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                                Introduction.

    The residue homomorphism and residue exact sequence has been defined by

Leray ([12], cf. [2], [13], [16], [21]) for the pair (X Y), where X is an n-

dimensional complex manifold, Y its (n-1)-dimensional submanifo!d. Similar

exact se･ quence

                               2 rp g"'i`
              ...-fl'i --i(X - A)-H'i-･P(A)-Hi(X)-Hi(X - A)-･-･,

where X is a Banach manifold, A its closed submanifold with codimenSion P, was

also defined 'by Eells ([6], cf. [18]). '' '
    In this paper, first 'we study the residue' exact sequence for the pair (X, Y>'

where X is a srriooth manifold, Y its' r-codimensional ciosed submanifold, and'
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prove : 111C X and Y are both orientable, then a closed current on X-Y is cohomologous

to aczarrent onX (g2, Theorem 3). By virtue of this theorem, residue exact

sequence for the pair (X, Y) is given as follows.:DenQting i":HP(X, C)-

HP(X-Y, C) the inclusion maP, o":HPHr(Y, C)--->HP(X, C) the maP deYfned by

                     6<T> = <6.T>, o"y(T)[g] :== T[g[ Y],

and res. : M(X- Y, C)--->ge-""(Y, C) the maP dofned by

            res.<T> =<res.T>, res. T[g] :=: T[dg-1 Y], ¢1 Y=- g,

the sequence

                    ij`i res. ti
       '''OH'(X, C)--)pH'(X-Y, C)---).HP-r"(Y, C)-HP"i(X, C)---->･･･

is exact. Moreover, by virtue of Hironaka's resolution the6rem ([9]), we can also

prove : if X is real analytic and Y is its real analytic subvariety' .with codimension

r, szach that Xandeach Yi-Yi.i are all orientable, where Yi is the i-th mulsiple

subvariety of Y, then a closed current on X-Y is cohomologozas･ to a cztrrent on X.

(53, Theorem 4). By virtue of this theorem, setting ･ '

                                                        '
          Rp(y) - {closed (P+r)-current on X with carrier in Y},

                  d{(P+r-1)-current on X with carrier in Y}

we have the exact sequence . ･
                                                        '                                                        '                                                     '                    i* res. a
       ･･･---->HP(X,, C)-HP(X-Y, C)-RP-r+i(Y)-W+i(X, C)-,.･,

where i*, res. and o" are defined by the same way as hbove. (g3).

   Althaugh the definition of RP(Y) depends.pn X, we can prove that RP(Y) is

independent with X(54, Theorem 6, Corollary .1), it is isomorphic to Hlrb(Y, C)

for all p if Y is topological non-singular (Theorem 6, Corollary 2). But since we

get if Yis given b ,y z,.I.z2 =::Oin C2, then ..

                   Ro( Y) =:C(D C, ' '
         .., .. Ri(Y.):=C, R.P(.Y)==O,Pl.lll:2, , .

                                       AARP(Y) ･is different･ .either of HP(Y,'C)"or･ HP(Y,. C), 'where Y is the non-singular

model of Y, in general. If Y is complex analytici 'then we can prove (Theorem

6,'COrollary 4), RO(-Y)2rCS, the s,direct' sum of C, ･where s 'is the number of

itreducible components of X But since we get RO(Y)::C,,CDCOC if Yis given
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by xiex2 = O in R2, this theorem is false for arbitrary real analytic varieties.

    gg5-7 of ChapterIare devoted to the appiications. They rnay have been
                                                                     ･/known (cL [1], [4], [12], [17]). But with the connection of g4, nO 14, we note

the following. Consider the pair (X, Y), X is a complex manifold, Y its 1-

codimensional complex submanifold, 9P[Y] and epP[Y] the sheaves of germs of

analytic P-forms and analytic closed P-forms of X with singularities on Z we

get TP[Y] == d9P-i[Y] for P>=2 and the exact sequence .

                                  '
     O-d90[Y]-W'i[Y]-Cy----->O, Cy is the trivial extension of the constant

                                    sheaf of complex numbers on Y '

            '
for P == 1. Moreover, since U- Y is a Stein manifold if U is a Stein manifold,

denoting S)P･q[Y] and SP･g[Y] the sheaves of germs of (P, q)-forms and S-closed

(P, q)-forms of X with singu}arities on X･ we get the following resolution of

                       '                 o-gp[y ]-s )p･ o['y ]-lltL)pop･ i[y ]4. . ..

                                    '                   'Hence we have '
            Hq(X, OP[Y]) ::: HO(X, @P･q[Y])/bHO(X, S)P･g-i[Y])

            = Ho(x - z sp･g)/bHo(x - y, op･q-i) r: Hq(x - z gp).

Therefore if X - Y is a Stein manifold, we may obtain the residue exact sequence

in the category of analytic sheaves (cf. [2], [13], [21]).

   In chapter II, we treat the residue exact sequence for the pair (X, Y), where

X is a Banach manifold.. Since our method in gg 1, 2 of chapter I can be applicable

to the case codim. Y<oo, we are mainly interested in the case dim.Y<oo. For

this purpose, we need to consider the (po -P)-currents on X. But since X is not

locally compact, we consider X to be a (not necessarily closed) submanifold of Ei

a Coo-smooth Banach space. Then since the metric of E is fixed, we can define

the boupded carrier P-torms on X and such forms exist on X, because E is Cco-

smooth (cf. [7]). Then we define an (oo -P)-current of Xto be an element of

the Dual space of 9P(X), the space of bounded carrier P-forms on X with Sch-

wartz topology. Using (oo -P)-currents, we defifie the (co -P)-de Rbam group

cS2ifo=-P(X) as usual. We note that dS?Too"P(X) is not differential structure invariant.

For exampie, if " is a separable real Hilbert space, E" its r-dimensional subspace,

           t. .t . tt t.t .t. t.tt                                  tt tt
            .S¥fooTp(H ---, Er) == {o}, Plr + 1,
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            ,Stfoo-r-i(H H Er) !) c.

But H-E" are diffeQrnorphic tQ ll fQr all r ([7]), and efY7oo-P(H) = O for all p.

We note that with the cQnnection of the expressiop of functiQn,als on,E, it seem$

to be usefull to determin the explicit forpa ef the generator Qf c td`7oo-i(E - O), But

siqce we use Hahn-Banach's theorem to show the existence Qf such current in

this paper, we can not give the explicit form ef such current in this $tage. .

   Since there exists a closed non compact P-dimensional submanifold Y cont-

ained in U for any open set U of X and f'or any 'integer P, 'we can not define

the current Ty defined by

      ` Ty[9] :== S.P '' ,
for arbitrary elosed (orientable) submanifold of X. But if Y･is orientable and

satisfies

(") YAB is compact for any bounded close.d set of X,

then we can define the current Ty. Moreover, we prove: 11f X is a Banach

manifold such that there exists a series of finite dimensional closed submanifolds X"

which satishes

(i) XrcXr+i, dim. Xr<dim. X,'+i, uXr=X,
                                  r
(ii) each Xr is orientable and satisfies ('),

Y its closed submanifbld such that Y n Xr is a closed orientable submanijfbld of X'-

for each r, and Y satishes (") if dimY<oo, then a closed current of X-Yis

colaomologous to a current of X (g3, Theorem 17/. Similar theorem is also true

for the pair (X, Y) if X is a Banach analytic manifoid ([5]) and Y its sub-analytie

variety. By virtue- of this theorem, we get the exat sequences

                                                  '                                          '                                                      '                                                 '     '
                    c* res. ' "*
     ...- .sxoo-P(X)- X.'oo-P(X - Y)->H"-P+i(Y, C)-2foo-P+i(Y)---･･･

                                  dim. Y= r, Y is a submapifold,

                   t*･ res.. rr$
     ･ ･ --.:2Zi"O"-P(X)- .2El "oo-P(X - Y)- ,;ftUt 'se-P +i(Y). ,tftzfioo-p+i(x)-. , .

                                  dim. Y == Qq, Y is a submanifold,

                   e* res. z*
     ･･･-., tfooHP(X)--)･.;itfDo-P(X == Y)-->Rr-'P+i(Y)----)･.;ft co'P+i(X)--->････

                                  dim. Y== r, Y is a subvariety,
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                     eat 'dies. it*
     ･･･-.9foa"P(X)--b .st2'oo-P(X - Y)su-"Roo-P+t( Y)- .t9e7oo-P+i( Y)-･･･

                                    dim, Y= oo, Y is a subvariety,

similarly as the finite dimensional cases (g3, Theorem 18). Here RoonP(Y) is

defined similarly as Rr'P(Y). We note that denoting bounded carrier cohomology

group of X by Mb(X, C), .S7t oo-P(X) is the dual space of Mb(X, C) (g2, Theorem

16), and under suitable cofidition, lli'b(X, C) is the dual space of .St?'oo"P(X). On

the other hand, if X is closed and bouftded in E, then we get Mb(X, C) = HP(X,

       vC), the Cech cohomology group of X. Hence from the above eXact sequences,

we obtain the exact sequence

                                        '
     -･･ - Iju)-i(X, C) ---->･ Hi)-i(X - ]V) C) - I)rPb(Y) C) - Hi)(X, C) -----), ･･･

if X is closed and bounded in E. In g4, we prove the existence of residue exct

sequence for the pair (X, Y) where X is a Banach manifold and rteed not be

satisfy (i), (ii), Y its finite dimensional closed orientable submanifold and satisfies

('"). We note that it seems to be natural to' denote ewoo'"-P(X) instead of ,Stfoo-P

(X) if dim. Y=: oo and codim. Y :== r, r is a positive integeror oo. Then the residue

exact sequence ls rewrltten as

                      t'ts res, x*
   ...-->Etfoo+,'-e(X)m->tifoo+r-P(X-Y)m>.$tgoe-p+i(Y)-Etfoo+r-p+i(x)"--".,..

    In g5, we state some applications of residue exact sequences. But they are

quite similar as the finite dimensional case.

                            '                                   t/.                                  '
      Chapter I. Residue exact sequences of finite dimensional manifolds.

          g 1. Local properties of differential formS with sirtgularities.

    1. Befinition. Let Y be a closed subset of X, a smooth manijbld, such that

X-Y==X, U an oPen set of X, then a dijreptentinl fbptm (opt a cntrrent) on U-Y is

called a dz:ffbrential form (opt a cuitent) on U with singularities on YL

    We consider the following sheaves on X. ･
nP : the sheof of germs of Coo-class p-forms on X.

SP : the sheof of germs of Coe-class closed P-forms on X.

"P [Y] : the sheaf of germs of Cco-class P-forms with singularities on Y on X.

@P [Y] Mhe sheaf of germs of Coo-elaSs closed P-fbtms with siitgtilarities on Y on

    The corresponding sheaves of currents of these sheaves are denoted by O'P,

S'P, ab'P[Y] and e'P[Y]. The stalks of these sheaves at x are denoted by {C)P.,

."." @,P[Y].. ･ '' '' '
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   In the rest, we consider only complex valued forms and in this g, we
assume Y to be a sttbmanifold of X with codimension r. Hence we m'ay assume

Y is defined on U, a coordinate'neighborhood of X with local coordinates {xUi,

;'
llYLqi} -mJ'{X" '''' Xn}･ bY.Xi :=:.''' =Xr,i9･ , VYe :,se. the fgiigrv.ing nQtations if

                          '                            rv  .' '' ' to.-1 ... 1 (i=IXidXi) 'o).1 .T 2rr'Y2

  . , a"-i (VIi2+ ･･･ +x.2)"' -r(r/2)' . ･
            V        ' dxi = (- 1)idxi A ･･･ A dxi-i A dxi+i A ''' A dX.･

,. ,,W.,?･f'l S･!,Z". ggg,08i.g,Y, `t,',k",2tl ad,,Of,,, lr,EiA g",g ,d,e,"s,tz..`"u and dxui if Ehere need

   Lemma 1. Lf r 2p2 and g is a closed (r-1)-form on U with singularities on

'Y; then setting ･ ･ .
                                    '                                         '                 C(ar+i, ''', an, e) == !x2i+ ･-･+x2. ==e 9,

                ･ ' Xr+1 == ar+lt "'t Xn == an

                                                        'c(a.+i, -･･, a.,E) does not dePend on a.+i, ･･･, a. and E.

   Propf. c(a.+i, ･･･, a.,E) does not depend on E because g is closed. On the other

hand, we have by Stokes' theorem, .
                                     '        '                                         '            O=Sx12+･･･+x.2 ==e ' dg ' ' '' '
                Xr+j H- ar+j,,/.l',.7L i, a :S Xr+i <.....b .

             :== !xi2 + '''+x.2 == e g-SX12+''' +Xr2 =e g.

                Xr+j == ar+J', j'=i, Xr+i=b Xr+j =' ar+j, 7' 7! i, Xr+i wu-a

Hence c(a.+i, ･･･, a.,) does not depend on a.+i, ･･･,a..

   Corollary. A closed (r - 1)-form g on U with singularities on Y is written

(1) g := Co"-' + d¢, C=Sx2, + ... + x2, :=s ･9"

                        ' ･ Xr+1 := ar+1, ''', Xnfan

   By this corollary and de Rham's theorem, we have '' '

   Lemrrta 2. Denoting C the coinplex number held, we get if r>=2,

(2) .. SP[Y]. == dswP-i[Y]., PXO,'s-1, xE Y;

            Sr-i[Y]. = Cof-iedfor-2[Y]., x E Y.
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   The map from S"-i[Y]. tp ･C,eCwrHi,is denoted bY res.,U. =='res.. or res..

   Note. If r=1, then we may set U-Y= U' U U-, U' := {(xi, ･･･, x.) lxi >O},

U- := {(xi, ･-･, x.) lxi <O}, and we obtain

                                     '                                     '     SO[Y]. = {g.i g. is. S. he class of g, g = ci on U', g ,= c2 on U- -}. ･

                                                     '
Hence we get

(2)' SP[Y]. =dS )P"i[Y]., pfO, cEii Y,

            6e[y]. ==ce,so..･ . - ,

Here an element of SO. is considered to be the class of g == (c, c), and the map

from SO[Y]. to C (which is also denoted by res.) is given by

            res. g = cl - c2, g= (cl, c2).

   2. If U is a coodinate neighborhood system of X, then we get

(3) ･ xUi-xUi(P) ==cVUij(P)xVj+O(x2), on Un li]
                         j
                   pEUn Il) xVj(p) = o.

   We know that setting guv == (cUVi,･), {gtiv} is the transition function of the

tangent bundle of X. Therefore we may ,assume that if U ft Y:74g, -then the local

coordinate {xUi} of X at U satisfies

(3)t xu,-xu,(p)l=cUvi,(p)xV,+o(x2), on Un V, YnUnVlg,
                          j
            (cUV,,･(P)) E O(r) O GL(n - r).

We know that in (3)',' (cUVij) b'elongs in SO(r)OGL(n-r) if and only if the

normal bundle of Y is orientable. In Qthgr wo;d, if X and Yare both orientable.

or both unorientable, then (cUVi,･) belongs in SO ' (r) O GL (n - r)1

   Lemma 3. If the normal bundle of Y in. Xis orientable and the local coordinates

{xi} == {xUi} of X at U, Un Y;g, are taleen to be satisfly (3)', then we have
'

            teu == tov + d¢,

                  '             . .. ,1 .
   Proof. By assumption,,we have

                             rv }                   1 ((,l=, XVidX Vi) + O(( lxVl .)2)i

            `OU == .r-i {(V(xK)2 + -･･ + (xV.)2)"(1 + O(( 1xVI .)r12))-



Here 1xVI. means ,v'(xVi)2+･･･+(xV.)Z. Then we get

            '

                               (XxViVdxvi) '
     (tlli;Zib!(.1.X.(l,'t?/ :7,E (tv'(xv,)E + -･･ iillixv.)2)r(1 + o(( Exvt .)ri2))

     = ar--1
          '                                                       /
                     '
     g'.' ,"bSS[vX.il[,.!'l,)2::,e ((vf(xv,)2 + ･･･ ll(lxlXvV.]2f')i)i + o(( ixvi .)r/2))

     = Or
          '

Hence we obtain the lemma.

    Note 1. In general, we get

            wu =: det. (g'uv)tov + dip.

Here {giuv} means the transition function of the normal bundle of YL

   Note 2. If r ==1 and gESO[Y]., then

            res. U.g = det. (giuv)res. V.g, x E U fi VL

   3. By Lemma 2, Lemma3and above Note 2, we have
   Theorem 1. @P[Y] is equal to dOP-'[Y] ijC d le O, r- 1,' SO[Y] is equal to

SO =C, the constant sheof of comPlex numbers on X if r;1 and for P =r- 1,

tve have the following exact sequences.

                         i' res. '
(4) o-dDr-2[Y]---)p@r"![Y]-(Yy--->O, rlll:2,

            o-.-->yo4' @o[y]IltlE$S 'g.-o, r=i,

                                                     '
                                                              '
where gv is the trivial extension of the local constant sheof of camPlex numbers

on Y with operation of the determinant bundle of the normal bundle of Y) to X.

This sheaf is written by Y if it is considered on Yl Lf the normal bundle of Y in

Xis orientable, then ({l;'y==Cy, the trivial extension of the constant sheof of

complex numbers on Y) to X. i' is the inclusion and res.' i.s given by

                                                '
            reS',' (9"x) == a}"iS xi2 + ... + x.2 =e9X'

                     '                        ' Xr+i=ai
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if r ;-}i 2, and if r= 1, then

                                                 '
           res. ' (p.) = op(･vXET, ai, ･･･, a.-i) - p(-.v'Er ai, ･･･, a,,-D,

  '

where g. is a rePresentation of ip..

   Note 1. By de Rham's theorem, a current T. ort U-Y is written

            Tle = g. + dS., p. is a differntial form on U- Y:

Therefore we can define res. ' (T.) by

              tv ev        res.'(T..)=res.' (ip.), T. and ip. are the classes of T. and g..

Then we get

                                                     '
        S'P[Y] = dO'P-i[Y], P 7i O, r - 1, S'O[Y] -- S'O = C, (r >= 2),

and the exact sequence

                          it res,'
            oh"-->d"D,r-2[Y]----)ptStr-i[Y]- (Yy-O, r llll 2.

   Lernma 4. 111C zue consider ca to be a current T dez17ned by T.[ep]= S Q)Ap, then

(5) dT.[g] == (-1)r-i ! yg == (-1)r-iT.[op].

   Proof. By the definition of of-i, we have

            S y9 = S X12 + ･･･ + x.2 := e toA9(O, ''', O, Xr+1, ''', Xn).

Then we get

             (-1)"-i l,.1"'">.Mb S x,2 + ... + x.2 -um> eOAdP

            =: CtltMSbSXi2 + "' + X.2 =: eW<9 == ! y9'

This shows the lemma for rl)2. If r=1, then setting to(x)=1, xe U', to(x)=O,

x EiE U", we obtain same result.

u aiBtdY thiS leMMa, a CUrrent T on U nd Y is cohomologous to a current Tt  on

(s)' res.'T. =(- 1)r-t(dT' IY)..
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                      g2. Residue exact sequences, I.'

   4. Theorem 2. ([6], [12], [16]) On X, we have thb'following exact sequence.

                                            '                                                 '                   i res. ･- b'' -(6) ･･･-H (X, C)eM(X-Y,,C)-Ha-r+i(.Y 29)-M+i(X, C)-->･:･.

Hereiis the map induced from the inclusion. .
   Proof. If r == 1, (6) follows from the second exact sequence of (4), because we

            HP(X, SO[Y]) -= M(X - X C),

in this case, and since i' is the inclusion, ishould be the map induced from the

inclusion. .                               '                                                               ttt                                      '                                 '   Next we assume r2m2. Then by the first exact sequence of (4), we obtain

the following exact sequence. . .･'
                              it* . , res. t*
         ..--.-)pew(X, dnr-2[Y])-.M(X, @r-i[l]).-HP(X, fif. .)

         6'*
         ---->HP+i(X, dOr-2[Y])-....

   By theorem 1, we get

                                      '
            M(X, dOr-2[Y]) != tw+r-i(X, C),

            Hp(x, sr-i[y]) yHo(x, @p+r-ity])/dHo(x, op+r-2[y]), '

because abq[Y] is a fine sheaf for any q. In the second formula, the right hand

side is isomorphic to HP""i(X - Y; C) by de Rham's theorem. Hence (6) is exact

for P2r-1.
   By theorem 1, dnP-i[Y] == SP[Y] and 60[Y] == SO == e, the constant sheaf

of complex numbers, if P}ilr - 2. Therefore HP(X, C) is isomorphic to HP(X-E

C) by the inclusion map. Hence (6) is exact for all P.
                                                      '   The assertion about i for P2r r 1 follows frorn the following commutative
                              -
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 Ho(x, s7･ili)l/'iN'XH'o( ', s:)p+r-2) s Ho(x,"G)1]i-(/t'i)haC,l.,'.,,,;liit,,,

      6g: ,i ' ' -,,.'･ 6S '･''- '
   Hi(X, @P+r-2) - Hi(X, dpmP+r-3[Y]) - Hi(X, asPtr-2[Y])

      6S" or g"                            s
 up(x,sr--i)O"]LL' ."' Hp(x,dor-2[y])llllli/ifliiil!!t'*'Vxli)es6L,(x,'s...,[y])

 HIP+i(X, Sr-2) . HP+i(X, Sr-2EY])
      ,

      i6 )t ･ ,, ･ 6S---･
    HP+r-i(X, SO) -----op.pt...--------il HP+r-i(X, Se[Y])

    HP+r-i(X, C) ' H7P+r-i(X, C).
  Definition. The exact sequence (6) is called the residue exact sequence.

  Note. If the normal bundle of Y in X is orientable, then (6) is written

           i res.' '6 ' '(6)t ･･}-->HP(X, C)-HP(X-Y, C)-----)e･H/P--"+icY, C)- Ht+i(X, c)-･-･.

  5. Theorem 2'.' lf X and Y are both orientable, then the. value of res. on};a

                                      l=.(p+r- 1)-chain c is given by '

(7) (res. a, c)=(a, Or); r.'Y;c,

and 6 (P) is the class of current (-1)(,imi)(Pmr)Ty,,. Where 'IP E HP-"+i(Y) is the class

of g and Ty,g is given by

(8) T., ,[ip] == S.pAip.

  Proof. First we prove (8).' .

  By the definition of res.', we get

                '   res. t {(D,o'-! Cio, ..., ip} = {Cie, .,.,ip}'

   {Ci,,...,ip} E ZP({Un Y, c).

Since (6c)i ...i =O, we have
    e, ,       P+1
                                 '   Ci"..., ip+1 = Cie, ix ･･･, ip+1 - Cie, i!, is', ..･, i'p+1 + ''' + (mu 1)PCio, ･･･, ip'



Hence

      6{wi r-i ci ". i }i " .i
     ,,. {,[,e,,r-i cO,1, .j., f/p,1'- (vP,iri-"i cEI,,I,,, L..,p +'･･･ + (=i)p(v,,, r-"l c,,, ,.1, ip}

     ={(wilr-=1 th-- wior"1)cits .,.}ip+1}, .. ', ''

On the other hand, we obtain by (5), ･

                                                         '
       {(-1)r-idT.,r-ici .,.i} ''
                 o                     o!                         ,p .
     =: {TYnUten･･･nUtp, Cio, ''', ii'}･ .

we gTehterefOre, if We cOnsider 6' to be the map from m(x c) to tw(x,

(g) 6'({ci,,...,ip}) =･=･ {(-1)r"iTynuion."nul･p, Ci,, ...,ip}･ ･ ･

Then as we know - ,.'                                                         '
     6(TZ9to, ... , ig)io, ,･i, tq,1 =: TY' (ti(9io, ''' , tq))ie, ''', ig+1,

     dTzgPb = (-1)P'iTgdg,

we hTaoVep$)veb{7S9,,)' it is sumcient to prove

(7)' !o, op=j,.yreS･9･ reS･g is a representation of res.<g>, where <g>

                          is the class of g.

   To prove (7)', we take {gio,･･･, ip} eP({Ui}, as"-i[Y]). Then

       res.'*({epio, ･.., ip}) .
     = ( arl"i Slliii+..''a'i-1- xr2 == E90io' "" ip].

If gio, ･･･,ip = (6¢)io, ･･･, 'p, {¢io, ･･･, ip-i} Eii CP-i({Ui}, ubrmi[Y]), then

       b[ arl-i Sxt2+･･･+x.2=e¢ie, ･･-, ip-i (Xr'i' ''" X")]ie, "', ip '

     =:5( orl'i !xi2 -i- ..,+x.2 ==: Eipio, "', ip'i]io' "" ip '

               Yr+i -pt Xr+i

      = arl'i S xi2 + ... + x,2 = E90ie, "', ip'

              S'r+i =: scr+i

Srr),
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Here x.+t, ･･･,x. are considered to be parameters in the first form, ula and they are

written as y.+i, ･･･, y. in the second formula. Hence as the map from'HP-i(X,

Sr[Y]) to HP-i(Y, S'), res.'" is given by

      res.'*({d¢ie, ･･-, ip-i)

     :=:( arl-i d(Sxi2+.,.+x.2 ,. Egbio,. .･･, ip-i (X""i' '''' X")))' '

   We assume that res.'' : Hq-P(X, Sr'g-i[Y])-HP-q(Y, 6q) is given by

      res.'*({dipio, ･･･, ip-g})

     =( a"1-' d(le,-,>iiii.1. >fe,2iir+1(Sx,2+ ... +x.2 = , iploi,' IIII ig'pr.P-;(Xq"' ''" X"))A

      AdxkiA ･･'AdXkg..i) ], n

                '
       ¢i ''' i
           , P-1        ol
     = kg>pu'' >le, 2}i r + l ip' fy'ol' ':il 8';IIAdXk, A'''Adxi,.

Then we obtain

      6( a'li (le,>pu.. >k, z; r + 1(Sx,2 + ... + .2 = ,ip'ife'o';ill'ikpg-,-,(Xr"i, ''',X'･))A

      AdXklA'''AdXkg )]io, ''', ip-1

                                        '
     == a"1-' ! k,> pu.. >fe, }), r + 1(!x,2+ ... + x.2 .., ,. (O"ip')£bl':::;ilepZg (X""i' '"'X"))A

      'AdxktA'''Adxkq) ]ie, ]1･'I･, ip.i'

if d¢i ...i =(tiip')i ...i ,because
                     p-1        lp-1 et )     ol

      (6 gbt)i i
          ee ''''1 p--q

     == lea> ili'il' > k, 211 r + 1(fiip')fr'ol' iilj ts';.iAdX,,A'''AdXk,,

      ip'io, ''', ip-q-i == le,> l]i. i]. > le, ;il: r + 1ip'lo`; :il'ifepq-q-iAdXk,A'''AdXk,'

Hence res.'" : HP'q-i(X, Sr'i[Y])---)pHP"'rrmi(Y, Sq'i) is given by
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                              '  '      res."({dipi i }) '
             o7 '"1 -p-q-1 ' ･ .
    = ( orl"i-d(le,>pu.. >k, l.ll} r + 1(!xi2-{- ･-･ + x.2 :=: e ¢e',1' llli'kfeqpL,-,(xr+i, ''', x,i))/i<

                                         ..I      Adxk A･･･AdXk ). ･         lq                                                tt
Therefore res. : HO(X, SP'r"i[Y])--->HO(Y, SP) is given by

                                '                      '                         tt
(10) res. ({dipi })
            o
    =`( arl-i-d(kp.,>pu..>k,21Lr+1(Sxi2+ ･･ +x.2 == e ¢ik',i' ''" kP-i(xr+i, "'r xn))A

      AdxklA ･･･AdXkp-1) ]･

                                                  '
   To show (7)', it is suthcient to assumer is a chain of UiUi, UinY74g.

Then we have
                              '

      !Or9 "= M' Sar, v, 9i･ 9t == 91Vi･ '

where {V}} satisfy

      Vi c Ui, Ui nYiL so, Vi n V, cOVi ADV,,

      Or n Vi =' a((9 × ci), ci =cn Vi, Q is the qube.

Then we get

    ' :Ii･ l! orn i･l, g'i=VS s" --i x c, goi= ' '

     == ¥' ! xi2 + ''' + x.2 = s ( k,, 4. . kp ! c, 9j i' ''" feP(Xr+i, ''', xn))A

      Adxk A･･･Adxk .

         tp
This shows (7)'. ,
   Definition. (7)' is called the residue formula. ([12]). ･

                                    '   6. If g is a differential form on X with singularities on Y, ･then we call the

current Tp and dTp are defined on Xif the iimits . .

                           t tt                                             '
      ttW.･,-.Sx-u(n9Aip, trge･,-.Sou(y)gAip
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?hXeiS,t, C:Oier daglfi.CO.MaP2:t,,C.aitride},Aiyffe.r.enYiagyfOrMS ¢ O" X･ Ii ..dTg is lefined on x,

                                                           '
     '                                                        '                                                t.t .lt..t.t ..tt...                                                        '       (dTplY)[ip] ==: //zti1)-.Sou(y)gAW, . ,, . ..-/.t.

       a is an extension of ¢ to U(Y).'

Then we get by (7), ･' .
   Lemma 5. 111C g is ･closed on X-Y and the currents T, and dT, are both derined

(11) res. <T,> == <(dT, IY)>.

                                                                   ttt
   Lemma 6. if the current Ty,p is exact on X, then there exists a dijferentinl

form ip onXwith singularities onYsuch that ･ '

            Ty,p =dTe.

   Proof. We take a system of closed forms {gu} such that

            gu IY == gIY on Un Y) (gu =O if Un Y= g),

                       '                                            '                         '
and set

            gu,v =: touAgu - tovAgv, on Un VL

                                                                   '
Then {opu,v} defines an element of Hi(X, Sg) and it vanishes if and only if the

current Ty,p 'is'exact, because dTtocL..gu=(-1)"-iTynu by lemma 4.' Hence we

have the lemma by Theorem 2. .
   We denote by flbP(X - g C) the subgroup of M(X - g C) defined by

       Hbp(x - z q
                                          tt
      = {clc= <g>, Tp and dT, are both defined on X}.

 nhdeiithbeYirTihieeOsr9alile 26kaLcet.MMa 5 and Lemma 6, the foilowing diagram is exact

                                          '

                   ti i* res.
     ･･･--)bM-r(Y, C)-HP(X, C).llP(X - g C)-H,}-r+i(g C)-->
            l- ,s- ,-･ks ,T,. s=-
     ...-m-)b-M"r(Z C)-ge(X,                            C)-H6P(X - Y) c)-H,･--r+i(y; c)-
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      6
     pt-->M+i(X, C)->･･･
      ti l=-

     --m->M+i(X, C)---->･･･ ,

where res. <g> is defined by (11). Hence we have

    Theorem 3. ILf X and Y are both orientable, then HbP(X- Y) C) is eq"al to

HP(X-Z C) unless r=1 and P == O.

   Since 9P (X-Y), the Schwartz space of P-forms on X- Y, is contained in

crP (X), any current on X can be considered to be a current on X- Y, and we

call a current T on X- Y is defined on X if it belongs in i"-image, where i is

the inclusion from 9P (X - 'Y) into 9P (X).

   We note that if T is a closed current of X-Yand defined on X then
                                                            '

            car.dT' c Y, i*(T') == T.
    '                                                             .tt
Hence dT' defines a current on Yl This current is written by dT' IY. If T=Tp,

then these definitions coincide the previous definitions, and we have

   Corollary ef Theorem 3. 1]f7 T' is a current on X such that i* <T') is closed,

then

(11)' res. <i' (T')> =: <dT' IY>.

   Note. By theorem 3, we can conclude the results of this g as follows : ILf Y

is a closed submanifold of X such that X and Y are both orientable, then a closed

current on X-Y is always cohomologous to a current on X and the following

sequence is exact.

                  i* res. 6
     -･･--->m(x, a-"Hp(x-y, c)-ev-r+i(z c)oHp+i(x, c)-....,

where i'k is the maP induced from inclusion, res. is detlinea by･ (11)' and 6 is given

by

(12) o"<T> =- <6y(T)>, tiy(T)[ep]=T[g lY].

                     g3. Residue exact sequences, IJ.

   7. In this g, we assume X is an orientable real analytic manifold, Yis an its

(closed) real analytic subvariety such that setting

(13) Y=: Y, DYI,D･･･)KD II.,= ip,

            M+i is the set of' all multiple points of L,
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each Yi- Z･+! is an orientable submanifold of X- Yi+! with codimension ri. We

call Y)+i the i-th multiple subvariety of Z

   We set

       Hb,jP(X-Y,, C) .
     = {c lc e HP(X - Yi, C), c = <g>, T, and dTp both defined on X- Y)･}.

                                  '       Bli,jP(Y} - Yl･.,, C)

     == {c [c e HP(Yi - Yl･+i, C), c == <g>, Ty}-yi.,e and dTyi-yi+i,e both

        defined on X - Yi}･

Here TF[di], etc. mean li'nz. u( yk)-, yle S xH u( yk)gA di, car. ip c X - }()･, le = MaX･

(i, i etc.. We denote HbP(X- L, C) and H6P(U- Yi+i, C) instead of

Hb,,.iP(X-Yi, C) and Elb,,+iP(Yi - Yl･+i, C).

   Tkeerem 4. IVe have for all P and i,

(14) HliPCX- Y, C) == HP(X- Y, C),

            Hbp(g-x.,, c)=m(x-g.,, c). '
                                                  '
   Proof. Since the theorem is true if dim. Y=O we assume the theorem is
                                             '
true for any t-dimensional real analytic subvariety which satisfies the asuumptions

of this g, of orientable real analytic manifol'd, t'::is-1, and assume dim Y==s.

   First we assume that Y is simple in the sence of Atiyah-Hodge ([2], p. 77)

with finite irreducible components, i.e. setting Y=Yiu･･･u Y)e, each Y' is
irreducible, then each Y}' is non-singttlar and for all (ii, ･･･, iJ･), Yit n ･･` n }-i/ is

   Since the theorem is true if le = 1 by Theorem 3, we use the ihduction about

fe and assume the theorem is true for Y(k-i) = Yiu ･･･ u Y]t-i. Then we have the

following commutative diagram with exact lines.

                                                             '                                 ti i"
     ･･･-IL,P-ri(Yla - Yk fi Y(k-i), C)-H6P(X - Y(k-i), C)-HbP(X - Y, C)-----).

            eli ti ･t2t 'i:F･ et
     ...-m-"i(Yk                 - YkA Y(le-i), C)-HP(X - Y(k-i), C)-HP(X - Y, C)-

     res. fi     ----))pHbP-ri+i(Yk - }ik ft Y(k-i), C)-H6P+i(X - Y(le-i), C)-->･･･.

     res. elS ti e2J ･
     -HP--t'i+i(Yh - Yk n Y(k-i), C)-->･M+i(X- Y(k-i), C)---->....

                                             '
Theneis an isomorphism because ei and c2 are isomorphisms by indactive ass-

umptlon. ･                                          '                                               tt
   If Y is simple wi.th infinite i-rreducible components,,. we $et
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             X=UnXn, X.+iDX. ･each X. is a relative compact open set of 'X.

Then for any c =<op> ei HP(X - Y, C), we find a closed form op.' on X. such that

            <g lXn) == <epn'>, Tp.' and dTp.' are both defined, ,

     '
because Y AX. containes only finite irreducibie components. Since g.+i' IX. - g.'

is exact on X),, we can construct a system of closed forms {g."} on X;, such that

                             tt
(15) <q lX.>= <op.">, Tp." and dTp." are both defined.

            g.+iU - g." is defined and lg.+i't - g." l<i},i, on Xlt-.i.

             '

Therefore we can construct a closed form g" on X such that g" is cohomologous

to p and Tpm and dTp" both define currents on X. Hence HP(X - Y; C) =

Hb'(X - IL C) if Y is simple.

   Next we consider the general case. By Hironal<a's theorem ([9]), we can

                              AAconstruct a real analytic manifold X and a map v from X to X such that n is

biregular on X-v-i(Y) and v-'(Y) is simple on X for arbitrary YL Then by the

above discussion '                  '                                    '

                                    '                                '                AA(16) HbP(X-ny-i(Y), C) =- M(X-rp-i(Y), C),

if 2 is orientable.

   By (16), for any closed form g on X- Y, we obtain

(17) v'(g) H- gt+dctb

            tttW,:i(y))-,,-i(y)S u(,-.(y))91Arp'k(¢) = o.

                            '
            ttge,ri(( bi-,,-i(y)Sou(,J,(}{))9tAny"(¢) eXists if the carrier of ¢ is compact.

                 '                                                          'Since n is bireguiar on ' ft-n-'(Y), we have

                  '                '
            g = u-'"(opi) + drp-i*(ai),

               '           ISM.(･-DSu(y)n"i'k(g,)Aip == o,

                  ･-1 -                                  '                tt           lbMy-･.(y)!ou(y),rp-i'"(gi)A¢ exists if carrier di is compact.

      ttt tTherefore HbP(X-g C) is equal to HP(X-Z C) for any orientable M The
second equality of ･(14)'follows from the following commutative diagram.
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                i* res.   ･･----).llbP(X- Yl,, C)-H,P(X- Y, C)-H,P-ri+i(Y- Yl,, C)-

        S== i* S= res. S
   ･･･-M(X - Yb, C)-->HP(X - Y, C)-HP-'-i+i(Y- Y,, C)-

    6 i:k   ---->Hl,P+i(X - Yl,, C)-H,P+i(X - Y, C)-･･･

    , J.. ,:kJ-
   --teHP+i(X- Yl,, C) --->HP+i(X- Y, C)-･･･.

If X is not orientable, it is suMcient to consider the double covering of X.

  8. Corollary. I]f i]" : HP(X, C) ---e. HP(X - Y, C) is the maP indarced from the

inclusion, and c belongs in ker.i'k, then

(18) c == <=Tyi-yi+b qi>･
            i
  Proof. We denote the inclusion from X- }li to X- }lj･+i by i,･ and the in-

clusion frm X- Yj to X by i". Then we have the following commutative dia-

gram.

                      HP(X - Y,, C)
                          Si,*                 is*
                      HP(X - Y,-,, C)
                          Lis-i                 iS-1*
           HP(X, C)
                 Ilii;E-×. Ii,*
                      HP(X - Y,, C)
                 ii* =i* Hp(x -S;': c) .. HP(X- Y, C).

  On the other hand, we get the following residue exact sequence for all i

                   6j･ ij･* '    ･･･ -HIP-rf(Ylj･ - Yj.,, C)-H/P(X - Yj.,, C)-HP(X - Yj, C)-･･･,

       ti]<c) .,. (-1)(rj-1)(P-,"j)<TyJ･-yj+1,p>, if C = <9>･

  Since ii"i2' (c) is equal to O if i'k(c) =O, we get

        i2*(c) == <Ty,-y,,pl>･

Here we consider Ty,-y,,p, to be a current on X- Yh because HeP(X- Yl, C) =

HP(X- Yl, C). Then

        i2*ei3*(c)=i2*(c)==<Tyi-ympi>･ '
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Therefore we get

                          tt
          i3*(c) == <Tyt-y2,pi + Ty2-ys,p2>.

Repeating this, we have the corollary.

   Note. If Y= Yi u ･ny･ u Y", each Yi is non-singular, then we can set

           s          =Tyi-yi..opi
          i- 1･

           7'S         = = =Tyi n yj - yi+i n yJl opi l ( yi n yi- yi+i fi yi).

           j' "-1 i-1

   Since Xi･..iTyi-yia,opi is a closed current on X, we can take each

=i'-iTyinYj-yiiinyj,qil(yinyj-yi+inyj) to define a closed current on X. Then we

can find a closed form gi on Y' such that

            <TyJ,,J>

              s           :=: <=Tyi n yi- yinn yi, opi k yi n yi'- yiiin yi)>,

             im-1

        sbecause <XTyinyi-yi.nyj,epi!(yinyj-yi.nyj)>vanishes in HP(X- Y", C) and Yj i's

        i--1
a submanifold. Therefore we obtain

           r(18)' c-- IX<T.j,,j'>, if i*(c)=O.

          i=1

   9. 0n X-Yi and Yj-Yj+i, we set

            r,(x - y,, fop)

           = {g ig E I](X- Yi, OP), Tp and dT, are defined on X}.

            r,(yj - g･.,, "p)

           ={g lgEr(]Kj･,-]Kj･+i, DP), Tyj,7yj+i,ep and･ dTyj-yj+i,e are defined on

            X}.

If g belongs in ro(X - Yi, eC)P) or in ro(Yj - Yj.i, OP), then

          tt771 i)- yi S a u( y,)9 A ¢

         == tt'i//vek)--. yk ! ou( yk- yk+i) - v( yi nou( yi- yk.i)) 9A¢'

             v(}ri)-yi
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           //YY'J･+i)-Y,･.i S ou(y,,.,)n y,,9 A ip

          [= k2=i-j+i ISWtiA)-yk !(au( yk-yk.i)-v( yj,ifiau( yk-yk,i)))n yj 9Aip'

                V(V).,1)-Yj,1

exist for all compact carrier forms ¢ on X. Hence we get

            dT,l (Y, - Yk.,)[¢]

           =tt?nY'k)rr'Yk iOU(Yk-Yk.,)-v(yinou(yk-yk.1))9Aip' , 9e re(X - Yi, nP),

             V(Y,)-Y.
               tt

            dT,1 (Yla - Yl+i)[ip]

                                                '           == ij(Mi･)-' Yk S(O U( Yk- Yk,,?- V( vJ.,inou( yk- yk,.i,) ))n yj 9A ¢-'

             V( YJ･ .1)'- Yj .1

           g E r,(}L･ - g･,,, op),

Here ¢ is an 'extension of ip, a differential form on Yk - Yk+i.

   By definition, dT,1(Yk- Yk.i) is a closed current on Yla- Yk.i for all k.
Hence we can define the maps ;2t)s. : ro(X - Yi, S)P)--->=?i HP"rk'i(YZ - Yk,i, c)

and rAts. : To(Yj - Yj.i, nP) -=kij+i HP-rk+rJ'+i(Yk - Yk+i, C) by

 '

(lg) r?s. (g) == IIil)<rf21)s.k(g)>. rZ>s.k(g) == dTpl(Yk - Yk.i).

   Definition. res.(g) (or its class) is called the singular residue and res.k(g) is

called the le-th vesidue.

                    A   By the definition of res.fi@), we have

   Lemma 7. ILf g e To(Yi - Yi+i, S))), then

                                                '
'(20) dTy,my,.rp = (-1)P'iTYi -Yt+i･ de + (- 1)P kXt+1 pt2S' k(9)'

   Cerollary. Xi,4i+i rre)s.k(g) is an exact current of X- Yi+i.

        A   No'te. res.k(g) 'is not exact in general even ep 1's exact.

   We denote the subgroups of ro(X-L, abP) and ro(}1･- }lj･+i, OP) consisted

by the closed forms by ro(X -- Yi, 6P) and re(}I} - Y}+i, SP). On the other hand,

we set

           (]Illi]Hp-"k(yla - Yk.i, C))e
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         =={ci + ･･･ + c,i ck = <gk> (ii HP-"k(Yk - Yla.i, C), l:lil] Tyk-yk.i,epk defines

                                             '          a closed current on X}.

   Definition. ille dojine the grouPs RP(Y) =RPx(Y) for all P,by

          RP(Y)

         = (¥M-rk+ri(Yk - Yk.,, c)),/ e, rAes.(r,(yk - yla,,, sp-rk+rt-i)).

  -Example. If Yis defined by zie22 ==O in C2, then

          Ro(Y) =:= HO(Ci - {O}, C) eHO(Ci - {O}, C) :=: COC,

          Ri(Y) = (H'i(ci - {o}, c) + Hi(Ci - {O}, C)), = C,

                generator is the class of dzi/zi - dz2/22,

          R2(Y) =- HO({O}, C)/res. (ro(Ci u Ci - {O}, @i)) -: O.

          RP(Y) -: O, P}ll 3.

                                                     AThis example shows RP(Y) is not isomorphic to neither M(Y, C) nor HP(Y, C) in

           Ageneral. Here Y is the non-singular model of Y.

   10. Theorem 5. VVe have the following exact sequence.

                   i res. b(21) ･･･---->HP(X, C)-HP(X- Y, C)-RP--r+i(Y)-HP+i(X, C)----)･･-.,

where iis the inclusion and res. and o" are defined by

(22) res.(c)=<rAts.@)>, c:=: <g>, <r",s. @)> is the class of rAts.(g) in Rp-"'i(y),

(23) o"(c) = <XTyi-yi,.,i>, c ==: <:<Pi>>,

             :t
   Proof. Since the theorem is true if s=1 we use the induction aboutsand
                                 '
assume the theorem is true for }lj･+i.

   First we prove that res. is defined on HP(X- Y, C). To show this, we take

representations g, ep' of ceH)'(X-Y, C). Then by residue exact sequence,

<T,m,,> belongs in M(X- Yj.i, C) and it comes from HP-ri(Yi - Y2+i, C). Then

since the diagram
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                          6r ,. (ww 1)(ri-1)(p-ri)6 ' . '
        HP-ri(Yi- Y,,,, C) N HP(X- Y,,,, C)
        eJtJ2,sy' -Ts yt'i' s'-'t) res l

        kN,.+IHP-"k+i(Yl-Yk,,, c) N Rp-rt+i+i(y,.,),

                         A AAis commutative, the class of res. (Tg-pt) == res.g-res.op' is O in RP-"i"i(Yi). On

the other hand, res. is defined on flP(X- Yi, C) by theorem 4. This showsthe

assertlon. .. . ..   By the definition of res., Im. iis contained in ker. res.. On the other

hand, we get lm. i=ker. res. on Yj+i by inductive assumption. Then consider-

ing following commutative diagram

                              Hp-ri(Yj - Yj.i, C)
                                  ,L bt                                            XreS.' = res. efir
                                      res.
                        HIP(X - Yj,,, C) - RP-rj+i+i(Yj,.,)

                    i"2,l/i,1- S""" ,,,. S'11"

                      - HrP(X- Yj, C) ij RP--rJ+!(Yj),             HP(X, C)

                tt t
if ceHP(X- }li, C) belongs in leer. res., then by residue exact sequence, c==

ijj+i(c') and xnyre get

            Ct = ij+i(Cl) + ti'(C2).

Hence c = iJ･(ci) which means Jm. ij D leer. res. .

   By the definitions of res. and ti, Im. res. is contained in ker. ti and on Yj+i,

we have Im. res. =ker.6.

   If c E RP-rf+i(Yj･) and a (c) == O, then there exists a c' such that

           c-ct = iJ･j+it(ci), ct == res.(co).

Then since the diagram

               m-rj+i(Yj - Yj+i, C)
                    Jo"' reNt res･'=res.

               Hi･(X- Yj,,, C)- RP-rj+i+i(Yi,,)

                    Si"'"t ,,,. J'J"'i ,,Xbj"'

                                         - HP+i(X, C),               HP(X - Yj,                            ---.> RP-rj+i(Yj)                        c)
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is commutative, we obtain

           cl = ct + Cltt, 6J･,1(Clt) = O, iJ･)+lt(cl't) = O.

Since leer. i.jJ''i' == Im. res.' by inductive assumption, we get Im. res.D ker.b by

this equality.

   Im b = ker. i follows from the corollary of Theorem 4.

                       g4. Properties of RP(X).

   ll. By (23), 6 : RPHrk'rJ'+i(Yle)-RP'i(}{j･) is also defined. On the other hand,

res. : RP(IKj･ - Yla)-RP'rk'"j'i(Yla) is defined by using the diagram

           RP( Yj - Y,) reS･ ->Rl)-rk+rj+i( Yk)

                    ti×                                      /
                                    / res.                      x
                       Hp+rj(X-Yla, C).

Then we get
   Theerem 5'. VVe have the following exact sequence.

                     i res.
(21)t ･･･---->RP(Yj)->RP(Yj - Yla)---)pRP-rk+rj+i(Y,)---)ta-

            6
           m-tm>RP+i(Yj)--->････.

Here Yk is a closed subvariety of Y,･ and satisfies the assumPtions of g3, but need

not be a mztltiPle subvariety of Yj.

   Proof. By the definitions of i, res., and 6, we have the following com-

mutative diagram with exact raws and colums.

                                          ss
           l l /l ･-- Hp+rj(x, c) 4, Hp+rj(x-yl, c) ----->･-

           l'i S'E J lii Jie.
 ･･i-HP+rj-i(X - Yj, C) t-> HP+rj-i(X - Yj, C> --･ o- HP+r,(X - Yj, C) ---･HP+rj(X - Yi, C) ;---)F･･･

           Sres.i i Jres･2 res. I o. tres･ i/;/;les,3 Jres･2

 '''-R"(SY6'? -,, R'(Y`J5'Io. Yk) ff)I,il,,"l"-'i'Vtt"(YD7., /Rl'ii}<)') -'R"'(li)'fi; Yk)---"''

 ･･･- HrP+ri(X, C> - HrP+rj(X-YA, C) - RP-rk÷ri+i(YD nyHP+V+i(Xi C)-}HP+ri+t(X-Yh, C) -･･i
 ･-･- Hp+"j(lkrLi y,i c)2x"Hpfr,i･(l'-y,, cs4'/,,, S S l

          s=s
           --
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    By the definitions of i, ･res. and tb, we have Ivef. iaker. o' and Iin. 6c･ker i.

    If res. (c)=O, then 62 (c) == i3 (ci) and ii (ci) == i2 (c) == e. Hence ci == bi <c2) and

c - i (c2) = res. 2 (c3). Therefore

              c = i(c2 + res. 1(c3)).

This shoWs ker. res. c im. i.

    If O(c)= O, then c== res.3(ci) and i2 (ci) =:i4 (c2) because 64 i2(c9 == O. Then

Ci - i3 (c2) ==: 62 (cB). Hence

              c == res. 3(cl - i3(c2)) == res. (c3),

because res.3i3(c2) :=: O. This shows leer, o" c Im. res..

    If i (c) ==: O, then 6i (c) == ti3 (ci) and c - S ･(ct) = 'res. i (c 2). Since ･res. 2 (c2) == O, c2 = io.

(c3). Hence

              c === 6 (c,) + res. i (c2) :=: b (ci + res. 3(C3)).

This shows ker. ic Im. ti.

   Note. Explicitly, res. is given by

(24) res. (]ll.i]gi)=<i!Ii,]]!li]reA,･ k(g,)>･

    12. Lemma 8. For all k, 1' (]'>le), we have

(25) i.2=,.hres･kre(Yli - }{i,i, SP)/dl"(Yk - yk,i, sbrp-rk+rj-i)

          =i-t,,>hreAt･kPo(}'li - Yj,i, OP)/tlli(Yk - yk,,, pm,p-rde+rj-i).

   Preef. As this left hand side is contained 'in the ri･ght 'hand side, we 'need

only to show the right hand side is contained in the left hand side. But since

the right hand side is contained in the ti-kernel of the exact sequence

                               res. 6
            .･,.----->Rp+rk-ri(y, - Y)L)-HP+i(Yk - Yk,i, C)-

            ..->Rp+rk-ri+1(Yi - Yk.1)--->･'',

we can find for any ipi e Pe(}'Ii - }{i+i, OP), a system of closed forms {paD,

gj E Fo(Yj - Yj+t, asP) such that

            r?s- k(ip,･) ::= ,-t,.., rf2)s･ k(g,･)･
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Hengeortohllear/rFhtwheaonbdtaiinde is contained in the ieft hand side. . . --

                                       tt                                         t.                                                '           RP(Y)

          == (;, HP-rk'ri(Yk - Yk.i, C))e/l:lii]res. (r,(Yk - Yle,i, bP'-rk'"i-')).

                                        t.                                             '
We set
                                      '                                   '
           ['x(Y, abP) = {(gi, ･･･, g,) lgi E! I"o(Yi - Yi.t, op+ri-ri),

           r.(y, sp)

          == {(opi, ''', gs) lpi E I"e(Yi - Yi+i, SP'rt"'i), d(¥, Tyi-y,+!,qi) =: O}.

                          '
Then we have by lemrna 7 and the above corollary,

(26) Rp(Y) == r.(y, ep)/dAr.(y, op-i),

where a(pi, ･-･, g,) means d(:Tyi-yi+i,epi)･

                    t
   Next, we set

         rx(Y, O'P) ={Tl T is a (P+r)-current on X, car. TcY},

         rx<Y, S'P) ={Tl T is a closed (P + r)-current on X, car.Tc Y}.

   Theorem 6. RP(Y) is isomorPhic to r.(Y, S'P)/dP.(Y, gl)tP-"i).

   Proof. By (26), we can consider RP(Y) to be a subgroup of Px(Y, S'P)/dr.(Y,

Sb'P-i), which we set R'P(Y). ,
   If Y is non-singular, then RP(Y)=R'P('Y)== HP(Y, C). Hence we use the

induction about s and assume the theorem is true for Yh.

   Let T be a current in rx(Y, S'P), then by theorem 4, we can find a closed

form gGro(Yl-Yh, SP) such that .,
                                         '                                              '           Tl(Yl-Yh)==Te,+dS on Yl-Yh.(27)

                                      '                                                        '
   Since T belongs in Px(Y, e'P), dS also belongs in rx(Y, @'P). Then by (27),

                                           '           car. (T - (T,, + dS)) c Yb.

   Since the theorem is true on Yli, we have

          T - (Top, + dS) = k=t2 Tyk- yk+i, gk+dS ', on Yli.

                       -
                               '                                      '                                 'This proves the theorem.
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   Corollary 1. Rx('Y) dbes not dePend 'on' X.

   Proof. By theorem 6, we have

             1?x(Y) = Ru( y)(Y),

where U(Y) is a neighborhood of Y･in 'X. Then since U(Y) is a real analytic

manifold, it is imbedded in R'i ([8]). Denoting this imbedding by e, we have

              Ru(y)(Y) = RRm(e(Y)). ,

                              '         ttSince this right hand side does not depend oncand m, we obtain the theorem.

   Corollary 2. ILf Y is a toPological submanijbld of X, then RP(Y)= M(X, C) for

all p.

                                                       '   Preof. By assumption, each irreducible component of Yis disjoint each other.

(28) RO(Y) == HO(Y, C),
              r.(y, sro) == r(y, c).

   We denote the sheaves of germs of rx(Z n'P) and rx(Y, 6'P) by co'yP and

@'yP. Then since the sequence

                                  '                                                      '                         i res. o"
            ･･･-HP(U, C)--->tw(U-X C)-RP-,'+i(Y)-

            -M+i(U, C)-･･･

is exact, S'yP/dD'yP-i is the sheaf of the cofrection of local (P+r-1)-cohomology

groups of U-Yl Hence it vanishes for P> 1 if Y is a topological submanifold of
                                   -
X. Hence we get the exact sequence '

                                d
(2g) o-S'yp-oryp-@ryp+i-o.
                                              '
Since fi'yP is a fine sheaf, we obtain by (28), (29),

              RP(Y) t)t M(Z @'y )"                             o -- m(y, C), p2. 1･

                              /                                  '
   Corollary 3. 111e Y is an analytic subvariety and a toPological submanijbld of X

with codimension r, then the following sequence is exact. '

                           -"                           z res. o(6),r ･･･-m(x,' c)-m(x-g c)-m-,'+i(x c)--v
              -----,･HP+i(X, C)---->･`L:. ･ ,･ ･
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  Corollary 4, if Y=: Y' u ･･･ u Yr,, each .]VV is tirreduc･ible, -Zhen there is 'a homo-

morPhism

          h : ge( Yi, C) e ･･･ O HP( Yr, C) - RP(Y),

for all P. This h is an isomorPhism ronto for p=O ･if ･each Yi - ¥in Y' u ･･･ 'u Yi-i

u Yi+i u ･･･ u Yr) is connect-ed ･and isomorPhism into .fbr p == 1 -if eac･h Yi is locally

irredttcible.

  Proof. Since S:)'yP is a fine sheaf, there is a ho'momorphism from HP(Y, S'yO)

to RP(Y). Then since Cyie･･･eCyr is a subsheaf of S'yO, h is defined. The

rest follows from the definition.

  13. Lemma 9. Let Y' be a closed submanifold of Y}- Yi+i or X-Yi+i and Ty,

dofnes a current in rx(Y, @'P), then

(3o) dT.,,,[ip]
         .,, (-1)P-iTyt,d,[¢] +

          + (- 1)P X lim.                ie>i U( Yk)-. Yk S (o U( yk-yk,i)-v( yi,1nou( yk-yk,1))) fi y, 9A¢'

               . V'(Yi,1)-Yi+1

  Lemma 10. if Y', Y" are closed submanifolds in Yi-Yi+i and homologous

each other, then Tv,,p and Ty",, are cohomologous each other if g is closed.

  We denote the self intersection of Y}-Yi+i in X- Il･+i by <Yi-Yi+!)e(Yi-Yi+i).

Then by Lemma 9 and IO, we define the cup product of R"(Y) =: =pRP(Y) by

(31) <XTy,-y,.,,,,>U<Z'Tyi-yi+i,cai,>

            1t         = <(]ili,i[]Ty,- yt +i, qi) A (¥Tyt- yt +i, et')>･

  Since we know

          <:Ty,-yi.i,,i> U <ip> == <XTyi-Yi+y9iA¢>,

we obtain by (31) and Lemma 9,

  Theerem 7. 6(R'(Yk)) and res. (H'ts<X- Y)E, C) or res. (R"(EYj- Yh)) are ideals

of H"(X) or R*(Yj - Yk) and R"(Yla) (7'<le), and

(32) R*(Yi)/S(R*(Yla)) [):: i(R*(Yli)),

(32)' H*(X, C)/5(R"(Yle)) :)i: i(H"(X, C)),'

(33) R"(Yk)/r･es.(R*(Yj - Yk)) =: ti(R'<Yfe)) (･c R",(Y,･)),

(33)' R"(Yk)/res. (H"(X - Yk, C)) rm"v 6(R'K(Yk)) <c H"(X, C)).
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   Note. As (11)', we obtain

(11)" res. <i"(T')> -- <dT'IY>,

in this case, too. Then by Theorem 4, we can conclude the resu!ts of S3 and

S4 as follows : I]lr Y is a closed orientable subvariety of an orientable real analytic

manifold X, then a closed current on X- Y is always cohomologt)us to a current on

X and the following seqaence is exact.

                        t.t                           i* res. ti.
              ･･･-HP(X, C)-HP(X- Y, c)--)･Rp-r+i･(y).-->

              ---M+i(X, C)-･･･,
                                    '

tvkere RP(Y) is glven by tkeorem 6, res. is dofned by (11)".

                g5. Applicatiens of residue exact sequences.

   14. In this nO, we assume X is a complex mani･fold and'Y i's a complex

analytic submanifold of X with complex codimension 1. We set

9P{kY}: the sheaf of germs of meromorPhic P-forms whose Poles are in Y with

       degree at msotkon X. ･
W'P{kY}:the sheaf of germs of closed meromorPhic P-forms whose Poles are in Y

        with degree at most k on X.

   Lemrna 11. 0n X 'we have
                  '

(34) W'O{feY}, == C, TP{leY} == dS9a-i{(le-})Y}, PL>.m2

                                        'and the following sequence is exact.

(35) O--->d90{(le-1)Y}-W'i{leY}--->Cy--->O, k2r l.

   Proof. I･f diEF(U, 9P{kY}), then by Laurent expansion･, we may set

              g = ,Z-shZ-J(opJ,i + dz A epJ,2) + ge,

where go is holomorphic, Y is defined by a =:: Q on U, gj,i and g,j,2 both inde-

pendent to z and gj,i does not involve dz. Then since

             dg == li.IliilEh(- i)z'j'idzAgj,i + ,l$fe2-j(dpej,i m dz A dqj,,2).+ dge,

                                                         'we get

            dgo = O, gk,i == O, (-7' )ephi = dgj+i,2, 7'- == 1, ･･･, k - L dg,,, = O.
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Hence we have the lemma. ... ･. ..
. Theorem 8. Let X be a Stein manifold, Y its non-singular divisor, then

(36) HP(X-X C)
            [r Ho(x, ep'p{(fe + p)y})/dHo(X, 9P"i{(k + p - 1)Y}), k}il.O.

   Proof. By (35), we have the ･exact sequence

(37) ･･･-ew(X, d90{(k-1)Y})-M(X, Ti{kY}).M(Y, C)-->
            -ge+i(X, d90{(k-1)Y})-･･･, k21.

Since X is a Stein manifold and the sequences

             O -C-90{(k - 1)Y}--)pd90{(fe - 1)Y}. O,

             O -1)･W'q{7'Y}-9g{ ]'Y}->ep"g+i{(1' + 1)Y}.-->. o,

sre exact, we have by (37), the following exact sequence.

(37)' ･･･-HP+i(X, C)-)pHO(X, WP+i{(k+P)Y})/dHO(X, 9P-i{(k+P-1)Y})-

          -HP(X C)--M+i(X, c)-....
                                                         '                                         '

Then since the diagram ' '
            O-droO[Y] -ai[Y] -C.-O
                   TTT
            O-d90{(k-1)Y}-Ti{kY} - -C.-O

is commutative, we have the iemma by 5-lemma.' '
   15. Lemma 12. ILIC Yis a boundary, then 6: RP-"(Y)->RP(Y) is a O-7naP.

   Proof. First w6 assume that Y and X are both non-singular.

   Let T be a closed current with carrier in Y and Y= OZ. We take sequences

of forms {Zff.} and {5zM} who converge to T and Tz. We may assume each ep'. is

a closed form. Then
                                               .t

            6T[W'] == liM. ! x¢nAdbzMA9 = ±liM. (S xW'nA6zMAd9)･

                   n, ･mr. oo 11, ?n -, oo
                                                          '                                   '

Hence 6T[g] ==O if dglX=O in this case. -
   The general case follows from the definitions of RP(X) and 6 (cf. ne9 and

nOIO).

   Lemma 13. if Y is an irreducible comPlex analytic subvariety of C" tvith com-

Plex dimension r, then there exists an analytic. Zdrislei oPen set Y' of Y such that
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             RP( Yt) = O, p l}l.) r + 1.

   Proof. By assumption, there exists a principal divisor with carrier D of C'i

such that DeY is defined and contains the multiple points of Y. Then Y' =

Y-DoY is a Stein manifold and we have the lemma. ,
   Corollary. if Y and Y' are same as above, then the follotving sequence is exact.

                        z res.
(38) O-RP(Y)-H,)(Y,, C)-RP-i(Y- Yt)- O.

   Theorem 9. (cf.[1]). Let X be an n-dimensional Stein manifold, Y its comPlex

subvariety with comPlex dimension r, then

(39) RP(Y) == O, pl})mr+ 1,

(39)' HP(X-g C) -- O, p22n-r.

   Proof. Since HP(X, C)=O, PIZn+1 ([20]), (39) and (39)' are equivalent by

residue exact sequence.

   To prove the theorem, we use the induction about r because the theorem is

true for r == O.

   If Y is irreducible, then the theorem is ttue by (38) because X is imbedded

in C" ([15], [19]).

   If Y is reducible, first we assume the number of irreducible components of

Y is finite. Then we set Y=:YiU･･･UYk and use the induction about k. Therefore

we assume the theorem is true for Y}..i == Yiu･･･u yr"i. Then since the sequence

                                                         '                              ' '                          '                         .                                                             '              ...---->Rp(yh)2--.Rde(}4e - yk n yla-piftES Rp-i(yk n yk-i)-y･

is exact, RP(Yk - Yk n Yla-i) == O, Pkr+ 1. Then we have HP(X - Y, C) =: O,

P l}l 2n - r because the sequence

                                tt                                      '                                 -,
                                 z res.
              ･･･-M(X- Yk-,, C)-M(X-g C)->
          ?Rp-2n+2r+i(Yk - Y)tYle..i)-"'

is exact hnd we get the theorem for l ' '
   If Y contains infinitely many irreducible components, then we set

                   '                                       '                                                              '
         ' X=UX., X.ADX., each X,. is a Stein manifold and relative

            ･' . compact in X;' ..,

   Since X. n Y contains only fini.te irreducible co.mponents for each m, we obtain
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(40) RP(X., n Y) =O, P2r+ 1.

Then･ we have the theorera because. a, compact, subset of X always containd in

some Xm.

   16. Theorem 10. Let X be' an orientable n･-dimensionall real analytic manifold,

Y its orientable (n - r)-dimension'al real analytic sblbvarietN and satislies

              RO(Y) = C< Yi> <D ･･･ O C< Yk>,

              Y= Yiu ･･･ UYk, each Yi is irreducible,

then a closed (n - r - 1)-form ep on X with singularities on Y is written

(41) P=9i+92+93,
              pi is closed and differentiable on X, g2 is exact,

              g31U:= ciayi+o(r(P, Yl･)'-r), UA Yi;¢, Un Yi is non-singular,

              Xci<Yi> = O in Hn--r(x, c).

   Preof. By assumption, we have the exact sequence

                              z res.              o-Hn-･r-r(X, c)-H"-･"-i(X-Y, c)-RO('Y)-

               6
              -ffn--r(X, C)-''''

Hence we obtain the theorem by theorem 4.

   Theorem le'. Let X be an orientable n-dimensional manifold, g a closed (n-1)-

form on X with singularities on･ discrete set of Poonts {Pi}, then

(41)' 9=9i+92+93,
          . pi is closed and differentiable on X, g2 is exact,

              go31 U(Pi) == cia)pi + o(r(x, p,)i'-"),

              {ci} is arbitrary if X is epen ancl Zci -- O･ i･f X is compact.

Moreover, setting g3= g3({P,}, {c,}), abe can tafee g3 to dePend dbylerentiably on

{p,} and {ci} if X is oPen and dePend rea4 analyticallN on {Pi} and {ci} lf X is

comPact and real analytic.

   Proof. We need only to prove the second assertion. For this, it is sufficient

to show g3(P, c) depends differentiably on･ P, c if X is open and pa3(Pi, P2, c, -c)

depends real analyticaiy on P.i, P2i. c ifi X is compact. To show this, we first note

(42) <TAi.p,t> :: O. in･ H2'iCX, ×X, C) if Xis open,



                     Currents and Residue Exact Sequences 117

              <TAx.)L," - Txxd,,"> =O in H2'i(X ×X× X, C) if Xis compact,

where d is the diagonal of X× X. Then we get the theorem by the following
commutative diagrams with exact lines.

                        i res.            H2n-i<X'xX, C) - H2,:-i(XxX-d, C) -----> Hn<d, C) -
                'l`o i tO res. TO-
       O-HH-i(Xx{P}, C)- Hit-t(Xx{p}-{P, P}, C)-HO<{P, P}, C) 4

        6
       - fl2n(x × X, C)
       g ..(2.n{p}, .) .. ,.

                            i
            H2n-i<x ×x× x, q -- H2n-i(X ×X×X-"×XvX×d, C) >                T6 , Tfi
       o-llrt-i({p,}×x×{p2}, c) - H"-i<{pi}×Xx{p2}-({pi, pi,p2>, (Pt, P2, P2)} C>, -

        res, t")       --> Rn(dxXuXxd> +H2n(XxXxX, C}        res. Tb fi to
       ---,. Ho({(pt, p,, p2), (p,, p2, p,}), c)-H"({p,}xxx{p2}, c),

                g6. Residue formula and composed residue.

   17. Lemma 14. Let r be a chain of X, an orientable manijbld, Y an orientable

subvariety of X such that Y and r intersect ProPerly. Then there exists a series of

forms {S,'i} szach that

(43) S,,.g .. lim.SygAOr"･ '

                   ･n-,co

   Preof. We assume r is defined by xi =･･･ =:xp =:: O on U, a coordinate neigh-

borhood of X (xi need not be smooth). Then denoting the Heaviside function for

xi by lxi, we get

            S ,nu9 = liM･ !u9Adlxi"A'''Adlxp", lim. Ixi'i=lxi.

   Since S)P(r), the sheaf of germs of P-forms on X which vanishes on r, is

fine, M(X, S)P(r))=O and we can define b,'T by '

            a,'i1U == (dl.inA ･･･ Adl.pti)U + ¢.,i,

            ¢u'Z - ¢v" = (dlxl"A ''' Adlxp'Z)v - (dlxl'iA ''' Adlxp'i)u,

            lim. S ug A ¢.ti ',. o.

            n-oo
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   By the definition of ti,'t, we get

(44) IS u( y)ifA6r'i -S v( y)pA6r "'1

             <-- ll go ll ., ucy)E(n, m) + li go ll ., v(y)e(n, m)

if gE re(X- Y, as'i"P), where llgR,, u(y) is given by

                       = max, Il p(x, Y)r-iep(x) 11 ,              II g) ll
                  r. U(Y)                         xEU(Y)

and lim.n,,n-oo e(n, m) == O, lim. u(y),v(y)-yE(U(Y), V(Y)) =O.

   Theorem 11. Let r be a comPact chain on X such that r and Yi - Yi+i intersect

ProPerly for all i, res.i'(op) is a closed form on Yi - Yi.i s"ch that cohomologous to

 Ares.i(rp), then
                         '
(45) S,,SO = illi':]S,(y,-y,,,) reS'i'(90)'

   Proof. We may assume gE re(X- Y, S"'P). Then

              ! op = lim. S gl (X - U(Y)) =- lim.                                               s

              .or u(yJ-y ro u(y)-y r.OU(Y)9
            = lim. (lim. S
                               9A6r").
              U(Y)-Y n-+oe r-aU(Y)

                                                             tt
By (44), this last formula is equal to lim. ,i-oe (lim. u(y)-yj
                                                      9Ati,").
                                                 r.OU(Y)
                               AThen by (43) and the definition of res.i(g), we obtain (45).

   Definition. (45) is called residue formula.

' 18. Lemma l5. Let r be a cycle on X- Y,+i and in general Position with Yi -

Yi,i, ga closed form on X- Yi,i and cohomoiogous to Tyi-yi.i, g, then

(46) !r9b-Sr･(yi-vi+i)g'･

   Proof. By assumption, we have

              !¢A6r" = iy,-' y,,,9Atir'i･

Hence we get the lemma.
   Theorem 11'. Let g be a closed P-form'on X- Y and r an (P+ 1)-chain on X

sarch that r and each Yi - Yi.i is"'in general Position and

              re(Yi - Yi+i) == rie(Z･ - Yi+i), ri is a cycle of X- Yi+i,
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b'i en

              S 9 -= O.i

               ar'              tt                '                 '                                                      '                     '                                                                '
   Proof. If r is a chain of X- Yh, then the theorem follows from residue exact

sequence and residue formula. Hence we assume the theorem is' true for the

chains of X- IY)･ and assume r is a chain of X- ]Ki+i.

   By assumption, we set

             r== r' +r", r' is a chain of X- Yj,

                        r" fi (Yk - Yk+i) == g, h<i

                              '
Then we get

                      ttt t
              Snrep == Sar"g '=:: Sr.(yilyj'+i) res･1(g).

On the other hand, since the diagram

                 s

             M(Xs-,¥g. C) × r6e,s･ j*x.,.

             Rp-ri+i(Y- L.,) - HI'-ri+i(Yi - Y:i,i, C)

             m+iclf'm L,,, a/as/

                 l

is commutative, 53(<res.j'g>) =O. Therefore

              !.res.j'@ :- OT a= P.(}Cj 'L YIi,i), aP =O

                  tt                                  '                      '
by Lemma 15. This proves the theorem.

   19. In this nO, we assume X is a smooth orientable manifold. (cf. [2], g1).

   Let Yl, Yli, t･･, Yk be orientable submanifolds with codimensions ri, r2, ･･･, r,

and assume they satisfy following condition. ' ･

            Yl and Yh, (Yhu･･･uZ) and (Ybu･･･uK), KnYh and Yh,

            (Yg u ･-･ U U) and (Y4 U ･･･ U Z), ･t･, Yl n ･･･ fi Umi and U

                      '                                              '            are in general positions.
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Then we obtain residue exact sequences for the･ pairs

        (X-(Y,u･･･uZ), X-(Y,uYiu･･･uL), Y, - Y,n(4u･:･uY,)),

    (Yi -Mn(Y3 u -･･ u Y,), Yi - Y, n(Yh u ･･･ u Z), Yi n Y>- Y, fi Yh n(Yb u ･･･ u Y,)),

              ･ - }--}------it-----t-t ny -i-i:!----ny -.----ii-----j--,- --- . ･ .

     ' '. '' (Y,h･:･nY,.,,,,Y,n･･･ALffi-YiA･･･nY,, Yin･･･n}1). .' .

   We denote the residue maps in these pairs by res.yi, res.yiny2,･:t,

                              '                                         tt                          ttt                                   '                       t.
(47) res. yl,".. y, =- res. yln--ny,･･･res. ylny2･t.res. yl.

                                    '
   Definition. ([12], cf. [2]). res. yi,..., y, is called the comPosed resid,ue.

. By definition, res. yi,..., y, is a homomoyphism from

i:/la(gXraMm(Yig Ucoln''mUulltil'iveC.) intO 4P-(r'+'"+"s)+S(Yi A ''' n}1, c) and the foiiowing

                    i
  .･.--->Hp(X - (Y!u･･･u Y,>, C) -

                          res. vl  -HP(X-(YiU･･-UY,), C) - HP-rL+i(Y, - Y,n(Y,U･-･uY,), c)-,,.
                 x,
  ,.,-Hp-ri+i(Y, - Yin(Y3U-･･UY,), C)- ==

             .x
                           res. ytn y2
 r-)'H'-'i"(Yi - Yin(YSU'''U Y'x)x,' rSs). t,,",, v, =/HP-(r''"')'Z( Yin Y2-Yi ft Y2n(Ysu-'iu Y,>, c) -..,

               i------i----------i---------'----'----s----t-t--------s---------------l----i--ii-'-----

                                 --                                 --                           -4-  II[1[I),CIIIIj,')1-111ii`('viiYn'2 'A' l),II,'Li'}.C, r)n 11,1:ir. n y , c)J<lll'-ili2:ta.I;v' fi''`n ys XH` p-(ri+･･･+rs}+'(ys n b･･ fi ys, c) '-"" ''

   By the residue formula (7)', we obtain･ . ,
   Theorem 12. Let r be a chain of X such that there exists a series of chains ri

of Yi, r2 of YinYh, ･･･, r, of YiA･･･nY} szach that ･
         .t.                                                       '                                                           '                    '         tt(i) r aild Yi, ri and YinYb, ･･･, r,.i and Yin･･･nYk are in general positions.

(ii) reYi::=ari, rie(YinYli)==Or2,･･･, r,.2e(Yin･･･nY,-i)==ar,.i, r,-ie(Yin･･･nM)=r,.･

Then we have
         t ''/
(48) !,,g = !,,res･ Y,,.", y,gl ''
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   Note. If Yi i's given by fi,i == ･･･ =fi,ri --O, i=1,･･･, s then for suthciently

small ei, ･･･, e,, the series of chains r, ri, ･･･,' r, given, by

                               s ri           r - {t i ] fi,j(x)1 $ s, I} n ,mD, ,U,=,{x H fi,j(x)1 =:= E,}･

                 '           ri == {hr11fi,j(x)1 :E; ei}fi,SU 'iU' '{x1Ifi,j(x)I-e,},

                              t=2j=1

                    ----t-----------------t-----------------t----------

             r, == {xlfhj(x) =O, i= 1, ･･･, s, j -- 1, ･･･, ri}

            == y, fi ･･･nx

satisfies the assumption of the theorem. The simplest example is X= C", each

Yi is given by 2i = O, i rm- 1, ･･･, n and r =: {(zi, ･･･,z.) M zil = ai}.

   2e. We can define the cbmposed residue for singular residues. We denote the

ttgh, ,".igi2',e,S8?Ya.fiftl?,S-.O.`.g{ 8,r, Y,g,fi,,'.'bn,,Z by Yi･j+i.,or Yin ･･･ ng,j.i. Then

                                                        '                 --(47)t res･ JyllL 1111 yj', = reS･ yln...ny,,J･, ･･･ reS･ ylny2,J'2 reS' yl,jl,

     tt   t tttt.t / t/. tt t . .. t.. .. ..t
where res, yin...nyi,J'i means the ]' i-residue of the pair

             (YIA ･･･ n Y,-, - Y, fi ･-･ nUmin(Yi,iu ･-･ u Y,),

             Y,n ･･･ n Yid - Mn ･･･ n Y,-,n(Ku ･･･ u 4), ,

             Yi fi ･･･ fi Yl, - Y,n ･･･ Yin(Yi.iu -･･ u ]K,)).

   By Theorem ll, if a series of chains r of X, ri of Yl, ･･･, r, of Yin ･･･ ng

satisfies

(i)' rand Ybj-YbJ･.i, rt and Yin Y2,j+i, ･･･, r,-i and

             Mn ･･･ nL,j - Yln ･･･ nU,j+i are in general positions.

(ii)t (k,j･i- k,ji+i) =: Ori,ii,

             ri,iie(kn }i3],j, - Mn Y2,d2+i) = Or2,ji,J2,

                  --t------i--t--------------t--------

             rs-2,,･1,-･,,･,-2(Mn -･･ n Yk-1,i,-1 - Mn ･･･,n kml,,･,nl+1)

            =Ors-1, ti1, ,-, i, --1, ' '' ''
             rs-1,ii,･-,i',"ie(Mn ･･･ n Yb,i, - Mn ･･･ n Yk,i,,i) . ,

            =rs,il,.",isr . / - ･ '･ .' '･
                tt t tttt tt tthen we have ･                               '
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(4si)' ' '' Sorop == j,i:i.i)",,.,Srs,ii,･-,i,res,.jy'i;il':,"ys,q ''i,,.1,1'

                        g7. Integral expressions. -

such2 tiiatLeMMa i6' Let aij'(X), . i, f =i, ''', n be a system of dlfferentiabie fttnctions

(4g) Oao･it(,x).. agij,Sx) -L o,' .,,'(.i ='i,',,',(±) L}- b,,(2} ...,,o, i, j,

then the dijferential form Xi=,*iaij(x)(x, - e,) dVxi/r(x, e)" is an exact form. Lll?re

vdxi and r(x, e) are ,
              tt ,. i'l (r bAdxtA'･-･ Aaxi-IAdle i'+IA ･･･ Adxn,･. ' ' ' . ' ' 1

              r(x, 6) =V;, <xi-gi)2.''' ' ' ' ' '
                                '                               tt

Proof. We set
                 tt                             ttt                        / ./. ./ .            dxViAdxj -- (-1)i"jdxiA･･･Adxi..iAdxi+iA･･･Adxj.iAdxj+iA･･･Adx..

                                     '                                         '                                  '                             t ttt t t tttt
Then we get

                    '
             d(i<,,aiJ･(x)dtt･Adxj)

                  r(x, e)n-2

     ,. ],!ll<,(,Oao,tix)dv.j.hOaoii･(,:)dv.,)

            - r(x, g)n-2

               7kii ?),l<d(aij(x) (xi /- ei) tixj - ai,<x) (xj - 6j) blx,)

              - ,r(x, e)n-i .
                                             '              (2 - n) E<i (aki(x) (xk ,- ek) -i=<.a,.(x) (x,. - 6,.)) dlMli

                               r(x, g)n

              (2 - n) i.!iil.j ai,･(x) (xj - g) d)IIIi

            =                      r(x, 6)n ･ ･

Hence we obtain the lemma if n->um3. If n =2, aiJ･(x) must be constants for all

(i,, j). Therefore we need only to show the exactness of {(x -g)dx +(y- rp)dy}/

(x-g)2÷(y-rp)2},which is equal to 1/2(dlog(1/{1(x - e)2 + (y - v)2})). Hence we have
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   22. Theorem 13. Let f(x) be a dij7larentiable fttnction on 4 domain

that D-{x} has same homotoPy tyPe of S't-i for any xE D, and

equation

(50) i.Iii..l,aiJ･(x)03£f,) =- o, i"=i, ･･･, n.

Then tve have on D

                                         '                                       '                      '(5') f(g)-.,}-,!,Df(x)tl='itt/i"i(.X),(Xe'i.-g')dlil',

   Preof. Denoting dV =dxiA ･･･ Adx., we get

               :Iili] * aj,(x) (xj - 6,)f(x) d)M,

             dx (i=l d=1 )
             ' '' r(x, 6)"
             i,Iill=,(#..., aji(x) (xj 'T ej) Oofil ) +f(x))

                        r(x, 6)n

                      nn               .(.? e) ,l =, ,;=, aii(X) (Xj - ej) (xi - gi)f(x)dv

Hence (Xi-L'i

   We set

D of R"

 satishes

               r(x, e)n+i .
==

 r(x, g)L'E,t+2){n.r(x, g)Ef<x) + (}.;ik;=, iS..., aji(x)fxj 7,gj? 9of.<f.)) r(x, 6)2 -

                               tt tt
 - n = (xi - 6i)2f(x) + 2. iil.,, aji(x)(xi - gi) (xj - ev)f(x)}dV

     i-1
             '      '
==

 r(x, e)-(',e+2){r(x, e)2 ttl,(i.I l.. i, ai,･ (x) Oof.(l) ((xj m 6j) + .

  + ;.iil<j (ai,･(x) + aji(x)) (xi - gi) (xj - ej)f(x)}dv

                                    '                               tt tt

                                    l                  '
=,L'i a,j(x)(x, - 8,)f(x)E)lg,)/r(x, e)" is a closeq form for all 6.

                                    /                                    i
                                    i                                    i  ]2iil] X aji(x)(x, - .ft,)f(x)dV.,

  i-1 1'-1

          r(x, en

 l23

such

 the
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            .. f(e S-i(l:.; i)il,d)};1i + f(g)ilsll, a"'(;:.(f'ei, e')}lfX'+

                           fln V                          = X a,･i(x) (xj - gj)dxi

              + (f (x) H f(6)) i-M' d--i r(., 6)n ' '

Then we get

                            71 Vl V              c X:ii:] aji(x) (x,･: e,･)dxi
              )aD(f(x)-f(6)) i=ij-mai ,(., e)n =O,

              S,.-f<8) pu']""`(Xr)(£{"elJ.6')dVt' =o

because lf(x) -f(e)i = O(r(x, e)) and f(e)(Zi.daji(x)(xj - g)/r(x, e)") is exact.

fore we obtain the theorem.

   Corollary 1. if a function f satishes (50), then f is real analytic.

   Note. In this corollary, we need not the real analyticity of ai,･(x).

   Corollary 2. If f is holomorphic on D c CM, then

(52)  f<(;, ･･･, C.)

         '= a2}i-I--SaDf(gl, ･･･

   711･

   k=1
 -

mZ{(X2k--i n e2k-i) - ･V'-

There-

              '                        {(Xi - e,)2 +

                             v={･V'- 1 (X2k.i - e2fi.i) + (X2k - g2k)dX2k

Zln) (k=1

          v1 (x2k - g2k)}dX2k.i

)
,

''' + (x2m -6

- e2.)2}m

x2k.1 +Vrm-'-Tx2k,

2tn)2}in

Proof.

then

We

Cknd-

take

(aij(x))

 {(xi - k)2 + ･･･ + (x2.

e2k-i +V- 1g2k, Zk ==

(ai,･(x)) to be

      i, -V=f;

    V- 1, 1,
                 --t---

              o

(ai,･(x)) satisfies (49) and

            .o
             t----- t
               ------

                  ' 1,

                  vrr,

the equation (50) reduces to

k=1, ･･･, m.

-V-1,

   1,
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             af<x)                        ortx) af<x)
            Ox2k-, +'V'- 1 ox2k =: ozk == O, fe =1, ･･･, m.

Hence-f is holomorphic and we have (52) by (51).

   Note. If we use the complex coordinate, (52) is the Bochner-Martinelli,

formula ([4])

                                           l:ili:;la, - c,)zilg2

(s2)' .f(g) =:: ('VEI)M-'-irinl=i'S,.f(2) ,. h=i ,

                                         (]liiil](zk - gk) (2Z' - 4k))nt

                                         k==1

            v.-- - H iTm            dk=:dziAd2iA･･･Ad2kmiAdzk-iAdrzkAdzk+iAdzk+iA･･･Ad2.Adz..

We also note that

               2m                        v               =                 (xi - gi)dxi
               i--1
                      '              (V:lllll:(xi - el･ii2il･l;l-

                i==1

                                            ln                           711                          X(z,-].Y,)dX, X(z,-4,)}Yfz,
            =-(･VXEi-).,(,?,=-i ..fe,-i ･･ ),

                         (:(2k-S"k)(ZkrmS"k))M (Z(Zk-S"k)(Zk-S"k))M

                         lek1 k-1
            212k := -dz-iAdziA･･･AdzMk-iAd2k-iAdzkAdzk+iAd?k+iA･･･AdzmAd2..

The first term of this right hand side is type (n, n- 1) and the second terrn is

type (n - 1, n). They are both closed and non-exact.

   23. We take integers ri, ･-･, r, such that '

             rk ;i). 2, k :== 1, ･･-, s, rl +･･･+ rk == nk, n, =n.

We set Yg,rk the linear space in R" defined by xri+･･･+rk-i == Gri+･･-+rk-i+i,''',Xri+･･･+rk

= 6ri+･･･+rk. Then

              k,rin ･･･ n Yk,r, == e == (6i, ''', 6.)･

   We take a domain D of R". such that for any 6G D, we can take a path

Ori,..,,r,,gD which is containd in OD and satisfies (i), (ii) of nO19 for (Yk,r.･",Yk,r,).

   Example. If D=:Dri × ･･･ × Dr,, where Drk is a dOMain in (Xrt+･･･-Frk-i+i,･･･,

x7J t+･･,+rk)-space, k == 1,･･･,s, then we can take 02v...,r,.eD == ODri×･･･×ODr, for all

L

   We also assume that the matrix (ai,･(x)) is given by
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                                         tt tt t                ab i(x), ,･･, ar" 1(x),. - .,. . . . )

                    i----i------t--
                                   / tt t t t... 1 t..
       (.,, j(.)) =, qi･ri(X)' ''6' ari'r'(X)'. ""'･･.. 'd.,.,.,,.',.,-,.,(xO),' ･･･, an,nsLi+i(X);

                                                ---i-il--------------

                                           ans-1+1,n(X)i ''''''! an,n(X),

                                                             tt
                                                    '
We also set

                            t .t                  '             p,(xl'6) ==Vi--="k (x,-61)2,

                            +1                       i=nn-1
              V             (dXDk = (-1)'ik..i+i+ldXnk-i+IA'"AdXnk+i-IAdXnk+i+IA'"AdXnk･

Then we obtain by theorem 12 and Theorem 13, ･
    Theorem 14. Uitder the above assumPtions and notations, if .f<x) satishes (50) on

D, then

                    '
                        tt(s3) f<e,, ･･･, e-.)

                                 ttt                    ttt                                      ttt           == alt-i.l.arsli So7i .r,,gLLf'(xi'"l'x")'

                                               '
             rt rl                                        11 tl            E. Il=, ,X.=, aJ'i(X)(Xj - ej)(d¥i)i A...A;.lll=.s-i+i,:...s--i+iaji(X) (xj ' gJ') ()f`i)s.'

                    pi(x, g)r, p,(x, e)r, ･

    Note. In this theorem, the linearity of Yk,ri is not essential. For example,

we set .. 1.
              D == {(x) ]1 gi(x)l<1, i=1, ･･･, m},

              Oi,･ ･`･･ g'sD = {(x) II gy,(x)1 == ･･･ == ]gy,(x)I = 1,

              Yg,rk = {(X)Igt,-,+1(x) == gbtk-.,+1(e), ･･･, gutk(x)gvt,(e)},

and assume OJ',,.･･,i, D satisfies (i), (ii) of nO19 for Yk,rk. Then we get similar

integral expression as (53) replacing xi by gi and Or,,･･-,r,,e D by Of,,･･･,s's D with

suitable assumptions about (aij(x)). If D is an analytic polyheder, m=2n, s ==n

                        mandfis holomorphic on D, then the formula is ･･ '



                      Currellts and Residue Exact Sequences 127

(s3)' f(C) =T2-n-.vlri)" j.X.",i.!ojf-,jnDfe)'

                                            . t.
            , dgyiA･･･Adg)'n

             e-n '          "" X(gyk(Z)-gyk(O) '"'･i･･

              k-=1

Since we know

                    dgiA･･･Adg},
(54)
              (gi(z) - gt(C)) ･･･(g.(z) - g;,(4))

             =det. (gi,<z, s"))dziA･･･Adz. + O(z - s")

              .... (gi(z) - gi(C))･･･(gh(2) - gh($")) '

                                                 '                                                    '              gi (z) - gi(o == 4. I](zj - s"J･)g?j(z, o, '' ''i

(53)' is the Weil's formula ([22]). We note that (53)' is 'true on any complex

manifold.

                                                              '
           Chapter II. Residue exact sequence of Banach-manifelds.

                  g 1. Currents en Coo-smooth'Banach spaces. ' ' ''

              '                                                 '        tt   24. We denote by E a separable Coo-smooth Banach space, that is, on which

the partition of unity by Coo-class functions is always possible (cf. [7]). We set

Coo,P(E) : the vector sPace consisted by Coo-class P-forms on E (cf. [11]).

C,co,P(E):the vector sPace consisted by Coo-class P-forms with bounded carrier on

         E.

   We define the topologies of Cooe,P(E) by the semi-norms

              PK, tn(9) =SUP･ Il DS(gx) II , K is a compact set, m<oo.
                      s$m,xEK

Then Coe,P(E) and Cooo,P(E) become localiy convex topological vector spaces. These

spaces are denoted by El7P(E) and 9P(E).

    By definitions, if E" is an r-dimensional subspace of E, t'hen

(1)' n.( ES' P(E)) = 2f'P(E"), rr.(g) == paIE",

(1) n,(9P(E)) == 9P(E"),

where E5'P(Er) and 9P(Er) are the usual Schwartz･ spaces of P-forms on E".

    Similarly, we can define the onto homomorphisms r,.S: 2S7P(Er)->El7P(ES),
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rr.S : 9P(Er)"9(ES) and we get

               rs r r '/              fts rrt = rct 1 rrrrrs = rrs'

Hence we can define the projective limits tim. [ El9P(E") : T,"] and lim. [.9P(E")

                                      -- : rts"].

    Lemma 17. ILf U.E" is dense in E, then

(2)t 25' p(E) :- lim. [21g' p(Er):r,r],
                      datpt

(2) .9 P(El=lim. [.E? p(Er):rr,r].
                      d(-----

    Proof. We define the into homomorphisms p: Ef'P(E)->lim. [EYP(E") : rr,r]
                                                     fe----

and p: 9' P(E)-)plim. [9P(E):T,r]by '
              e

              p(g))=(rri(g), z2(so), ･･･, T.({D), ･･････). . ..

Then by assumption, p(g) =O if and only if g=O. Hence p is an into iso-

morphism. Therefore we obtain the lemma by (1)' and (1).

   Cerollary.･ ILIe g. E 9P(E) and lim.g. =p in El9P(E), then g belongs in 9P(E).

   Definition. The subsPaces of Ee･ P(E) and 9P(E) (or ,El7P(Er) and gP(Er))

consisted bN closed forms are denoted by .gZ?P(E) and Lgy"P(E) (or LopP(Er) and

..gyp(E)). ,

   Since we know ･

          ' drc. = rc.d, drt,r == rr,rd,

              .e p(E) := lim. [Lmp p(Er) : n,r],(3)'

                       -e-H..m.

              ..sy'p(E) == lim. [..fyp(Er):rr,r].(3)

                       -"e-----
                                    '
   Lemma 18. I17C P / O, then

(4)t g] P(E) -d .CZ P-i(E),

(4) YP(E)=d9P-i(E).
   Preof. We need not prove the first equality (cf. [11]). To get the second

equality, we hote
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            d9P-'(E) == lim. [d9P-i(Er) : rr,S].
                       e

Then since we know

            dgp--i(Er) -r LgYp(Er), o<p<r,

we obtain the lemma by (3).

   25. We denote the dua! spaces of ifP(E), etc. by zvP(E)', etc..

   Definitibnt. An element of 2P(E)' is called an (oo - P)-current of E.

   Definition. For an element T of 9P(E)' (org'P(E)'), we d(ptne its exterior

d-4filerential dT by

                                                    '

(5) dT[g] == T[dg].

   Definition. if a current T satishes dT ::: O, then T is called a closed current.

A current of the form dS is called an exact' current.

   Lemma 19. 0n E, a closed (oo -P)-current T is alwaNs exact.

   Proof. Since T is closed, we can define an eletnent S' ef (d.9P(E))' by

              St[dg] - T[g],

because by (4), if dgi == dg2, then g2 == gi + d¢,. ip e9P-i(E).

   Then since 9P'i(E) is locally convex, ghere exists a current S of E such

that

              S1d .E2T p(E) == sr,

by Hahn-Banach' theorem ([10]). Hence we have the lemma for P>O. For P==O,

we note that

              ugy'o(E) = {O}.

Therefore we obtain the lemma in this case.

   Note. If Te(Zlf'P(E))', then this lemma is also trtte for P>O. For P=O, T

is exact if and only if

            dT=O, T[1]=O. 1 is the constant function on E with value 1.

    Since =p9P(E) is an (algebraic) ideal of =p 5'P(E), we can define the

product of a current T and a form g by

              TAg[¢] = T[gA¢].
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If f is a function, then we can define feTby TefL Then since E is paracompact

and Coo-smooth, we get "--･'',
   Lemma 20. Let T and S be two (co - P)-currents of E such that for any xEE,

there exists a neig)Pzborhood U<x) of x and

              T[g] == S[g], car.pc U(x).

Then T=S. This is also true for the elenzents of gP(E)'.

   By this lemma, we can define the carrier car.(T) of a current T.

   Lemina 21. VVe set

                     '
              U(E", s) == {y[min. Il y-x Il <e},
                      ･ xGE

                                                       '
and assume there exists Coo-class Prodection p" : U(E", E)->E" such that

                                             '
              p.'p,t = p.t, p.' == pS1U(ES, E) n E",

for so me e. Then lim. [ El9 P(E r)' l T.S"] and linz. [ .9 P(Er)' 1 x.S "] are de nse in tt' P(E)'

               --and 9P(E)'.

   Corollary. ILiC E satishes the assztmPtions of Lemma 21, then

(6)t El7p(E)" = gP(E),

(6) 9P(E)" == .9P(E).

   Note. If E is a Hilbert space, then the assttmption of Lemma 21 is fulfi11ed.

   26. Let Y be a closed P-dimensional orientable submanifold of E such that

(7) YuB is compact if B is a bounded closed set of E,

then the currents Tv and Ty,p given by

              T. [g] =:: ! .g,

                   '              T.,J[¢] - !.,A¢,

are defined, if we fix the orientation of Y. ･
   Note. A closed P-dimensional submanifold Y of E satisfies (7) if ancl only if

there exists a series of integers {s(n)} and subspaces {Es(,t)} such that

                                                            '              Y n B(n)cEs(n), B(n) == {x Hl x ll ;:S n},

              Es(n)cEs(n+i), di7?t.Es(n) = s(n).
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   Theorem 15. if Y is a,closed' P-dimensional oriented submanijbld of E and

ga/rnshiS g7u)c'h9thaa, tCiOSed q-form on Y; then there exists an (co -(p +.g + i))-current

                  '                                                '                '          . .. tttt /. t. .                                            '(8) dS := Ty,,.
                                                           tt tt

   Proof. We can define an element S' of (d9P+g(E))' by

             S[,dip] -= T., ,[¢],

Pecause dip == d¢' implies ¢' == ¢+ do, aE9P'gni(E) by Lemma 18 and

              Tv, ,[dtr] =O. , .
  '               t t tt tt            'Then since 9P"g"(E) is locally c6nvex, there is an (oo -(p+q+1))-current S

onEsuch that . ･ ･ ･･. ,                        '

              S1d9p+q(E) .. st,

by Hahn-Banach' theorem ([10]). Hence we have the theorern.

   Corollary. There is an (oo-1)-cMrrent T such that

                              '    '
(9) T[clyf] -:: f<O).
                           '                                                  '                                '
   Note. If Y is compact, then Y satisfies (7) and the current (8) is taken to be

an element of (27P"q'i(E))'. Especially, we can take T of (9) to be an element

of (Ell7 i(E ))t. ,
   Similarly, if Y is a closed real analytic subvariety of E such that Y satisfies

(7) and each Z - K+i iS oriented, then we can define the groups ro(-- Z･+i, S')

and we obtain

   Theerem 15'. Under the above assumPttons, if p,ere(Yi - Yi+i, Sb-'-i) and

              s-1 .              Z = res. k(epi) = o,

              i=1 le>i

then tlaere exists a current S of E such that

                    s
(s)t dS = n.iTy,- y,.,, opt･

                                     tt                                       tt
                       S2. (oo - P)-de Rham groups.

   27. For any (oo-dimensional) Banach manifold X, we can define Coo,P(X) and
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 ES'P(X) sim'ilarly as Coo･P(E) and gP(E). To define Ceoo･P(X) and 9P(X), we

assume X is a (not necessarily closed) submanifold of E, a separable Coo-smooth

Ba'nach space. In the rest, we fix this inbedding i:X->E. Similarly, if Xis a

Banach analytic space (cf. [5]), then we consider Xto be a (not necessarily closed)

subanalytic space of E. '
   Definition. car.(g) of a dilfferential form g of X is called absolutely closed, if

it is a closed set of E.

   Definition. car.(p) of a dijerential form g of X is called bounded tf it is a

bounded set of E. '
Ceoo･P(X) : the vector sPace consisted by Coo-class P-forms with absolutely closed and

         bounded carrier of X. , ,
YP(M : the toPological vector sPace regtzrded C,oo･P(X) to be a subsPace of ES'P(X).

   Since E is Coo-srnooth we have '
                      '
   Lemma 22. if X is a closed submanij2)ld of E, then

(lo)r ES' p(x) = Elg" p(E)l x,

(10) SP(X)=9P(E)IX.
   Lemma 23. jlllC there is a sequence of closed submanifblds {X"} of X such that

(i) dim. X"=n(r), linz. n(r)= oo, Xr'iDX", uXr=X,
                           r-ip oo r
                  '     '
(ii) each Xr satisfies (7),

then denoting n",: 9P(X")->9P(X`), r;}ls the maP dofned by z",g ==glXS, we

have

(11) 9P(X)=lim. [9p(Xr):nr,].
                       -

   Note. For E4P(X), we obtain

                                 '
(11)' bPp(x)=lim. [Es;"p(xr):zr,],
                      e

if {X'} satisfies only (i)' (cf. [14]).

   We denote the subspaces of ttPP(X) and VP(X) consisted by closed forms by

.op''(X) and ...gYP(X). Then we know ([11]),

                      '
(12)' M(X, C) - ca P( X) /d YP-i(X),



                     Currents and Residue Exact Sequences , l33

                            vwhere the left hand side is the Cech cohomology group. We also set

(12) HP,(X) C) -= .9 P(X)/d .SYP--i(X).

   Note. By definition, we get

(13) tz9P(X)=,9P(X), H)'b(X, C) == M(X, C) for all P,

              if X is a bounded closed set of E.

But in general, HPb(X, C) ;IIi'(X, C) and Mb(X, C) is not a differential structure

mvanant.
                                                               ..
   28. Definition. An element T of 9P(X)' is called an '(co-p)-current of"X,

   As in n025, we define exterior differential d, etc. for the currents of X.

 . By (10), if T is an (oo -P)-currents of X, then we can define a current

T"(T) =: Tx"(T) by

              rc"( T)[g] = T[p 1 X].

   Theorem 15". Lf T is a closed (oo -P)-current of X, then there is an

(oo -P- 1)-c"rrent S on E such that

(s)rt dS =:= z"(T).

   Proof. Since dglX== d(gl X), T[dglX] = O for any gEi2)'P-'(E), Hence by (4),

we can define S' E (dYP'i(E))' by

             S'[dp] - T[glX].

Therefore we have the theorem by Hahn -Banach' theorem.

   Note. In general, if Y ls a cjosed submanifold of X then

              .(9 P(X)) = SP( Y), rr(g) =g1X

Hence rt:" : .9P(Y)' -> YP(X)' is defined. On the other hand, if Y is an open set

of X, then there is an inclusion e: YP(Y)->9P(.X). Hence e* : 7'P(X)' -->9P(Y)'

is defined in this case. Since n i$ gn onto homomorphism andeis an into iso-

morphism, n* is an into isomorphism and e* is an ontg homomorphism.

   Definition. VVe set

                                     ttt /t                                          '(15) .S?foo -P( X) = (d9 P- i( X))i/d9 P- i(X )),,

                                         '                                    ,. t... tt ll ./and call the (oo-P)-de Rham grouP of X. Here (d.ptP-i(X))l is ihe sPace of closed

(oo-p)-currents of X. ' '.' '/･ ' ' '' ,'' .'･?' ･, ' ･";'
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   Simiiarly, we'set

(15)t dfZ".oo-PcX) ;:=(d g' P-i(X))±/d( Z}7 P-i(X))t.

   Similar as tw(X, C) and IPb(X, C), we have

(13)' ctfoo-P(X) = dll,co-P(X), if X is a bounded closed set of E.

                                '                                            '                                                   '
   Lemma 24. I]r Y is a closed submanifold of X, then there are homomorPhisms

                             '                                                                '(16), ' Tt : HPb(X, C) ->- Hi'b( Y, C),

(16) ' T*': ,7it 'ee -- P( Y) - X"oo -p( x)

                                   '   Lemma 24'. ILf Y ts an oPen set of X, then there are homomorPhisms

(17)' e':Mb(Y, C)-evb(X, C),

(17) c*' :U7oo"P(X) -> X'oo-p(y).

   Definition. (IC Y'- is an r-dimensional oriented submanifold of X and satishes

(7), then the class <Ty> of Ty in .;tigf'co"'(X) is called the dual class of Yanddenoted

bN <T>.

   If Y is an r-dimnesional real analytic subvariety of X, a real analytic Banach

manifold in E, such that Y satisfies (7) and each IY} - L.i is oriepted and has

only finite irreducible components Yi, ･･･, YS, then by Theorem 6, borollary 4,

there is an into isomorphism h :HO(Yi, C)O･･tOHb(YS, C)->RO(Y). Then denoting

<yt> the class of Yi i'n H"(Y', C), we set

                     s
(18) <T.>-Xh(<Yi>).
                    i=1

Then the class <Ty> induces an element bf d2?'co-'"(X). It is also called the dual

class of Y.

   29. Since d21fP'-'(X), d9P-i(X), d(2eP"'(X))' ancl d9P-i(X))' are closed

subspaces of .opP(X), .-sYP(X), (d [29Ppti(X))L and (d9P'i(X))±, HP(X, C),

H)b(iL2'reflXfiC061P(; ]r ,aanndy XThOOe-Ph/iv)e are (ioCaiiy convex) topoiogict i vector spaces.

                                                 .t. // t/t

(19) (HP,(X, C))t := .S¥foo-P(X),

                                  '                         '
gig)f, ..(m(X, C))'-4?{.I,coo;(/LK,.)･,, , , ..,.

      tt   Proof. For <g> E: H,b(X, C) (M(X, C)) and <T>G .tfe8oo-P(X) (d-.oo-P(X)), we
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define

              <<p>,<T>> = T[g].

Then <<g>,<T>> l's well defined. Hence we get a homomorphism S from . .
.tfZ'oo-P(X) (,EtAch'"P(X)) into (Hbb(X, C))' ((Iju(X, C))'). If S(<T>) ::= O, then T[g] == O

if op is closed. Therefore we define SE (d9P"i(X))' ((dgP-i(X))') by '

              S[dpa] = T[op].

Then we get T= dS, where S is an extension of S. This shows ker. ･S == O.

   If T belongs in (HPb(X, C))' ((HP(X, C))'), then we define TE(Lg/P(X))' ((.gZ' (X))')

by

              T[g] = T(<g>).

                  tV AJThen we getT== S(<T>), where T is an extension of T. Hence we have the
                                                                      '                                                        '

   Corollary. ILf X is connected, closed and bounded, then
                                                       '

(2o) . ,S¥--(X)-c.

On the other hand, ije X is cloSed, connected 'a'nd unbottnded, then

(20)t ,%foo(X) -= {O}.

   Note. 1. Since HOb(E, C)=:{O}, .S?'oo(E)vanishes. On the otherhand, weknow

that the unit sphere Soe of ll, the Hilbert space, is diffeomorphlc to H ([7]).

Therefore .StfDo-P(X) is not a dfferential.structure invariant.

   Note. 2. If E satisfies the assumption of Lemma 21, then 9P(X)')' := S)'P(X).

Therefore (.: Zfoo-P(X))' is isomorphic to Hbb(X, C) for all P.

   Note. 3. If X is an (infinite dimensional) Banach analytic space in E, then

we define

              Rco-P(X)

               {the space of closed (oo -P)-currents of E with carrier in X}

               d{the space of (oo -P- 1)-currents of E with carrier in X}'

   30.
or (ii).

In this

       g3. Residue exact sequences, III.

g, we assume that the pair (X, Y) satisfies either of following
(
i
)
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(i). X is a Banach manijbld, Y is an (orientable) closed submanifbld of X such that

  tlaere exists a series of orientable submanifolds {Xr} which satisies the assumPtion

 of Lemma 23, and X"nY is an orientable submanifold of Xr for each r.

(ii). X is a real analytic Banach manifbld, Y is a real analytic subvariety of Xsuch

  that there exists a series of orientable real analNtic submanifolds {Xr} of X which

 satishes the assumPtion of Lemma 23, XrnY is a real analytic subvariety of X'`

 for each r and each (X"n Y)i - (XrnY)i+i is orientable.

   Since X- Y is open in X in each case, there are foilowing inclusion maps.

             t:.9 p(x- y)-> 9p(x), .

             e* :9p(X)t-)･ 9' P(X- Y)'.

By definition, e"d == dee. Hence c'ed=dee*. Therefore we get

(2 1) t (..gY P(X - Y))cLS>f P(X), , (d pt P-i(X - Y)) c dST p-i(X),

(21)' e'k (d9P-i(X)i) c d.E21r P(X- Y),

             e* (d9P"i(X))t) c d(Y P-i(X - Y))'.

   Moreover, if X" is an r-dimensional closed submanifold of X and satisfies (7),

then denoting rr, and itr, the homomorphisms from 9P(X) into 9P(Xr), etc.

defined by rr.(op)=glXr, etc., we have the fol!owing commutative diagrams.

                     ce          9P(X- Y) --> 9P(X) 9P((X- Y)nXr)-.E2)' P(Xr)

(22) itr. ', Srrr Jnr, , Sn",
          9' P((X - Y)nXr) - 9 P(X r), 9P((X - Y)X S) ----> 9P(XS).

                         t/                              tt
   Theorem 17. ILIC the Pair (X, Y) satishes (i) or (ii), then a closed current of

X - Y is always cohomologt)us to a current in e"-im. age.

   Proof. We take a non-exact (oo -P)-current T of X- Y. Then there exists

a closed form gEf9P(X- Y) such that

(23) T[g] == 1.
   '                             t ttOn the other hand, since T is closed, ker.T contains d9P'i(X-Y). Hence we

                    t t. t;t
(24) rr.(ker. T)n..gy'P((X- Y)nX")Dd9P-i((X- Y)nXr), r>p,

(24)' T.(g) G rr.(ker. T) n ..gYP((X- Y)nX"), r>p.
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Hence there is a closed (r - P)-current T. of X"n(X - Y) such that

                                                      tt t t tttt/
(25) Tr(rrr(P)) :=: 1,

             leer. T. n YP((X - Y) n X")Dn.(feer. T) n .-syP((X - Y)n X").

   Since ker. T.npaP((X - Y)fi Xr) is determined by the cohomology class of T.

we have by Theorem 3 or Theorem 4,

                                         '
(26) c(feer. T.n eYP((X- Y)n Xr) ta c(ff,(g)).

                                          '
Hence by (25), we get

(27) e(rt.(ker. T) n ..gYP((X - Y)nXr) 1 (rr.(g)).

Then since we have by the commutativity of the diagrams (22),

              c(ker. T n ..<YP(X - Y))

            = lim. [e<x.(ker, T) n yP((X - Y)nXr) : ffr,],
             "e----

we obtain by (27),

(28) g qtie(leer.Tn YP(X-Y)).

Therefore by Hahn-Banach' theorem, there is an (oo -p)-current TA"of X such

that

(2g) 'TV(g) == 1, feer. "TVDker. Tn.JYP(X-Y).
                                  '
By (29), we get

              <c " ([7` >> = <T>.

Hence we have the theorem. . '
   31. Theorem 18. Lbeder the same assumPtion of Theorem 17, we have the follo.

wing exact sequences.

(i). (X, Y) is the case (i) of n030. .

                            e* res. '
(3o)f ･･-D.tfzeoomP(X)-, 7foe-P(X - Y)-Hr-P+t(Z c>-

              rr*
              -.stzPoe'P+i(X) -･･･, dim., Y ==r. .

(3o)i ' ･･･- .Ewoo"p<x)t/:L> .s¥foo-p(x n yKeE'i> .suoo-p+(-pt->
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               *-               E:>d7oo-p+i(x) --->･･･, dim.'y--oo.

(ii). (X, Y) is the case (ii) of n030.

                                tt
                           e* res.
(30)ft ･･･- d-oo"P(X)- 6foo-P(X - Y)-Rt--P+i(Y)-

               n;k
              -x7oo-P+i(X) ----)pt･･･, dim. Y :== r.

                            e* '' res. '
(30)i' ･･･--> .Stfoo-P(X)----> d9e4oo-P(X - Y)-Roe"P+i(Y)

               rt*
              -.t7co-P'i(X)-}･･, dim. Y == oo.

   Here res. i,s dofned by

(31) res. (<e"<T)>) ==: <dT>.

   Proof. By Theorem !7, res. is defined and im.c'ts == leer. res..

   By the definition of T*, .bn. res. is contained in ker. z". On the other hand,

if n'(<T>) = O, then we can define Se (d9P(X))' by

              S[drp] = T[g].

   Then the extension S satisfies

              res. (<S>) == <T>.

Hence lm res. =leer.z*. ･
   By the definition of e", im.z" is contained in ker.t". If e"(<S>) == O, then we

have

              t"k(S) = dT.

Therefore

(32) S[g] == O, gEt(..CY'P+i(X-Y)).

   Since 9P-'y(X)={glgE9P-i(X), g(x)=O, xE Y} is a closed subspace of

9P-i(X), the quotient space 9P-'(X)1 Y=9P-`(X)/9P-iv(X) is a locally convex

topological vector space and LsY'Pm'(X)]Y= .-<YP-i(X)/YP-i(X)9P'"'XX) is an its

closed subspace. Since S can be considered to be an element SlY of

(YP-'(X)1 Y)' by (32), S1Yis extended to'･an element gl'Y ofe(P"i(X)iY)'.

eehheic"hb,Yat:.,hfiee,d.9fi"itiO" Of 9.9-'(X) l L SA"1 Y defines an (oo -p+i).current st of x



(33)

(33)'

Hence <S>

   Note.

Then

(34)r

(34)co

(34)r'

(34)oo'

(30)i

   Definition

(34)..' are

   32. Similarly

closed real

real analytic

(
i
)

(ii)

(iii)

then we have

   Theorem

(35)f

ttt t
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     S[g]:==Si[g], gEL.gYP-･i(X),

     st[¢i']'lo; cai.ip'eX-X ''' ' '
 = <S'> and <S'> be16ngs in T"-ima' ge. ' Therefore w6' lla've the theorem.

In the cases (30)i and (30)i', we may set

     .stfoo'"-P(X) instead of .tYoe"P(X) if codim. Y == r,

     ,; tfoo'oo"P(X) instead of .9kOoo'P(X) if codim. Y= oo.

and (30),' are rewritten as the following exact sequences.

                  ･ I. .     ...-EZfeo+t'-p(X)- .Slfco+"-P(X rm Y)-X'bo-p+i(Y)-

    -.-;->dfco+"-P'i(X)-･･･, codim.Y=r, '

     ...-X'oo+oo-p(x) ---> d92aoo+oo-p(x .- y) 2f-p+i.cy)-

     -,s?2zifiioQ+oo-e+i(x)-･･･, coa.Im.Y== co, .

     ･･･-c-t ooi,'-"P(X)-d9?7oo'"-p(X-Y)-Roo'p+i(Y> >

     -.--H> ./7t7oo+r-p+i(X), codim. Y := r,

･･,--- .,.-.--.>,,;!t oo+oo-p(x)-.",･,Srfoo+co-p(x-y)-RQe-p+i(y)pmmm>

                                             '          '                                                     '                                tt tt ttt                                          t /t     -. tfoo+oo-P+i(X), codim. Y,F= oo.

                    '
   . The exact sequences (30)f, (30)i, (30)f', (30)i', (34)., (34)co, (34).' and

called re.si4.ue e"x. gct..s.equences for (oo TP).-de Rham .gzepaPs.

       as Theorem 5', if X,is a real Banach analytic space, Yits

 analytl'g. rsubvariety such that 'there exists a series .Qf closed orientable

   subvarieties {Xr> which satisfies

     dim.Xr =='n(r);' lim.n(r) =:: oo, 'X'"'iDX", u'X" =='.iY`,''

                  r-coi r i,
     each Xr satisfies (7), S .i.. L' .,...

     each (X" A Y)i - (X" n Y)i.i is orientable,

                     ,l ,l･                       .I,j   18',...Tipe following seque'faces are exact. , ,'.' --

                  t* res.
     ...; R6ti--p(X)ITT)?Rco-P(X =:' Y)->R'1-P'l･I(Y)-'

    , El}.Rpo=p+i(x)･･･, ' dim y-=-st- r and y satisfies (7),--
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                 e* res.(35)i ･･･-Roe-P(X)-Roo-P(X - Y)-Roo"p+i( Y)mm.-).

          *         5Roo'os"p'i(x)-･･･, dim.y=:oo.

  Note. In the case (35)i, we may set

  Roo･"-P(X) instead of Roo-P(X) if codim. Y == r,

         Roo'oo-P(X) instead of RDo'P(X) if codim. Y = oo.

Then (35)i is rewritten as the following exact sequences.

                  c* res.(36). ･･･-Roo'r-`P(X)-Roo'r"P(X - Y)-Roo'"P+i(Y)-

         rr*
        --m-p.>Roo+r-pti(X)-･･･, codimY=r,

                  e* res.(36)co ...-Ree+co"P(X)---)b･Roo"oo-"P(X - Y)-.Roe'P+i(Y)-

         r*
         -Rco+co'P+i(X)-･･･, codim, Y == co.

  We aiso obtain
  Theorem 19. We detline the homomorPhism- ti' : Hb',-P+i(YfiXS, C) --ev

Hn(s)-p+i(X, c) by (-1)(n(s)-r')(Pmi)6, where r, == dim. YnXS and 6 is the

dev7ned in (6). Then the following diagrams are commutative.

  case. (i)

                  t*
         ...-.Slf--iJ(X)-pmP(X - Y)----
         ' 4f zs* i* JTs* '
         ...-H)t(s)-p(Xs, c)-Hn(s)-p((X-Y)nXS, C)---)b･

                       '         res. z*         -IP'-P+i(Y, C) m> X7oo-p+i(X)-...
         res. )l ns* at lf Ts*
         --->H5･,-P+i(YnXS, C)-Hbi(s)-P+i(XS, C)--･･, dim. Y=r,

                  e*
         ･･･-,Se･"oo-p(X)-. igt"oe-p(X - Y)------)p
             Jrcs" i'" ,l, rrs'
         ･･･-H)t(s)-t)(Xs,                  C)----)･Hbt(s)-b((X - Y)nXS, C)---)･

         res. rr;ls
         -.stz,'oo-p+i(Y)r->.tz"]oo-P+]<X)m-'''
         res. 1, Ts* 6t ,l, rrs*
         --->th,-P+i(YnX', C)-Hn(s)rP+i(XS, C)--'･, dim Y = co,

maP
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case. (ii).

                                e*
               ...-tr7oo-P(X) -.2t;'--P(X-Y) --
                      Srs" ittls Jrrs'

               ...?H)z(s)-P(XS, C)-Hlit(s)-P((X- Y)AXS, C)-

                                :B              res. n              -Rr-PN(X) -M'oe-p+i(X) -.-->...
              res. Sxs* 'tit ,L Ts*
              -Rrs-p+i･(YnXS)---->H)i(s)--P+i(XS, C)----->･･･, dinz. Y == r,

                                e*
              '''-'P'Kco.l*"(X) 7.. Eftco-3(l,.-y) --->

              ...pt)ptH)z(s)-p(Xs,c)-Hbz(s)-p((X-Y)nXs, C)-

            res. T*
            --q-)pRoo-P+i(Y) -d9Zfioo-P+i<X)-･･-
             res. STs* b, Sns*
            ---->Rrs-p+i(YnX') --> H)t(s)-P+i(](}, C)-･･･, dim. Y = oo.

                      S4. Resid"e exact sequences, IV.

   33. Lemma 25. ILf U=E or an oPen ball in E, E" is an r-dimensional subspace

ofEsuch that UnE"lg, then '
(37) ,xe]oo-P(U-ErnU) ={O}, P74r+1,

              . ¥ko'oo-r-i(U - Ern U) == C.

                                                          '   Proof. Since .Stz"-oo-P(U) == {O} for all P by Lerrima 18 and Theorem 16, we get

         '
              res. : .SU'oo-P(U- ErnU) :): Hb'-p+i(Ern U, C),

for all P. Hence we have the lemma.

   Similariy as in nOl, we denote co'oo-b, S'oo-P, S)'oomP[Y] and S'oo-P[Y] the

sheaves on X, a Banach manifold in E, consisted by germs of (oo -P)-currents

etc.. Here Y rneans a closed submanifold of X. We also denote the stalks of

co'oo'P etc. at x by O'ooHb. etc.. Then by Lemma 25, we have･

   Lemma 26. If Y is an r-dimensional closed submanijbld of X, then

(3s) dO'oa-P[}{]. -- @'oo-P+i[Y]., P:/ r+ 2,

              @too-r-1[Y]./dpm'oo-r-2[Y]. yC.

   Corollary. Uitder the same assumPtions about X, Il we have
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(39) dO'oo-P[Y]=S'oo-P+i[Y], PiiEr+2,
                                      '
and the exact seijde'lence ' '''/ 'i"' '
                             tlt t t.t
                                                 '(4o) '6L>dritabLr-2[y]L' $' @･asL,i-[y]tg'S %7.LLL$'6,

                       t t ttt ttt ttttt
where the stalk gy,. of 9y at Nis equal to {O} if xEiY and (5'y,.=C if xEYL

   Lemma 27. The sheaves (2f"y and dO'oohP[Y]/dS)'oe-P' are determinedby U(Y),

an (arbitrary) neigkborhood of Y in X.

di:ffizS&roOrlplahriYsin Lofie Yy;S%tesiteS (7) and has the tublar netgizborhood in x and h is a

               t.tl tl t/...tt.//t
(4o g.mr- {y,(.),
              doroo-p[y]/aot--p =t do'co-p[h(y)]/dab'oo-?,; ""'-'

Here the sheaves in the right hand sides are cbnsidered in E.

   Proof. By assumption, h is extended to a diffeomorphism h : U(Y)----l>V(h(Y)),

where U(Y) and V(h(Y)) are suitable neighborhoods of Y and h(Y) in Xand in E.

Hence for any x E!i Y) there exists a neighborhood VV(x) of x in Y such that

              g . I pv(x) mt-- czf' ,( .) i h( vpr(x)),

              dOt oo-P Y7dO, bo-P 1 VEZ(x) =i: dfi )t oo-P[h( Y)]/dOt--b l h( W(x)).

                                                   '                                         ij
T,yte.n a9AndCedoY..S-a;i[SSei/Ett,..)il;.have the iemma by the definitions of the fih.eaves

   34. Since dim. Y is finite, we can imbed Y in a finite dimensional subspace

of E. We take a sequence of subspaces {ES}' of E such that

(i) dim.E'=s, ,ES'iDES, each ES contains Yl

(ii) UES == E.
                                                     '             '
Then, if Y is orientable,.we have the following commutative diagrams
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                    ･ e*
                ･･･-d-bo-P(E)' +>E7tco-P(E-Y)--->
                           Srrs"i* irt'/S rr,' '                    rrt*/

                ...-Hs--P(Ef, ,C).- HS-P(ES- Y, C)-
                    ,,Xrrs`"J i* XJn,t"

                           C) -H'i-P(Et- }1 C)-               ...-Ht-P(Et,

               res. x* '''               oH"-'P"i(Y, C) ---------- .i-t oo-P'i(E)-･･･
               res. ==/ i,= s''''' Tt'/ ,l.rrk'

               -Hr-P+i(Y, C)- HS-P+i(ES, C)---->....
               res. Xi== j X                                          jr Tst*

               -Hr--P+i(Y, C)-----" Ht-P+i(Et, C), -,..

                               i' res.'
               o-do,oo-r-2[y]--->.antoo-r-i[y]-.- (z:p.--->o
                     rrt*/Jrts* it nt*/Sfls* 7.es. nt                                              .( lns'

               O-d"'S-×"-i[.Y,,l-,, S'Sx'ri'.[,,Y･],,r., `<iis;','lsO

               O -d,D,t-r-2[ Y]-L>.                                 s,t-r-i[y] - y.-O.

   By the commutativity of the first diagram,. 'we get ..

             z," : .S-t ooffP(E - Y) =t HS-P(E'- y, c).

Then by the commutativity of the second diagram, we obtain the following

commutative diagram.

            ...=..--t->Hr-･P+i(E, d"C)too-r-2[Y])-Hr-･P+i(E, S,co-r-i[Y]) F--),.

                   Sz" lrt*
        '' ･･･-.Se`'oo-P(E) ''i･ -,Stfoo-P(E-Y)･- --->

            -r}.rH'.-S"Ji(E･ `ify)-Hr-P"2(t!C,. d.eD,,'T-r-2[Y])----T.}r.r･･

            --->El"-P+i(Y, C)--pgtfoe-P(E) , -. .....

   On the other hand, we get (Z'y=Cy if we consider･Y is contained in ES

and by the corollary of Lemma 26, we have

            .:k : Hr-p+i(E, Stoe-"'i[Y] 2i ,Slft oo-P(E - Y).

Therefore we.Pave .. ,
                 ttt
(42) T*:Hr-p+i(E, doroo-r-2[y]) !)t .S¥foo-p(E).

   Since the sequence

            O pmmp>dswt oo-k-mom=l>dS ), oo-k[ Y ]edgbi oo-k Y/dS )r oo-k.v-. o
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is exact, we get by (42) and the corollary of Theorem 26,

    Lemma 28. lyC Y is an r-dimensional orientable manifold and satiskes (7), tlaen

             '(43)t Hg(E, dO'oo-k[Y]/dO'oo-"k) -= {O}, q21 1, k;lllr-i- 2.

    Corollary. ILf Y is an r-dinzensional closed orientable submanifold of a Banach

manifold X such that

(i) Yhas a tublar neighborhood in X,

(ii) Ysatishes (7),

then

(43) Hq(X, dO'oo-k[Y]/d£'oo-k) =O, q}ll, fe}ilir+2.

    35. Theorem 20. Let X be a Banach manifold, Yan r-dimensional closed orien-

table submanifold of X and satisies above (i), (ii), then the following sequence is

exact.

                           i* res.
(44) -･･-->dfToomP(X)--->･ ,;rfoo-P(X-Y)---)･Hr-p+i(y, c) --->

             S
            -dgYoomP+i(X) -....

   Proof. By the exactnees of the sequence (40), we have the following exact

                                     i'*
            .,.-pt--.),.Hr--p+i(x, dubtoo-r-2[y])-.Hr-p+i(x, stcorr--i[y])-

            res. '* 6 .            .-t--).Hr-P+i(X, (EI7.)--->Hr-P+2(X, dOtoo-,'-2[Y]) pt.-> ....

                                                 '
In this sequence, we'have ' ･･
              Hr-P+i(X, Yy)==Hr-P+i(Y, C),

              Hr--p+i(x, stco--r-i[ Y] or 6oo-nyP(X - Y),

by n034 and the corollary of Theorem 26.

   On the other hand, since the sequence

              O-dS )'oo"k--->dS,Qo-k[ Y]-dS )too"k[ Y]/dO,oe-k- o

is exact on X, we have by (43)

(4s) Hq(X, dO'oo-k) :Hg(X, dE)'oo-k[Y]), q;-;}i2, k;-}ir+2. ,

By (45), we obtain -- ' ,･･.
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(46) Hr-P+i(X, dO,oo-･r-2[Y])m--Hr--P+t(X, dOtoo-r--t+i), tlllill,

             r-p+tZ2,

because we know

             Hr-P+i(X, dO,oo-r-2[Y]) or Hr-P+t(X, dgC)tco-t'-t+i[Y]).

Then we have the theorem because we know

             llr-p+t(X, dpmtoo-r-t+i) t df?Poo"P(X).

   Similarly as Theorem 19, we have ･
   Theorem 19'. ILIr XS is an s-dimensional closed orientable szabmanijbld of X such

that YnX' is a closed orientable submanijbld of XS, then setting dim. Yn X' == r,,

we have the following commutative diagram.

                                '
                             i' ''
             ･･･--- Xep-P( X) - E7fco-P< X - Y)                                                   -
             ...sHslpfk c)3' Hs-p(xs-ylnYi, c) -->

             res. b             Z-s･lll,1'}'ilYi;'ry,C>,,.:,,".X,'i:l,(.l'1rr,X･*),-.:III

   Note. In this case, we need not change the sign of

b : th,-P+1(Y fiXS, c)-Hs"p+i(xs, c).

              g5. Applica{ions of residue exact sequences, II.

   36. We assume the pair (X, Y) satisfies either (i) or (ii) of n030, and dtm. Y==

r<oo. Moreover, if (X, Y) satisfies (ii), then the homomorphism h: RO(Y)-->

HO(Y, C) is an isomorphism. Then since the sequences

                                           '                       e* ' res. rr'k
  ...... .O-..2?'g.o-"Ti(X)-..;7t oe-""'i(X-Y)-HD(Yl C)->,.%7ce-r(X)->...

                       c:ts res. rr*
        O-,,l;2t oo"r'i(X)-->･.ESiVt oo-t"-i(X-Y)-RO(Y). ,;ig:7co-r(X)-...

   '
are exact, we get ･--･- -- ･- ---･･･------･---･- ･---･---- -
   Theorem 21. Uitder the above assumPtions, a closed (co -r- 1)-current T of

X-Yis written - ., ,,, ･--                                          '                                   '

(47) T= T,+T,+T,,
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             Ti Eii e"((d9' 6e-"-2(X))i), T, E d(-9 oo-r-2(X'- Y))',

             res. T3 ==ci<Ti>, ci<Yi> := o in . ¥foo-r(X),

where HO(Z C) =liiil[i]iC<Yi>･

   Theorem 21'. Let X be a Banach manifold and ciosed in E, Y==:{Pi} is a closed

O-dimensional submanijbld of X, then a closed (oo-1)-current T on X-Y is written

                                                   '(47)t T == T, + T, + T,,

       Ti G e"((edooH2(X))±), T, E d(Yoo"2(X - Y))', res. T3 ==ci<Pi>,

      {ci} is arbitrary if X is unbounded and : ci = O if X is bounded.

                '                                                              'Moreover, setting T3 = T3({Pi}, {ci}), if {Pi} move in .finite dimensional domain,

then we can take 7> to depend dilfferentiably on {,Pi} and {ci} ifXis unbounded

and dePend real analytically on {p,} and {ci} if X is real analNtic and {Pi} and

{ci} move real analytically.

   Proof. We need only to prove the second assertion. For this, it is suthcient

to show T3(P, c) depends differen,tiablly on P, c if X is unbounded, and

T3(Pi, P2, c, - c) depends real analytically on Pt, P2, c if X is bounded.

   By assumption, we assume P or Pi, P2 move in R" and denote their graphs

in X× R" by r. We may assume r is an n-dimensional closed submanifold of

X × R" if X is unbounded and a-n n-dimensional closed[- real analytlc subvariety

of Xx R'i ifXis bouhded. '
   Then since E× R" is Coo-smooth, we have the following commutative dia-

grams with exact raws, ･ . ･･.                                               tt t
       ,IEtWco-i(X × Rn)             T .--9-'Oe-i(XTxR"-r), -.

       .SE'Poo-i(X × {P}) - .9 oo'i(X ×-{p} - {p, p})-

      ;>H'i(r, C) -,.Slf-(XxR,i)
             T･T
      -HO({p, p, } C)-.figaoo(Xx {p}),

     ･f, tfoo-i(X x R,i) ･･ --.-> .Se7oQ-i(X x R,i - r) mmmpt>

       E7foo-i(X×{P,,'P2})-,%?oo-i(X × {Pi, P2}-{(Pi, Pi, P2), (P2, Pi, P2)})-pt>

      -Rn(r) -b7oo(XxRii)
      -Ho({(pi, pi, p2), (p2, p,, p2)}) - .y"oo(xx{pi, p2)},

which show the theorem.
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   Corollary. if X is unbounded, DcX is an n-dimensional subset such that D is

dtyleomorphic to R", fa smooth fttnction on X, then there is ,a current TD,e of rX

such that TD,e dePends dnjlerentiably on 6, 6 E D, and
                                                           '                                                                tt                                                          '
(48) TD,e[df] -- .f<6), eEi D.
                                                                     '
   Note. Let E" be an r-dimensional subspace of E with coordinate (Ii, ･･･, x.),

then we denote the diagonal of Er × E" in E × E" by A. and set .

             Se,E = {xi, ''', xr, eb ･'', e.) l VZ (xi - 8i)2 =a}

                   cEr × Er cE× Er,

then there is an (oo -r)-current T.,e,, of ExEr-d. such that T.,e,, depends

differentiably on e, gEE", and . ･
                                                       '
             ' Tr,e, e[dg] = S Se,eg･

Moreover, Since Se,, is compact, we can take T.,e,, to beiong in

(=9 P(E × E" -d.))'. , Then we get

                    '
(48)' T.,e,E[d(fZv"-''(x, e))] LSs,,,for"i(c, 8) =Ss,.f(x m gfi)(or-',

     . s:-=so,e, `o"Li(x, 6)7 .ri-r (,v=IIil.l,Xtlll:,)l)r-i.

   37. We assume X is connected, PEX, then since ,Srfoo(X-{P})=t

(HO,(X - {P}))' == O, we have the exact sequence

                          e* res.
            O ---->.sttzt7oo-i(X)-,%foo-i(X - {P})-HO({p}, C)-->

             z" . ･            -.9fco(X)->O.

Since we know"  .SZ'oe(X) = C if Xis bounded an' d closed and .Stzs"oo(X) = {O} if X is

unbounded, we get

              e" ': ,;2e""oo-i(X) z･ ,Stfoo-t(X - {p}),

(49) z':HO({P}, C)[)t .or'oo(X). ･ .

By (49), if T is an oo-current of a closed bourtded Banach/manifold X, then
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(50)' T[f]=cf<P)+S,[ctf].

We denote bp, the oo-current of X defined by tip[f] =f(P), then since c= T[1]

in (50)', we have

(50) T== T[1]ti,+dS,.

   Theorem 22. if X is a closed bounded Banach manijbld, Ya closed submanifbld

of X and satisies (.7) if dim. Y< oo, then

(51)f n':Hr(Y, C)=t c/foo(X), dim.Y==r,

(51)i rr":Etfoo(Y):=c¥fco(X), dimY= oo.
        '
   Corollary. Lhade,v the same assumPtions about X, Y, the homomorPhism

e't･ : .V'oo-i(X)-c;Zfoo-'(X - Y) is onto.

   On the other hand, if X is unbounded or opqn, the sequepces

             ',is,2Ifs]oo-"i(X)-ll"-->uf2i:'De-i(X - Y)tt' H"(Z C)----> o,

                      t* ･ res. ･
              Y-co-i(X)-> XPco-i(X - Y)- dfYoo(Y)- O

are exact. Hence we get ･
   Theorem 22'. Ille X is uabounded and Y is also ztnbounded, then

t*:.;7t oo"i(X)-.S7foo-i(X-Y) is onto. ,
   Similarly, we get, for example, denoting S" the closed submanifold of X

which is diffeomorphic to S", then

            e* : £s'oo-P(X) :y .%fioo-P(X - S"), P X n + 1,

            if X is unbounded and S" is homologous to O in X,

            t* : .9foe-P(X) tr .tfoo'P(X - S"), P 74 n,

            if X is bounded and S" is not homologous to O in X,

                           c}ls res.
            o-./voo--n-'i(X)-X-noo-""mi(X - S")-HOcS'i, C)-O, is exact,

            if S" is homologous to O in X,

                          T* e'k
            o-Ho<S'i, C)---)e･. tfos-"<X>-2foofi"(X - S'i)--->O, is exact,

            if S" is not homologous to O in X.

   3s. As in nOlg, we can define comp6sed residues for the pair (X, Yl, ･･･, Yh),

where X is ･a /Banach manifold and Yi, ･･･, -Yh ･are closed (orientab]e) submanifolds
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of Xsuch that'' - '

             M and Yh, (YhU･･･UU) and (YbU-･-UY,),

             YinYh and n, (YhU･･･ug) and (Y4u･･･uZ),

                  r----------}--i-----------ii-l-d-------i-----

             Mn･･-nL.i and 4 are in general posisions.

Moreover, we assume that L satisfies (7) if dim Yi < c)o. Then denoting the.residue

maps in the pairs

          (X- (Y, U･･･U g), X- (KU Yh U ny･ny U U), Y, -Y, fi (Yh U･･･U U)),

          (Yl - Ln(Yh u ･･･u U), K - Y, n(Yh u ･･･ u Y,),

          Mn Yb - Yin Yhn(ku･･･u 4)),

            ----i--}--i----d--------4--------------------
                                                   '
          (Yl n -t･ n Y,-i, Kn ･･･n g-i- Yl fi ･･･ n Y}, Y, n ･･･ ft L),

                                                              'rbis.ryelS;¥,t,, ;ISisyYlny2, ''', reS'yln･･･ny,, We define the composgd resigue map

(s2) res. yb ･･･, Y,=xes. yln･･･ny,･･･res. ylny2res. yl.

   By the definition of res.y,, ..., y,, if dim Yin-･･nYi.<co for some i, then

            reduces essentially to the finite dimensional case which has beenres.
   Yb ''', Ys
tveabed in nOlg. On the other fuand, if dim.Mn･･･ng== co', then res.y,, ..., y, is

?vehesllltOMOrPhiSM frOM c%7 on-P(X-(YUny''uY})) into .;¥fDe'p"s(}zfi-.･nL). But lf

             codim. Yl n ･･･A Yi in Yi n ･i･ fi Yi.i = ri,

             ri is a positive integer or oo, Yb == X,

then denoting

             ,oroQ+"i'･-･'rsHP(X) instead of X'oo-P(X),

             .;23." oo+r2+･･･+rs-'P(Yi - YiA(YliU･･･U L)) instead of

             .ve'oo-P( Y, - Yl n(Yli u ･･･ u Yl)),

             ---i}t-------i---t----------------t-ti-

           is the homomorphismres.
   Yb '''i Ys
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                        : .T co+ri+-･+r s-P(X - (Yi U ･･･ U Y,))-(53) res.                Yb ''', Ys

                  -xfoe-P+'( Yl n ･･･ A Y})･

   By the definition of res.yi, ･･･, y,, if the sequence of differential forms

{p, gb ''', gs}, g e g (PX), gi E 9P' i( Yl), ･･･, g,E .9 P-S( Yl n ･･･ n 4) satisfies

             g1 K'- Yl fi (kU - U Z) == dgi,

             g, 1 Ln Y5. -- Kfi Yhn(Yhu ･-･ u Z) == dg2,

                  -----------------t-- ny t-----------

             g,-2l'Kn ･･･ n g-, - Mfi ･･･ nZ-inZ= dg,-b

             g,-i l Mn ･-･ ng =: dg,,

we get

                                          <T>.(54) T[dq] == S[g,], <S> == res.
                                  Yb ''', Ys

   Simiiarly, if X is a Banach analytic space, Yl, ･･･, Yk are its closed analytic

subvarieties which satisfy similar conditions as before, we can define the com-

posed residue homomorphism, for example, . '
                                     '                     '
(53)' res.y,, ..., y, : dfiefpce+ri+･･･+rs-p(x-(yiu･･･ug))-

                  -Roo-p+s( Yl n ･･･ A Y}),

if dim. (Yln･･･n}'1) == oo, codim. (Yln･･･nYi) in Yin･･･n]Vl-i =: ri, ri is a positive

integer or oo ancl denote .S?'oo""i-t""''"s-P(Yin ･･･ nYi - Yln ･･･ n(X･+iA ･･･ nY,))

instead of ,;tfoo-P(Yln ･･･ n Yl･ - Yin ･･･ n YiA(Yi.iU ･･- U Y,))･
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