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Introduction.

It is known that if ¢ is a closed I-form on a smooth (connected) manifold X,
then the period of ¢, that is the value of ¢ on 7, a closed path on X, defines a
homomorphism from #;(X) into F' (F=R or C either ¢ is real valued or complex

valued) and denoting

1<) = o,

where {¢> is the de Rham class of ¢ and <{r) is the homotopy class of y, y is the
isomorphism from HyX, F) onto Hom.(n; (X), F). Thisis, for example, the
base of the theory of Picard varieties ((4]). The purpose of this paper is to gen-
eralize this relation for higher degree forms.

Roughly speaking, this generalization is done as follows : Denoting E(X) the
path space over X (for the convenience, we assume that the end point of a path
is the base point), then E(X) is a contractible smooth Banach manifold ([17, [5],
[7]). Hence denoting = the projection from E(X) onto X, #* (p) is written as dg,
on E(X) if ¢ is closed. Then the period of ¢, with respect to £(X), thatis ¢i(ay)
— @i{a) is not equal to O in general, but dlp(asy) — gia) is equal to 0 because
a*(p) is invariant under the operation of £(X). Hence we may set

prlasn) — o) = dofa, 7)

on E(X). Moreover, if the value of ¢ ((sy)xl) is equal to ¢, (ax{x+{)), then
dlpslarns, 72) — pala, perne) + paler, 7)) = 0.

Repeating this, we can construct (p—#)—form o, (@, 7, -, 7,_1) for r¥<p and we

get

p—1
Z(‘U@p(% Dis ty RiFNivt, oty Np)F

1=

d(@p(a*m: Nay *tey 771))“{
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F(—=1Peul, ny, =+, 9p1)) = 0.

» 1 .
Therefore 901’(“*771’ D1y 27 77,9)—}_21':1(_1)!9011(“) Ny =ty NNty 0y 77;)'!_ (_1)1)(/71)(“7 iV

7,5-1) should be constant in « and setting .

Con1, ++r 7p)
p—1
:(/71,(6\{*7]1, N2y oty 7}#) +Z(~1)’(/)1,(!l’, N1 Wik ity s 77p)+

1=

+(‘1)p901)<a” vly Tty 771)—1)7

¢, -+, np) must be the period of ¢. We remark that this construction is similar
the construction of double cochain in harmonic integrals ([101).

Of course, this discussion needs several justifications. For example, since the
multiplication of £(X) is not associative, we cannot expect @((ws7)+() = @ (ax(n*L)
in general. But since the quotient space [{XX)]=(X)/H*(I), where H*'(I) is the
group of orientation preserving homeomorphisms of I=1[0, 1] and k e H*(I)
operates f(X) by h¥e)(s)=a{h(s)), has associative multiplication, the above discus-
sion may be done if we can construct each ¢; to be the formson [F(X)]x[2(X)]
X X [AX)), where [E(X)]= E(X)/H*(I). The possibility of this construction is
proved in §4. Then the period of ¢ is defined to be an element of p-th algebraic
cohomology group of [£XX)] with coefficient in F (§5). Here the p-th algebraic

cohomology group of [(X)] is defined as follows: Set CH[ X)), F) the group

s
of all (continuous) maps from [(X)]x .- x[#(X)] into F, the coboundary homo-

morphism §: C?[(AX)], F)—~>Cr*{[QX)], F) is given by

@c X[l =+ [mpeid)
?
= Cp( [7]2]’ Tty [7]11+1]) -+ Z("‘ l)ic,b([yil:ly ) [771'*771'+1:|, Tty [W+1])+

i=

+ (0P Dy s Dnpl),

where [7] means the class of 7 in [(X)], then B[ Q(X)], F)/Z{[AX)), F) is
the p-th algebraic cohomology group He?(X, F) with coefficient in F. (In this
paper, we denote £7(X, F) instead of C/[(X)], F), §2). Then our main theorem
(§5, Theorem 4) assert that the above construction of period ¥(p) of ¢ give the
isomorphism from H? (X, F) onto He?(X, F) for p> 1. Since we get Ho (X,
F)=F if X is connected (§2, Theorem 1), we have

1 HYX, F)~ Ho'(X, F)

for all p if X is a (connected) smooth manifold. We note that for arbitrary



Algebraic Cohomology of Loop Spaées 3

(topological) abelian group &, we can define H?o(X, &) by the same method for
arbitrary topological space X. Then since H?(X, &) can be defined for any topo-
logical space X, the similar isomorphism may be expected for any X and &. But
the authour has no proof (or counterexample) for this problem.

The outline of this paper is as follows: In §1, we treat the properties of
[E(X)] and [(X)]. Then we define Ho?(X, &) in §2. In §2, we also define the
group Hy?(X, F) as the cohomology group with cochain the (continuous) function
Fi[EX) XXX x[(X)]>F and the coboundary homomorphism ¢ is given
by

@ Lad, [omds - [7par])
:f([a*r/l:h [77‘2]7 Tty [771"1‘1:')41‘-

b
+;‘(—1)‘f([w], [0 = [9eniand, <0 Dopai D
H(=02 el Dpdy oo Dnpd)

In §3, we prove Hp?(X, F)=0, p>1 under the assumption of X is a (topological)
manifold (Theorem 3). It seems that this may be true for arbitrary X, but the
authour has no proof (or counterexample) for this problem. The vanishing of
Hg#X, F) is used in the proof of theorem 4. §4 is devoted to the study of a
class of differential forms on E(X), which includes the =*-images of the differ-
ential forms on X. Then in §5, we define the period of higher order forms on
X and prove the main theorem (Theorem 4).

We note that in §4 and §5, we use Ey, 4, X) (k >dim. X/2) instead of E(X),
where E,, 5, o X) is given by

Ey, 4, X)={ala: I->X, « helongs in k-th Sobolev space and

a(s)=x, if s>1—¢ for some c}.

§ 1. The spaces [E(X)] and [2(X)].

1. Let X be a (connected) topological space with base point %, then we denote
by £(X) and E(X) the loop space and path space over X {[7]). For the con-
venience, in E(X), we assume «(l) = x,, where a: I>X, I is the closed interval
[0, 1], is an element of E(X). The projection from E(X) onto X defined by
E(X)sa>»d{0)e X is denoted by =. The multiplication of paths « and g is denoted
by axp if it is possible. If 0 <{¢ < 1, then we set ¢

a,(s) = a(l —t +1s), a s EX),

«, is also an element of E(X) and a;=a, ay=e, where ¢ is given by e(s)= x,,
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0<s< 1.

We denote H*(I) the group of orientation preserving homeomorphisms of I.
Then we set

RH)(s) = alk(s)), he HYI), ac E(X).

Since n*@) belongs in E(X) and if pe 2(X), then A*(s) also belongs in 2(X),
H*(I) operates Q(X) and E(X).

Lemma 1. If axf is possible, then (h* (a))x(he™* (B)) is also possible and there is
an he H*(I) such that

(1) W(exB) = (b @)(he ().
Proof. Since A1) = (1) = a(l) = H0) = Fhl0) = h*(BYO) (he"@)x(hz(B) is

possible. Then we have (1) if we set

1 1 1
h(s) = Ehl(Zs), Ogsg_‘é“, h(s) :E(h2(2s—1)—|— 1), __gsgl.

L
2

Note. Similarly, if we set
1, 1
hl(s)=5h Y2h(s)), 0§S§So=h'1(~2~),

hl(s>:—§<h—l<2h<s> DD s<s<1,

we obtain
ay () = he (@),

Lemma 2. The quotient space XX)/H*I) is a semi-group by the multiplication
induced from $XX) and it operates associatively on E(X)/H*(I).

Proof. By (1) and (1), the muitiplication in £(X) induces a multiplication of
QAX)/H*I) and it operates on E(X)/H*(I).

If (axB)*y is possible, then ax(8+y) is also possible and to define ke H*(I) hy

1
B =25, O<s<r, s)=ds, —<s<o,
4 4 2
e s
sy =+, Les<n,
2 2 2
we have

(s )eg) = ().
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This proves the associativity.

Definition. We denote the quotient spaces E(X)/H*(I)and A X)/H'(I) by [E(X)]
and [SXX)). The classes of ac E(X)and pe XX) mod. H*(I) are denoled by [«]
and [y). The multiplications in [ E(X)] and [XX)] are also denoted by * .

Note. 2*() is homotopic to «. Hence there is a homomorphism p from [£2(X)]
onto m(X) and a continuous map p from [E(X)] onto X, where X is the universal
covering space of X.

Proof. By the theorem of Radon -Nikodym ([27]), there is a positive measur-
able function #(s) on I such that

h(s) = S;m(u)du, 0<s<1.
Then to define &,(s) (0=t <{1) by

B 1
hs) = (mlu)yau /| (miw)d,
each %, belongs in H*(I) and we get hy=h, hys)=s for all s (0=<s<1) and As)
is continuous in ¢ and s. Hence A*«) is homotopic to «.
2. Definition. In E(X), we set

2) EfX)={a|afs)#x,, s7#=1}9{e].

By definition, we have
Lemma 3. E(X) has following properties.
(). EyX) is contractible by the contraction E(X)x I>=(a, t)>a, s EfX).
(i), EfX)nfAX)=e.
(iii). If a€ E(X) and o' =a mod. H*(I), then o' € E(X).
By lemma 3, (iii), we can define the quotient space of EyX) by H*(I). 1t is
also denoted by [E{X)].
Lemma 4. If X satisfies
(*). For any xc X, there exists a neighbourhood U(x) of X such that for any y&
Ulx), it is possible to determine uniquely a path
r=7os), 0<s<1, f=x, /0=, r(s)s4xy, 0<s<1, then there is a homeo-
mor phism ¢y 3 Ulx)—> Ey(X) such that
(3) M) =3 v € U),

if &~ x,.
Note. If X is a topological manifold with manifold structure {(U, hy)}, hy
is the homeomorphism from U onto R”, x & U, then taking
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1(8) = hy™shy(x) + (1 — Hhg(y)),

X satisfies (¥). Moreover, if X is a smooth manifold, then E(X) is a smooth

Banach manifold (1], [5]), and we can take ¢ to be a diffeomorphism by

U(x)
taking y to be the geodesic.
By (3), the induced map [‘U(x)] : Ulx)»[EfX)] is also a homeomorphism. In

fact, we have the following commutative diagram.

B(X) > [E{X)]

-

. /,v/ . 0
o T
7 the identity ™«
Ux) — 5 Ulx),

where v is the natural map and p is the induced map from p. If X is smooth,
then we can take o and DU(x)] both to be diffeomorphisms.

Definition. In (X), we set
(2) Q(X) = [plofs) # %0, 5 #0, 139{e},

and denote [ £2y(X )] the quotient space Q(X)/H*(I).
For any a € E(X), we set

2k—1
a Y xg) = ,Ul Lsiy Sindy 081 <o s =1,
iz

st #32]’-)»1’ ]: 11 tty k - 1)
and define ay & E(X), 71, -, 1 € AX) and 71,0, -+ a1, 0 € 2(X) by

ays) = a(s,8), §1#0,
7i8) = a(Sgj_1 + (S2j41 — Sz;_1)S),

i ofS) = a(Sgj + (Sajer — S;)8)y F=1, -+, b — 1.

Then we get

(4) Lar] = Lay ]+ [y o oo [ np1], S15£0,
Lal = [pJoetlmppes], $1=0, [a] =T[a], s =1.
4y (70 = [jr oy Sejo1 = Sy; [pj] = [e)xln 0], Se2jo1 7 Soje

Therefore [ E(X)] is generated by [EyX)] and [92(X)] and we have

®) LE(X)T = LE(X)TV(LES(X) T+ AX)DULAX)].
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For the convenience, we introduce the notation ¢ such that
pila] = [a]+g = [a],
then (5) is rewritten
() - [EX)IV{#Y = [(B(X) eI (AX)T{e).

3. Lemma 5. Let f be a continuous map from E(X) to Y (resp from QX) to Y)
such that

(6) SR @) = flo), h e H'(I),
then
{7) Sorexp) = flaxp),

where Y is a topological space and either a or B may be equal to ¢.
Proof. Shince the method is similar, we assume a % ¢, § ¢. Then by (6),
we can take

1 1
 avenf)s) = m, 1= 5 <,

1.

£}
]
=
=
i
=
S
w

|
=

2o | =

A
w
N

Then by (6), we have
SihHMarexp)) = flavexp). 1<t <2.

On the other hand, by the definition of %, and the continuity of f, we have
lim. flh,*{axexB)) = flaxp).
t

—>2

Therefore we have (7).
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As usual, for ¢ € E(X), we set a ! by a ¥{(s) = a(l — s), then we have
Lemma 6. If a continuous man [ . E(X)—> Y salisfies (6) and

(8) Haxa~txg) = f(B),
then f is wrilten as n*g, g: XY if and only if
9) Sflaxn) = fla), for any n € AX).

Proof. Since =*g satisfies (6), (8) and (9), we only need to prove sufficiency.
If a(0) = f0) =x & X, then a 'x8 =1y is defined and belongs in £(X). Then
by (8) and (9), we obtain

Sa) = flaxy) = flaxa~txp) = f(B).

Therefore the value of f at « is determined only by «0). Hence we get
f=r*g gx)=flo), «0)==x.

This proves the lemma.

§2. The groups HE (X, G) and Hs (X, G).

4. Definition. Lel G be a topological abelian group, then the set of all continuous
»

o P
maps f: E(X) x X)) x -+ x QX)) G which salisfies

(i) Jho™ (@), Ra*(na), oy p*(np)) = Sl 71, o0y ),
hiEH+([)y l:Oy 1, -, B,
@ = E(X)i 7; € ‘Q(X)i ]: 1, © b

(11) f(a*a"*ﬁ, N1y 0 77})) = f(ﬁ) Nyt 7715)!

is denoted by E¥(X, G).
Defnition. Let G be a topological abelian group, then the set of all continuous

o ? _
maps g AX) X - x AX) ~>,G which satisfies

(1), g(hi*(y/l)’ tt h[)*(ylp)) = g(771: ) 771>):
hi = H+(I)’ i= 1, e b, 9; € ‘Q(X): f: 1, < D,

is denoted by Q¥X, G) for p>1. If p =0, then we set
X, G)=4@G.

Note. If X is a smooth manifold, then £(X) and E(X) are also smooth
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(Banach) manifolds ([1], [5]). Hence if G is a Lie group, we can define the smooth
maps f: E(X)xXX)x - xAX)>G and g: AX)x---xYX)>G. Then using smooth
maps, we can define similar sets. They are also denoted by EXX, G) and 24X,
G).

By definition, E*X, @) and /X, G) are modules and setting

(10) [(g)(“, N1y 771’) = g(yflr Tty 771)):

e X, G)—> EXX, G)is an into isomorphism for all p > 0.
Lemma 7. (X)) operates associatively on E*(X, &) by the operation

(11) fﬂ(d, D1y 0% Y/p):f((“f*vr /I 7]1))-

Proof. if he H*(I), then to define K'€H*(I) by

=51,

A

1 1
B(s) = —h(2s), 0<s<-, hi(s)=s,
(s) p (25), 0=<s 5 (s)=s

1

2

we have W)y = h'*(axy). Hence f satisfies (i).
Since we know by lemma 2,

(Ladsla D+ g 7] = LadsLa  JHLB 7)),

f satisfies (ii).
If # = H*(I), then to define A" € H*I) by

W) =5, 0SS 2, W= zs— D+, [=s=1,

we get axh™®(y) = h"*xy). Therefore we have
(12) Jr= e, e HA(I).

On the other hand, since we know

(13) (fr)F = fr¥,

we have the associativity by lemma 2.

By lemma 2, we also obtain

Lemma 8. If fe E®X, G) (resp. g (X, @), then for any i (L=<i<p),
we have

(14) f(ay N1y " Wil (CI*C2)*C3y Nivty "' ﬂ[))
:f(a; N1yt Ni-1y Lax(CanCs), Nivty "% 7]1,),
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(14)y g(7]1, ey il (C1*Cz)*€3, Nivly **% 77p)
= &1, 5 9o, O(Cexls)y Divr, vy 771>)-

5. Definition. We define the homomorphisms §: ENX, G)—> E?*YX, ) and
8 X, G)—> QP (X, G) by
(15) ((Sfxa’ D1y "% 771)+1)
p .
:f”l(a’ Ny 'y 7]1)+1)+21('—1)’f(ﬂf, My 7]:’*7]1'+1’ Tty 77P+1)+
=

‘4_ (ﬁl)lwlf(a! M, 77[))» p; 17
@ N, 1) = fe) — fl),
(15) 0801, =y Mpaa)

1

b
:g(UZ’ Ty 77p+1)+ (_1)ig(7/1’ Sty Wik Diens v 771>+1)+
=1

+(_1)p+1g(7]1) th 7]1)): pglr
(08)ns) = 0.

By definition, we have the following commutative diagram.

o

[
ENX, G) — EM(X, G)
4 5 [4

X, 6) —> 02X, G).

By lemma 7 and lemma 8, we have

Lemma 9. d(0f) and 6(0g) are equal to 0 for any fe EXX, G) and ge 2¥X,
G), p=0. |

By lemma 9, we can define

Definition. For each p >0, we set

(16) Hzn(X, G)
=ker. [3: E®X, G)—> E**(X, GYI/0E*{(X, @), p=>1,
H(X, G =ker. [5: EYX, &)~ EYX, G)].
16y Ho'(X, G)
= ker. [3:0/(X, G)—> (X, GYI/6Qr (X, @), p=1,,
HOX, G) = ker. [6: DX, & —MNX, G))

Theorem 1. We have

(17) HpYX, G)=CX, G),
(17) HX, G)=G,
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(17)iii Ho(X, &)= Hom. ([{XX)], G),

where C(X, &) is the module of continuous (or smooth) maps from X to G.
Proof. (17)i follows from the definition.
Since we have

0g(n, n2) = &(na) — &lprine )+ gln),

we obtain (17)ii because 29X, G)=0.

Since dfle, 7) is equal to 0 if and only if fra)= fla) for all » € QX), we
have (17} by lemma 6.

By theorem 1, we have

HNX, G)~= HYX, G),
pHHNX, G) = H(X, @),

where p* is the homomorphism induced from p.

§3. Calculation of HEP(X, G), p>1.
6. Definition. For an element g of £*(X, G), we define an operation gy of
n e X) by
(18) (g*v)(Ch ttt Cﬁ)
-1
:g(ykaIy R Cp)+ Zl(_l)‘g(yjr Ciy "ty Ci*Ci-tiy ttty CP)“‘I_
+(_1)1)g(7}7 Cly Ty Cp—l)’ pZL

We donote ¥ X, G) if we consider 2#X, G) together with the above ope-
ration of £(X).

Definition. We define the homomorphisms 0y : EYX, 27X, @) E7"Y(X, 24X,
&) and & : QUX, XPX, @) > Q7 X, XX, @) by

(19) ((3#]‘.)(({', Ny "%y 77q+1)

a
:f’ll(a” Koy 'y 77q—0—1) —I—Z(“l)qf(ﬂ, L/ VI 77i*771'+1y Tty 7]q+1)+

i=1
_|_(_~1)11+1f(a,’ Myt Yq §7]q+17 (121,
(@5 S Net, 1) = S™{@) — Sy,
(19) (@81, s g™ 1)

a
- g(7]2y ) 77q+1)+ Zl(—l)lg(??l’ ] ﬁi*vi—yl: Yy 77q+1)+
=
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-+ (_‘1)q+1g(7/1, ttty 7]q)$‘0q+17 42 1’
(0%8)p1) = & — ghys.

We define the homomor phisms j: E4X, Q2(X, G)~>E™#X, G) and j: 29X,
20X, @) > 24X, G) by

(20) (i ety 71, =+, N Mg+1s % 7]q+1))
- f(ar My, 7](1)(‘/}(1—}»1! "ty 7/q+1))!
(ZO)I (]g)(vlr s Ngy Ngats 0y ﬁq+ﬁ):g(7/17 ttty 7]q)(77q+1y e ,77q+p>-

Then we have

(21) 6(]f)<“7 D1y Mgy Ng+ts Nga2 ' Uq+p+1)
= (5#f)(a: iy % Ny Uq+1)(77q+2: *ty 7]q+p+1)y
(21), 5(]g>(7]1: N Ngets Nge2 % 77q+p+1)

:(5#g)(7/1y "ty Ny 7]q+1)(77q+2’ H) 19q+1>+1)'

By (21) and (21)', we obtain

Lemma 10. For any fe< EYX, &(X, @) and ge 99X, 23#X, @), we have
03(03f) = 0 and dy(dsg) = 0.

Corollary. [fX(X)] operates on 242(X, G) as a semigroup, that is, we have

(22) (¥ 12 = g¥nyn),

fos any g Q¥X, G) and n,, 7 € AX).
Proof. By lemma 10, we have

0 = (OH0¥g)n1, 72)
= (0¥2)(n2) — (B¥2)mrne) + (O*&Pne)op)
= g¥yren2) — (g¥n1)t7e.

This shows (22).
By lemma 10, we can define the groups Hp%(X, 24X, G)) and H%YX, Q¥X,
G)) by

(23) Hp'(X, 27X, G)
_ker. [0y EYX, (X, G)—> ETYX, (X, G)]
ETYX, 20X, @) !
Hp(X, 24X, G))
= ker. [6% . E%X, (X, G)—~>EVX, (X, G)],
23y Ho'(X, 27X, &)

7=1,
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_ ker. [0 09X, (X, @) —>QTX, 24X, G))]
B pIHX, (X, @)

H.(J#O(X) ‘QP(Xr G))
= kor. [: @(X, 9p(X,, €)X, OP(X, G)

, 2= 1,

Then by (21) and (21)', we have
Theorem 2 ((87). If q>1, we get for all p >0,

(24) Hpg(X, QMX, G) = Hy" (X, G),
(24)' Ho'(X, OKX, G) > Hs"¥X, G).

7. Since Hp#(X, &) Hg(X, @¢°YX, G)) if p>1 by theorem 2, to calculate
Hy#(X, &), it is sufficient to calculate Hp(X, 94X, @), ¢=>=0. If fe EY(X,
24X, @) satisfies dgf = 0, then we have

Saxe, p) = fla exn) — fla, ey
= (0ge, 1),

where gla) = gla, e) and glaxy) = fla, exn) if we fix ae E(X). Then since we
know flaxe, 7) = fla, 5) by lemma 5, for a fixed @ € E(X), we get

(25) Aa, ) = (08, 7), where glaw) = fla, exy).

Although g is defined only on a+f2(X) in general, if X satisfies the condition
(*) of lemma 4, then by the condition (ii) of n°4 and (5), we can define g= gy to
be continuous (or smooth) on ¢ {(U{x)+2(X), where U(x) is a neighborhood of x =X
(in X) and x = «(0). Then since we know by (ii} of n°4 that the value of f is
determined by the value on UwaU(x)(U(x))*.Q(X), we may assume that for a
suitable covering {U} of E(X) such that

U« X)c U, HU, Z)= HXXX), Z), p=>0,
we obtain {gy}, guv € EYU, (X, G)) such that
degy = fIU.

Then since dglgy — gy) is equal to 0 on UNV, {hyy}, byv=gy— gy on UNV
defines a 1-codycle with coefficients in <z E (4"(X, G)) on E(X). Here <& EY$y*
(X, G)) means the sheaf of germs of the continuous (or smooth) maps from E(X)
to ker. 0z in E%X, 24*(X, &). Then since we know

(26) H(E(X), &7 EXO(X, G))
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~ fthe set of equivalence classes of topological (or differentiable)
ker. [0y : (X, G)—> Q*YX, G)]-bundle over E(X)3},

we obtain
(26) HYE(X), <5 E((X, G) =0,

for any p, because E(X) is contractible.
By (26), there exists a refinement {U'} of {U7} and {hy}, hy: 1 U > 22X,
G), Oghy =0 such that

27y hyy | U'OV! = hyr — hy.
Then to define g € EYX, 24X, @) by glU' = gy|U" — hys, we get

(27) f=dsg

Hence we have
Theorem 3. HpXX, @) vanishes for p>1 if X salisfies the condition () of
lemma 4. Especially, if X is a topological manifold, then HglX, G) vanishes for

p=1
Note. Since E(X) is not C~-smooth ([1]), kys of {27) is not smooth although

hyy is smooth. But setting

E;, (X) = {a|a: I>X and « belongs in k-th Sobolev space over I,

(1) = %o, }

we know that Es, fX) is C=-smooth ([1]) and £, {X) is contained in FE(X) if
k>dim. X/2 (8). Then we set

g, [ X) = AX) N By, f(X).

Although £, (X) does not operates on Ej, j(X), setting

Ey, 1 ol X) = {alac E,, (X), afs) = x, if 5> 1-¢ for some ¢},
‘QZ! ky O(X) = ‘Q27 k(X) n E27 ky O(X),

0y, 1, o X) operates on Ey, 4, o X). Moreover, denoting H**I) the group of orien-
tation preserving Ckt-diffeomorphisms of I, H+*1I) operates on Ej, ;, o(X) and we
obtain same results as in §1 and §2 for FE ., X) and £, (X) except lemma
6. But lemma 6 is also true because if «0) = p(0), then there exists g, such that
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lim., B,=pin Es, X), a8, belongs in E, ,, X) for all n.

n-—»co
Then since Ey, 4, o X)is a C~-smooth (Fréchet) manifold and contractible, we can
take each hys of (27) to be smooth if each Zyy. is smooth (17, [9]). Hence in
(27), we can take g to be smooth if f is smooth. Therefore we obtain

Theorem 8'. If X is smooth and fEE?,,,, (X, G) is a smooth map and 5f = 0,

then there exists a smooth map ge Et~Yy . X, G) such that f=90dg if ¢q=>1
and G is a Lie group. Here E?,, ., (X) means the set of continuous maps from

. b
Eoy i o X) X8y 1y o X)X oo X 89, 5, ol X) into G which satisfies the condition (i), (ii) of
n® 4 where H'(I) is changed by H+V *(I).

§4. The module A» 9(X).

8. ‘In the rest, we assume X to be a paracompact arcwise connected smooth
manifold. For the simplicity, we denote E(X), X) E#X, &), 2¢X, G), [E(X)],
[(X)] and H*(I) instead of [Ey 4, o(X)], [&, 5 ol X)), Ef2 4 ol X, @), 2,4 X, G),
TEs 4 o X)), [82, 4, ol X)) and H+XI). Here 2%, ,, (X, G) is defined similarly as
E?y 1 X, &), [Es 1, oX)] and [y, ,, X)] are the quotient spaces of Eg,,, o X)
and 9y, 4, o X) mod. H+:-XI).

Since E(X) is a smooth (Fréchet) manifold, we denote the group of (real or
complex valued) p-forms on E(X) by C/E(X)). Denoting the cotangent bundle of
E(X) by THE(X)), we know that CHE(X)) = I'(E(X), AXTHE(X)). Since E(X) is
contractible, we can define a homomorphism % : C?(E(X)) - C?~{E(X)) by

1,0
= j(—) (F* =
(28) ko = P.J i(s) (gt p=1,
WA A /TSR -17.)"

1
0

d
= P PR A A PRy, GRSty 921,
where #; means a vector field on E(X), F: E(X)xI— E(X) is the contraction of

E(X) given by Fla, t)=a, and P: E(X)xI— E(X) is the projection ([6]). Then
we know that

(dk + kd)p = ¢, P> 1.

We denote the induced bundle from A?THE(X)) on E(X) x 2(X) x - x 2(X)
also byA?TH(E(X)). Then a cross -section of A2THE(X)) on E(X)x (X)X - x X)
is a p-form on E(X) XX)x--xX) and denoting d; the exterior differentiation

in E(X) -direction, we get

d(T(EX)x AX) % - x AX), APTHE(X))
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Cl(E(X) x (X) x - x AX), ATHE(X)).

Moreover, we can define 2 for the elements of
IE(X) x X)) xx X), AATHE(X))) because we know

v, o>=0, o € I'E(X) x AX) x+x AX), LTHEX)),
if v ¢ DE(X) x AX) X x AX), ATEX)),

where T(E(X)) is the tangent bundle of E(X), and we have

KI(E(X) x X) xx AX), ATHE(X))
CI(E(X) % AX) %% AX), A-THE(X)),
(dik + kdy)p = ¢, p=1.

a

Definition. The set of all ¢ such that ¢ belongs in ['(E(X) x QX) x X 2X),
APTHE(X)) and satisfiet the following conditions (i) and (ii) is denoted by A#¢X).

(i) p(ho™(a), A UT RN hq*(ﬂq» = la, n1, oy 7/(1)»
thH+(I), O§Z§Q7 C(EE(X), WJE‘Q(X)’ 1§]§q1
(ii) (ra™txB, g1, o, ng) = (B, 71, v, 1y if a”txpE E(X),

By definition, A#»9X) is a module, and denoting = : E(X)x (X)X - x (X)~>
XxX)x - x(X) the projection induced by = : E(X)> x, ¥ [(X X 2X) x - X
AX), ATHX)) is contained in A2 4(X). Here THX) is the cotangent bundle of
X and A*T*X) is the induced bundle from A*T*X) on X x X) x--+x AX).

Lemma 6. p=A» 9 X) belongs inz*-image if and only if

(9)I go(a:”]! T 5 7](1) = (P(“) L/ TR 7]q), for any 5 € .Q(X),

9. Lemma 11. if ¢ belongs in A»4(X) and h & HH(I), then

(29) ?((h*a)z(s)’ Ny oy 77q)
= pla(b(l — 1) + (1 — KL —1)s), 75, =, 74)s £>0,

where h, € H*(I) is given by

B — t + ts) — h(1 — &)

S == 50 =

, t>0.

Proof. By the definition, we have A,Ma(h(l — 1)+ (1 — A(1 — £)s)) = (h*a),(s).
Hence we have the lemma by (i).

Lemma 12. & maps Aro(X) into Ar=La(X).

Proof. By the definition of %, we have by lemma 11,
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Lty Ao\ vy @), Rgp(R¥(s)), haln), =y Deglng)))

1 a

=lim.S (P¥uy NN Pruy_y)a, 1), i(b;)(sﬂ(h*a)t(s), ha(ns)y v, Ry(p)DdE
e—>0°"

= lim. S’

im.\ ((PPus Ao/ Prtp- i, 1)
E—»o0 v*

9
iz elalh(L — 1) + (L= h(1 = B)s), 71, -y 70))dt
=[lim. Sl<(P*u1 VANRELIVAN P*up-l)(a’ t)r
e—»o”*
i(ﬁ—t—»)(q)(a(h(l ~ £+ (L~ k(1 —~ 1)3), s, -+

) > d(l — h(l — 1))

1
0
:l,lm's I<(P*u1 VASLEEIVAN P*up—l)(a'r t)y 1(5;)(So(at, Ny %y 7]q))>dt
g—rovE
= <(ul VANKILIVAN up—l)(a)r k‘P(“; N1y ***y 7}q)>r

where ¢ =1 — k(1 —¢). Hence k satisfies (i) if p>>2. The proof for p =1 is done
similarly.

To show k satisfies (ii), we set y = axa™ 1% and assume

Hs) = alds), 0=s= % 7s) = af2 — 4s), %gss}

o) = ples — 1), _= s =L
Then we get by (i) and (ii),
1
(30) 90(7’:, Ny % 77q) = QD(.BZH L/ VR 77q)) Oétégv
. 1 3
ﬁﬁ(?’n Ty %y 7]q) = 90(5*(“ )4!,‘—2; N1y 77q)1 Eé t éz;
» 3
SD(TM N1y 'Y 7711) = (P(ﬂ*(a’ )4—}” My 77q)7 Zét =<lI.

Hence we have

<<M1 VANRIVAN up—l)(r)’ ng(T’ Dty 7/q)>

9

RTINS A R TR At

1
2

]
= <P AR 0, i e 1 s

o
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+}

+Sa<(P*%1/\"'/\P*up—1>(Tr B, i

s

LPHug/N- APty )y, 1), i(a)(‘ﬁ(ﬁ*(“—l)g-z, 71y 77q>>>dt +

[l S

b}
a—t)(éﬁ(ﬂ*(“'l)4—4n N1, v0ny RdE.

Then since we have

1
2

d
S APS N APy o)y, 1), i(g;)(so(ﬁz,, Ny vy N)vdt

0
1

p) ‘
<(P*M1/\"'/\P*I/£1,_1)(7’, t): l(gi)(@(ﬂh 0, oty 7]{1))>dt,

: - »
S1<(P*“1/\'“/\P*up—1)(7‘: £ i(ait)(ﬂo(ﬁ*(a_l)u—m L/2T AR 7/q))>dt

2
1

0
<(P*u1/\'--/\P*Mp—1)(T, t)! l(

0

&)(@(ﬁ*(aﬂ)tr Ny =ty 7/q))>dt,
0

<(P*u1/\---/\P*up—1)(7‘, t)! 1(&

3
4

NPBHa s 71, o, a)oelt

1
== P AP, 1),

0

)
ait)(@(ﬁ*(aq)u [/ TR 77q))>dts

we obtain

<(u1 VANRVAN u#—l)(r): kﬁﬁ(T, /AT ‘7/q)>
= (s ANty )p)y Rp(B, ey 9.

This shows k satisfies (ii) for p > 2. The proof for p =1 is done similarly.
Corollary. If ¢ € A»9(X) is di-closed, then we can write

(31) p=d¢, ¢ AaX), p=1.
10. We can define the homomorphism § : A% (X )—>A» e+ X) by
(15)” (Bf)(a’ Ty oty 7}q+1)

_ » ‘
- f”l(a{, 72, 4.“’ nq-kl) _I—El(—" 1)’f(a’: N1y Ty ¥ Niaty 7]1:1—1) +
=

+(_ 1)[)+1f(ay L/ TR 771))7 PZL
(0f Net, ) = f{a) — flo),

where fia, 71, -, pg) = flwey, 7, -+, ). Then we can define the cohomology
groups Hpp (X, F) by -

Hpao(X, F)=ker. [6: Ana(X)>Ar.a+ (X)/5A0a~YX)], ¢=1,
Hpo %X, F)=ker. [0: Ar9(X)—> ArYX)].
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Here F = R if real valued forms are considered and F=C if complex valued
forms are considered.
Lemma 13. Denoting typical fibve of THE(X)) by 7%, we have

(32) Ara(X) = EYX, At T77%).

Proof. Since THE(X)) is trivial, a cross -section of A*T*E(X)) is a (smooth
or continuous) function on E(X)x (X)X --- x Q(X) with values in 42(* 7). Hence
we have the lemma by the definitions of A4 X) andEYX, AP( T *)).

Corollary. For each p >0, ¢ >0, we have

(33) Hpo X, F)= Hp"X, A¥(.77%).

By this corollary, theorem 1 and theorem 3, we obtain
Theorem 3”. For each p >0, we get

(17 Hp00(X, F}=zCHX),
(34) Hpro(X, F)=0, g> 1
Note 1. Since A% 9 7*) = F, we have for all ¢
(33)' HpoX, F)= H%X, F).
Note 2. In theorem 3", we may consider each A#¢(X) is consisted by smooth

forms by theorem 3'.

§5. Period of higher order forms.
11. Let ¢ be a closed p-form on X, then =¥ belongs in A»%X) and we

have

w{p) = di(kn*(p)).

By lemma 12, kx*(p) belongs in A?~LYX). Then by lemma 6, if dka*(p)=0,
that is kz*(p) is invariant under the operation of (X), kr*(¢) comes from C?~i{(X),
Therefore ¢ is exact on X. But since we know

(35) di(¢7) = (dig), 7 & AX),
for any differential form on E(X)x 2(X)x --x 2X), we get

(36) dy(Okn*(p)) = d{dikr*(p)) = 0.
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In general, by (35), we get

(35) di(0¢) = o(ds¢)).

Hence setting

Yo = ﬂ*(go)! v = kSDO) rry Qo = 5?2;’—19 DPory1 = kSDZry Ty

we have
(37) 0o, Ap—r, ;(X )’ gOz;-.HEAﬁ_"_L"(X ),
k36)’ dlSDZr = Ov 5(/72r = O,

because dypz, = d,6kdps, ;.

By (37), ¢, belongs in A%X(X) and by (36), dips, is equal to 0. Hence gy,
71, -+, 7p) is constant in a. Since A%#(X)= E¥X, F), there is an into isomorp-
hism ¢ : 2¢(X, F)>E?X, F) and ¢y belongé in ¢-image. Then since the diagram

E*X, F) —+ E**YX, F)
¢ b [4

X, F) ———> 2 X, F)
is commutative by the definition of J, denoting ¢ Yeqp) = ¢by;, We obtain by (36)'
(38) B¢y = 0.

Hence ¢, defines an element <{¢y,> of He?(X, F). Moreover, since ¢ is exact on
X implies dka*(p) = 0, <{¢sp»> is determined by the de Rham class {¢> of ¢. Hence
we can define a homomorphism y : H#X, F)>He*X, F) by

(39) 1pp) = {ap>-

Definition. We call y(K¢>) the period of ¢.

12. Theorem 4. y is an isomorphism. v

Proof. Let <cy,> be an element of He?(X, F) with representation ¢y, then
since dy(cy,) is equal to 0, we can construct a series wg,.;, wsp-s, **+, @y Dy

!(Czp) = 50’21:—1, Yy d10)2p—2r+1 = Wgp_2yy

Bwgp9._1 = Wyp_ g, 7,

because 5(11215_2,. = 5d1(l)21,_2r+1 = d16m2p_2r+1 = dla)gl,_gr =0 and by (34) if (Sfl)gp_gr is
equal to 0, then wy, s, is written as dwsp_o,.1 (¥ <p, cf. note 2 of n°10). Then
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we get

w2ﬁ—2r+1 & Ar—l'[)—r’ Wz p-2r = Af’p~r’
Therefore @, belongs in A#° and since
(40) d1w0 = 0, 5(!)0 = 0,

@y is written as z*w). Although ws, 5. ; is not determined uniquely by wy,_s,, if
0w gy 3,1 = Wypg,, then o'yu 9.3 = wyy 9,1+ 06 by theorem 3”. Hence by (35),
@'9p_9,-3 is taken as wg, s, 3+ di§. Therefore the de Rham class of o is deter-
mined uniquely by the cohomology class of ¢;,. Moreover, by the definitions of
x and o, we get

wWwp) = Leap.

Hence y is onto. Moreover, since we can take @y, to satisfy diws, i =0 if {cs,>
=0, the correspondence Z(<Cgp>) =<w> defines a homomorphism o : Ho?X, F)—>
H¥X, F), p=1. Then by the definitions y and @, we obtain

axed) = <D, 1alleapd) = {Cap>.

Therefore y and o are both isomorphisms and we have the theorem.
Corollary 1. If X is a paracompact arcwise connected smooth manifold, then

(41) HHX, F)~ HX, F)

Jor all p>0.

Proof. If p=0, then we obtain the corollary by (17)i. For p>>1, the corollary
follows from theorem 4.

Corollaxy 2. If fis a homomorphism from [X)] to F, then f is induced from
a homomor phism from n(X) to F if X is a paracompact arcwise connected smooth
manifold.

Proof. Since we know

HY{X, F)=Hom. (n(X), F),

we get the corollary by (17)ii and the above corollary 1.

Note 1. Since 4,4, (X) is different from (X)), Ha,;, o* (X, F), the cohomo-
logy group constructed by £2%,,, X, F), may be different from usual He?(X, F).
But since 2, 4, o X) and Es, 4, (X) are dense subsets of £(X) and E(X) and deno-
ting i* : QX X, F)>92%,,;, X, F) the map induced from the inclusion, we obtain

Lemma 14. There is a homomovphism i¥ . HNX, F)-—> Has,,, o#(X, F) for all p.
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Then since y is defined as the map from HXX, F) to He?(X, F), we obtain

the following commutative diagram by the definition of g

X
H/X, F)—> H¥X, F)

yc i*

@ FH-QEy ky Op(Xy F)

Therefore  is also an (into) isomorphism in this case.
Note 2. Since we know

HoX, F)= Ho(X, Q\(X, F)), p=>1,
by theorem 2, we have
(42) HAX, F)== Ho(X, QYX, F)), p=>1,

if X is a compact arcwise connected smooth manifold. We note that a represen-
tation f of an element (f> of Heg(X, 277X, F)) satisfies

J#ne) = flpdengs + J (),
and the class of f is equal to 0 if f is written as
J) = g — ghy,

where g is an element of 2,-Y(X, F).
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