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   Introduction : The study of special trigonometric spries to characterile sopae

properties frQpa. their cQefiiciepts ha.s long bqen k,ept up by paapy auth.or$. Their

central topics are mostly concerned with Fourier Series Problem and integrability

Problem which, as is shQwn. Iater, are eqqivalent in Qur cases. We consider

throughout cosine and sine series:

                   oo  (i) ,1,..ia. cos nx,

                   oo ,.  (2) ,n.ib- sin,.nx, . .,
or together,

                    oo  (3) =Cn SOn(X),
                   n=1

where c. == a. or b. according as g.(x) = cos nx or sinnx respectively. '

   We see that in mpst cases gosine series (1).is more. prickly than sine series

(2). For example, when b,, " o, (2) is a Fourier series if and only if Ski<+oo,

but for (1) with a.eO any effective necessary and suMcient condition tqs not yet

               oo abeen found and .X=i-ii"<+ oo is thep merely a sqfficiep.t cQnd.ition. Other wel.1

known suficient condition of W. H, Young is that a. -> O and {a.}is quasi-convex.

The necessity condition is much more obseure and･we have little or nothing

except that of R. Salem ([1] vol. 1. p.237), i.e.,

                   (a. - a,,+i) Iog n -)p O

when a. " O. On the other hand it is known that when c,i 9 O or more generally

c. ->O and {c.} is of bounded variation, (3) is a Fourier series if and only if it



154･'''' '''･ ' TAKEsHi KANo

represents an integrable function. G. Goes noted [3] without proof that it is so if

and only if (3) is'a Fouriet-Stieltjes series. On the one hand, S.A. Teljakovski

proved [5] that when b.->O and {b.} is quasi-convex (2) is a Fourier series

or equivalently, (2) represents an integrable function if and only if

#.,Ib.'tl<+oo. ''' '' ''
concUhneinagii:lhOefset¥.gSeoPraePmers.iS tO PreSent SOMe additional results and make remarks

                                                                  '

                     g1. Semi-convex null sequences.

   In the first place we shall prove the following theorem which is a slight

generalization of that of Young.

   Theorem A. if {a.} is a semi-convex null sequence, i.e., if a.->O and

                   co                   =nI A2a..-i + A2a. 1 <+ oo, (ao = O)

                   nml

                   A2an == Aan - dan.i, Aan = an - an÷i,
then (1) is a Fourier series, or equivalently, it rePresents an integrable function.

   Before proving this, we shall remark that clearly every quasi-convex null

sequence is semi-convex and require

   Lemma 1. IZf {a.} is a semi-convex null sequence, then

                   11(an.1 - an+1) -> O,

                   ooand 21a.Li-a.+il <+ oo･
                   n==1
 '

   Proof. . .                                                '            '                                           '                                               '
                              '      lan-! p an+d =: ]k=O.O..(A2akH-i + A2ak)l $leXoo=. -ill' k ] ri2ak-i + d2ak l

  t.                         tt     g-iiaO=e..le l d2ak-i +d ia,i ,1 = o(i), '

              oo oo ooand tl.i[an-iHan+ilSl,ll.lllileX.-.Iif2ak-i+A2dkl ,

                                         '              'oo ./ ' t
            == =n l d2a.-i + d2a. 1 <+ oo.

              n=1

   Proof of Theorem A.

   We have for x !;E O (mod z),

            tN.ian cos nx =r*.i (a.-i - a..i) '2Si$n'innXx +aN-i S2iginNtit .. -,

                                                            '
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                      sin(N+ 1)x
                  +a'N 2sinx '
           =::i)illl=.ii (zda..-i - Aa.+i) 2DimsiiX)x + (aN-2 - aN) D-2 2Iiki(xX)

                       sin lVlu sin(N + 1)x
                  +aN 'i--2 sin x + aNM 2sin x '

            nwhere Dma.(x) ==Xsinkx, the conjugate Dirichlet kernel.

      -ILD.(x) -> o (n -)･ oo) for any fixed x i;z: O (mod 2ff), we obtain by Lemma 1,
Since
       n

           ,1-i an CoS 7¢x == tfi.k, (dan-i - da.+i) 2(l 'iXi lll: f<x).

And since

             ,*.,lid"n-i-dan+iI S[1. 2tigl'.'.(X). dx

              co ' rr sin-2!x sinn+lx
             ,X,..ilA2an-i+id2anl Sm. 2sin2uxt 2sin2x dx (n e,ven)

                                     2

              oe tr sinn+lx sinlZ.x
             ,X,=i[zi2an-i+d2anl S-. 2sin2! 2sin2x dX ' (n Odd)

                                      2
          = o.zO.a., l "2a.-t + d2a. 1 [SZ.( Si,ni:i/ iX )2dx}S {sl.(ntmlillll.ilt X )2dx}}

                                      22
                oo            = O(=nlA2a.-i+A2a.]) = O(1),
                n =1

we conclude that fE L by Lebesgue's theorem.

   Thus we know that (1) should converge to fcBL everywhere apart from x=-O

(mod x). Hence we can infer that (1) should be a Fourier series by virtue of

generalized du Bois-Reymond theorem [1] [6].

                         oo   Corollary : .ILf' 2. -> O and Xn12. - 2.+i1<+ oo,

                         n==:1

                   oo                  = 2. cos(2n - 1)x,
                  n=1
is a Fourier series.
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                       S2. Fourier-Stieltjes series.

    In this section we give a proof of Goes' theorem and an application of it in

   Theorem B. (G. Goes [3]) Let {c.} be of bounded variation. Then (3) is a

Fourier-Stieitl'es series if and onlN ij' it is a Fouriez series, or equivalently, it

rePresents an integr'able .function.

   In fact, Goes' original statement has the additional assumption c, ->O, which

may be seen to be superfiuous from

   Lemma 2. 1]f'(1) and (2) are Fourier-Stielt]-es series,
     r･t

                    iim-l:- :ii; ak =: o,

                   n-co n le=1

and Sl]ki" should converge and therefore especiauy

   n==1 n

                    li. ul:- ]Ilil] b, = o.

                   n-+oo n k==1

                                                          /            Fi;tt/iak= 'i:t tl/ii!"h.COshXdF(x) == nl. Sl.Dn(x)dF(x) 111

                                                        '          == .1. S"-, Dn(X)dF + nl. S,<i.1<. Dn (X)dF d=f It + I2'

   Here D.(x) denotes the Dirichlet kernel and ao ==O. If w6 take5so small

that the total variation of F(x) over (-6, 6) should be <E,

                   6            Ii =O(S IdF(x)1)-O(e) == o(1),

                   -i
            I2 == O (;, ,M$,.afx-.. [ D.(x) i S,s.i$. IdF(x)l > - O (-ill･) ;=:: o(i).

 '
                                             'Hence iim-I!L::ll:] ak =: o.
                   n-+ oo 7t k=1

   On the one hand

            tt/,b-lek:=tt/,iS"-iinlekX-dG(.)=ijZ.(tt/,Sinfe4X)dG(.).

But since we know that
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                   s.(x)=tt/iSinlekx,

                                             '                                 '                               'is uniformly bounded over [-rr, n], we can assert that ke should converge

according to Lebesgue's theorem (for Lebesgue-Stieltjes integral) and thus obtain

                    li. -l- S b, .= o.

                   n-ce n k==1

Proof of Theorem B. Clearly it is enough to show that Fourier-Stieltjes---)p

Fourier. If (3) is a Fourie･r-Stieltjes serie$ it is summable (C, 1) and its (C, 1)

means o.(x) converges almost everywhere to di'(x), where di(x) is a function of

bounded variation. Hence op' E L. Since {c.} is of bounded variation, c. approaches

a limit as n-> co and it must be O by Lemma 2, Therefore we know that (3)

should converge everywhere apart frQm xEiO(mod 2x) tQ a function ¢(x), But

since (C, 1) method is regular, we have a.(x)->ip(x) and hence ¢(x) =ip'(x) a.e.,

so ip(x) E L. Consequently we conclude that (3) is a Fourier series by operating on

generalized du Bois-Reymond theorem again. Thus our proof is complete.

                    g3. An application of Theorem B.

   The rnere condition a. "O is known to be insuMcient even to ensure that

(1) should be a Fourier-Stieltjes series from Theorem B and Salem's nece$sity

condition. But a stronger assumption a. Iog n" is then suthcient for (1) to be a

Fourier series. This is a special case of the following theorem of S. Szidon [4]

and we shall give a different proof of it using Theorem B.

   Theorem C. if {a.log n} is bounded and of bounded variation, then (1) should

be a Foarier series.

   Lemma 3. lyC {a.log n} is bounded and of bounded variation, then {a.} is a null

sequence of bounded variation.

   Proof.

       teq.,[an - a..iI == tW., a" iOgnioagn+a iOg(n+i) + a""' IOi.gog(in+i)

                                                    '     ,sl;EOe l=, lan 10g " i."g･ts log("+1)I +t9=, l """'i,lgOg.(i + 'jll')

     Stfi.l2, ili(an iog n)i + ,ii.il, ia"'theii.Ogg,(# + i)m o(i) + o(i) = o(i),
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   Preof of TheoreTn C. We may assume that ai =O. Then we have

                   n n c6s kx
            sn(x) == IE.ilmi ak cos kx = ill.ll, (ak iog le) iog k

                                                   '                  n-1
                :=: X (ak log le - ak.i log (k + 1))Ck(x) + a.log neC.(x),

                  k-=1

where Ci(x) =o, c.(x) == tt/2 :oOgS kleX.

Since we know ([1]. vol.1 p.94) that

                    x                   S IC.(x)l dx == o(i),

                    --･m

we obtain

                                        '            !1. ]Sn(x) [ dx $l SZ. ,"=.-,.,i ]A(ak log le)RCk(x)l dx

                                     x
                           ÷ ]a.1 log n ! IC.(x)l dx

                                     -rr
              n-1
          == O (X ]A(ak log le)1 ) + O( la.1 log n) = O(1) + O(1) = O(1).

              k=1

   And we know [1][6] that a necessary and suMcient condition for(1)to be a

Fourier-Stieltjes series is

                    "                   S ]an(x)I dx =O(1),

                    -- rr

Where an(x) =nlltt/isik(X)'

But this condition is clearly satisfied in our case since

                    n                   S IS.(x)l dx == o( i).

                    -rr

Therefore (1) should be a Fourier-Stieltjes series and hence a Fourier series with

the help of Lemma 3 and Theorem B.

pendWinegroenMgrhkeotrheat:lhgOurtel.:nrCatChae?lbeengzaOyVfeadsh:.IIoonr.eelementarilywithoutde-

                            g4. Sine series.･, , ,
                                                    tt
   S.A. Teljakovski [2] [5] has recently obtained the following
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andTnhleyOiiilM D' ILIC {bn} iS a qUaSilaconvex null sequence, (2) ts a .Foarier sertes ijc

  (`) ' ''ii,ill..lib.ii<'+oo,

                                                 Xb-n.
and this cannot be rePlaced by the mere COnVergenCe Of .=i n

   In connection with this theorem we shall prove

   Theorem E. if {c.} is a nttll sequence such that

  (5) tep.in2 A2(;i'L) < co,

                    '
lhen (3) is a Fourier series, or equivalently, it represents an integrable .fleenction.

   Proof. We prove this for (1) only since it goes in quite the .same way for (2).

                      n
Let S.(x)= Xak cos kx (a. -> O).
                     le=1

Then
                                   '                                                  '
      Sn(") == f. te.,f' sin kx - IX., d(k')D,'(x)+ ?/' D-.t(x)

           n-2         := E.,(k + 1)d2(a-lek)Xk'(x) + nd(."it-l)rr..i'(x) + a-." -D.'(x),

where K-.(x) is the conjugat e Fej6r kernel and by Z,ygmund's theoem ([1]vol.

1. p.458)

               rr              S IK-'n(x)]dx=O(n).

               -T

Moreover for any fixed x ;z: O (mod 2T),

                           '                                        '                        t tt             nd ( ."I" il )-Kh.i(x) -> o, !li'E' Z:il. (x)i -> o,

when n->oo. Hence everywhere apart from x =- O (mod 2rr),

            '<x) == /j.i.?[: sn(I) = tff, (h + 1)'h2(il;'L)kT'I,(x),

                                                  '                                                '                                  tt tt tt                            ･, /, ･･ 1･exists and f<x)EL by Lebesgue's theorem since
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         '           tW.,(n+i) a2'(flr')elilir'.(x)1 =-O(,X.,n2 A2(fli'It))== o(i). .

Consequently we arrive at the conclusion of the theorem by generalized du Bois-

Reymond theorem.

   Finally we prove the following
   Theorem F ILI' {c.} zs boanded and quast-convex, the condttzon '

 (4)' ,*.,[C.'l<+oo, ･･

                                                ･l･ ,･iSheeoqWrUeitftasleahnsat15tOdce(otc)o'o.xastrrya.tetwolemmasbelowfromwhichwecandeducetheabove

andLeMMa 4' if {2n} iS hO"nded and quasi-･conalex, then it is of bounded'variation

                                       t tt
           n(Zn pm 2n+i) -)' O-

                  oe oo   Proof. Since =nlA22.1<+oD, Xn(a21.) also converges.

                 n==1 n=1
                                                  '                               '  ,. i
           ': le(d22k) = R! pt 2n+i H Ee(?ln - 2n+i), '

           k==1

hasafinite limit asn-eboo: '' ' ''

Thus we obtain

           n(Rn - ]2n+i) :=: O(1),

and R. -2.+i ->O (n --> co).
                                                '

Hence ldl.1 == Ik=O=e. A2Rk] :-:{:k#. -i;. kla2Rk1 S;tafe ]a2Zki

          =o(i)' ' '
                                     tt                              '

            oo oo oo oe            Z IAR.Ig ==lti22k1 =Xn Iti22,] <+ oo.and
            n=1 n=lkl?1 dltl
                   71   Lemma 5. If k==i!llit=O(1) or pt, =O(1) and
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           oo           ,;.,i2 tiS"-,;`'.'"', <+.., ･

then Lt. '> o, teq.i [ptnil <+oo, ,*,=i lptn-s`n+!1 <+ oo,

                           '                                             'and conversely.

   Proof. Let us put tt/ilZt -i 2,,.i and sctppbse first tha't

           tt/,t-fe`k==o(1). .

Then 2. .i - 2. == tl{l't' and

                   n
                                     '
            oo oe                           Ltn+1 Ptn           ,].,n 1 d2A. 1 = iil.ll,n -i, i+ 1 -/i, I' <+oO,

                                             '
i.e., {A.} is bounded and quasi-convex. Therefore we have

           p`n == "(2n+i - 2n) "O･ ,ii.ll, Ilil '1 = tlii.lll, IRn+i-2nl <+oo･

by Lemma 4. And rnoreover

           co oo oo oo           = IF`n- P`n+il =X id2n+i - nA22nl ;S= 1tiRn+il + = n W2R.l <+Oo.

           n--1 n=1 n=1 n=1
assulS'ipkaoSne 2" == O(1)' i'i faCt' it fOllows t.haf tt/i'A-kk = o(i) again under the

                                                  '                              tt           tep.in?t-n2'i'il<+oo. .,
                                                    '
For, by Abel's lemma, we have ' ' '' ''
                                                 '            tN.,R-." ;s{ J2Nj + rEin .2'f"'i -th =- o(i) + o(i) == o(i).

That the converse holds is clear since

           tep,..,n-.'4'!+i"'1pZ-."g,#.,IAR.1+tep.,lhZ'm'y"'l<oo,

and from the convergence of tW.i IA2.1 and ,S.i iR;I , it follows that 2. --> o.

16g
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   Proof of Theorem F.

                                       tt   If {c.} is bounded and quasi-convex so that ,*.i ICil <co, then

                                         .t                                                       tt      oo oo     ,X,=i n2 d2(gi')i ==: ,il.llii na2c. + 2dc.+i - 2 nC'i'ii + 4 nC'i'2-i-

       ;;illS.," IA2cnl + 2,S., lacn+il + 2tep., hC"iil + 4.=O.O., hC'i"2i <-s-oo,

by Lemma 4. Conversely if (5) holds, then

                                  tt

            co co            ,l=i n2 A2(C-n'i) = },li..l nti2Cn + 2nti ( nC'-'i-'il ) l

             oo co          S;2,E.i n d( nC'i'il ) - .X.ntin 1ri2Cni ,

             oo co coi･e･, 2;,ii..ln A(nCilt'ii ) ;s; ]il.l]iin2 ii2(Si'i') + ,l,..in IA2c.1 <+ oo･

Hence by Lemma 5 we conclude that

            tlll.],''[g;'i-<+oo, ･

i.e., (4)' hoids.
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