A Note on the Uniform Distribution

 of Sequences of IntegersBy Saburô Uchiyama
Department of Mathematics, Faculty of Science, Shinshu University (Received July 14, 1968)

1. Let $A=\left(a_{n}\right)$ be an infinite sequence of integers not necessarily different from each other. For any integers j and $m \geqq 2$ we denote by $A_{N}(j, m)$ the number of terms $a_{n}(1 \leqq n \leqq N)$ satisfying the condition $a_{n} \equiv j(\bmod m)$. Following I. Niven [2], we say that the sequence A is uniformly distributed $(\bmod m)$ if the limit

$$
\lim _{N \rightarrow \infty} \frac{1}{N} A_{N}(j, m)=\frac{1}{m}
$$

exists for all integers $j, 1 \leqq j \leqq m$. If A is uniformly distributed $(\bmod m)$ for every integer $m \geq 2, A$ is said to be uniformly distributed.

Niven [2] has shown that the sequence ([n $\theta]$) with irrational θ is uniformly distributed. Indeed, this fact is equivalent to the well-known Bohl-Sierpinski-Weyl theorem to the effect that the sequence $(n \theta)$ with irrational θ is uniformly distributed $(\bmod 1)$.

We have proved in [3] the following theorem which is the analogue of the celebrated $W_{\text {EYL }}$ criterion for the uniform distribution (mod 1) of sequences of real numbers.

Theorem 1. Let $A=\left(a_{n}\right)$ be a sequence of integers, A necessary and sufficient condition for the sequence A to be uniformly distributed $(\bmod m), m \geqq 2$, is that

$$
\lim _{N \rightarrow \infty} \frac{1}{N} S_{N}\left(A, \frac{h}{m}\right)=0
$$

for all integers $h, 1 \leqq h \leqq m-1$, where

$$
S_{N}(A, t)=\sum_{n=1}^{N} e\left(a_{n} t\right), \quad e(t)=e^{2 \pi i t} .
$$

In fact, we have

$$
S_{N}\left(A, \frac{h}{m}\right)=\sum_{j=1}^{m} A_{N}(j, m) e\left(\frac{j h}{m}\right),
$$

so that

$$
\sum_{h=1}^{m-1}\left|S_{N}\left(A, \frac{h}{m}\right)\right|^{2}=m \sum_{j=1}^{m}\left(A_{N}(j, m)-\frac{N}{m}\right)^{2}
$$

Theorem 1 follows from this relation at once.
The next result is due to Niven [2, Theorem 5.1]:
Theorem 2. If a sequence $A=\left(a_{n}\right)$ of integers is uniformly distributed $(\bmod m)$, $m \geqq 2$, then A is uniformly distributed $(\bmod d)$ for all divisors d of $m, d \geqq 2$.

In order to see this it will suffice, by virtue of Theorem 1, to observe that, for $d \mid m, d \geqq 2$, each of the fractions $k / d(1 \leqq k \leqq d-1)$ appears at least once among the fractions $h / m(1 \leqq h \leqq m-1)$.
2. On the other hand, W. Narkiewicz [1] introduced the concept of weakly uniform distribution of sequences of integers as follows. Let $A=\left(a_{n}\right)$ be an infinite sequence of integers. Let m be an integer $\geqq 3$ and suppose that the number S_{N} (m) of terms $a_{n}\left(1 \leqq n \leqq N\right.$) with $\left(a_{n}, m\right)=1$ tends to infinity with N. Then, the sequence A is said to be weakly uniformly distributed $(\bmod m)$ if for every integer j with $(j, m)=1$ one has

$$
\lim _{N \rightarrow \infty} \frac{A_{N}(j, m)}{S_{N}(m)}=\frac{1}{\varphi(m)}
$$

where $A_{N}(j, m)$ is as before the number of terms $a_{n} \equiv j(\bmod m), 1 \leqq n \leqq N$, and $\phi(m)$ is the Euler totient function. If A is weakly uniformly distributed ($\bmod m$) for every integer $m \geqq 3$, we say that A is weakly uniformly distributed.

Thus the sequence (p_{n}) of all prime numbers (arranged in increasing order) is weakly uniformly distributed, as is readily seen from the prime number theorem for arithmetical progressions.

Now, let $A=\left(a_{n}\right)$ be a sequence of integers and put for any residue character $\chi(\bmod m), m \geq 3$,

$$
S_{N}(A, \chi)=\sum_{n=1}^{N} \chi_{(}\left(a_{n}\right) .
$$

If $\chi=\chi_{0}$ is the principal character $(\bmod m)$, then

$$
S_{N}\left(A, \chi_{0}\right)=\sum_{\substack{n=1 \\\left(a_{n}, m\right)=1}}^{N} 1=S_{N}(m) .
$$

Since we have for each $\chi(\bmod m)$

$$
S_{N}(A, \chi)=\sum_{j=1}^{m} A_{N}(j, m) \chi(j),
$$

we find

$$
\sum_{\substack{x(\bmod m) \\ x \neq x_{0}}}\left|S_{N}(A, \chi)\right|^{2}=\phi(m) \sum_{\substack{j=1 \\(j, m)=1}}^{m}\left(A_{N}(j, m)-\frac{S_{N}(m)}{\varphi(m)}\right)^{2}
$$

Thus we have proved the following result of Narkiewicz [1].
Theorem 3. Let $A=\left(a_{n}\right)$ be a sequence of integers. A necessary and sufficient condition for the sequence A to be weakly uniformly distributed $(\bmod m$), where $m \geq 3$, is that

$$
\lim _{N \rightarrow \infty} S_{N}\left(A, \chi_{0}\right)=\infty
$$

and

$$
\lim _{N \rightarrow \infty} \frac{S_{N}(A, \chi)}{S_{N}\left(A, \chi_{0}\right)}=0
$$

for all characters $\chi \neq \chi_{0}(\bmod m)$.
There is an analogue of Theorem 2 for weakly uniform distribution of integers. In order to state our result we first introduce the notion of k-weakly uniform distribution of sequences of integers, where k is a positive integer.

Let $A=\left(a_{n}\right)$ be a sequence of integers. Let k be a positive integer and let $A^{(k)}$ be the subsequence of A consisting of all a_{n} in A with $\left(a_{n}, k\right)=1$. The sequence A is said to be k-weakly uniformly distributed $(\bmod m)$, where $m \geqq 3$, if the sequence $A^{(k)}$ is weakly uniformly distributed $(\bmod m)$. If A is k-weakly uniformly distributed $(\bmod m)$ for every $m \geqq 3, A$ is said to be k-weakly uniformly distributed.

Again, the sequence $\left(p_{n}\right)$ of all prime numbers is k-weakly uniformly distributed for every fixed $k \geqq 1$.

It will be clear that each of 1 -weakly and m-weakly uniform distributions $(\bmod m), m \geqq 3$, is equivalent to weakly uniform distribution $(\bmod m)$. Also, weakly uniform distribution $(\bmod [k, m])$, where $k \geqq 1$ and $m \geqq 3$, implies k-weakly uniform distribution $(\bmod m)$, but not conversely. (Here we denote by $[a, b]$ the least common multiple of two integers a and b.)

For k-weakly uniform distribution of sequences of integers our Theorem 3 takes the following form :

Theorem 3 bis. A necessary and sufficient condition that a sequence $A=\left(a_{n}\right)$ of integers be k-weakly uniformly distributed $(\bmod m)$, where $k \geqq 1$ and $m \geqq 3$, is that

$$
\lim _{N \rightarrow \infty} S_{N}\left(A^{(k)}, \chi_{0}\right)=\infty
$$

and

$$
\lim _{N \rightarrow \infty} \frac{S_{N}\left(A^{(k)}, \chi\right)}{S_{N}\left(A^{(k)}, \chi_{0}\right)}=0
$$

for all characters $\chi \neq \chi_{0}(\bmod m)$.
We are now able to formulate the analogue of Theorem 2.
Theorem 4. If a sequence $A=\left(a_{n}\right)$ of integers is weakly uniformly distributed $(\bmod m), m \geq 3$, then A is m-weakly uniformly distributed (mod d) for all divisors d of $m, d \geq 3$.

Note that for $d \mid m$ a reduced residue system $(\bmod m)$ induces in the natural way a reduced residue system $(\bmod d)$ with multiplicity $\phi(m) / \phi(d)$. Theorem 4 follows from this directly, or via Theorem 3.
3. We now study a little the relation between uniform distribution and weakly uniform distribution of sequences of integers.

Theorem 5. If a sequence of integers $\left(a_{n}\right)$ is uniformly distributed (mod m), $m \geqq 3$, then the sequence $\left(a_{n}+c\right)$ is weakly uniformly distributed $(\bmod m)$ for all integers c.

Proof. By Theorem 2, it follows from the assumption on the sequence $\left(a_{n}\right)$ that $\left(a_{n}\right)$ is uniformly distributed $(\bmod d)$ for all $d \mid m, d \geqq 2$ (and also for $d=1$ trivially), and, if we write for any integer j

$$
A_{N}(j, d)=\frac{N}{d}+R_{N}(j, d)
$$

then

$$
R_{N}(j, d)=o(N) \text { for } N \rightarrow \infty
$$

We have, therefore, for any integer c

$$
\begin{aligned}
S_{N}(c ; m) & \stackrel{\operatorname{def}}{=} \sum_{n=1}^{N} 1=\sum_{n=1}^{N} \sum_{d \mid\left(a_{n}+c, m\right)} \mu(d) \\
& =\sum_{d \mid m} \mu(d) \sum_{n=1}^{N} 1=\sum_{d \mid m} \mu(d) A_{N}(-c, d) \\
& =\sum_{a_{n}, m} \mu(d)\left(\frac{N}{d}+R_{N}(-c, d)\right) \\
& =\frac{\phi(m)}{m} N+\sum_{d \mid m} \mu(d) R_{N}(-c, d),
\end{aligned}
$$

where $\mu(d)$ is the Möbius function, so that

$$
\frac{S_{N}(c ; m)}{\phi(m)}=\frac{N}{m}+o(N) \text { for } N \rightarrow \infty .
$$

Hence, if we write $A_{N}\left(c ; j^{\prime \prime}, m\right)$ for the number of integers $a_{n}+c \equiv j(\bmod m)$, $1 \leqq n \leqq N$, then we have

$$
\begin{aligned}
A_{N}(c ; j, m) & =A_{N}(j-c, m) \\
& =\frac{N}{m}+o(N) \\
& =\frac{S_{N}(c ; m)}{\phi(m)}+o\left(S_{N}(c ; m)\right)
\end{aligned}
$$

for $N \rightarrow \infty$. This last relation holds for any integer j and, a fortiori, for any integer j with $(j, m)=1$. Thus the sequence $\left(a_{n}+c\right)$ is weakly uniformly distributed $(\bmod m)$.

A converse of Theorem 5 is the following
Theorem 6. Let m be an integer $\geqq 3$ and suppose that a sequence of integers $\left(a_{n}\right)$ be such that the sequence $\left(a_{n}+c\right)$ is weakly uniformly distributed ($\left.\bmod m\right)$ for all integers $c, 0 \leqq c \leqq m-1$. Then, if m is odd, the sequence $\left(a_{n}\right)$ is uniformly distributed $(\bmod m)$; whereas if m is even, the sequence $\left(a_{n}\right)$ is not necessarily uniformly distributed $(\bmod m)$.

Proof. Case of odd m. From the assumption on the sequence $\left(a_{n}\right)$ it follows that the sequence $\left(a_{n}+c\right)$ is weakly uniformly distributed $(\bmod m)$ for any integer c. Let c be an arbitrary integer and j be any integer with $(j, m)=1$. Again, we denote by $A_{N}(c ; j, m)$ the number of integers $a_{n}+c \equiv j(\bmod m), 1 \leqq n \leqq N$. Then we have, by assumption,

$$
A_{N}(c ; j, m)=\frac{S_{N}(c ; m)}{\phi(m)}+Q_{N}(c ; j, m),
$$

where

$$
S_{N}(c ; m)=\sum_{\substack{n=1 \\\left(a_{n}+c, m\right)=1}}^{N} 1 \leqq N
$$

and

$$
Q_{N}(c ; j, m)=o\left(S_{N}(c ; m)\right)=o(N) \text { for } N \rightarrow \infty .
$$

Now we have for $N \rightarrow \infty$

$$
A_{N}(c ; 1, m)=\frac{S_{N}(c ; m)}{\phi(m)}+o(N)
$$

and, since $(2, m)=1$,

$$
A_{N}(c+1 ; 2, m)=\frac{S_{N}(c+1 ; m)}{\phi(m)}+o(N)
$$

Hence, on noticing that $A_{N}(c ; 1, m)=A_{N}(c+1 ; 2, m)$ for all N we find

$$
S_{N}(c ; m)=S_{N}(c+1 ; m)+o(N)
$$

so that

$$
\sum_{a=0}^{m-1} S_{N}(a ; m)=m S_{N}(c ; m)+o(N)
$$

for any particular c. Therefore, it follows from the relation

$$
N=\sum_{a=0}^{m-1} A_{N}(a ; j, m)=\frac{1}{\phi(m)} \sum_{a=0}^{m-1} S_{N}(a ; m)+o(N)
$$

where j is any integer with $(j, m)=1$, that

$$
\frac{S_{N}(c ; m)}{\phi(m)}=\frac{N}{m}+o(N)
$$

or

$$
A_{N}(c ; j, m)=\frac{N}{m}+o(N)
$$

Since the integer c is arbitrary and $A_{N}(c ; j, m)=A_{N}(j-c, m)$, we obtain for $N \rightarrow \infty$

$$
A_{N}(j, m)=\frac{N}{m}+o(N)
$$

for all $j, 1 \leqq j \leqq m$. Thus the sequence $\left(a_{n}\right)$ is uniformly distributed $(\bmod m)$.
Case of even m. Consider the sequence $\left(a_{n}\right)$ of integers obtained by arranging in increasing order from the set of non-negative integers $M_{0} \cup M_{1}$, where

$$
M_{0}=\{a \equiv 0,2,4, \cdots, m-2(\bmod m)\}
$$

and

$$
M_{1}=\{a \equiv 1,3,5, \cdots, m-1(\bmod 2 m)\}
$$

One may easily verify that the sequnce $\left(a_{n}+c\right)$ is weakly uniformly distributed $(\bmod m)$ for all integers c, but $\left(a_{n}\right)$ is not uniformly distributed $(\bmod m)$.

References

[1] Narkiewicz, W. : On distribution of values of multiplicative functions in residue classes. Acta Arith., 12 (1967), 269-279.
[2] Niven, I. : Uniform distribution of sequences of integers. Trans. Amer. Math. Soc., 98 (1961), 52-61.
[3] Uchiyama, S. : On the uniform distribution of sequences of integers. Proc. Japan Acad., 37 (1961), 605-609.

