1}, \cdots, \eta_{i} * \eta_{i+1}, \eta_{p+1}\right)+} \\
& +(-1)^{p+1} f\left(\alpha, \eta_{1}, \cdots, \eta_{p}\right), p \geqq 1 \\
& (\delta f)(\alpha, \eta)=f^{\eta_{1}(\alpha)-f(\alpha)}
\end{align*}
$$

where $f^{\eta}\left(\alpha, \eta_{1}, \cdots, \eta_{q}\right)=f\left(\alpha * \eta, \eta_{1}, \cdots, \eta_{q}\right)$. Then we can define the cohomology groups $H_{E}^{p, a}(X, F)$ by

$$
\begin{aligned}
& H_{E}^{a, p}(X, \quad F)=k e r . \quad\left[\delta: A^{p, a}(X) \rightarrow A^{p, a+1}(X) / \delta A^{p, q-1}(X)\right], q \geq 1 \\
& H_{E}^{0, p}(X, \quad F)=k e r . \quad\left[\delta: A^{p, 0}(X) \rightarrow A^{p, 1}(X)\right] .
\end{aligned}
$$

Here $\boldsymbol{F}=\boldsymbol{R}$ if real valued forms are considered and $\boldsymbol{F}=\boldsymbol{C}$ if complex valued forms are considered.

Lemma 13. Denoting typical fibre of $T^{*}(E(X))$ by \mathscr{T}^{*}, we have

$$
\begin{equation*}
\left.A^{p}, q(X)=E^{q}\left(X, \quad A^{p}, \mathscr{T}^{*}\right)\right) \tag{32}
\end{equation*}
$$

Proof. Since $T^{*}(E(X))$ is trivial, a cross -section of $A^{p} T^{*}(E(X))$ is a (smooth or continuous) function on $E(X) \times \Omega(X) \times \cdots \times \Omega(X)$ with values in $A^{p}\left(* \mathscr{S}^{-}\right)$. Hence we have the lemma by the definitions of $\left.A^{p, a(} X\right)$ and $E^{q}\left(X, A^{p}\left(\mathscr{T}^{*}\right)\right)$.

Corollary. For each $p \geqq 0, q \geqq 0$, we have

$$
\begin{equation*}
H_{E}^{q, p}(X, \quad F)=H_{E}{ }^{q}\left(X, \quad \Lambda^{p}\left(\mathscr{G}^{*}\right)\right) . \tag{33}
\end{equation*}
$$

By this corollary, theorem 1 and theorem 3, we obtain
Theorem $3^{\prime \prime}$. For each $p \geq 0$, we get

$$
\begin{aligned}
& \left.H_{E}^{0, p(X,} \quad F\right\} \simeq C^{p}(X), \\
& H_{E}^{q, p}(X, \quad F)=0, \quad q \geqq 1 .
\end{aligned}
$$

Note 1. Since $\Lambda^{0}\left(\mathscr{T}^{*}\right)=\boldsymbol{F}$, we have for all q

$$
\begin{equation*}
H_{E}{ }^{q, 0}(X, \quad F)=H_{E}^{q}(X, F) . \tag{33}
\end{equation*}
$$

Note 2. In theorem $3^{\prime \prime}$, we may consider each $A^{p, a}(X)$ is consisted by smooth forms by theorem 3^{\prime}.
§5. Pexiod of higher order forms.
11. Let φ be a closed p-form on X, then $\pi^{*}(\varphi)$ belongs in $A^{p, 0}(X)$ and we have

$$
\pi^{*}(\varphi)=d_{1}\left(k \pi^{*}(\varphi)\right)
$$

By lemma $12, k \pi^{*}(\varphi)$ belongs in $A^{p-1,0}(X)$. Then by lemma 6^{\prime}, if $\delta k \pi^{*}(\varphi)=0$, that is $k \pi^{*}(\varphi)$ is invariant under the operation of $\Omega(X), k \pi^{*}(\varphi)$ comes from $C^{p-1}(X)$. Therefore φ is exact on X. But since we know

$$
\begin{equation*}
d_{1}\left(\psi^{\eta}\right)=\left(d_{1} \psi\right)^{\eta}, \quad \eta \in \Omega(X), \tag{35}
\end{equation*}
$$

for any differential form on $E(X) \times \Omega(X) \times \cdots \times \Omega(X)$, we get

$$
\begin{equation*}
d_{1}\left(\delta k \pi^{*}(\varphi)\right)=\delta\left(d_{1} k \pi^{*}(\varphi)\right)=0 . \tag{36}
\end{equation*}
$$

In general, by (35), we get

$$
\begin{equation*}
d_{1}(\delta \phi)=\delta\left(d_{1} \phi\right) . \tag{35}
\end{equation*}
$$

Hence setting

$$
\varphi_{0}=\pi^{*}(\varphi), \varphi_{1}=k \varphi_{0}, \cdots, \varphi_{2 r}=\delta \varphi_{2 r-1}, \varphi_{2 r+1}=k \varphi_{2 r}, \cdots,
$$

we have

$$
\begin{align*}
& \varphi_{2 r} \in A^{p-r, r}(X), \quad \varphi_{2 r+1} \in A^{p-r-1, r}(X), \tag{37}\\
& d_{1} \varphi_{2 r}=0, \quad \delta \varphi_{2_{r}}=0, \tag{36}
\end{align*}
$$

because $d_{1} \varphi_{2 r}=d_{1} \delta \delta \delta \varphi_{2 r-2}$.
By (37), $\varphi_{2 p}$ belongs in $A^{0, p(X)}$ and by (36),$d_{1} \varphi_{2 p}$ is equal to 0 . Hence $\varphi_{2 p}(\alpha$, $\left.\eta_{1}, \cdots, \eta_{p}\right)$ is constant in α. Since $A^{0, p}(X)=E^{p}(X, F)$, there is an into isomorphism $\imath: \Omega^{p}(X, F) \rightarrow E^{p}(X, F)$ and $\varphi_{2 p}$ belongs in ι-image. Then since the diagram

is commutative by the definition of δ, denoting $c^{-1}\left(\varphi_{2 p}\right)=\phi_{2 p}$, we obtain by $(36)^{\prime}$

$$
\begin{equation*}
\delta \psi_{2 p}=0 . \tag{38}
\end{equation*}
$$

Hence $\psi_{2 p}$ defines an element $\left\langle\psi_{2_{p}}\right\rangle$ of $H_{Q^{p}}{ }^{p}(X, \boldsymbol{F})$. Moreover, since φ is exact on X implies $\delta k \pi^{*}(\varphi)=0,\left\langle\psi_{2 p}\right\rangle$ is determined by the de Rham class $\langle\varphi\rangle$ of φ. Hence we can define a homomorphism $\chi: H^{p}(X, F) \rightarrow H_{a^{p}}(X, F)$ by

$$
\begin{equation*}
\chi(\langle\varphi\rangle)=\left\langle\psi_{2 p}\right\rangle . \tag{39}
\end{equation*}
$$

Definition. We call $\chi(\langle\varphi\rangle)$ the period of φ.
12. Theorem 4. χ is an isomorphism.

Proof. Let $\left\langle c_{2 p}\right\rangle$ be an element of $H_{a^{p}}{ }^{p}(X, \boldsymbol{F})$ with representation $c_{2 p}$, then since $d_{1}\left(c_{2 p}\right)$ is equal to 0 , we can construct a series $\omega_{2 p-1}, \omega_{2 p-2}, \cdots, \omega_{0}$ by

$$
\begin{aligned}
& \iota\left(c_{2 p}\right)=\delta \omega_{2 p-1}, \cdots, d_{1} \omega_{2 p-2 r+1}=\omega_{2 p-2 r}, \\
& \delta \omega_{2 p-2 r-1}=\omega_{2 p-2 r}, \cdots,
\end{aligned}
$$

because $\delta \omega_{2 p-2 r}=\delta d_{1} \omega_{2 p-2 r+1}=d_{1} \delta \omega_{2 p-2 r+1}=d_{1} \omega_{2 p-2 r}=0$ and by (34) if $\delta \omega_{2 p-2 r}$ is equal to 0 , then $\omega_{2 p-2 r}$ is written as $\delta \omega_{2 p-2 r-1}\left(r<p\right.$, cf. note 2 of $\left.n^{0} 10\right)$. Then
we get

$$
\omega_{2 p-2 r+1} \in A^{r-1, p-r}, \quad \omega_{2 p-2 r} \in A^{r, p-r},
$$

Therefore ω_{0} belongs in $A^{p, 0}$ and since

$$
\begin{equation*}
d_{1} \omega_{0}=0, \quad \delta \omega_{0}=0, \tag{40}
\end{equation*}
$$

ω_{0} is written as $\pi^{*}(\omega)$. Although $\omega_{2 p-2 r-1}$ is not determined uniquely by $\omega_{2 p-2 r}$, if $\delta \omega^{\prime}{ }_{2 p-2 r-1}=\omega_{2 p-2 r}$, then $\omega^{\prime}{ }_{2 p-2 r-1}=\omega_{2 p-2 r-1}+\delta \xi$ by theorem $3^{\prime \prime}$. Hence by (35)', $\omega^{\prime}{ }_{2 p-2 r-3}$ is taken as $\omega_{2 p-2 r-3}+d_{1} \xi$. Therefore the de Rham class of ω is determined uniquely by the cohomology class of $c_{2 p}$. Moreover, by the definitions of χ and ω, we get

$$
\chi(\langle\omega\rangle)=\left\langle c_{2 p}\right\rangle .
$$

Hence χ is onto. Moreover, since we can take $\omega_{2 p-1}$ to satisfy $d_{1 \omega_{2 p-1}}=0$ if $\left\langle c_{2 p}\right\rangle$ $=0$, the correspondence $\widetilde{\omega}\left(\left\langle c_{2 p}\right\rangle\right)=\langle\omega\rangle$ defines a homomorphism $\widetilde{\omega}: H g^{p}(X, F) \rightarrow$ $H^{p}(X, F), p \geq 1$. Then by the definitions χ and $\widetilde{\omega}$, we obtain

$$
\widetilde{\omega} \chi(\langle\varphi\rangle)=\langle\varphi\rangle, \quad \widetilde{\omega}\left(\left\langle c_{2 p}\right\rangle\right)=\left\langle c_{2_{p}}\right\rangle .
$$

Therefore χ and $\widetilde{\omega}$ are both isomorphisms and we have the theorem.
Corollary 1. If X is a paracompact arcwise connected smooth manifold, then

$$
\begin{equation*}
H^{p}(X, F) \simeq H_{a^{p}}(X, F) \tag{41}
\end{equation*}
$$

for all $p \geqq 0$.
Proof. If $p=0$, then we obtain the corollary by (17)ii. For $p \geqq 1$, the corollary follows from theorem 4.

Corollary 2. If fis a homomorphism from $[\Omega(X)]$ to \boldsymbol{F}, then f is induced from a homomorphism from $\pi_{1}(X)$ to F if X is a paracompact arcwise connected smooth manifold.

Proof. Since we know

$$
H^{1}(X, \boldsymbol{F})=\operatorname{Hom} .\left(\pi_{1}(X), \boldsymbol{F}\right),
$$

we get the corollary by (17) iii and the above corollary 1.
Note 1. Since $\Omega_{2, k, 0}(X)$ is different from $\Omega(X), H_{\Omega_{2}, k, 0^{p}}(X, F)$, the cohomology group constructed by $\Omega^{p_{2, k},}{ }_{0}(X, F)$, may be different from usual $H_{g^{p}(X, F)}$. But since $\Omega_{2, k}, 0(X)$ and $E_{2, k, 0}(X)$ are dense subsets of $\Omega(X)$ and $E(X)$ and denoting $i^{*}: \Omega^{p}(X, F) \rightarrow \Omega^{p}, k, 0(X, F)$ the map induced from the inclusion, we obtain

Lemma 14. There is a homomorphism $i^{\#}: H^{p}(X, F) \rightarrow H_{\Omega_{2}, k},{ }^{p}(X, F)$ for all p.

Then since χ is defined as the map from $H^{p}(X, F)$ to $H_{\Omega} p(X, F)$, we obtain the following commutative diagram by the definition of i_{\sharp}.

Therefore χ is also an (into) isomorphism in this case.
Note 2. Since we know

$$
\left.H_{\Omega^{p}(X,}, \boldsymbol{F}\right) \simeq H_{g_{\#}^{1}}\left(X, \quad \Omega^{p-1}(X, \quad \boldsymbol{F})\right), \quad p \geqq 1
$$

by theorem 2, we have

$$
\begin{equation*}
H^{p}(X, \quad \boldsymbol{F}) \simeq H_{\Omega \sharp^{1}}\left(X, \quad \Omega^{p-1}(X, \quad F)\right), \quad p \geqq 1 \tag{42}
\end{equation*}
$$

if X is a compact arcwise connected smooth manifold. We note that a representation f of an element $\langle f\rangle$ of $H_{\Omega \#^{1}}\left(X, \Omega^{p-1}(X, F)\right)$ satisfies

$$
f\left(\eta_{1} * \eta_{2}\right)=f\left(\eta_{1}\right) * \eta_{2}+f\left(\eta_{2}\right),
$$

and the class of f is equal to 0 if f is written as

$$
f(\eta)=g-g^{\#} \eta,
$$

where g is an element of $\Omega_{\psi^{p-1}}(X, F)$.

References

[1]. Eels, J. Jr. : A setting for global analysis, Bull. Amer. Math. Soc., 72 (1966), 751807.
[2]. Halmos, P. R. : Measure theory, Princeton, 1950.
[3]. Hochschild, G. : On the cohomology groups of an associative algebra, Ann. of Math., 46 (1945,) 58-67.
[4]. Igusa, J. : On Picard varieties attached to algebraic varieties, Amer. Jour. Math., 74 (1952), 1-22.
[5]. Lang, S. : Introduction to differential manifolds, New York, 1962.
[6]. Nickerson, H. K. -Spencer, D. C. -Steenrod, N. E. : Advanced calculus, Princeton, 1959.
[7]. Serre, J. P. : Homologie singulière des espaces fibrès, Ann. of Math., 54 (1951), 425505.
[8]. Sobolev, S. L. : Applications of functional analysis in mathematical physics, (English transl.) Providence, 1964.
[9]. Steenrod, N. E. : The topology of fibre bundlds, Princeton, 1951.
[10]. Weil, A. : Sur les theorèmes de de Rham, Comm. Math. Helv., 26 (1952), 119-145.

