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Introduction.
The residue homomorphism and residue exact sequence has been defined by
Leray ([12], cf. [27, [13], [167, [21]) for the pair (X, Y), where X is an #u-
dimensional complex manifold, Y its (#—1)-dimensional submanifold. Similar

exact ssquence

Z ) é—:x:
e Hi Y X — A——>Hi 2 A)—>Hi{( X )—>Hi(X — A}—>---,
where X is a Banach manifold, A its closed submanifold with codimension p, was
also defined by Eells ([6], cf. [18]). o
In this paper, first we study the residue exact sequence for the pair (X, Y)
where X is a smooth manifold, Y its 7-codimensional closed submanifold, and’
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prove : If X and Y arve both orientable, then a closed curvent on X—Y is cohomologous
to a curvent on X (§2, Theorem 3). By virtue of this theorem, residue exact
sequence for the pair (X, Y) is given as follows: Denoting * : H{X, C)—>
HHX Y, C) the inclusion map, 6. H-"(Y, C—>H!X, C) the map defined by

KT =<oyTD; ox(T)e]=Tle| Y],
and res.: H(X — Y, C)—>H?-"*\(Y, C) the map defined by
res.{T>=<res. T, res. T[o]=T[dp|Y], oY =¢,
the sequence

* res. 0
-—>HHX, C\—>H/X~-Y, C)—>Ht-r*Y{Y, C\—>HIYX, C)—>-+

is exact. Moreover, by virtue of Hironaka’s resolution theorem ([97), we can also
prove : If X is real analytic and Y is its real analytic subvariety with codimension
v, such that X and each Y;—Y;,, are all orientable, where Y, is the i-th mulsiple
subvariety of Y, then a closed curvent on X—Y is cohomologous to a current on X.
(§ 3, Theorem 4). By virtue of this theorem, setting

_ {closed (p+r)—current on X with carrier in Y}~
d{(p-+r—1)—current on X with carrier in Y3} ’

RHY)

we have the exact sequence

* res. d
c—3>HHX, C)—>H!X-Y, C)—> R YY) —>HH X, C)—>---,

where ¢*, ves. and ¢ are defined by the same way as iébove. (§3).

Although the definition of R#Y) depends on X, we can prove that R#Y) is
independent with X (§4, Theorem 6, Corollary 1), it is isomorphic to HXY, C)
for all p if Y is topological non-singular (Theorein 6, Corollary 2). But since we
gét if Y is given by z;22, = 0 in C?, then

R(Y)=C@®C,
R(Y)=C, RNY)=0, p=2,

RYY) is different .either of HZY, C) or Hf’(f’\, C), where ¥ is the non-singular
model of Y, in general. If Y is complex analytic, then we can prove (Theorem
6, Corollary 4), RY(Y)=C*, the s-direct sum of C, where s is the number of
itreducible components of Y. But since we get R{(Y)~COCDC if Y is given
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by x;¢% = 0 in R?, this theorem is false for arbitrary real analytic varieties.

§§5-7 of Chapter I are devoted to the applications. They may have been
known (cf. [1], [47, [12], [17]). But with the connection of §4, »n® 14, we note
the following. Consider the pair (X, Y), X is a complex manifold, Y its 1-
codimensional complex submanifold, 2?[ Y] and ¥?[ Y] the sheaves of germs of
analytic p-forms and analytic closed p-forms of X with singularities on Y, we
get TP Y] =d@2r-1{Y ] for p=2 and the exact sequence

0——>d[Y —> V[ Y }—>Cy—>0, Cy is the trivial extension of the constant

sheaf of complex numbers on Y

for p = 1. Moreover, since U — Y is a Stein manifold if U is a Stein manifold,
denoting 7Y ] and &% Y ] the sheaves of germs of (p, ¢)-forms and §-closed
(p, q)-forms of X with singularities on Y, we get the following resolution of
Y],

‘9 0
0—> Q7Y —02 Y —> D21 Y |—> e,

Hence we have

HYX, QY 7])~ H(X, 8»Y )/aH (X, OH-1[Y )
=HYX — Y, »9/pH/X — Y, Or91)~ HY(X — Y, Q%)

Therefore if X — Y is a Stein manifold, we may obtain the residue exact sequence
in the category of analytic sheaves (cf. [2], [137, [21]).

In chapter II, we treat the residue exact sequence for the pair (X, Y), where
X is a Banach manifold. Since our method in §§ 1, 2 of chapter I can be applicable
to the case codim. Y (oo, we are mainly interested in the case dim.Y (. For
this purpose, we need to consider the (co — p)-currents on X. But since X is not
locally compact, we consider X to be a (not necessarily closed) submanifold of E;
a C~-smooth Banach space. Then since the metric of E is fixed, we can define
the bounded carrier p-forms on X and such forms exist on X, because E is Ce-
smooth (cf. [7]). Then we define an (oé — p)-current of X to be an element of
the Dual space of <Z#X), the space of bounded carrier p-forms on X with Sch-
wartz topology. Using (e — p)-currents, ~we define the (oo — p)-de Rham group
A °°“P(X ) as usual. We note that 57/‘”"1’(X ) is not differential structure invariant.
For example, if H is a separable real Hilbert space, E" its »-dimensional subspace,
then

ot H — EY=1{0Y}, p#7 + 1,
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S#e-T-\(H — E7) ~C.,

But H—E" are diffeomorphic to H for all » ({77]), and S&~#H)= 0 for all p.
We note that with the connection of the expression of functionals on E, it seems
ta be wusefull to determin the explicit form of the generator of FZ%-{E — 0), But
since we use Hahn-Banach’s theorem to show the existence of such current in
this paper, we can not give the explicit form of such current in this stage.

Since there exists a closed non compact p-dimensional submanifold Y cont-
ained in U for any openset U of X and for any integer p, we can not define
the current 7y defined by

Tele] = o
for arbitrary closed (orientable) submanifold of X. But if Y is orientable and
satisfies
(*) Y N B is compact for any bounded closed set of X,

then we can define the current Ty. Moreover, we prove: If X is a Banach
manifold such that there exists a series of finite dimensional closed submanifolds X"
which salisfies

(i) X" c X+, dim, X" <(dim. X", UX" = X,
7
(i}  each X" is orientable and satisfies (*),

Y its closed submanifold such that ¥ N X" is a closed orientable submanifold of X"
for each v, and Y satisfies (*) if dim.Y { oo, then a closed curvent of X — Y is
cohomologous to a current of X (§3, Theorem 17/ Similar theorem is also true
for the pair (X, V) if X is a Banach analytic manifold ({5]) and Y its sub-analytic
variety. By virtue of this theorem, we get the exat sequences

¥ res. : =¥
cer— C‘;//WP(X)——>%7§°—P(X —Y)——H-+(Y, C)—>» 27>t (Y )—>

dim, Y =7, Y is a submanifold,

o res. ¥
corm—> GO X ) SN X — Y > G S Y ) S P (X )

dim. Y = oo, Y is a submanifold,

o res. ¥

ooy SN X ey S X = Y )P R Y ) 7 P (X ) -

dim. Y=v, Y is a subvariety,
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.!ﬂ: Pl

7és.
vy G WK > SN X — ¥ )y RO P Y foy S0 b1 Y )
dim. Y=o00, Y is a subvariety,

similarly as the finite dimensional cases (§3, Theorem 18). Here R=-#¥) is
defined similarly as R"-#?(Y). We note that denoting bounded carrier cohomology
group of X by H?yX, C), S#7~-#X) is the dual space of H?)(X, C) (§2, Theorem
16), and under suitable coridition, H?,(X, C) is the dual space of S#=-?(X). On
the other hand, if X is closed and bouiided in B, then we get H?(X, C) = H/X,
C), the é/ech cohomology group of X. Hence from the above exact sequences,
we obtain the exact sequence

oo > HP-Y(X, C)—> HP-YX — Y, C)—> H*(Y, C)—> H¥X, C)—> -

if X is closed and bounded in E. In §4, we prove the existence of residue exct
sequence for the pair (X, Y) where X is a Banach manifold and need not be
satisfy (i), (ii), Y its finite dimensional closed orientable submanifold and satisfies
(*). We note that it seems to be natural to denote Z7Z7~*"-#(X) instead of Sg7~-?
(X) if dim.Y = oo and codim. Y =v, 7 is a positive integer or co, Then the residue
exact sequence is rewritten as

i

res, T
______‘)yfoow—p(X)___)y/oou:p(Xﬁ Y) “-%M~P+I(Y)‘_*£Y/oo+r—‘ﬁ+l(X)__$‘_,'

o*

In §5, we state some applications of residue exact sequences. But they are
quite similar as the finite dimensional case.

Chapter I. Residue exact sequences of finite dimensional manifolds.

§ 1. Local properties of differential forms with singularities.

1. Definition. Let Y be a closed subset of X, a smooth wmanifold, such that
XY =X, U an open set of X, then a differential form (or a current) on U—Y is
called a differential form (or a currvent) on U with singularities on Y,

We consider the following sheaves on X.

Or : the sheaf of germs of C>-class p-forms on X. -

&2 : the sheaf of germs of Ce-tlass closed p-forms on X,

O [Y]: the sheaf of germs of C=-class p-forms with singularities on Y on X.

&2 [ Y] : the sheaf of germs of Ce-class closed p-forms with singularities on Y on
X. ‘

The corresponding sheaves of currents of these sheaves are denoted by £'?,
©'», O'#Y] and &' Y]. The stalks of these sheaves at x are denoted by D7,
...... &' Y],
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In the rest, we consider only complex valued forms and in this §, we
assume Y to be a submanifold of X with. codimension 7. Hence we miy assume
Y is defined on U, a coordinate neighborhood of X with local coordinates {7,

‘xU,,} ={x, -, %,}, by ;= -+ =x,=0. We use the following notations if
r=2. L ‘
5ol
x:dx; :
. 1 E _ 2nr/2
Wl = — 1= 2T

o Wart a2 T T T/
N
d.xi = (*1)‘dx1 A /\dx,'_l /\dxi+1 o~ /\dxr.
We often denote by o instead of o !, and denote w, and dxU; if there need
to clarify the coordinate system by which o is defined. -

Lemma 1. If r =2 and ¢ is a closed (v — 1)-form on U with singularities on
Y, then setling

C(ar+17 ey Gy, E) = Sx21+ e xzr =g o,
Xpwt = Qpyyy *00, X, = @,
c(@yr1, *++, A c) does not depend on a,.,, -, a, and ..
Proof. ¢(@,:1, -+, @,,¢) does not depend on ¢ because ¢ is closed. On the other
hand, we have by Stokes’ theorem,
0= S 2 2 d
Xy _|_ _|_ xr = g ]
xr+j = ar+jy J '—ZA i, aéxr+i éb
”Sx12+~~+xr“f:e @—Sx12+-;-+x,2.:e_ ®.
xr.(..j = ar+j’ 7 7{: 1y, Xpri = b xr+j - ar+j) J ’—7é 1, xr+i =a

Hence ¢(a,s1, -, @, ) does not depend on @, -+, @,.
Corollary. A closed (# — 1)-form ¢ on U with singularities on Y is written

(1) @ = co’"t d¢, Cc = Sx21 G xzr — [N
Xrat = a1y 0y Xy = a,

By this corollary and de Rham’s theorem, we have
Lemma 2. Denoting C the complex number field, we get if vr=2,

@ @Y ], =dr Y], p#0, s—1, x€Y,
Y], =Co ' DA Y], x€Y.
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The map from & -1[Y ], to €D Co ! is denoted by res.U, =res., or res..
Note. If » =1, then we may set U —Y =U* U U-, U* = {{x, -, %,) |x; >0},
U_ == {_(xh Yy xn) |x1 <O}, and we Obtain

GLY ], = {¢.l ¢, is the class of ¢, ¢ =c¢; on U¥, ¢ =¢; on U3
Hence we get
) G/LY ], =dOr[Y ], p#0, x€Y,
S[Y ], =CHS,.

Here an element of &°, is considered to be the class of ¢ =(c, ¢), and the map
from @[ Y], to C (which is also denoted by ves.) is given by

res. ¢ =c¢y — €y, ¢ = (1, Co)
2. If U is a coodinate neighborhood system of X, then we get

®) U aTp) = STV (pV; + O, on U NV,
J

peUNV, xV{p)=0.

We know that setting gyv :(CUV,-']-), {gyv} is the transition function of the
tangent bundle of X. Therefore we may assume that if U N Ys4¢, then the local
coordinate {xU;} of X at U satisfies

3y 2U; — 2U{p) = DUV, (p)xV; + 0a®), on UNV, YNUN Vg,
(€Ui(p) € O)® GL(n — 7).

We know that in (3)', (CUV,'}) belongs in SO N DGL# —r) if and only if the
normal bundle of Y is orientable. In other word, if X and Y are both orientable.
or both unorientable, then (cUV;)) belongs in SO @)D GL (n— 7).,

Lemma 3. If the normal bundle of Y in X is orientable and the local coordinates
{x;} = {in} of X at U, UN Y ¢, are taken to be satisfy (3), then we have

oy = wy + d¢.
Proof. By assumption, we have

Y

(S3=mdamy + o1 271,

1 j=1
W= e [T T T GV O 571 )
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Here |xV|, means A/(xV ¥+ - - (xV,)5. Then we get

S (ﬁxvi‘\{xvi)
lim, Y(|aV] P = ¢ e :
e>0 1V, =a, VEVDP A+ @R+ O 2V y72)

= 0-7'—1,

o127 %)
V@V A+ o+ @V R+ O &Y pr2)

lim, S( V] J=e
e—=0 xV, ;= aq;

=0,

Hence we obtain the lemma,
Note 1. In general, we get

wy = det. (g'yy)oy + dg.

Here {g'yv} means the transition function of the normal bundle of Y,
Note 2. If »r =1 and ¢ € &Y ],, then

res. U.p =det. (glyyyres. Vo, x€UNYV,

3. By Lemma 2, Lemma 3 and above Note 2, we have

Theorem 1. Y] is equal to dOP[Y1if 0, v —1, S[Y] is equal to
&° = C, the constant sheaf of complex numbers on X if v+£1 and for p=vr —1,
we have the following exact sequences,

1! res,'
(4) 0—>dO" Y —>G Y ]—> & v—>0, =2,

i res.’
0—>@—&[Y J—> & y—>0, ¥ =1,

where &y is the trivial extension of the local constant sheaf of complex numbers
on Y with operation of the determinant bundle of the normal bundle of Y, to X,
This sheaf is written by & if it is considered on Y. If the normal bundle of Y in
X is orientable, then &y = Cy, the trivial extension of the constant sheaf of
complex numbers on Y, to X, i' is the inclusion and res.' is given by

res.' (ggx) =
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if r=2, and if r =1, then
res.' (gox) = SD('\/‘;—’ g, o, an—l) - SD("\/eﬁ,ah M) an—l)r

where ¢, is a representation of .. ,
Note 1. By de Rham’s theorem, a current T, on U = Y is written

T, = ¢, +dS,, ¢, is a differntial form on U — Y.
Therefore we can define res.’ (T,) by
res.’ (TI):res.’ (D), T, and ®. are the classes of T, and ¢,.
Then we get
@AY ]=dO'?P 1Y, p£0, r—1, (Y ]=@"=C, (r=2),
and the exact sequence

il 7

res,
0——=dD" Y [ @ Y > & y—30, ¥ = 2.

Lemma 4. If we consider o to be a current T defined by T,[¢|= Sa),\go, then

©) T[] = (=171 ) 4o = (11T .

Proof. By the definition of "1, we have

S Yy = lez e e x,-zz.:gw/\so(oy B Oy Xrrty "'y xn)-
Then we get
(——l)r—1ili,:b S B b xS ew/\dgo

:iﬁnﬁ)sxlz—l-"' +xr225w<¢ ISYSD.

This shows the lemma for »>2. If »=1, then setting o (¥)=1, x & U+, w(x) =0,
x & U-, we obtain same result,

By this lemma, a current 7 on U — Y is cohomologous to a current 7" on
U and

5) res.'T, = (—1)-1dT" |Y),.
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§2. Residue exact sequences; L'

4. Theorem 2. (67, [12], [16]) On X, we have thé* followinig exact sequence,

Z res. S8
6)  —>HAX, C)—>HIX — Y, C—>HE"(Y, &)—>HPHX, C)—>.

Here i is the map induced from the inclusion. .
Proof. If » =1, (6) follows from the second exact sequence of (4), because we
have

HYX, @[Y)=HHX —Y, C),

in this case, and since ¢’ is the inclusion, ¢ should be the map induced from the
inclusion. ’ .

Next we assume 7 > 2. Then by the first exact sequence of (4), we obtain
the following exact sequence.

i res, '
e HNX, O Y ) —> HYX, &Y ])) —>H/X, & y)

3%

—yHPNX, dOT-Y J)—>---,
By theorem 1, we get

HYX, dO-*[ Y ]) = H*" X, C), ’
X, &Y )~ HY{X, @1’+r"1[Y])/dH°(X, o2 Y),

because O Y] is a fine sheaf for any ¢. In the second formula, the right hand
side is isomorphic to H?*"-{(X — Y, C) by de Rham’s theorem. Hence (6) is exact
for p>v — 1.

By theorem 1, dOPI[Y =6V ] and [Y ] =@ =, the constant sheaf
of complex numbers, if p>7 — 2, Therefore H/X, C) is isomorphic to H{(X Y,
C) by the inclusion map. Hence (6) is exact for all p.

The assertion about ¢ for p># — 1 follows from the following commutative
diagram.
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HH"1(X, C) Hr (X — Y, C)
HK, @4 /B, 00 L s HYX, G YIAHYX, DHLY )
~ : - 3 S
l ¥ HES
HY(X, @w ) — H(X, dO¥"- 3[Y]) —— HY(X, §r"-2[Y])
= B
o N e, '.... ~ 5
O‘L —z* Zl‘f‘: i
H{(X, &) ———————r HI(X, oY) -—-——-—-———> HYX, @ -1[Y7])

b - R

Hr(X, §7-8) > HeYX, §-2[Y7))
ia ~ b

ié o~ ‘ : o~ ,
i*
Hr+m-1(X, ) » Hr(X, @[Y])

HP" XX, C) | " HP™-(X, C).
Definition. The exact sequence (6) is called the residue exact sequence.
Note. If the normal bundle of ¥V in X is orientable, then (6) is written

i res. 7}
(6)’ —3yHN X, C)—>HX-Y, C)—> Hl’ 741 Y C— HY X, C)—>

8. Theorem 2'. If X and Y arve both orientable, then the value of ves. onla
(p + ¥ — 1)-chain ¢ is given by

(7) (res. a, ¢) = (a, oy), 7.Y =,

and & (B) is the class of curvent (—1)r—D@-NTy , Where 8 € Ht-"*YY) is the class
of ¢ and Ty,, is given by

® Ty, [¢]= S re /A
Proof. First we prove (8).
By the definition of res.’, we get
! LTt . . == . ‘ .
res., {wlo C’o,'--,ip} {cio’_“’l?},

{C"o,'",l},} ezZ{Uny, C.

Since (3c); . ; =0, we have
0s » 1

C; i =0 ;o= C e (=D

1000 Fpal 0 2, Tpat TSP PR 0ty tp
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Hence

Hw. "1, . L. .
{ ‘o Pyttt P te e

i

={eo;" ¢, ., —o e o i el i
0 1 y pl o 0 2y ? 0 0 """y p

ro1)p . .
0 ) ettty tpet

= {0, = o 3

On the other hand, we obtain by (5),
(-VdTy e, )
= {TYnU;On...nU,'P’ Clo, =, 3}
Therefore, if we consider &' to be the map from H#Y, C) to o X, &),
we get '
©  oe . Y=LV Trvgonu, 6 )

y P 0 "'y p

Then as we know

we have (8) by (9).
To prove (7)', it is sufficient to prove

(7y S o ? = ST yres-g. res.g is a representation of res.{¢>, where {¢>
is the class of ¢.
To prove (7)), we take {¢’y, -, i} € #{U;}, &Y ). Then

res."*({gt, -, 1))

- 5 : . }
— 1 ves 1
{ 1 xlz + + xrz — ESD 0 LIS 4 .
o Xevi = G4

1f SDio, e 7i1> = (5¢)i0’ ) iin {¢i01 Y i{)—l} & Cp—l({Ui}y Dr—l[Y]), then

1 .
ety x12+'”+x1-2:5¢109 ) Zp—l( b ! ") Loy oy 11)

1
=0 i e :
x12 + b + xr?' =& iOy Sty 21)—1 iO) trty ZP

Yewi = Xrwi

|
o’ 1 X2+ +x2= 5901'0,
Yosi = Xrus

s Lpe
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Here x,.4, -+, %, are considered to be parameters in the first formula and they are
written as ¥,.1, -+, ¥, in the second formula. Hence as the map from H?-Y{(X,
O Y] to H-YY, &), res.'* is given by

7’68,’*({d9/1"0, ey ip_l)

1
{ g7t d(gxlz 4o toxd = a"bio, .-, ip_l(xr+1y Bl xn))}'
We assume that res. '* : H* (X, @+ 1[ Y )\—>HP-Y, &9 is given by

res. " ({dgiy, -+, Fped})

1
—{ a2 <§ gl B A
g kq_1> . >k127+1 x12+ +xr2 — (1] y tp-q

Adary A A ) }

_ Z & ?1’ , }f"‘l/\dxk A Adxy
kq> >k1 27 + 1 0y y fp-i 1 q

Then we obtain

(xr+1$ ) x,))/\

5{ ! ( Z /kl;"',kq

= ( i
Vit kq> --->k127’+1 lez e +r2:5 g, s lp-g-1

NG )} :

Loy *** ip—l
1
- r-i S Z (S (agb’)fl,..-’ikq (xr+l,"'yxn))/\
o k> >k >r 417524 o bx2=c 0" tp-g
’/\dxkl/\"'/\dxkq)}io, ey gy
if d¢, .., =(@©¢'), ... . ., because
[\]) s p~1 ({3 y p-t
5. )
T
3 g ke dx pepds
B> >h>r+1 0 "y bpet k kg
il . - 2] ¢"?1""’.kq ANdx, N Ndx,
007y lpogug k> o >k>r+1 Bgy *rey lp_g-y 1 q

Hence res. '* : H-YX, & [ Y )—>Ht-YY, §?*1) is given by
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b

res.'* ({d¢; ;
( Sb'o; = -t

:{ Logo 2

gt be> >k >r+1

/\dxkl/\ e /\dxkq).

ki) "t kq

(Sx12+ +xr2 =& Sblo, ) kp-q—l(xrﬂ’ o x”»/\

Therefore res. : HY(X, -V )—>HYY, &?) is given by

(10)  res. {dg, Y

1 > P
= r_ﬁid( ( — ¢'1’ S 1(xr+ s T xn))/\
{ g™t Ry > Sk >r41 Sx12+"' +x.2=e "4 !

Nds A nds, )]
1 -1
To show (7)', it is sufficient to assume y is a chain of U;U;,, U;N Y #o.
Then we have
Sar?’ :Z"‘ S oravieo =0V
where {V,} satisfy

V,-C Uir Ui n Y?égﬁ, V,' n V]C8V1 n aV],
NV, =0Q xc), c;=cn V, Q is the qube.

Then we get

Z’Sarn V,.S"f:;jgsr-l x ¢ i

k,"', Ie " .
:2 S it +xr2 = e{kl;; kp S C; 9011 P(xr'*l’ "',2.,,))/\

ANdxy, A Ndxy,
1 4

This shows (7)".

Definition. (7) is called the residue formula. ([12])).

6. If ¢ is a differential form on X with singularities on Y, then we call the
current 7, and dT, are defined on X if the limits

lim, S _ Ap,  lim, S A
)X UD? ) i, Y oume ¢
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exist for all compact carrier differential forms ¢ on X. If d7, is defined on X,
then we define a current d7, |Y on Y by o ‘
dT, |Y = lim, A,

@7, (V)¢ = lim._§oun 917

& is an extension of ¢ to U(Y).

Then we get by (7), ;
Lemma 5. If ¢ is closed on X—Y and the currents T, and dT, are both defined
on X, then

(11) res. {Tpp =<dT, |Y ).

Lemma 6. If the curvent Ty,, is exact on X, then there exists a differential
Jorm ¢ on X with singularities on Y such that

Ty,o=dT,.
Proof. We take a system of closed forms {¢y} such that
or|Y=90lYon UNY, (pp=01if UNY =y¢),
and set |
‘ SDU,I} = wg Aoy — oy Apy, on U NV,

Then {¢y,v} defines an element of HY(X, &9 and it vanishes if and only if the
current Ty,, ‘Is-exact, because dToy.ev=(—1"Tyqy by lemma 4." Hence we
have the lemma by Theorem 2.

We denote by Hy(X — Y, C) the subgroup of H#X — Y, C) defined by

H#X —Y, C) ,
={cjc=<p), T, and dT, are both defined on X3}.

Then by Theorem 2', Lemma 5 and Lemma 6, the following diagram is exact

and their lines are exact.

) * ves.
c—>H(Y, C)—>HHX, C)—>H!X — Y, C)—>H"+YY, C)—>

= = g ==

res.
ceom>HP(Y, C)V—>HXX, C)—>H#X — Y, C)—>H!-"YY, C)—>
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o
—>HPH(X, C)—>--

0
.__)HPH(X’ C)_._) .

bl

where 7es. {p> is defined by (11). Hence we have

Theorem 3. If X and Y are both orientable, then H#X — Y, C) is equal to
H{X —Y, C) unless r =1 and p =0,

Since &2 ? (X —Y), the Schwartz space of p-forms on X —Y, is contained in
& *? (X), any current on X can be considered to be a current on X — Y, and we
call a current T on X — Y is defined on X if it belongs in i*-image, where { is
the inclusion from &' ? (X —Y) into & ? (X).

We note that if T is a closed current of X — ¥ and defined on X, then

car.dT' c Y, HT")=T.

Hence dT' defines a current on Y., This current is written by d77|Y. If T=T,,
then these definitions coincide the previous definitions, and we have
Corollary of Theorem 3. If T' is a curvent on X such that * (T') is closed,

then
(11y res. i* (T")> =dT' Y ).

Note. By theorem 3, we can conclude the results of this § as follows:If Y
is @ closed submanifold of X such that X and Y are both orientable, then a closed
current on X — Y is always cohomologous to a current on X and the following

Sequence is exact,

F res, d
wmr HIX, C—>HNX~Y, C—rHP"1Y, Cr—>HFYX, C)—>--,

where i* is the map induced from inclusion, res. is defined by (11) and § is given
by

(12) KT =<oy(TPH, ou(T) el =Tl Y]

§ 3. Residue exact sequences, II.

7. In this §, we assume X is an orientable real analytic manifold, Y is an its
(closed) real analytic subvariety such that setting

(13) Y=YV DV, D2 2Y¥, DY =6,

Y,.; is the set of all multiple points of Y,
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each Y;— Y;,; is an orientable submanifold of X — Y;,, with codimension 7;,. We
call Y;,, the i-th multiple subvariety of Y.
We set

Hy, /X —-Y,;, C)
={clee HX —-Y,; C), ¢c=<¢>, T, and dT, both defined on X — Y}

Hy, (Y — Yin, C)
= {C IC [ HP(YI' - Yi+1, C), c = <€D>, TYi—-I’iH_,@ and dTI’i'-Yi'("l!W both
defined on X — Y;}.

Here T,[¢], etc. mean lim, U(Y")—’YkSX— U(Yk)go/\g[), car. g c X =Y, k=max
(i, 7), etc.. We denote Hy(X — Y,, C) and H(Y, — Y,,;, C) instead of
Hy, /X —Y;, C) and Hy, ;i ?(Y; — Yiuy, C).

Theorem 4. We have for all p and i,

(14) HHX — Y, €)=H/{X ~ Y, (),
I{OP(YI. - Yi+1, C) = H”(Yi - Yi+1; C)-

Proof. Since the theorem is true if dim. Y =0, we assume the theorem is
true for any f-dimensional real analytic subvariety which satisfies the asuumptions
of this §, of orientable real analytic manifold, ¢+ <<s — 1, and assume dim. Y=s,

First we assume that Y is simple in the sence of Atiyah-Hodge ({273, p. 77)
with finite irreducible components, i.e. sefting Y=Yt U « U Y% each Y? is
irreducible, then each Y is non-singular and for all (;, -+, i;), Y1 N Y is
a proper intersection.

Since the theorem is true if 2 =1 by Theorem 3, we use the induction about
k and assume the theorem is true for Y%= Yty ... U Y%=, Then we have the
following commutative diagram with exact lines,

B 7 ’
v Ht= (Y, — Y, NY&-D Cy—>HPHX — YE-D CO)—>HHX — Y, C)—>
‘1 5 y I ¢

ey HP 'Y, — Yo Y0, C)—>rHAX — Y1, C)sHAX — Y, C)—>

res. 0
——>H Y, — VN YD O —HPNX — YO-D, O)—>---.

res. “ 5
S HFY, — VN YD, C—s HPH (X — YD, Ol

Then ¢ is an isomorphism because ¢ and ¢, are isomorphisms by inductive ass-
umption. ,
If Y is simple with infinite irreducible components, we set
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X=U,X,, X,12X,, each X, is a relative compact open set of ‘X.
Then for any ¢ ={¢> & H(X — Y, C), we find a closed form ¢, on X, such that
o |X,) = <g.'>, Ts, and dT,," are both defined,

because Y NX, containes only finite irreducible components. Since ¢,.:' |1X, — ¢,/
is exact on X,, we can construct a system of closed forms {¢,”} on X, such that

(15) e lX,> =<o,">, To" and dT,," are both defined.

§0n+1” - §D,,H iS deﬁned and i@n«klu __ q)n” K% on Xn—-l-

Therefore we can construct a closed form ¢” on X such that ¢” is cohomologous
to ¢ and Ty and dT,» both define currents on X, Hence HAX — Y, C) =
HpX -Y, C)if Y is simple,

Next we consider the general case. By Hironaka’s theorem ([97]), we can
construct a real analytic manifold X and a map 7 from X to X such that 7 is
biregular on X—»-(Y) and 7-(Y) is simple on X for arbitrary Y. Then by the
above discussion

(16) Hp(X — YY), €)= H{X—y"(Y), C),

- <> . .
if X is orientable.

By (16), for any closed form ¢ on X — Y, we obtain

(17 7M@) = ¢y + day,

lim,

(A7) = 0.
(/'(77‘1(17))-”1"1(1/)S U(ﬂ'l(Y))gn 7

lim.

S o1 A\y¢) exists if the carrier of ¢ is compact.
U=t (( V)= (Y)Y U 1(Y))

Since 7 is bireguiar on X — YY), we have

@ = 5 ¥(gy) + dy~Hay),

lim {  pg)ng =0

UYioT) U(Y)v (01)/\g ’

lim, S ¥ )A¢ exists if carrier ¢ is compact.
UY—(Y)IoU(Y)

Therefore H#X — Y, C) is equal to H*X — Y, C) for any orientable Y. The
second equality of (14) follows from the following commutative diagram.
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* res,
HPX — Y, )———>Hu (X — Y, O ——Hy (Y — Y, C)—>

i Pl e

— Yy, C—>HYX — Y, C)—>H-"+{Y — Y, C)—>

i
—>H? X — Yy, O——>HY X —Y, C)—>

<

i

0
—>HM(X — Y, €) —>H(X — Y, C)—>

If X is not orientable, it is sufficient to chsider the double covering of ?
8. Corollary. If i*: H?X, C)—> H?X — Y, C) is the map induced from the
inclusion, and c belongs in ker.i*, then

(18) ¢ = <Z}TY1'—Y£+1. pi

Proof. We denote the inclusion from X —Y; to X — Y;.; by i; and the in-
clusion frm X — Y, to X by #/. Then we have the following commutative dia-
gram,

HP(X - Ys> C)

i

HYX — Y., C)

HNX — Y,, C)
1.1*

HHX — Y, €)= HNX ~Y, O).

HEgyL
On the other hand, we get the following residue exact sequence for all j.
c—>HIHY; = YV, C)——+H1’(X Yia, )———)HP(X— Y, CO0—>
3;) = (=)= Ty;_viiey, if ¢ =<{p).
Since #;*%* (¢) is equal to 0 if i*(c) =0, we get
) = Ty,

Here we consider Ty, vy, to be a current on X — Y; because Hy?(X — Y3, C) =
HXX — Yy, C). Then

iy*ei¥¥(c) = i#(0) = Ty sy aren.
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Therefore we get
i#0) = (Tyaeyars + Tra-vuesd:

Repeating this, we have the corollary.
Note. If Y=Y' U .- UY", each ¥ is non-singular, then we can set

S
ZTYi- Yi+1 0i
i=1

¥ S
= E Z}TYiHYJ—YiuﬂYJ,WI(YiﬂY]—Yiﬂﬂ ).

J=1i=1

Since » 1Ty~ vime: is a closed current on X, we can take each

D i TvinY —viany’ vl (viny’ —vinny’) to define a closed current on X. Then we
can find a closed form ¢/ on Y7 such that
<TijPj>
S . : » .
= Tyiny —vinny oil (vin ¥ = viun v,

i=1

s

because D Tviny —vianv’, el (viny’ —vinny’)> vanishes in H(X — Y7, C)and Y7 is
i=1

a submanifold. Therefore we obtain

18y € = é<Tyf,y,f>, if i*(c) = 0.
j=1

9. On X —Y; and Y; — Y4, we set

IyX —Y; O
={plgel"X—-Y, O, T, and dT, are defined on X}.

F(Y; — Y, OF)
:{gD |QDEF(YJ°“ Yj+1, DP), TYj—Yj+1,w and dTYj—Yj+1,¢' are defined on
X3,

If ¢ belongs in I'f(X — Y;, OF) or in ['y(Y; — Y;,, ), then

N

im, | ¢
U(Yi)— Yi ¥ e U(Yd)

=2 lim. S YAN'R
Ry - Ya © 0U(Ye—Yie1) — V(YiNOU(Ye— Ya+1))
V(YD) Yi
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lim.

UY,, )=Y,,, °oUF, Ny,

AN

= >3 lim, { eN,
KETH UY)—Y, OUY,~Y,, )=(Y,, 000(Y,~¥, MNY,
V(Yju)—'yjﬂ

exist for all compact carrier forms ¢ on X. Hence we get

dTy| (Yy — Yi)¢]

—lim. g oNG, o E X - Y, D)
Uy Y aU(Yk—Ykn)_V(YinBU(Yk_Yk+1))
V(Yi)aYi

dTo| (Yy — Yyl ¢]

=lim. S
U(lYfk)—ﬂYkY (aU(Yk—Yk+1
(8 j+1)" i+

PN,
)—V(YjﬂﬂﬁU(Yk—Y )))an

k17
1

® = [‘O(Yj - Yj+1» D‘b)

Here ¢ is an extension of ¢, a differential form on Y}, — Y.,

By definition, dT|(Y, — Y.y is a closed current on Y, — Y,,, for all %
Hencg\we can define the maps 7/'23. X — Y, DP)—-—)Zkgi He-"* (Y, — Vi, ©)
and res. : I'(Y; — Yjui, 07 —>> Yzjr1 HF 7YY, — Yy, C) by

VAN N\ N
(19) res. (o) = ;Oes. Hp). res. o) = dTo| (Y} — Viu).

Definition, r/e\s. (o) (or its class) is called the singular residue and 7'/e\s. Ho) s
called the k-th residue.

By the definition of r/e\s. Jo), we have

Lemma 7. If o &€ I'(Y; — Y.y, OF), then

N
(20) dTYi—YH 0 = ~(—1)p+1TYi ~Yist,de T (_ 1)p 217’85‘. k(?’)~

1’ k=i

N\
Corollary.. D J=i1 7€S.4{¢) is an exact current of X — Y,y
N\
Note. 7es. ,(p) is not exact in general even ¢ is exact.

We denote the subgroups of I'fX — Y;, %) and ['(Y; — Y., ©Of) consisted

J

by the closed forms by I'f(X — Y;, %) and [I'(Y; — Y;4;, 8. On the other haad,
we set

QY ~ Vi, O
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={c1 + - +ef e =LK € H MY} — YVisy, C), ; Typ-vgs1,0r  defines
a closed current on X},
Definition. We define the groups R¥Y ) = Re, (Y} for all p by
RH(Y')

= IHP8 Y, ~ Vis, O/ 23 765. (DY, — Yy, GF757717),

Example. If Y is defined by z1+2, == 0 in C?, then
R(Y) = HC' - {03}, C)® HC' — {0}, C)=CDC,

R(Y) = (H{C" — {03, C) + H{C' — {0}, C))y = C,
generator is the class of dz,/z; — dzy/z,,

RYY) = HY({0}, C)/res.(I'y(C* U C* — {0}, G)) =0.

RHY)=0, p>3.

This example shows R2(Y) is not isomorphic to neither H2Y, C) nor Hf’(f’\, C) in
general. Here ¥ is the non-singular model of Y.
10. Theorem 5. We have the following exact sequence.

3 res. d
(21) o —>HHX, C—>HHX — Y, C)—> R (Y )—HYX, C)—>,
where { is the inclusion and 7es. and § are defined by
~ V A ) ~ )
(22) res. (c) = {res.(p)>, ¢ =<p>, {res. (p)> is the class of res.(p) in R#-"+(Y),
2 o) = Trimvined, € =<0,

Proof. Since the theorem is true if s =1, we use the induction about s and
assume the theorem is true for Y.,

First we prove that res. is defined on H?(X — Y, C). To show this, we take
representations ¢, ¢ of ce H(X —Y, C). Then by residue exact sequence,
{Ty-¢> belongs in HYX — Y., C) and it comes from H?-"i(Y; — Y, C). Then
since the diagram
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‘ 8" = (—1)ri=Ip-7i)§ ) i
prr'(Yi - Yi+1’ C) > HP(X - Y,'+1, C)

I'(Y; — Yiyy, G277
rg;. res,

k;}qH!’—r“l(Yk — Y, O)

> RETTet(Y ),

is commutative, the class of r/e\s. (Ty_o) = 7’/8\8,go — r/e\s_go’ is 0 in R#-7*YY};). On
the other hand, res. is defined on H?’X — Y;, C) by theorem 4. This shows the
assertion, o

By the definition of res., Im. i is contained in ker. res.. On the other
hand, we get Tm. i = ker. ves. on Y;,, by inductive assumption. Then consider-
ing following commutative diagram

Hrmi(Y; — Yy, C)

é' res.' = res, 0’
l res, \
HYX — Y1, €) ——> RFT30(Y )

; ;1 ,
lj:/ l’j ' lijnu
i; res

HXX, C) —> H{X —Y; C) ——> RF7IM(Y)),

if ce HAX — Y;, C) belongs in ker. res., then by residue exact sequence, ¢ =
i7*1c") and we get

¢' =1ijs{c)) + 0'(ca).

Hence ¢ = ij(c}) which means Im, i; D ker. res. .
By the definitions of #es. and 9, Im. res. is contained in ker.d and on Y,
we have Im. res. = ker.d.

If ce R?77*(Y;) and 0 (c) = 0, then there exists a ¢’ such that
¢ — ¢ =if*ey), ¢ = res.(c).
Then since the diagram

He-mis (Y, — Yy, €
g res.' = res,
res.

HP(X — Yj+1, C) — Rp'rj+1+1(Yj+‘)

RS SRS 5
lli + l,tj + ‘ \DIH
res. 0

HNX — Y, C) —> Rr-riv(Y) - H(X, O),
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is commutative, we obtain
cr=c" +¢", dule)=0, i7*(e")=0.

Since ker. ijf“’ = Im. res.' by inductive assumption, we get Im. res. D ker. & by

this equality.
Im. 6 = ker. i follows from the corollary of Theorem 4.

§ 4. Properties of R?(X).

11. By (23), 6: Rr7&¥7i*Y(Y) —> R#*(Y ;) is also defined. On the other hand,
res. : RP(Y; — Y)—>Re-"kt7i*1(Y}) is defined by using the diagram

RNY; — Yy res. >Rt (Y)
5\\
H i(X—Y,, C).

7
o res,

Then we get
Theorem 5'. We have the following exact sequence.

i res.
21y co——>RIY }—>RUY; — Y )—>RI 71" i* (V) )—>
0
—>RPH(Y e,

Here Y, is a closed subvariety of Y; and satisfies the assumptions of §3, but need

not be a multiple subvariety of Y.
Proof. By the definitions of i, 7es., and 4, we have the following com-

mutative diagram with exact raws and colums.

L e BRI, ©) —f HPTIX Y, €)=
bl | b I
s HP(X — Y, €) T HPYIX — Y, €)= 0———> HPHX — Y, C) —>HPHX — ¥, €)oo

lresq . lres,g l lres. 1/25. 3 lres.z
i res. 3 i

T RAY ) > RAY; = Y3) > RITRIINY )y REUY) oy REKY — Y)) e
ls I S T

1 res. O3

——— ) HP*’J‘(X, C) —> HPM’j(X_yh C) E— Rf’-’k*'J“(Yg _____)Hp'ﬂ’ji'l(X,- C)_.)prju(X__Yl“ C) —n
k”l \14 l’? 5‘/
s> HPAX Y, C—3HP XY, €
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By the definitions of 7, res. and 4, we have Im. { Cker. 6 and Im. 0C ker i.
If res. (¢) =0, then 4, (c) =143 (c1) and 4 (c;) =4, (¢) = 0. Hence ¢; = §; {¢2) and

¢ — 1 (Cy) = res. ;5 (¢5). Therefore
¢ = i{cy + res. (ca)).

This shows ker. res. c Im. i.
If 3(c)=0, then ¢ =res.;(c;) and 45 (c)) =i, (co) because d4i3{c;) =0. Then
Ccy — ig (Cg) = 52 (Cg). Hence

¢ = 7es. 5(C1 — 1y(Ca)) = 7€5. (Cy),

because res. gig (cs) = 0. This shows ker. 8 < Im. ves..
If i(c)=0, then &, (c)=3d;(cy) and ¢ — di(c,) = ves. {cy). Since res.y(Cy) = 0, ¢y =iy

(cs). Hence
€ =20{c)) + res. (cy) = d(c; + res. 5cy)).

This shows ker. i ¢ Im. d.
Note. Explicitly, res. is given by

(24 res. (2p) =<2 2Ires. fp)>.
12. Lemma 8. For all k, j (jDk), we have

(25) z_gkres‘ LAY~ Yias, @OJAT(Y — Yy, O'P757571)

= 23 768 Y — Y1, DALY, — Vyprr #8475,

izi>h

Proof. As this left hand side is contained in the right hand side, we need
only to show the right hand side is contained in the left hand side. But since
the right hand side is contained in the d-kernel of the exact sequence

res. 0
vy REVTI(Y — V> HPY(Y, — Yy, C—>
~—>RP+rk_ri+l(Yi — Yk’rl)——)"'»

we can find for any ¢; € ['{Y; — Y.y, O7), a system of closed forms {¢;},
@i S F()(Yj — Yj+1: @P) such that

res. ) = 2 7S ).

iz >k
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Hence the right hand side is contained in the left hand side.’
Corollary. We obtain ' ~ :

R(Y)
= 1 HF Y, — Vi, O/ 2res. (Y — Vi, DF44717Y),
We set ; | »
T'o{Y, OF) = {(p, -, 0 lpi € IY; — Vg, P77,
I'y(Y, &?)
= (o1, 9 lo1 € LY = Yeus, ©757), d2ITviviv1,0) = 0.
Then we have by lemma 7 and the above corollary,
(26) RAY) = I'x(Y, @0)/dl'5(Y, D7),

where ?Z(goi, e, @) means d(IZTY;-—Yin,W)-
Next, we set

'Y, O ={T|Tis a (p+7)-current on X, car. T Y},
I'y(Y, 7y ={T|T is a closed (p + r)-current on X, car. T Y }.

Theorem 6. R#(Y) is isomorphic to I'x(Y, &'?)/d (Y, '?-1),

Proof. By (26), we can consider R?(Y) to be a subgroup of I'y(Y, &'?)/dI"(Y,
£'#-1), which we set R'2(Y).

If Y is noh-singular, then RP(Y)zR’P(Y):Hi’(Y, C). Hence we use the
induction about s and assume the theorem is true for Y.

Let T be a current in ['x(Y, &'?), then by theorem 4, we can find a closed
form ¢ € I'(Y; — Y, &?) such that

(27) T|(Y,—Yy) =Ty, +dS on Y, -7,
Since T belongs in ['x(Y, &'?), dS also belongs in [I'x(Y, &'?). Then by (27),
car. (T —(Ty, + dS)) € Ya.
Since the theorem is true on Y,, we have

T —(Ty, +dS) = /§z Typ-Yiss, ea+dS', on Yz-

This proves the theorem.
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© Corollary 1. Ry(Y) does not depenid on X.
Proof. By theorem 6, we have

Ry(Y) = Ruan(Y),

where U(Y) is a neighborhood of Y in X. Then since U(Y) is a real analytic
manifold, it is imbedded in R" ((8]). Denoting this imbedding by ¢, we have

Ry Y) = Re{(Y)).

Since this right hand side does not depénd on ¢ and m, we obtain the theorem.
Corollary 2. If Y is a topological submanifold of X, then Rt(Y )~ H¥X, C) for
all p. |
Proof. By assumption, each irreducible component of Y is disjoint each other.
Hence we get

(28) R(Y) = HY, C),
(Y, 8 =TI(Y, C).

We denote the sheaves of germs of I'y(Y, O'?) and I'y(Y, &'?) by O'y? and
&' y?. Then since the sequence

7 res. d
v HHU, C)—>H?U —Y, C)—>RP-"+{(Y )—>

—>HP U, )

is exact, &'y?/dD'y*"! is the sheaf of the correction of local (p+47—1)-cohomology
groups of U—Y. Hence it vanishes for p>1 if Y is a topological submanifold of
X. Hence we get the exact sequence

(29) 00— y?——> D' y? —> @ 241 —3 0,
Since £'y? is a fine sheaf, we obtain by (28), (29),
RHY )~ H¥Y, &y~ H/Y, C), p=>1.

Corollary 8. If Y is an analytic subvariety and a topological submanifold of X
with codimension v, then the following sequence is exact.

i res. )
)" ..._.)HI’(X,' C—H!X — Y, C)—>H?"YY, C)—>

— > HPH(X, C)—>---.
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Corollary 4. If Y =Y'U - U Y", each Yi is irreducible, then there is a homo-
mor phism

h: H(YY, O - @ HIY, C)—> Re(Y),

Jor all p. This h is an isomorphism onto for p= 0 if euch Yi — Yin Y* U --- U Yi-t
U Yi*t U - U Y7 is connected and isomorphism into for p =1 if each Yi is locally
irreducible.

Proof. Since £'y? is a fine sheaf, there is a homomorphism from H?(Y, &%
to R¥(Y). Then since Cy' @ - D Cy" is a subsheafl of &' & is defined. The
rest follows from the definition.

13. Lemma 9. Let Y be a closed submanifold of Y;— Y;,, or X —Y;; and Ty
defines a curvent in I'y(Y, &'?), then

(30) ATy, [ ¢]
= (=1 Ty, gl ] +
T (=1 2 lim,

k>t oy -y, S OUY =Y, )=V, noU(Y, —Y, mnY’
V=Y

oA,

Lemma 10. If Y', Y" are closed submanifolds in Y; — Y, and homologous
each other, then Ty, and Ty, are cohomologous each other if ¢ is closed.
We denote the self intersection of Yi_Yi+1 in X— Yi+1 bY (Yi““Yi+1)'(Y,‘_Yi+1).

Then by Lemma 9 and 10, we define the cup product of R¥Y) = ZPRP(Y) by
(31) <2TYE—Yi+1,wi>U<§}TYi—Yi+1,Wi’>
= <(lE.TY,-— Yiet oi) A (2TY1'—Y£+1,V{')>-
Since we know
AT vi-vianei> U <9 = CITi- Vw018,

we obtain by (31) and Lemma 9,
Theorem 7. d(R*(Y})) and res. (H¥X — Y, C) or res. (R¥Y; — Y,) are ideals
of H¥X) or R*(Y; — Yy and R*(Y,) (iKk), and

(32) RXY j)/6(RH(Y g) = i(R*(Y ),
32y HYX, C)/a(R*(Yy) = i{H"X, C)),
(33) R¥Yp)/res. (RMY; — Yy) = 6(R™(Yy) (< R¥(Y}),

(33) R¥Yy)/rves.(H*(X — Y,, C) = oR¥Yy) (c H¥X, C)).
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Note. As (11), we obtain
(11)"” res. &NTY) =<dT"| Y 5,

in this case, too. Then by Theorem 4, we can conclude the results of §3 and
§ 4 as follows : If Y is a closed orientable subvariety of an ovientable real analytic
manifold X, then a closed current on X — Y is always cohomologous to a currvent on

X and the following sequence is exact,

i res. g
o HAX, CO—>H!X — Y, C—>Rr"*(Y)—>

——>Hr (X C)—>-,

where R?(Y) is given by theorem 6, res. is defined by (11)".

§ 5. Applications of residue exact sequences.

14. In this #°, we assume X is a complex manifold and Y is a complex
analytic submanifold of X with complex codimension 1. We set
Qr{RY} : the sheaf of germs of meromorphic p-forms whose poles ave in Y with
degree at msot k on X,
Ur{RY } : the sheaf of germs of closed meromorphic p-forms whose poles are in Y
with degree at most k on X,
Lemma 11. On X, we have

(34) U[kY} = C, UMY} = Ok — DY), p=2
and the following sequence is exact,
(35) 0—>dP{(k— )Y }—>VYURY }—>Cy—>0, k> 1.

Proof. If ¢=I'(U, 2?{kY}), then by Laurent expansion, we may set
p= jSZkZ'j((pj,l +dz N @j) + @,

where ¢, is holomorphie, Y is defined by 2=0 on U, ¢, and ¢;, both inde-
pendent to z and g;,, does not involve dz. Then since

dop = é(_ j)z_j_1d2A¢j,1 + jézkz‘j(dgoj,l —dz N doj,) -+ dog,

we get

dSDO = 07 Pryr = O, (—j)gaj’l = d¢j+1,2» j" = 1, “.rk - 1; d901y2 =0,
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Hence we have the lemma. : :
Theorem 8. Let X be a Stein manifold, Y its non-singular divisor, then

(36) HX-Y, C)
= HYX, U*{(k + p)Y }/dHYX, Qr-{(k+ p — 1)Y}), k=0.

Proof. By (35), we have the exact sequence

(87) e HX, dO(k — 1)Y })—>H?X, i[fl{kY})——+Hf’(Y, C)—

—>HP X, dQ[(E — )Y P>, B> 1.

Since X is a Stein manifold and the sequences

0 —>C—>(k — 1)Y J—>d2{(k — 1)Y }—>0,
0 —>UY jY 1—> Q9 jY I—>T{(j + 1)Y }—> 0,

sre exact, we have by (37), the following exact sequence.

(37) o> HP(X, C)—>HOX, UP{(k+p)Y /dHUX, 00~ {(k+p—1)Y P>
—>HY, C)—>HPX, C)—>-. | |

Then since the diagram

0—»dNY ] —— [ Y ]———Cy —>0
0 —dk—1)Y }—V kY }———>Cy —>0

is commutétive, we have the lemma by 5-lemma.

15. Lemma 12. If Y is a boundary, then o : R*-"(Y)>R/Y) is a O-map.

Proof. First we assume that ¥ and X are both non-singular.

Let T be a closed current with carrier in ¥ and ¥ ==¢Z, We take sequences
of forms {¥,} and {3,”} who converge to T and T,. We may assume each ¥, is
a closed form. Then

OT(Y] = lim. Sxﬁbn/\cﬁz"'/\sﬁ = lim. (S xVuNoz" Ndg).

11, H—co 7, M— 00

Hence 6T ¢] =0 if dp|X =0 in this case.

The general case follows from the definitions of R?(X) and & (cf. #°9 and
n°10),

Lemma 13. If Y is an irreducible complex analytic subvariety of C" with com-
plex dimension v, then there exists an analytic Zariski open set Y' of Y such that
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RYY) =0, p=7+ 1.

Proof. By assumption, there exists a principal divisor with carrier D of C"
such that D-Y is defined and contains the multiple points of Y. Then Y’ =
Y— D«Y is a Stein manifold and we have the lemma. .

Corollary. If Y and Y' are same as above, then the following sequence is exact.

) res.
(38) 0 —>RXY )—>H!Y', C)——>R?-(Y — Y')—>0.

Theorem 9. (cf.[17). Let X be an n-dimensional Stein manifold, Y its complex
subvariety with complex dimension v, then

(39) RNY)=0, p=7+1,
(39)" HNX —Y, C)=0, p=>2n—r.

Pfoof. Since H2(X, C)=0, p>=n-+ 1 ([20]), (39) and (39) are equivalent by
residue exact sequence.

To prove the theorem, we use the induction about # because the theorem is
true for r = 0.

If Y is irreducible, then the theorem is true by (38) because X is imbedded
in C" ((15], [19]).

If Y is reducible, first we assume the number of irreducible components of
Y is finite. Then we set Y=Y1U..-UY* and use the induction about .. Therefore
we assume the theorem is true for Y,.; = Y1U...U Y*-1. Then since the sequence

z res.
o RHYVE—3RI(YE — VE (1 YV —>RPU(YE () Y e

is exact, RH(Y¢*—Y*n Y,.;)=0, p># -+ 1. Then we have H(X -7, C) =0,
P> 2n —r because the sequence
i res.
X - Y, ,, CO—H{(X-Y, C)—>
—— 3y RP-ETH(Yh — VY, e

is exact and we get the theorem for Y,
If Y contains infinitely many irreducible components, then we set

X =UX,, X, DX, each X, is a Stein manifold and relative
compact in X,

Since X,,NY contains only finite irreducible components for each m, we obtain
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(40) RN(X,NY)=0, p=r+ L

Then we have the theorem because a compact subset of X always containd in
some X,,.

16. Theorem 10. Let X be an orientable n-dimensional real analytic manifold,
Y its orientable (n — r)-dimensional veal analytic subvariety and satisfies

R(Y) = CY'>® - @ CYH,
Y = Yty - UY% each Yi is irreducible,

then a closed (n — v — 1)-form ¢ on X with singulariiies on Y is written

(41) © = @+ 02 + @3,
¢, is closed and differentiable on X, ¢, is exact,

03| U = cioy; + or(p, Y1), UNY,+#¢, UnY,is non-singular,
Z Ci<Yi> = 0 in H"—-T(X, C).

Proof. By assumption, we have the exact sequence

) res.
0—>H"" (X, Cr—H""HX~Y, C)—>RNY)—>
d
~—>»H""(X, C)—>---.

Hence we obtain the theorem by theorem 4. ,
Theorem 10'. Let X be an orientable n-dimensional manifold, ¢ a closed (n—1)-
Jorm on X with singularities on discrete set of poonts {p;}, then

(41y ¢ =01+t 05
gél is closed and differentiable on X, ¢, is exact,
o3| U(D;) = ciop; + 0o(r(x, p*~"),
{c;} is arbitrary if X is open and Ec,- =0 if X is compact.

Moreover, setting o3 = o3 ({p;}, {c;}), we can take wy to depend differentiably on
{p.} and {c;} if X is open and depend real analytically on {p;} and {c} if X is
compact and veal analytic. /

Proof. We need only to prove the second assertion. For this, it is sufficient
to show ¢4 (p, ¢) depends differentiably on p, ¢ if X is open and ¢s(py, ps, ¢, —¢)
depends real analyticaly on py, p., ¢ if X is compact. To show this, we first note

(42) Taeny =0 in H'X x X, €) if X is open,
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{Taxx,o" — Txxa,o">=0 in H¥X x X x X, C) if X is compact,

where 4 is the diagonal of X x X, Then we get the theorem by the following
commutative diagrams with exact lines,

. i res.
H# (X x X, €) ——> H" (XxX~4, €) —> H'l, €) ———>
s . 1o K
res. .
0—> H"YXx{p}, C)—> H"MXx{p}-{p, p}, O—> H{p, p}, C) —>
0
—r H"(X x X, C)
N 8

-——D> HYX x{p}, C)=0.

{
HY"YX x X x X, C0 ——> H" (X x X x X —dx XvX x4 € — W
J . [
i
0—=> H" (P} X X X { P}, C) —> H"Y{pIxXx{p} — { b1, b, b2}y (b1, b2, F2)} C)y ——>
res, 3
—> R4 x XUX x d) H¥X x X x X, C)

res, 0 ¢

)
—> HY{{(p1, b1, Do)y (1, Doy D2})y C)—>H{ i3 x X x{p:}, C).

§ 6. Residue formula and composed residue.

17. Lemma 14. Lef y be a chain of X, an orientable manifold, Y an orientable
subvariety of X such that Y and y intersect properly. Then there exisis a series of
Sorms {3,"} such that

(43) Vv — tim, § oo™

o0

Proof. We assume y is defined by x; = -+ =%, =0 on U, a coordinate neigh-
borhood of X (x; need not be smooth). Then denoting the Heaviside function for
x; by ly;, we get

S go:lim,g ALy A Ndlyy", lim., L =1,
rNU U

Since 7(y), the sheaf of germs of p-forms on X which vanishes on 7, is
fine, H"X, (7)) =0 and we can define J," by

0" U = (dly" N -+ Adl "YU - ¢y,
v — " = (dl" A o Ny — (@A e NdL ")y,

llm S {744 A\ (l[)Uﬂ = O.

oo
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By the definition of 4,", we get

(44) IS Uryp /NG — S e NG|
slell, oy mAliel, o dn, m)
iHoelX—-Y, &%), where | ¢ U is given by
el | olx, Y) o) |,

= max,

7, U(Y) xeU(Y)
and [im. umoc e(n, m) =0, lim, yw), vivy-v UY), V(Y)) =0.

Theorem 11. Let y be a compact chain on X such that v and Y; — Y., intersect

properly for all i, ves./(p) is a closed form on Y; — Y, such that cohomologous to
A~
res. [(¢), then

(45) S 9)228

res, ;/(p).
ar T r(YVi—Yis1) /()

Proof. We may assume ¢ € ['(X — Y, &"-#). Then

= lim, lim, S NG
U(Y)-Y gzm o0 )

By (44), this last formula is equal to Hm. ;- (fim. U(Y)—»YS oA,

7o U(Y)
Then by (43) and the definition of 7'23. {0), we obtain (45),
Definition. (45) is called residue formula.
18. Lemma 15. Let y be a cycle on X — Y;.1 and in general position with Y, —
Yiv1, a closed form on X — Y, and cohomologous to Tyv,_v;.1, ¢, then

(46) Sr(’b = ST'(Y{“YHl)sD-

Proof. By assumption, we have
Sgb/\lsr == SY{—Y,'HSD/\JT :

Hence we get the lemma.
Theorem 11'. Let ¢ be a closed p-form on X — Y and v an (p + 1)-chain on X
such that y and each Y; — Y, is“in general position and

7e(Y; = Yi) =7,4(Y; — Yiui), 7: is a cycle of X — Y,y
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then

S o =0,
ar )

Proof. If y is a chain of X — Y,, then the theorem follows from residue exact
sequence and residue formula. Hence we assume the theorem is true for the
chains of X — Y; and assume 7 is a chain of X — Y.

By assumption, we set

-
i

7Y, =Y =0, k<.

r=7r 47", v is a chain of X — Y

Then we get

SarSD = Sar"#’ = Sr-(Y,'—Yjﬂ) res. j’(QD).

On the other hand, since the diagram

H/X-Y, C)
res. res. ;¥
0 =
Re-"+1(Y — Yiyy) ___2_.._—> H"‘r.f“(Yj — Y, Q)

b -~

3
HY(X — Yo, O

is commutative, dy<res. /¢)) = 0. Therefore

S"res. i) =0, a=p.(Y; - Y, 88=0

by Lemma 15, This proves the theorem.
19. In this n°, we assume X is a smooth orientable manifold. (cf. [2], §1).
Let Y, Y, -+, Y, be orientable submanifolds with codimensions 7y, 75, -, 7,
and assume they satisfy following condition.

Y1 and Yg, (YgUUYS) and (YgU*"UYS), YlnYZ and Y3,
(Yu---UY,) and (Y,U---UYy), -, YNn---NY,, and ¥,

are in general positions.
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Then we obtain residue exact sequences for the pairs

(X—(Yeu--UY), X -(Y1UYU---UY), ¥, - Y n(Yu--UY),
Yi-Yin(Y,u---uYy), Yi—VinTu--UY), inY,—YinYen(YsU--UYY),

(Yin--n Yoy, Yinv-en Yeu—Yin-n Y, Yin--nY).

We denote the residue maps in these pairs by res. vy, 7es. vinys, -
res. vin--nys and set ’

(47) 7es. vy, .., ¥y = V€S, Yin--.nYs-VES. vin Ve - ¥€S. V1.

Definition. ([127, cf. [2]). 7es. vy, ... v, is called the composed residue.
By definition, res. yy,..,y, is a homomorphism from
HYX —(Y;U - UY,), C) into He-(r+-+r0+s(¥V, n - NY, C) and the following
diagram is commutative. ' e
i
ey HIX — (YaU - UY), €) —>

res. vy
—>HHX — (Y U UY)), €) — HFe(Y, — YiN(YaUeUY), €)—>.

i
ey HE-T1#(Y, — YV N(YeU U Y, O—>

\

S HFH(Y, — Yin(YeUeeuY), O)

\fes. Y1, ¥s =

.......................................................................................

IR P - SN / \

res. yin-n ¥y
sy HE et 0 Y N n Y= YineenY, €) ——————p HECreead(yineny,, €)—

res. vinye

H-(np oY Y= Yin Yo n(YsU UV, €) —>o

By the residue formula (7), we obtain .
Theorem 12. Let v be a chain of X such thatl there exists a series of chains 1,
of Yy, o 0of YinYs, -, v, of Yin---NY, such that

(i) T and' Y, ‘7’1 and YiNnYs, -+, 7,-1 and YiN---NY, are in general posit‘ions.
(11) T.learly Tl'(Yl n Yz):ahy Y 7’572'(Yln =N Ys—1):37’s-1, Ts—l'(Yl NN Ys):T;-‘

Then we have

(48) S @ :K res. (p

ar Ts Y1, Y5
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Note. If Y; is given by fi1 = = fi,r; =0, i=1,--, s then for sufficiently
small ¢, -, &, the series of chains y, 71, -, 7. given by

=Gl 1l =30 0 U Gl 1l =

n={xl1 fu@l Sedn U

s — {x|f1,j(x) :0) i = 1, ey S, i 1; Tty ri}
=Y,n-nY,

satisfies the assumption of the theorem. The simplest example is X = C”, each
Y, is given by 2, =0, i =1, .-, m and y = {(2y, -, 2,) | | 2] = a;}.

20. We can define the composed residue for singular residues. We denote the
J-th multiple subvarieties of ¥; or Y, -+ NY, by Y4y or Y10 -+ N Y,,;41. Then
we define the (7, -+, j,)-composed residue by '

47y res. I U Js = pes, . res. . res. . .
( ) Yi, 5, Y5 YinenYsds YinYgie Yi,j1

where 7es. Yin..nY;j; means the j;-residue of the pair

Yin - nNYi1—YiN - NYiin(¥iU - UYY,
Yyin.nY,_,—Yin-- ﬂYi-1ﬂ(Y,~U - uY,
Yin - nY; = YN - Yin(YiU - UY)).

By Theorem 11, if a series of chains y of X, 7, of Y3, -+, 7, 0f YN - NY,
satisfies

(i)’ rand Yy,; — Y00, riand Yy N Yo, -, 75-1 and
yin.--nY,; —Yn - NY,;., are in general positions.
ity (Y151 — Y1141 = 91,41,
1130(Y10 Yo 5o — Y10 Y2, jors) == p2, 51,72,
Ts—2, j1r e, js-2{ Y1 - N Ys—1,55-1 — Y10 -+ N Yt jom141)
= Oys—1, 1,1 ds-15
Ts=1, i1, ds-12(Y1N = N Y55 — Y10 -+ N Y5 5541)
= Tsi it ds

then we have
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(48’ Sar@ = 1'1,%}1': 87’5.1'1,-".1'3 res. ?ljf,s(ﬁ

§7. Integral expreésions.

21. Lemma 16. Let va,-j(X), » ,=1, -, n be a system of differentiable functions
such that : :

(49) ’—_——“ = O, a,’i(x) = 1) aij(x) + aji(x) = 0, 1'7& jy

i :
then the differential form Y. > .. aij(x)x; — &) c\igci/r(x, & is an exact form. Here

%c,- and ¥(x, &) are
o ; ,
dx; = (,—1)"_%01*71'/\ e AdE AR N - NdX,
r(x, &) :«/Zl.}(xi — &P

Proof. We set

dxi/\dxj = (—1)‘”dx1/\---/\dxi_l/\dx,-ﬂ/\---/\dxj_l/\dxj+1/\---/\dx,,.

Then we get

~——

r(x, &)"-*

aa,-j(x)\/ . aaz](x)
rx, &2

n—2 N o
_m§ (1) (5 — €9 dx, — asf) (x; — £) )
(%,

(2 - 'Vl) k2<1 (aki(x) (x'k ‘_ gk) _i;maim(x) (xm - Sm» d}/t
B rx, &

(2= m) 20 aife) (x; — &),
- r(x, &' '

Hence we obtain the lemma if n>3. If n =2, a;(x) must be constants for all
(i, 7). Therefore we need only to show the exactness of {(x — &dx + (y — pdy}/
(x—&2+(y—»)?}, which is equal to 1/2(dlog(1/{(x — &€? + (v — 7)*}). Hence we have
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the lemma.

22. Theorem 13. Let f(x) be a differentiable function on a domain D of R" such
that D —{x} has same homotopy type of S"-' for any xeD and satisfies the
equation

(50)

I m
| v
=)
~
Il
‘s

Then we have on D

oy fe) =t L

Proof. Denoting dV =dx;A - Ndx,, we get

n n

ZZ% Jw; — &) f(x)d¥,

)
r(x, &)
$ of (x)
Bt oS
(x &r
7 n n
~ ) ZZ_;: 2 a;(x)(x; — &) (x; — fi)f(x)dv
(x, )+
= 1, OB, ) + (3] 3] @ — &) L s, e
i=1 y=1 axz

—an*EVM+E%m &) (x; — &) f(W}V
i=1

af (%)

0x;

=r(x, =0D{r(x, PP a; ()

j=1 i{=1

((x; — &;) +

2 (@) + @) (5 — &) (x; — &) f(®) IV

1<

:O_

Hence (D)2 D)% aifx)x; — &) (x)c}gc,')/r(x, £ is a closed form for all &
We set
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+ (f (%) — flg) =Li=t

(%, &"
Then we get

#Z.aji(x) (x; — Ej)%i
g f(E) ! r(x, S)n =0

because |f(x) — f(€)| = O (r(x, &) and f(é)(Z#jaﬁ(x)(xj — &)/r(x, &) is exact, There-
fore we obtain the theorem.

Corollary 1. If a function f satisfies (60), then f is veal analytic.

Note. In this corollary, we need not the real analyticity of a,;(x).

Corollary 2. If f is holomorphic on D c C™, then

(52) A& -y C)
1 S Dot — ) — A/ — 1 {2y — fzk)}%zk—1
:_“27,7_‘1_ 0Df<z1; ttt zm) (k=1
g {.(xl - E1)2 + et (x2m - E2m)2}m
m N/

/Zz{’\/——l(xweq — &op-1) + (%ox — Eap)dag,

{(xl - 61)2 R o (me - 52771)2}7”

Cp= Eoper + — L&, 2 = Xy 4/ — Lxgy, =1, -, m.

Proof. We take (a;,(x)) to be

1, —a/—1,
=1, 1,
(a;j{x)) = O
0
1, —4/-1,
V=1, 1,

then (g;;(x)) satisfies (49) and the equation (50) reduces to
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0%35_1 0%xgs 0z,

af(x) +«/jT%£) _ 0f(x) =0, k=1, -, m.

Hence - f is holomorphic and we have (52) by (51).
Note. If we use the complex coordinate, (52) is the Bochner-Martinelli,

formula ([47)

\/ﬁ - 1 IZ_;(Z/& - Ck)a%/k
2 ) g™l S oD 2) un .
(O Yz — S (2 — C)™

k=1

(52 o=

N - - - - o
dk:dzl/\dzl/\ ---/\dzk_1/\dzk_1/\dzk/\dzk+1/\dzk+1/\ ---/\a’z,,,/\dz,,,.

We also note that

Zm

( g(xi — &P

— >N — ‘:k)d;/k DNz — Ck)?i;'k
A/ — 1),,,( k=1 =1
2 m Lk
CXa—C) @20 O z—t0) @—2p)"

k=1 k=1

=— ),

L\l/zk = —dgl/\dzl/\~--Adgk-l/\dEk_l/\dzk/\dzkﬂ/\dEkH/\---/\dz,,,/\dém.

The first term of this right hand side is type (#, # — 1) and the second term is
type (n — 1, n). They are both closed and non-exact.
23. We take integers 7y, -+, #, such that

rk_>;2) kzly S, 7‘1+"'+rk:nk1 n, =mn.

We set Y:,r, the linear space in R” defined by %ry4ewdrpo1 = Ertgrdrpo1 4, Xrpheontrg

= &ryqtrp. Then
YE,?‘lm e N Yf.?'s: E = (51, Tty 67;)-

We take a domain D of R" such that for any £ € D, we can take a path
Or1, -, 75, D which is containd in 6D and satisfies (i), (ii) of #°19 for (Y;,,-l,.,., Ye,ro).

Example. If D =Dy X -+ X Dy,, where Dy, is a domain in (% t.wtr L,
x,.1+...+7k)~space, k=1,--,s, then we can take 0 ,...r;,¢ D = c’iD,:1 X+ X 8Dy, for al
e D.

We also assume that the matrix (g;;(x)) is given by
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a1 (&), oo, @rye{x), » 0
- Aay, j(x)): ’ "
0 ’ a115—1+1,715—1+1(x)v Ty a”,”s—l‘f'l(x)y
Qg1 4-1,0(X), <oeeee ay n(x)»

We also set

\/l 3 x-§)2

i= "k-l

\/ .
(dx), = (“U"k-ﬁ’“dxnk 1+1/\"'/\dxnk+i—1/\dxnk+i+l/\"'/\dxnk.

Then we obtain by theorem 12 and Theorem 13, ,
Theorem 14. Under the above assumptions and notations, if f(x) satisfies (50) on
D, then

(53) fE -, &)

S TGt Y0y weeyy, D f F0 )
: 1

1L 71 7 n
23 2 @l = £)(dx); . Azs-mzs-ﬁlaj,-(x) (x; — &) @x),
== =1 “en 1=n j=n

l(x» E)rl Ao.s(xy ‘S)ys

Note. In this theorem, the linearity of Y »; is not essential. For example,
we set
D ={x g <1, i=1, -, m},
0,y D = {(2) || g\(x) = - = lgi(®)=1,
strk = {(x)lgﬂk_1+1(x) = gﬂk_l”"l(é)r ) gﬂk(x)gnk(g)},
and assume 9j,, .., j; D satisfies (i), (ii) of »n°19 for Y,. Then we get similar
integral expression as (53) replacing x; by g and 0r,..r,¢ D by 9j,.j; D with

suitable assumptions about {g;;(x)). If D is an analytic polyheder, m =2n, s=mn

and f is holomorphic on D, then the formula is
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o (27{”\/——1)" jl.--'.jn aj'l."',jtfo( )
dgjl/\ /\dg]ﬂ

Z Zinl2)— ginlt

Since we know

dgl/\"'/\dgn
(gl(z) - gl(:)) o (gn(z) - gn(C))

(54)

_det.(g,/z, Oz Ndz, + Oz — §)
T (@) — a0z — &)

2iz) — 8:0) = 2z — etz O,

(53)" is the Weil’s formula ([22]). We note that (53) is true on any complex
manifold.

Chapter II. Residue exact sequence of Banach manifolds.
§ 1. Currents on C>-smooth’'Banach spaées. ’

24. We denote by E a separable C=-smooth Banach space, that is, on which
the partition of unity by C=-class functions is always possible (cf. [77]). We set
C=, ?(E) : the vector space consisted by C=-class p-forms on E (cf. [117).
Cy>, ?(E) : the vector space consisted by C=-class p-forms with bounded carrier on

E.
We define the topologies of Cy, #(E) by the semi-norms
0x» ml@) = sup. | DXpx) ||, K is a compact set, m<co.
sE=m,xeK

Then Ce>#E) and C,>>#(E) become locally convex topological vector spaces. These
spaces are denoted by & 2E) and < #E).

By definitions, if E” is an r-dimensional subspace of E, then

(ay w (& HE) = EHE), nlp) = ol E",
(1) "D NE) = DB

where & 2E") and &2 #(E") are the usual Schwartz spaces of p-forms on E'.
Similarly, we can define the onto homomorphisms =z, : & ?(E")> & E"),
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7' P E") >y (E°) and we get

r s
a'wt ==n, na’=un,.

Hence we can define the projective limits lim. [ & #(E"): =z, and lim. [ YE")
r £ —

N R
Lemma 17. If U,.E" is dense in E, then

2) EHE) =lim. [ ENE):ir],
(_.__

@) DB = lim, [ HE"): ],
(____

Proof. We define the into homomorphisms p: & #E)>lim. [ EXE) : z7]
it

and p: @ E)>lim. [ YE): = ]by
——

ole) = (m(e), msle), -+, mlp), ~+ooe ).

Then by assumption, p(p) =0 if and only if ¢ =0. Hence p is an into iso-
morphism. Therefore we obtain the lemma by (1)’ and (1).
Corollary. If ¢, € D YE) and lim. ¢, = ¢ in &P E), then ¢ belongs in < *E).
Definition. The subspaces of & ¥E) and 7 XE) (or & #E") and < YE")
consisted by closed forms are denoted by <7 '(E) and 7#E) (or <% Y E") and
S7HE)).

Since we know

—_  — r
dr, =n,d, dr,” = =n/d,

we obtain

3y B UE) =lm. [ HE): =],
£

(3) By =lim, [YHE"): =] ].
<

Lemma 18. If p=£0, then
(@ ENE) = d B 1),
(4) SNE) =dZ r-YE).

Proof. We need not prove the first equality (cf. [11]). To get the second
equality, we note .
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AP r-\E) = lim. [d 7 +-(E") : ,*].
4
Then since we know
dZ P E") = YHE"), 0 p<7,

we obtain the lemma by (3).

25. We denote the dual spaces of ¢ ?(E), etc. by go#(E), etc..

Definition. An element of <7 *E) is called an (0o — p)-current of E.

Definition. For an element T of < PE) (or & XE)Y), we define its exterior
differential dT by

®) dTTp] = Tldg].

Definition. If a currvent T satisfies dT =0, then T is called a closed current.
A current of the form dS is called an exactycurrent.

Lemma 19. On E, a closed (0o — p)-curvent T is always exact.

Proof. Since T is closed, we can define an element S’ of (d <7 #(E))' by

S'lde] = Tly],

because by (4), if do, = dg,, then ¢ = ¢ +d¢, ¢ e o P\E).
Then since <7 #*Y(E) is locally convex, there exists a current S of E such
that h ‘

Sid THE) =5,

by Hahn-Banach’ theorem ([107). Hence we have the lemma for p>0. For p=0,
we note that '

FYE) = {0}.

Therefore we obtain the lemma in this case.
Note. If T e (& #(E), then this lemma is also true for p >0. For p=0, T
is exact if and only if

dT =0, T[1]=0. 1 is the constant function on E with value 1.

Since >, Z #E) is an (algebraic) ideal of >, & #E), we can define the
product of a current T and a form ¢ by

TAelg] = TLpNg].
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If fis a function, then we can define f-T by T-f. Then since E is paracompact
and C=-smooth, we get

Lemma 20. Let T and S be two (co — p)-curvents of E such that for any xcE,
there exists a neighborhood U(x) of x and

Tle] = Sl¢], car.pc Uk).

Then T=S. This is also true for the elements of % *E).
By this lemma, we can define the carrier car. (T) of a current 7.
Lemma 21, We set

UE", &)= {ylmin. ||y — x| e},
re F

and assume there exists C=-class projection p" : UE’, ¢)—>E" such that
elos = oty o) =o' |UE", ¢ N E,

for some «. Then lim. [ & 2B |z, *] and Um.[ & XE") |z, *] are dense in 25 2(E)
—> —

and & /E).

Corollary. If E satisfies the assumptions of Lemma 21, then
(6 ENBY = ENE),
(6) D HEY = D HE).

Note. If E is a Hilbert space, then the assumption of Lemma 21 is fulfilled.
26. Let Y be a closed p-dimensional orientable submanifold of £ such that

) YUB is compact if B is a bounded closed set of E,

then the currents Ty and Ty,, given by
Ty [¢] = S v

Ty, o[¢] = Sygomb,

are defined, if we fix the orientation of Y.
Note. A closed p-dimensional submanifold Y of E satisfies (7) if and only if
there exists a series of integers {s(#)} and subspaces {Es("} such that

Y'n BmcEs, Bm) ={x| | x| <n}

Estc Es0+D) ) dim, s = s(n),
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Theorem 15. If Y is a ‘closed p-dimensional orviented submanifold of E and
satisfies (7), ¢ a closed q-form on Y, then there exists an (0 — (p -+ q + 1))-current
S on E such that ~

(8) dS =Ty,,.

Proof. We can define an element S’ of (d.<7 #*YE)) by

SCU'dg] =Ty, L¢],
because d¢ = d¢' implies ¢’ = ¢ + da, acs & ?*"(E) by Lemma 18 and
Ty, . da] =0,

Then since <z #+*7+YE) is locally cbnvex, there is an (o0 — (p + q -+ 1))-current S
on E such that

S|d D UE) =S,

by Hahn-Banach’ theorem ([107]). Hence we have the theorem.
Corollary. There is an (co—1)-current T such that

© TCdf = f(0).

Note. If Y is compact, then Y satisfies (7) and the current (8) is taken to be
an element of (& ?*7+YE)). Especially, we can take T of (9) to be an element
of (ZHE)).

Similarly, if Y is a closed real analytic subvariety of E such that Y satisfies
(7) and each Y, — Y,,, is oriented, then we can define the groups I"y(Y;— Y;.1, &)
and we obtain

Theorem 15'. Under the above assumptions, if o,;el'(Y; — Y., &>—) and

s—1
DI res ifp) =0,

i=1k>i

then there exists a current S of E such that

8) dS: T i
© 3Ty, v

itly

§2. (o0 — p)-de Rham groups.

27. For any (oo —dimensional) Banach manifold X, we can define C=?(X) and
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& X) similarly as C=?E) and & #(E). To define Ci>?(X) and <7 #(X), we
assume X is a (not necessarily closed) submanifold of E, a separable Ce=-smooth
Banach space. In the rest, we fix this inbedding i: X —»>E. Similarly, if X is a
Banach analytic space (cf. [57]), then we consider X to be a (not necessarily closed)
subanalytic space of E.

Definition. car.(p) of a differential form ¢ of X is called absolutely closed, if
it is a closed set of E.

Definition. car.(¢) of a differential form ¢ of X is called bounded if it is a
bounded set of E. '

Then we define
Co>2(X) : the vector space consisted by C=-class p-forms with absolutely closed and

bounded carrier of X. ‘ .

X X) : the topological vector space vegarded Cy=?#(X) to be a subspace of £ #(X).

Since E is Ce-smooth, we have

Lemma 22, If X is a closed submanifold of E, then

(10y &NX) = EHE)| X,
(10) D X)) = DHE)|X.

Lemma 23. If there is a sequence of closed submanifolds {X'} of X such that

(i) dim, X" =un{r), lim. nr) =00, X" DX, UX =X,
¥ —» o0 4
(ii) each X" satisfies (7),

then denoting n', . F X' ) > X%, r=s the map defined by =", = ¢|X*, we

have
(11) D X)=lim. [ XXz
<__
Note. For & #(X), we obtain
{11y ExX)=lim [EHX):z,],
«.—.
if {X"} satisfies only (i) (cf. [14]).
We denote the subspaces of % ?(X) and <7 #(X) consisted by closed forms by

& HX) and 7#(X). Then we know ([117),

(12y HYX, €)= 0 #X)/d &+ (X),
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where the left hand side is the Cech cohomology group. We also set
(12) HY(X, €)= Z¥X)/d &+ YX).
Note. By definition, we get

(13) EHX)= D NX), Hr(X, C)=H!X, C) for all p,
if X is a bounded closed set of E.

But in general, H?,(X, C) £H?(X, C) and H?,(X, C) is not a differential structure
invariant,

28. Definition. An element T of < #X) is called an (o — p)-current of X,
As in n°25, we define exterior differential d, etc. for the currents of X.

By (10), if T is an (o0 — p)-currents of X, then we can define a current
#H(T) = mx™(T) by

(T e] = TlelX].

Theorem 15". If T is a closed (co — p)-current of X, then there is an
(00 — p — 1)-curvent S on E such that

(8)" dS = a*(T).

Proof. Since do|X = d(p| X), T[de|X] =0 for any g <7 ?-YE). Hence by (4),
we can define S’ € (d2 ?~(E)) by

S'lde] =Tl X

Therefore we have the theorem by Hahn -Banach’ theorem.
Note. In general, if Y is a closed submanifold of X, then

a(DHX) = T HY), nlg)=9|Y. -

Hence =* : &7 HY) —» <7 P(X) is defined. On the other hand, if Y is an open set

of X, then there is an inclusion ¢ : <7 #(Y)—» <7 #(X). Hence * : oy #X) —> < #Y)

is defined in this case. Since = is an onto homomorphism and ¢ is an into iso-

morphism, =* is an into isomorrphisrln and * is an onto horhomorphism.
Definition. We set -

(15) S X) = (A D (X)L ] d D XY,

and call the (co—p)-de Rham group of X. Here (d <y I"I(X))L\is the space of closed
(oo — p)-currents of X. B : B , L
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Similarly, we set
(15) N X) =(d E PO/ d(E XY
Similar as H2(X, C) and H?,(X, C), we have
(13y G X) = ZZ7 "¢ X), if X is a bounded closed set of E.

Lemma 24. If Y is a closed submanifold of X, then theve are homomorphisms

(16)/ : x' Hey(X, C)— Hry(Y, C),
(16) - 7 L WY ) oy G (X))

Lemma 24'. If Y is an open set of X, then there are homomor phisms

17y P HAY, C)—~ HPY(X, C),
(17) 1 SN K ) > TEHY),

Definition. If Y" is an v-dimensional oriented submanifold of X and satisfies
(7), then the class {Ty)> of Ty in S77~""(X) is called the dual class of 'Y and denoted
by <T>.

If Y is an 7-dimnesional real analytic subvariety of X, a real analytic Banach
manifold in E, such that Y satisfies (7) and each Y, — Y, is oriented and has
only finite irreducible components Y*, .-, Y*, then by Theorem 6, corollary 4,
there is an into isomorphism % : HY(Y!, C)® --- @H(Y®, C)—~RY(Y). Then denoting
(Y% the class of Yi in HYY:, C), we set

(18) (Ty) = Z,l‘h(<Y">)-
Then the class {Ty> induces an element of 2#""(X). It is also called the dual
class of Y.

29, Since d & YX), dz*YX), d(F? X)) and d? (X)) are closed
subspaces of <7 §X), 7rX), dZ (X)L and (dD Y X)L, HHX, C)
HMX,C), 2#~"#X) and d‘”/ﬁ’“"(X ) are (locally convex) topological vector spaces.

Theorem 16. For any p, we have '

(19) (HPYX, C = SF=X),
(19 (HAX, C) = = HX).

Proof. For {p)> e HHX, C) (HYX, C) and (T)> & 577~ NX) (7~ X)), we
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define

Ko, Ty = To].

Then <<gn>,<T>> is well defined. Hence we get a homomorphism 9 from
2= NX) (SF=H(X)) into (HMX, C)Y (HXX, C))). If 9KT) =0, then T[p]=0
if ¢ is closed. Therefore we define S € (d. < Y X)) (d & ?"{(X))) by

Sldel = Tle].

Then we get T = d§, where S is an extension of S. This shows ker. 9 = 0.
If = belongs in (H?,(X, C) (HXX, C))'), then we define Te( w (X)) (<7 (X))
by

Tle] = (e

Then we get rzf)((T)), where T is an extension of 7. Hence we have the
theorem.
Corollary. If X is connected, closed and bounded, then

(20) . (X)) = C.
On the other hand, if X is closed, connected and unbounded, then
(20’ G X) = {0L.

Note. 1. Since HY%(E, C)={0}, S#=(E) vanishes. On the other hand, we know
that the unit sphere S~ of H, the Hilbert space, is diffeomorphic to H (7).
Therefore QKN‘P(X) is not a differential .structure invariant.

Note. 2. If E satisfies the assumption of Lemma 21, then &7 ?( X)) = < #X).
Therefore (S77~"#(X))' is isomorphic to H X, C) for all p.

Note. 3. If X is an (infinite dimensional) Banach analytic space in E, then
we define

Re#( X)

_ {the space of closed (c0 — p)-currents of E with carrier in X}
" d{the space of (0o — p — 1)-currents of E with carrier in X}

§ 3. Residue exact sequences, III

30. In this §, we assume that the pair (X, Y) satisfies either of following/ (i)
or (ii).
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(i), X is a Banach manifold, Y is an (orientable) closed submanifold of X such that
there exists a series of ovientable submanifolds { X'} which satisfies the assumption
of Lemma 23, and X'NY is an orientable submanifold of X for each r.

(ii). X is a real analytic Banach manifold, Y is a veal analytic subvariety of X such
that there exists a series of orientable real analytic submanifolds {X7} of X which
satisfies the assumption of Lemma 23, X"'NY is a real analytic subvariety of X~
for each v and each (X'NY); — (X" NY);.1 is orientable. '

Since X — Y is open in X in each case, there are following inclusion maps.

DX Y )> “ HX),
DX > DHX Y.

By definition, ¢ed = det. Hence ¢*«d = d-*. Therefore we get

(21) UK — YY) O HX), ([dD X — YY) © dD PX),
(21) G dD XN dDHX — ),

AT P XY) C d( DX~ Y.

Moreover, if X7 is an r-dimensional closed submanifold of X and satisfies (7),
then denoting =, and =", the homomorphisms from <7 ?(X) into & ?»(X7), etc.
defined by z.(p) = ¢| X", etc., we have the following commutative diagrams,

GHX —Y) N D ¥X) DX -Y)NX f)-‘—+£/7 §XT)
(22) r ’

T, ; T, ' A

DHX = VINX)—> DK, DX — VIX)—> FHX,

Theorem 17. If the pair (X, Y) satisfies (i) or (ii), then a closed current of
X — Y is always cohomologous to a curvent in *-image.

Proof. We take a non-exact (oo — p)-current 7 of X — Y. Then there exists
a closed form ¢ <7 #(X — Y) such that
(23) Tle]l=1.

On the other hand, since T is closed, ker.T contains d < ?" (X —Y). Hence we
get

(24) z(ker. T)N 97X (X — YINX")2d (X ~ Y)NX"), r>p,
(24) m(p) & mlker. T) N @ ?(X — Y)nX"), r > p.
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Hence there is a closed (v — p)-current 7T, of X' N(X — Y) such that

(25) Tyfm,o) = 1,
ker. T,N o7 %X — Y)NX")Dn(ker. T)N o77(X — Y)N X7).

Since ker. T,.N 97#(X — Y)NX") is determined by the cohomology class of T,
we have by Theorem 3 or Theorem 4,

(26) tlher. T,N 7YX —Y)N X7) 3 em ().

Hence by (25), we get

(27) (mlker.T) N 72X — Y)NX") D (m{p).

Then since we have by the commutativity of the diagrams (22),

dker. TN X —Y)

= lim. [dm,fker. T) N /HX —Y)NX"):x"],
—

we obtain by (27),

(28) o ¢dker. TN 77X —Y)).

Therefore by Hahn-Banach’ theorem, there is an (co — p)-current 7 of X such
that

(29) T(g) =1, ker. Toker. TN X —Y).
By (29), we get
(T =<T.

Hence we have the theorem.

31. Theorem 18. Under the same assumption of Theorvem 17, we have the follo-
wing exact sequences.
{. (X, Y) is the case (i) of n°30.

o* res.
(30)r vy G WX > JFHX — Y)—>H (Y, C\—>

TC*
—3 G b X) —> o dim. Y =1 .

: * res.
(30); o> G K> G X — ¥ ) S (Y )



138 Axira Asapa

s :
—» G P X} ——peee, dim.Y = oo,

(ii). (X, Y)is the case (i) of n°30.

o* res.
(30) ;' iy SN X ) G772 (X — V)R Y )—>
TL'*
— ST X ) ——3ene dim.Y =r.
oF ) res.
(30),' ey SN X )y S X — ¥ )—> R>PH(Y)
s
— G P X e, dim.Y = co,
Here res. is defined by
(31) res. (KMTP) =<dT>.

Proof. By Theorem 17, res. is defined and Im.:* = ker. ves. .
By the definition of =*, Im. res. is contained in ker. z*. On the other hand,
if #*KT>) =0, then we can define S € (d <7 #(X)) by

S[de] = Tl¢].
Then the extension S satisfies
res. KSD) = <{T>.

Hence Im.res. = ker.n*.
By the definition of ¢*, Im.z* is contained in ker.c*. If *(S)) =0, then we

have
HS) =dT.
Therefore
(32) Slel=0, ¢ (X —7Y).

Since 2?7 y(X) = {ploe Z*YX), ox)=0, x Y} is a closed subspace of
< ?71(X), the quotient space & " YX)| Y= X))/ 7 * ty(X) is a locally convex
topological vector space and .77 YX)|Y = /7 Y(X)/ P Y{X) D2 1y(X) is an its
closed subspace. Since S can be considered to be an element S |Y of
(7*X)| Y)Y by (32), S|Y is extended to -an element S|V of <7 (*Y(X)|Y).
Then by the definition of &7 #71(X) | Y, S|Y defines an (0 —p+1)-current S’ of X

which satisfies
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(33) Sle]=S"le], ¢eX?YX),
(33) STl =0, car. gbC X —Y.

Hence <S> = <{S'> and <S'> belongs in =*-image. Therefore we have the theorem.
Note. In the cases (30); and (30),/, we may set

7=+ HX) instead of SF~#(X) if codim. Y =7,
7o+ X) instead of S~ "2(X) if codim. Y = oo.

Then (30); and (30),’ éfe rewritten as bthe following exact séquences.

(34), ...__,y/ww—p(x) o GE WA — Y )y S PN Y ey
ey G P K codi’rﬁ. V=7,

(34)= vy G oot WX )y G (X Y)ﬁ/'P+1,(Y),,——+

> It (X )y, codim. Y =00,

a4 o TR (X) o ST NK — Y ) RPN >
> FETt T X ), codim. Y = r,

(34)ea’ v GE o (X Ny G ot (X — V) R PHY )
—> S koo b X, codim. Y = oo \

Definition. The exact sequences (30)r, (30);, (30)', (30)/, (34),, (34), (34).' and
(84)e' are called residue exact sequences for (co — p)-de Rham groups.

32. Similarly as Theorem 5, if X isa feal Banach vénalytic space, Y its
closed real analytic subvariety such that \i:'her_e‘exists a series of closed orientable
real analytic subvarieties {X"} which satisfies ‘

(i) dim. X" =n(r), lim. nlr) = oo, X""2X", UX =X,
¥ —>o0 ‘ ¥ i
(ii) each X' satisfies (7), :

(iii) each (X" N Y), — (X" N Y),,1 is orientable,

then we have

H
i

Theorem 18'..The following sequé\hces are exact.

¥ res.
(35)r ---—-)»Réé"/’(X)——-)Rw‘f’(X = Yy —R -2 Y)—

¥

, —»RemtHX Y. \’ dim.Y=vr and Y salﬁsﬁes (7.)';;
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o res.
(35); cor—» RO X)—» R HX — Y )—>Ro P Y )—>
™
—» Rt (X )—pee. dim. Y = o0,
Note. In the case (35);, we may set
R=*""#(X) instead of R*"?(X) if codim.Y =7,
Reteo=2(X) instead of R>"2(X) if codim. Y = oo,

Then (35); is rewritten as the following exact sequences.

o* res.
(36), oo PRI X )y RN X — YV )y RO (Y )y
P
e RO X e codim. Y =7,
o res.
(36)= sy RF TN X Vep Root o MY — ¥ ey R PH(Y )

o
»Rootoo b+ (X )y, codim, Y = oo,

We also obtain

Theorem 19. We define the homomorphism- o' 1 H'—»+ (Y NX°, C)—>
Hus)=p+1(X, C) by (—1) ws)=r=105, where v, =dim. Y NX' and & is the map
defined in (6). Then the following diagrams are commutative,

case. (i)
o
ey G X e N X - Y e — e —>
ﬂ's* i 71'5*

e HHO=HXC, C—>HAI=H(X ~Y)N X, C—>

res. T*
S HI=PH(Y, €) —> 77X >

res " a' "
—>H;~2+ Y N X, C)—>HH -0+ Y XS C)—>er, dim. Y =7,

[*
o> S WX > G HK — ¥) >
71'5* z'* TES*

...—_)Hn(s)—l)(X” C)__)Hn(s)—h((X_ Y)ﬁXS, C),___)

res. ¥
—> Sy YY) > Sp o R X fe

* %
res. Ts & s

—>Hr,~0+YY N X, C)—>Hr)=0+YX*, C)—>r, dim. Y = oo,
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case. (ii).
o*

iy Gt X ey WX — Y e

TS i*

v Hn()-02( X, C)—>HG)-2(X — V)N X", C)—>

¥

res. P
> R0+ X ) G772+ X)) —.
res. " ' "

—>Rrs=0+(Y () X\ Hn()-- 24 XS C)eee, dim. ¥V =,

ot
o> G N X Yooy S X — ¥ >
ﬁs* z‘l‘ T[S*
vy ()= 0( X5, C)—>H) - 2(X - Y IN X, C)—>
res. "
» R0 HY Y Yoo G0 DAY X oy

; *
res T 5 s

—>Rr— 0+ Y N X) —> HAO=5+YX, C—>e, dim. ¥ = oo,
8§ 4. Residue exact sequences, 1V.
33. Lemma 25. If U=E or an open ball in E, E" is an v-dimensional subspace
of E such that UNE" £ ¢, then

(37) SF=oU —E'nU)={0}, p#7+1,
%.00—7.._1([] . E’ﬂ U) = (.

Proof. Since .577=—#(U) = {0} for all p by Lemma 18 and Theorem 16, we get
res. . Sro-oU — E'NU)~ H-»+YE"nU, C),

for all p. Hence we have the lemma.

Similarly as in #°1, we denote D'°-2, @'w—? O'=-#[Y ] and &>—2[Y ] the
sheaves on X, a Banach manifold in E, consisted by germs of (co — p)-currents
etc.. Here Y means a closed submanifold of X. We also denote the stalks of
'=—2 etc. at x by '-2_, etc.. Then by Lemma 25, we have.

Lemma 26. If Y is an v-dimensional closed submanifold of X, then

(38) B Y], = G/=-rH[Y],, b7 +2,
@'Y ], /dD'= 2V ], > C.

Corollary. Under the same assumptions about X, Y, we have
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(39) dO/==2[Y ] =@=—sH1[Y], p£7 +2,

and the exacl sequence

: i res. o
(40) 0 —> dD'w=r=2[ Y J—@==r=1[ Y J'—> &y —> 0,

where the stalk &y,, of €y at %is equal to {0} if x€Y and & y,,=C if x€Y.
Lemma 27. The sheaves &y and d'==»[ ¥V 1/dD'*—» are determined by U(Y),
an (arbitrary) neighborhood of Y in X. ‘
Corollary. If Y satisfies (7) and has the tublar neighborhood in X and h is a
diffeomor phism of Y, then ‘

{41) E 'y E v

A ==2[[ ¥ ]/dS == == A=~ p[ (Y )]/dSD'=~>.

Here the sheaves in the vight hand sides are considered in E.

Proof. By assumption, % is extended to a diffeomorphism % : U(Y )—3>V{i(Y)),
where U(Y) and V(i(Y)) are suitable neighborhoods of ¥ and A(Y) in X and in E.
Hence for any x € Y, there exists a neighborhood W(x) of x in ¥ such that

E | W) = F wn | H(Wx)),
A=Y /d) 2| W(x):d@’”—b[h(Y)]/dD’“‘ﬁ T R(W(x)).

P

Then since Y satisfies (7), we have the lemma by the definitions of the sheaves
&y and dQ'=—t[Y /dD -2, Ct

34. Since dim. Y is finite, we can imbed Y in a finite dimensional subspace
of E. We take a sequence of subspaces {E*} of E such that

(i) dim. E* =s, E°* D E°, each E° contains Y.
(i1) . UE’=E.

Then, if Y is orientable, we have the following commutative diagrams
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[*
oy P b B 7= D ¥ Jeey

”t*/ ln's * Wt*/l w*

s HHE, C) —> HHE* —Y, C)—>

el e

> HNEY, €) —>HHE — Y, C——

res. a*
—H" Y, ) ———> GFFo P E) ..

res. M/ l: 5 ”‘*/ l”‘*

—SH™ Y, C)———> H P ES, C)re-

res. &‘ l: D) \ l”s'*

—SH (Y, ) H P YES, ), —>--

i res.'
0——>dD' =AY @ = V] > Fy—r 0

ﬂ't*/l”s* it ”t*/ ¥ res 71':*/ l”s*
0——=>dO" Y J—> @ YV] —» & y—>0

T g T res. ! \ '
0——dD"" Y J—> @ [YV] —> & —>0.
By the commutativity of the first diagram, we get
at S E - YY) H"HE - Y, C)
Then by the commutativity of the second diagram, we obtain the following

commutative diagram.

oy HTPH(E do [ Y ) H 2 (B, &= 1[Y]) —>

P PR
o> PN B) — > 97> NE — V) ———>
ff-)H’"P+1(E, %Y)_—)Hr._wz(Ez, dD’w"‘Z[Y])—%)~--

P o
—>H Y, €)——> FF=NE) ——————reee.

On the other hand, we get %y = Cy if we consider Y is contained in E°

and by the corollary of Lemma 26, we have

ot H-2E, §'e""I[V] = Sp7=PE - Y).
Therefore we'hﬂave N ‘ }
(42) xt : HT=2*YE, dO'=""" Y ])~ JZ~XE).

Since the sequence

0 i)/ b3 dfD' = H Y JpdD' kY /5D > 0
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is exact, we get by (42) and the corollary of Theorem 26,
Lemma 28. If Y is an r-dimensional orientable manifold and satisfies (7), then
(43) HYE, dQ'<"HY]/dD'="%) ={0}, ¢=1, k=r+2.

Corollary. If Y is an v-dimensional closed orientable submanifold of a Banach
manifold X such that

(i) Y has a tublay neighborhood in X,

(ii) Y satisfies (7),

then

(43) HYX, dQ'HY /dO'= " =0, q=1, k=7 + 2.

35. Theorem 20. Let X be a Banach manifold, Y an v-dimensional closed orien-
table submanifold of X and satisfies above (i), (ii), then the following sequence is
exact.

o* res.
(44) oy SN X ) —> S X —YV)—>H"*YY, C)—>

o

0
—> G P X ) e

Proof. By the exactnees of the sequence (40), we have the following exact
sequence.

Z‘I*

ooy HP P, A/ Y s H O PH(X, @/ 1Y s

res.'* 0
—>H"PX, & y)—rHTPX, dD Y T]) > e,

In this sequence, we have
H™r(X, &y)=H" Y, (),
H X @[ V]2 @ 2(X — V),

by #°34 and the corollary of Theorem 26.
On the other hand, since the sequence

0—>dSD by dS D o ¥V —2dD >4 Y] /dSD > t— 0
is exact on X, we have by (43)
(45) HYX, dO'="H) = HYX, dO'="HY]), ¢=2, k>r+2.

By (45), we obtain
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(46) Hr=p+4(X, d'e=2[ Y ) o HT=p+4(X, dD'=""""), ¢ > 1,
r—p+t>2

because we know

Hr-23 (X, dQ'"2[YV ) = H (X, dO'=""t" 1Y)
Then we have the theorem because we know

Hr27(X, dfd/eo7 ) oo S XY,

Similarly as Theorem 19, we have

Theorem 19'. If X° is an s-dimensional closed orientable submanifold of X such
that YN X* is a closed orientable submanifold of X*, then setting dim. Y N X° =r,,
we have the following commutative diagram.

i*
—> X ) ——

coo—> ST N X))
_ 7 * ¥ ¥

w3 X Oy— H (X -YNX, C) —>

res, J

S H" Y, C) > G X) ——peen

* *
res. s Ts

d
yHr ~0+YY N X°, C—>)H* 273X, C). —>

Note. In this case, we need not change the sign of
0 H=o+YY N XY, Cy—rH"?"(X*, O).

§5. Appiicafibns of residue exact sequences, II.
36. We assume the pair (X, Y) satisfies either (i) or (ii) of #°30, and dim. Y =
r < oo, Moreover, if (X, Y) satisfies (ii), then the homomorphism 7% : RY(Y)—>
HYY, C) is an isomorphism. Then since the sequences

o* res. . a*
- Qe ST X ey G X - Y ) H Y, C)—> 5777 (X )=
o* ves. ¥ ‘

0—=> 7" X )——=> 7" X =Y )—> R(Y)—> Zz77"(X) —>

are exact, we get - AR
Theorem 21. Under the above assumptions, a closed (oo —y — 1)-currvent T of
X — Y is written

(47) T=T+ Ty + Ty
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T,€ Hdz ="YX, Teedlz="3X~-Y),
res. Ty =3 1 cXT;>, ¢X¥Y> =0 in F="(X),

where HY(Y, C) = ,C<Y .
Theorem 21'. Let X be a Banach manifold and closed in E, Y={ p;} is a closed
0-dimensional submanifold of X, then a closed (co—1)-currvent T on X—Y is written

47y T=T,+ Ty + Ty,
Ty e M Fdo¥ X)), Teed P> X-Y), res. Ty = e P>,

{¢;} is arbitrary if X is unbounded andZ‘J c; =0 if X is bounded.

Mbreover, setting ‘T3 =Ty p;3}, {c.3), if {p;} move in finite dimensional domain,
then we can take T to depend differentiably on {p;} and {c;} if X is unbounded
and depend real analytically on {p;} and {c¢;} if X is real analytic and {p;} and
{c;} move real analytically.

Proof. We need only to prove the second assertion., For this, it is sufficient
to show Ty(p, ¢) depends differentiablly on p, ¢ if X is unbounded, and
Ty( b1, Pe, ¢, — ¢) depends real analytically on D1, De, cif X is bounded.

By assumption, we assume p or py, ps move in R” and denote their graphs
in X x R" by I'. We may assume I’ is an #-dimensional closed submanifold of
X x R* if X is unbounded and an n-dimensional closed. real analytic subvariety
of X x R" if X is bounded.

Then since E X R” is C-smooth, we have the following commutative dia-
grams with exact raws,

oYX X R)——> G =YX x R — [)——>

G X X L)) —> DX x{p}— {p, PI—>
S HY D, C——> 97X % R")

—>H({p, b,} C—> S7=(X x {pY),
S Y X X R")———> 97X X R — T

A4

G X XL by, D=2 277X X { p1, b2} — {(D1, b1, Do)y (Do, D1y DIP—>
>R™(I") » 577X x R"

—>H{(p1, D1, Do)y (Do, Pro D2)}) —> SF(X X{py, P}

which show the theorem.
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Corollary. If X is unbounded, DcX is an n-dimensional subset such that D is
diffeomorphic to R", f a smooth function on X, then there is a current Tpe of X
such that Tp,: depends differentiably on &, § € D, and

(48) Tp,eldf =S¢, ¢ D.

Note. Let E” be an 7-dimensional subspace of E with coordinate (x,, .-+, x,),
then we denote the diagonal of E” x E” in E x E” by 4, and set

Se,g = {xh ey Xy El) STt Er) { \/Z (xi - Ei)z = ¢ }
cE"x E"Cc E X E",
then there is an (co — #)-current T,¢. of EXE"™ — 4, such that T,:. depends
differentiably on &, ¢ € E”, and
Tr,f, s[d§0] = SS(", 0.

Moreover, Since S, . is compact, we can take 7,. . to belong in
(< #?E x E™ —4.,)y. Then we get

48y T, e [d(fo Y%, )] : SSe,sfwr_l(x’ &) = Ssef(x — S L,

1 Z xi?{xi

S, = SO,ey wr—l(x’ S) = - Y=
S T

o1

37. We assume X is connected, p € X, then since 77X — {p}) =
(H%WX — {p}) =0, we have the exact sequence

ok res.
0 —> 577 WX )—> 7" X — {p})—>H{ p}, C)—>
—7[—>f/‘fo°(X J—> 0.

Since we knowl e X) = C if X is bounded and closed and S77=(X) = {0} if X is
unbounded, we get

o1 S X) = S X — {bY),
(49) ot TH({ p3}, €)= (X)),

By (49), if T is an oco-current of a closed bounded Banach: manifold X, then
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(50)' TLf] = cf(p) + SpLdf].

We denote 0, the oco-current of X defined by o, /] - f(p), then since ¢ = T[1]
in (50), we have

(50) T = T[13, + dS,.

By (50), we have
Theorem 22. If X is a closed bounded Banach wmanifold, Y a closed submanifold
of X and satisfies (7) if dim. Y < oo, then

(51)r o H'(Y, C)x= &F=(X), dim.Y =r,
(51); ¥ 1 GE(Y ) e FENX), dim. Y = oo,

Corollary. Under the same assumptions about X, Y, the homomorphism
5 G Y X V—p G X — V) is onto.
On the other hand, if X is unbounded or open, the sequences

o* . res.
‘e X > 57X — Y )—H"(Y, C)—>0,

ok res.
SN > 77X — Y —> 57V )—> 0

are exact. Hence we get .

Theorem 22'. [f X is unbounded and Y is also unbounded, then
& e X )y o (X — Y) is onto. :

Similarly, we get, for example, denoting S” the closed submanifold of X
which is diffeomorphic to §%, then

o G X)) = 277X — SN, pFEn A+,
if X is unbounded and S* is homologous to 0 in X,

oty S X)) e G X — ST, pF£om,
if X is bounded and S” is not homologous to 0 in X,

ot res.
0 — 97" Y X )—> 77" Y X — S"—>HYS", C)—> 0, is exact,

if §” is homologous to 0 in X,

* o
0 —>HYS", Cy—> 57" X )—> S7="X — S"—> 0, is exact,
if §” is not homologous to 0 in X,

38. As in 7°19, we can define composed residues for the pair (X, Y;, -, Y,),
where X is -a Banach manifold and Yj, ---, Y, are closed (orientable) submanifolds
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of X such that-

Y1 and Yg, (YgU"'UYs) and (YgUUYs),
Y1ﬂ Y2 and Y3, (YaU"'UYS) and (Y4U"'UYS),

Yin---nY,; and Y, are in general posisions.

Moreover, we assume that Y; satisfies (7) if dim. Y;{ oo. Then denoting the residue
maps in the pairs

(X—(Y,uU---UY), X—(Y;uYsU---uY), Y, -YinYoU--uY)),

(Yl - Ylﬂ(Y3 U--u Ys)y Yl — Yln(YZU XV Ys))

YinY, —YinY.n(YsU--UYy),

(Illn =N Yx—l; Ylﬂ SRl Ys—l_Yln S Ys: Yln =N Ys)y

res. res. -, €S, w n i
by Y, Yinys yin--ny, W define the composed residue map
res. by

(52) reS. Yy, oy Yo=res. YiN - NY - ¥es. YN Yares. Yy.

By the definition of res. if dim.Yin--NY; {0 for some i, then

Yy, * Yy
res.y ..y reduces essentially to the finite dimensional case which has been
treated in #°19. On the other hand, if dim. VN NY,=o0, then res.Y‘ ' y s
1L " Y

a homomorphism from 2577 «©#X —(YU---UY)) into S#F~"#+(Yin-<NY,). But if
we set : ) ' '
codim. Y;N--nY; in Yin---nNY,_; =7,

¥; is a positive integer or oo, Yy = X,

then denoting
Gt p(X ) instead of 97 (X)),
7 ottt (Y — YN (YU UY,) instead of
7= Yy — Yin(Y,U--UY)),
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59 res.y ..y SFEITOHX — (YU UY)—

___)%ﬁ‘oo_[)i-s(yl NN Ys)
By the definition of res.yy, -+, v,, if the sequence of differential forms
{90) §019 "ty Sﬂs}! 2 = g(PX)y (41 S D@"IJ-I(YI)’ °tty GDSE<@P_S(YIH“.O Ys) SatiSﬁeS
§0| Yl — Yln(YZU U Ys) - d@i»
o YinY, - VinY.n(YaU - UY,) = do,,
¢s—2| Ylﬂ =N Yy—l - Ylﬂ e N Ys—ln Ys = dgos—b
SDS—II Ylﬂ o n Ys - d(Psy

we get

(54) Tldg] = S[p.], <Sy = res. L <.

Yi, * s

Similarly, if X is a Banach analytic space, Y, ---, Y, are its closed analytic
subvarieties which satisfy similar conditions as before, we can define the com-
posed residue homomorphism, for example, '

(53)/ res. Yy, v, Y . 9fco+rl+...+r5-P(X — (Yl U--U Ys))—-—)

—>RePT 0N Y,
if dim., (Yin--NY,)=o0, codim. (Y;n--NY)in Yin--NY;.; =7; r;is a positive

integer or oo and denote St -ttt s (YN e nNY;— YN - (YN o NYY)
instead of y/‘x’“i"(Ylﬂ e ﬂYl — Ylﬂ oot ﬂY,ﬂ(Y,vHU et UYS)).
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