JOUR, FAC. SCI. SHINSHU UNIV. Vol. 3, No. 2, pp. 163-169, Dec. 1968

A Note on the Uniform Distribution of Sequences of Integers

By SABURÔ UCHIYAMA

Department of Mathematics, Faculty of Science, Shinshu University (Received July 14, 1968)

1. Let $A = (a_n)$ be an infinite sequence of integers not necessarily different from each other. For any integers j and $m \ge 2$ we denote by $A_N(j, m)$ the number of terms a_n $(1 \le n \le N)$ satisfying the condition $a_n \equiv j \pmod{m}$. Following I. NIVEN [2], we say that the sequence A is uniformly distributed (mod m) if the limit

$$\lim_{N\to\infty}\frac{1}{N}A_N(j, m)=\frac{1}{m}$$

exists for all integers $j, 1 \leq j \leq m$. If A is uniformly distributed (mod m) for every integer $m \geq 2$, A is said to be uniformly distributed.

NIVEN [2] has shown that the sequence ($[n\theta]$) with irrational θ is uniformly distributed. Indeed, this fact is equivalent to the well-known BOHL-SIERPIÑSKI-WEYL theorem to the effect that the sequence $(n\theta)$ with irrational θ is uniformly distributed (mod 1).

We have proved in [3] the following theorem which is the analogue of the celebrated W_{EYL} criterion for the uniform distribution (mod 1) of sequences of real numbers.

Theorem 1. Let $A = (a_n)$ be a sequence of integers. A necessary and sufficient condition for the sequence A to be uniformly distributed (mod m), $m \ge 2$, is that

$$\lim_{N\to\infty}\frac{1}{N}S_N\left(A, \frac{h}{m}\right)=0$$

for all integers h, $1 \leq h \leq m-1$, where

$$S_N(A, t) = \sum_{n=1}^N e(a_n t), \ e(t) = e^{2\pi i t}.$$

In fact, we have

$$S_N\left(A, \frac{h}{m}\right) = \sum_{j=1}^m A_N(j, m)e\left(\frac{jh}{m}\right),$$

SABURÔ UCHIYAMA

so that

$$\sum_{h=1}^{m-1} \left| S_N \left(A, \frac{h}{m} \right) \right|^2 = m \sum_{j=1}^m \left(A_N(j, m) - \frac{N}{m} \right)^2.$$

Theorem 1 follows from this relation at once.

The next result is due to NIVEN [2, Theorem 5.1]:

Theorem 2. If a sequence $A = (a_n)$ of integers is uniformly distributed (mod m), $m \ge 2$, then A is uniformly distributed (mod d) for all divisors d of m, $d \ge 2$.

In order to see this it will suffice, by virtue of Theorem 1, to observe that, for $d \mid m$, $d \geq 2$, each of the fractions k/d $(1 \leq k \leq d-1)$ appears at least once among the fractions h/m $(1 \leq k \leq m-1)$.

2. On the other hand, W. NARKHEWICZ [1] introduced the concept of weakly uniform distribution of sequences of integers as follows. Let $A = (a_n)$ be an infinite sequence of integers. Let m be an integer ≥ 3 and suppose that the number S_N (m) of terms a_n ($1 \leq n \leq N$) with $(a_n, m) = 1$ tends to infinity with N. Then, the sequence A is said to be weakly uniformly distributed (mod m) if for every integer j with (j, m) = 1 one has

$$\lim_{N\to\infty}\frac{A_N(j, m)}{S_N(m)}=\frac{1}{\phi(m)},$$

where $A_N(j, m)$ is as before the number of terms $a_n \equiv j \pmod{m}$, $1 \leq n \leq N$, and $\phi(m)$ is the Euler totient function. If A is weakly uniformly distributed (mod m) for every integer $m \geq 3$, we say that A is weakly uniformly distributed.

Thus the sequence (p_n) of all prime numbers (arranged in increasing order) is weakly uniformly distributed, as is readily seen from the prime number theorem for arithmetical progressions.

Now, let $A = (a_n)$ be a sequence of integers and put for any residue character $\chi \pmod{m}$, $m \ge 3$,

$$S_N(A, \chi) = \sum_{n=1}^N \chi(a_n).$$

If $\chi = \chi_0$ is the principal character (mod *m*), then

$$S_N(A, \chi_0) = \sum_{n=1}^N 1 = S_N(m).$$

 $(a_n, m) = 1$

Since we have for each $\chi \pmod{m}$

$$S_N(A, \chi) = \sum_{j=1}^m A_N(j, m)\chi(j),$$

we find

$$\sum_{\substack{\chi \pmod{m} \\ \chi \neq \chi_0}} \left| S_N(A, \chi) \right|^2 = \phi(m) \sum_{j=1}^m \left(A_N(j, m) - \frac{S_N(m)}{\phi(m)} \right)^2.$$

Thus we have proved the following result of NARKIEWICZ [1].

Theorem 3. Let $A = (a_n)$ be a sequence of integers. A necessary and sufficient condition for the sequence A to be weakly uniformly distributed (mod m), where $m \ge 3$, is that

$$\lim_{N\to\infty}S_N(A, \chi_0)=\infty$$

and

$$\lim_{N\to\infty}\frac{S_N(A, \chi)}{S_N(A, \chi_0)}=0$$

for all characters $\chi \neq \chi_0 \pmod{m}$.

There is an analogue of Theorem 2 for weakly uniform distribution of integers. In order to state our result we first introduce the notion of k-weakly uniform distribution of sequences of integers, where k is a positive integer.

Let $A = (a_n)$ be a sequence of integers. Let k be a positive integer and let $A^{(k)}$ be the subsequence of A consisting of all a_n in A with $(a_n, k) = 1$. The sequence A is said to be k-weakly uniformly distributed (mod m), where $m \ge 3$, if the sequence $A^{(k)}$ is weakly uniformly distributed (mod m). If A is k-weakly uniformly distributed (mod m) for every $m \ge 3$, A is said to be k-weakly uniformly distributed.

Again, the sequence (p_n) of all prime numbers is k-weakly uniformly distributed for every fixed $k \ge 1$.

It will be clear that each of 1-weakly and *m*-weakly uniform distributions (mod *m*), $m \ge 3$, is equivalent to weakly uniform distribution (mod *m*). Also, weakly uniform distribution (mod $\lfloor k, m \rfloor$), where $k \ge 1$ and $m \ge 3$, implies *k*-weakly uniform distribution (mod *m*), but not conversely. (Here we denote by $\lfloor a, b \rfloor$ the least common multiple of two integers *a* and *b*.)

For *k*-weakly uniform distribution of sequences of integers our Theorem 3 takes the following form :

Theorem 3 bis. A necessary and sufficient condition that a sequence $A = (a_n)$ of integers be k-weakly uniformly distributed (mod m), where $k \ge 1$ and $m \ge 3$, is that

$$\lim_{N\to\infty}S_N(A^{(k)},\chi_0)=\infty$$

and

SABURÔ UCHIYAMA

$$\lim_{N\to\infty}\frac{S_N(A^{(k)}, \chi)}{S_N(A^{(k)}, \chi_0)} = 0$$

for all characters $\chi \neq \chi_0 \pmod{m}$.

We are now able to formulate the analogue of Theorem 2.

Theorem 4. If a sequence $A = (a_n)$ of integers is weakly uniformly distributed (mod m), $m \ge 3$, then A is m-weakly uniformly distributed (mod d) for all divisors d of m, $d \ge 3$.

Note that for $d \mid m$ a reduced residue system (mod m) induces in the natural way a reduced residue system (mod d) with multiplicity $\phi(m)/\phi(d)$. Theorem 4 follows from this directly, or via Theorem 3.

3. We now study a little the relation between uniform distribution and weakly uniform distribution of sequences of integers.

Theorem 5. If a sequence of integers (a_n) is uniformly distributed (mod m), $m \ge 3$, then the sequence $(a_n + c)$ is weakly uniformly distributed (mod m) for all integers c.

Proof. By Theorem 2, it follows from the assumption on the sequence (a_n) that (a_n) is uniformly distributed (mod d) for all $d \mid m$, $d \geq 2$ (and also for d = 1 trivially), and, if we write for any integer j

$$A_N(j, d) = \frac{N}{d} + R_N(j, d),$$

then

$$R_N(j, d) = o(N)$$
 for $N \to \infty$.

We have, therefore, for any integer c

$$S_{N}(c; m) \stackrel{\text{def}}{=} \sum_{n=1}^{N} 1 = \sum_{n=1}^{N} \sum_{d \mid (a_{n}+c,m)} \mu(d)$$
$$= \sum_{d \mid m} \mu(d) \sum_{n=1}^{N} 1 = \sum_{d \mid m} \mu(d) A_{N}(-c, d)$$
$$= \sum_{d,m} \mu(d) \left(\frac{N}{d} + R_{N}(-c, d)\right)$$
$$= \frac{\phi(m)}{m} N + \sum_{d \mid m} \mu(d) R_{N}(-c, d),$$

where $\mu(d)$ is the Möbius function, so that

Uniform Distribution of Sequences of Integers

$$\frac{S_N(c; m)}{\phi(m)} = \frac{N}{m} + o(N) \quad \text{for } N \to \infty.$$

Hence, if we write $A_N(c; j, m)$ for the number of integers $a_n + c \equiv j \pmod{m}$, $1 \leq n \leq N$, then we have

$$A_N(c; j, m) = A_N(j - c, m)$$
$$= \frac{N}{m} + o(N)$$
$$= \frac{S_N(c; m)}{\phi(m)} + o(S_N(c; m))$$

for $N \to \infty$. This last relation holds for any integer j and, *a fortiori*, for any integer j with (j, m) = 1. Thus the sequence $(a_n + c)$ is weakly uniformly distributed (mod m).

A converse of Theorem 5 is the following

Theorem 6. Let m be an integer ≥ 3 and suppose that a sequence of integers (a_n) be such that the sequence $(a_n + c)$ is weakly uniformly distributed (mod m) for all integers c, $0 \leq c \leq m-1$. Then, if m is odd, the sequence (a_n) is uniformly distributed (mod m); whereas if m is even, the sequence (a_n) is not necessarily uniformly distributed (mod m).

Proof. Case of odd m. From the assumption on the sequence (a_n) it follows that the sequence (a_n+c) is weakly uniformly distributed (mod m) for any integer c. Let c be an arbitrary integer and j be any integer with (j, m)=1. Again, we denote by $A_N(c; j, m)$ the number of integers $a_n+c \equiv j \pmod{m}$, $1 \leq n \leq N$. Then we have, by assumption,

$$A_N(c; j, m) = \frac{S_N(c; m)}{\phi(m)} + Q_N(c; j, m),$$

where

$$S_N(c; m) = \sum_{\substack{n=1 \ (a_n+c,m)=1}}^N 1 \le N$$

and

$$Q_N(c; j, m) = o(S_N(c; m)) = o(N)$$
 for $N \to \infty$

Now we have for $N \rightarrow \infty$

$$A_N(c; 1, m) = \frac{S_N(c; m)}{\phi(m)} + o(N)$$

and, since (2, m) = 1,

$$A_N(c+1; 2, m) = \frac{S_N(c+1; m)}{\phi(m)} + o(N).$$

Hence, on noticing that $A_N(c; 1, m) = A_N(c+1; 2, m)$ for all N we find

$$S_N(c; m) = S_N(c + 1; m) + o(N),$$

so that

$$\sum_{a=0}^{m-1} S_N(a; m) = m S_N(c; m) + o(N)$$

for any particular c. Therefore, it follows from the relation

$$N = \sum_{a=0}^{m-1} A_N(a; j, m) = \frac{1}{\phi(m)} \sum_{a=0}^{m-1} S_N(a; m) + o(N),$$

where j is any integer with (j, m) = 1, that

$$\frac{S_N(c; m)}{\phi(m)} = \frac{N}{m} + o(N)$$

or

$$A_N(c; j, m) = \frac{N}{m} + o(N).$$

Since the integer c is arbitrary and $A_N(c; j, m) = A_N(j - c, m)$, we obtain for $N \to \infty$

$$A_N(j, m) = \frac{N}{m} + o(N)$$

for all j, $1 \leq j \leq m$. Thus the sequence (a_n) is uniformly distributed (mod m).

Case of even m. Consider the sequence (a_n) of integers obtained by arranging in increasing order from the set of non-negative integers $M_0 \cup M_1$, where

$$M_0 = \{a \equiv 0, 2, 4, \dots, m-2 \pmod{m}\}$$

and

$$M_1 = \{a \equiv 1, 3, 5, \dots, m-1 \pmod{2m}\}.$$

One may easily verify that the sequnce $(a_n + c)$ is weakly uniformly distributed (mod m) for all integers c, but (a_n) is not uniformly distributed (mod m).

References

- NARKIEWICZ, W. : On distribution of values of multiplicative functions in residue classes. Acta Arith., 12 (1967), 269-279.
- [2] NIVEN, I. : Uniform distribution of sequences of integers. Trans. Amer. Math. Soc., 98 (1961), 52-61.
- [3] UCHIYAMA, S. : On the uniform distribution of sequences of integers. Proc. Japan Acad., 37 (1961), 605-609.