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Introduction : The study of special trigonometric series to characterize some
properties from their coefficients has long been kept up by many authors. Their
central topics are mostly concerned with Fourier Series Problem and Integrability
Problem which, as is shown later, are equivalent in our cases. We consider
throughout cosine and sine series :

(1) > a, cos nx,
=1

(2) >1b, sin nx,
n=1 '

or together,

) 2 e on (2,

where ¢, = a, or b, according as ¢,(x) = cos #x or sinnx respectively.
We see that in most cases cosine serigs (1).is more prickly than sine series
(2). For example, when b, J 0, (2) is‘ a Fourier series if and only if 2%<+oo,
=
but for (1) with a,J 0 any effective necessary and sufficient condition has not yet
been found and i}a—n"< + oo is then merely a sufficient condition. Other well
=

known sufficient condition of W.H. Young is that a, >0 and {a,}is quasi-convex.
The necessity condition is much more obscure and:we have little or nothing
except that of R. Salem ([1] vol. 1. p.237), i.e.,

(an - an+1) 1Og n—>0

when a, { 0. On the other hand it is known that when ¢, y 0 or more generally
¢, 0 and {c,} is of bounded variation, (3) is a Fourier series if and only if it
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represents an integrable function. G. Goes noted [ 3] without proof that it is so if
and only if (8) is a Fourier-Stieltjes series. On the one hand, S.A. Teljakovski
proved [5] that when 5,0 and {b,} is quasi-convex (2) is a Fourier series
or equivalently, (2) represents an integrable function if and only if
> bll g
EI—I< + oo
n=1 N

The aim of this paper is to present some additional resuits and make remarks
concerning these theorems. '

§ 1. Semi-convex null sequences.

In the first place we shall prove the following theorem which is a slight
generalization of that of Young.
Theorem A. If {a,} is a semi-convex null sequence, i.e., if an—>0 and

Z n ] Azan—l + Azan | <+ o, (aO = O)
n=1

May = dan — dan,,, dan = au ~— an,yq,
then (1) is a Fourier series, or equivalently; it represents an integrable function.
Before proving this, we shall remark that clearly every quasi-convex null
sequence is semi-convex and require ,
Lemma 1. If {a,} is a semi-convex null sequence, then

n(an—l - an+1) - Oy
and Z 161"_1 - an+1l <+ oo,
. n=1

Proof.

k=n

@y — @uia = ]z}(dzakq + d2ay) éz ” k| Lay_y + FPay
k=n -

—SVk| MLy +4 %] = 0<_),
énkgn | a1 + ‘k‘|‘ ”
and I Q,1 — 8ya1 | _S_Z Z l AZak_l + Azdk I
n=1 n=1k=n
o= " | #2a,_y + 42a, | <+ oo,

=1

Proof of Theorem A.
We have for =0 (mod =),

% . - 1\5 ( ) .sin nx sin Nx
cos nx = oy — Qo : an. .
= = "o gsinx VTt 2sing
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sin(N + 1)x
a»N%“m
2sin x
Nz D,(x) Dy _s(x)
= A — 4 T (ay s — —
n=1( A1 an+1) ZSinx _l_( N -2 N) 2gin x
sin Nx a sin(N + 1)x
255 Ta . T STy
N-1"osin « N osing

n
where D,(x) =E sin kx, the conjugate Dirichlet kernel.
k=1

1 .
Since —D,(x)>0(# —>o) for any fixed x50 (mod 2r), we obtain by Lemma 1,
)

2 o D,(x) @
a, Cos nx = da,_, — da,, ) ———= f(x).
ng ﬂg( : = f@)
And since
S | D)
—4 { :
};1 | Aan—l an+1 l . 2 sin &
) = | sin®x sin’ﬁix
D dan_y + Lan | S 2 2 dx (n even)
n=1 - Zsin_jzc— l ' 2sin x
oo = sin?l——;—lx sing»x 7
S 4a,, + &a,| | . dx  (n odd)
u=1 - 2sin§ , 2sin x
o z sin@—;—lx 2 13 p singx 2 1
=010y + 2| {{ (———)as}® [ (—2)as)
n=1 —n Sin? — sin?

=0 (Z n I‘dzan—l—i_‘dzan ] ) - O(l),
B=1
we conclude that f & L by Lebesgue’s theorem.
Thus we know that (1) should converge to fe&L everywhere apart from x=0
(mod =). Hence we can infer that (1) should be a Fourier series by virtue of
generalized du Bois-Reymond theorem [17] [6].

Corollary : If 2,0 and D n |4, — A,y | <+ o0,

n=1

> 14, cos(2n — 1)x,

n=1

is a Fourier series.
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§2. Fourier-Stieltjes series.

In this section we give a proof of Goes’ theorem and an application of it in
the next.

Theorem B. (G. Goes [3]) Let {c,} be of bounded variation. Then (3) is a
Fourier-Stielijes series if and only if it is a Fourier series, or equivalently, it
represents an integrable function,

In fact, Goes’ original statement has the additional assumption ¢, -»0, which
may be seen to be superfluous from

Lemma 2. If (1) and (2) are Fourier-Stieltjes series,

1 13
lim— > }a; =0,
oo B fp=1
Sy .
and Z»~ should converge and therefore especially
n=1 71
1 n
lim — E by = 0.
n—eo W jp=i
Proof.
1 n 12 1 ks 1 4
— = — kx dF(x) =——\ D,(x)dF(x) ;
nk}:}ak " L—lﬂg__,, cos kx dF(x) p_~" S—” (%) dF(x) |
1’ 1 ar
- S_SD,I(x) Ft— Sa<m<zD” @)dF =1, + I

Here D,(x) denotes the Dirichlet kernel and @, =0. If we take ¢ so small
that the total variation of F(x) over (—d, d) should be <,

L=0( [dFx)|)=0@ = o),

—4

=0 Max [D)1{_ 1)) =0 () = o,

sl =x

1
Hence lim—>}a;, =0,
oo P EZY

On the one hand

n 7 T 3 72 H .
by 1 S Smkx~dG(x) :ig (2 sin kx

=k Eind, K rd_ h= ke

But since we know that
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% sin kx
b
=ik

sﬂ(x) =

. - bﬂ
is uniformly bounded over [ —=, n], we can assert that }]— should converge
n=1 "

according to Lebesgue’s theorem (for Lebesgue-Stieltjes integral) and thus obtain

1
lim—Z b, = 0.
n—oo B p=]
Proof of Theorem B. Clearly it is enough to show that Fourier-Stieltjes —»
Fourier, If (3) is a Fourier-Stieltjes series it is summable (C, 1) and its (C, 1)
means o,(x) converges almost everywhere to @'(x), where @(x) is a function of
bounded variation. Hence @' € L. Since {c,} is of bounded variation, ¢, approaches
a limit as # > oo and it must be 0 by Lemma 2. Therefore we know that (3)
should converge everywhere apart from x =0 (mod 2x) to a function ¢(x). But
since (C, 1) method is regular, we have o,(%) > ¢(x) and hence ¢(x) = ?'(x) a.e.,
so ¢(x) € L. Consequently we conclude that (3) is a Fourier series by operating on
generalized du Bois-Reymond theorem again. Thus our proof is complete.

§3. An application of Theorem B.

The mere condition @, | 0 is known to he insufficient even to ensure that
(1) should be a Fourier-Stieltjes series from Theorem B and Salem’s necessity
condition. But a stronger assumption @, log n| is then sufficient for (1) to be a
Fourier series. This is a special case of the following theorem of S. Szidon [4]
and we shall give a different proof of it using Theorem B.

Theorem C. If {a,Jog n} is bounded and of bounded variation, then (1) should
be a Fourier sevies.

Lemma 3. If {a,log n} is bounded and of bounded variation, then {a,} is a null
sequence of bounded variation.

Proof.

1

oo ) log 14—
. | an IOg n_an+1 log(n+1) an+1 ( ﬂ) |
7;:2: lan a,,+1l 122=Z= l 10g 7 + logn |

1
— G, logn+1)] & [ @i ] log(l -+ Z)
10g n n=2 log n

< {‘2 la, log n
n=2

@41l <log(m + 1)

=  nlogin = 0(1) + O(1) = O(1).

<>V d(a, log ) +

n=2
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Proof of Theorem C. We may assume that ¢; = 0. Then we have

2 cos kx

7
S(x) = a, cos kx = a, logk)———
(x) ]e};l;k kzzz(k g)logk

n—1
= E (ak IOg k— Apsy IOg (k =+ 1))Ck(x) -+ alllog n-C,,(x),
k=1

% coskx

h == = _—

where Cix) =0, C,x) /e§=2} Tog
Since we know ((1]. vol.1 p.94) that

4

[ 1c)ax = 0,

we obtain

L4

+ layl logn §  |C,(x) dx

—T

n—1

=0 (kX_; |d(az log k)| ) + O(la,| log #) = O(1) + O(1) = O(1).

And we know [1][6] that a necessary and sufficient condition for (1) to be a
Fourijer-Stieltjes series is

[ oz = o),

-1

1 K3 .
where 0,(x) = m}g S, ().

But this condition is clearly satisfied in our case since

| 1Sux) dx = 0.
Therefore (1) should be a Fourier-Stieltjes series and‘ hence a Fourier series with
the help of Lemma 3 and Theorem B.
We remark that Theorem C can be proved more elementarily without de-
pending on Theorem B but in rather lengthy fashion.

§ 4. Sine series. .

S.A. Teljakovski [2] [5] has recently obtained the following
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Theorem D. If {b,} is a quasi-convex null sequence, (2) is a Fourier series if
and only if :

= 10, :
B S,
n=1 N
> b,
and this cannot be replaced by the mere convergence of » |-
. =1 72

In connection with this theorem we shall prove
Theorem E. If {c,} is a null sequence such that

Jet)

then (3) is a Fourier series, or equivalenily, it represents an integrable function,

=)

®) oo,

=1

Proof. We prove this for (1) only since it goes in quite the same way for (2).

£/3
Let S.(x) = > ay cos kx (a, > 0).
=

Then

S = 3% sin k= ’;‘*:J 4(ZF) D)+ D)

k=1

n—2

= Stk + 0 D) R ) + nd( 2E,

£ —1

+
|
IS
E

where K,(x) is the conjugat e Fejér kernel and by Zygmund’s theoem ([1]vol.
1. p. 458)

4

{18 dx = 0w,

Moreover for any fixed x== 0 (mod 2x),
nd(2ELVR, () >0, D >0,

a,
n—1 n

when n—»c0, Hence everywhere apart from x = 0 (mod 2=),

oo

fx) =lim S,,yb = > n+ 142( )K’n( ), |

#—roo n=1

exists and flx)eL by Lebesgue’s theorem since
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a2

Consequently we arrive at the conclusion of the theorem by generalized du Bois-
Reymond theorem.

2(11 + 1) « K (x) O(‘i,—‘n2

412( ) )) = O().

Finally we prove the following

Theorem F. If {c,,}‘is- bounded and quasi-convex, the condition

ICI

@y Z}

is equivalent to (5).

We shall demonstrate two lemmas below from which we can deduce the above
theorem as a corollary.

Lemma 4. If {a,} is bounded and quasi-convex, then it is of bounded variation
and

n('zn - 21:4—1) - 0.

Proof. Since > n |4, <+oo, > m(4%,) also converges.
g2==1

n=1

So,

=
r—~

2 — - f
k(dzxk) - Z1 - ’zn+1 (ﬂ - 2n+1)7
k

il
=

has a finite limit as n ~»eo0,
Thus we obtain

1’1(2" - 'ln+1) = 0(1):

and 2y — 2pe1 >0 (n — o),

Hence 142, _[}]Azxkl g}“_, kmzm < Z}kuw

k= n..

and Z}[Ax,,|gEE]Mk|-Z}n]mz,,]<+oo

n=1 n=1k=pn #=1

Lemma 5. If Z%: O(1) or 41, = O(1) and
k=1
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< Ky Auﬂ'l'l
g n-t+1 <A
It
then > 0, Z thl Z‘, [tts — taut] <+ o0,
n=1 " n=1

and conversely.

Proof. Let us put Z} k = 2,,; and suppose first that

i
== 0(1).
21 % (1)
[‘lﬂ
Then Apry — Ayg="— and
n

inldzznl :i /ln—rl lun‘<+
n=1

n=1

e., {4,} is bounded and quasi-convex. Therefore we have

oy el S
M = n(zn+1 - ’Zn) _>Oy Z - = Z |'ln+1_)‘nl <—|—OO,
n=1 7 n=1 :

by Lemma 4. And moreover

Z |/‘n ﬂn+1| —‘Z IAX:HI - nd2xnl <Z |AZ”+1| + Z n i‘dzxnl <—|—OO

=1 n=1

i 7 1 .
In case 2, = O(1), in fact, it follows that Z —;;— = 0(1) again under the
k=

assumption

©co
2n n+1

ni— o,
#n=1 [ n -+ l <+

For, by Abel’s lemma we have

)<12N1+2)n";1 2] = 0w + o = o)

That the converse holds is clear since

< 41 xn‘ - - |'{n+1|
n — | < 42, | +
LT ls e r <

n=1

and from the convergence of E |44, and Z "1 , it follows that 4, - 0.

n=1
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Proof of Theorem F.

If {c,} is bounded and quasi-convex so that 2 !;I < o0, then
n=1

Ca f - Cos1 Chs2
22 = Salndvc, + 2de,yy — 2 44 ‘
7 1 ’;_]1 [ Cy + 2 cn+1 n + 1 + n + 2

[ee)
23
=1

SZ% |2, +22Mc,,+11 +2§] © "“' pasydlnl o,
#=1 amnt2

by Lemma 4. Conversely if (5) holds, then

2| ()] = R+ 2na (S22)]

= 2 ol 2] - S

ie., 272111‘ ( e >’S2n2 Az< ")\—1— Zanc,,l<+00

Hence by Lemma 5 we conclude that

n=1 M0

i.e., (4) holds.
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