JOUR. FAC. SCI., SHINSHU UNIV. VOl 3, No. 1, pp. 1—12. June 1968

Characteristic Classes of Connections

By AKIRA ASADA

Department of Mathematics, Faculty of Science,
Shinshu University
(Received May 31, 1968)

Introduction. It is known that if a vector bundle & over X has a connection
6 with curvature 0, then £ is induced from a representation of =(X). (1], [2],
[6], [9]). This representation y has been called the characteristic class of £ ([107).
But ¥y may be regarded as a characteristic class of @, because the classification
of & by y is too fine if we regard & as a differentiable vector bundle. (cf. [5]). In
this point of view, it is natural to define the characteristic classes of connections
which have the same curvature. The purpose of this note is to define this class.
In fact, if # and #' have the same curvature @ then the characteristic class
chy (6") of 0" with respect to 0 is defined to be an element of H° (x, (Xe), ker.m).
(The detailed definitions of H° (z; (Xe), ker. ) and Xp shall be given in §2 and
§3). Moreover, we have ’

chy (") =1 if and only if
0" = huf(0u — (huf)d(huf ) hof) ™,

where f is a regular matrix valued smooth function on X and hy satisfies
dhy = hvby—0yhy

We note that by the uniqueness of the solutions of a linear differential
equation, iy is determined by its value at one point of U. Hence if & = {guv}
and & = {guv'} have connections ¢ = {0y} and ¢ = {0y'} such that chs(0') =1,
then ¢ and @ are equivalent as differentiable vector bundles, Moreover, this
equivalence is finer than usual equivalence. In fact, if # =0, then ¢ and &' are
equivalent in this sense, if and only if the representations of =; (X) by which ¢
and &' are induced, are equivalent.

From this point of veiw, although the usual classification of the set of pairs
{guvy, {0v}), where {guv} is a vector bundle and {fy} is its connection, should
be (cf. [3])

{gov), {0~ guv'}, {0u'}) if and only if there exists 4y such that

guy' = hyguvhv™t, 0y = hy{0uv — hutdhp)hy™,
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we define another classification of the set of pairs ({guv}, {6u}) as follows :

{gvv}, {fuvd)+{gvvY, {60'3) if and only if there exist f and {Ay}
such that )

gua' = hufguvihvf)t, 00U = huf(Ou — (hf ) \dlhuf Whuf) !,
f is defined on X, dhy = hyby — Ouhy.

Using these two equivalence relations, we define two types of Grothendieck groups
Ko X) and Lo(X) in §5. (for the definition of K4X), see also [37]). By the defini-
tion of the latter equivalence, the representation ring R(m(X)) of =(X) is regarded
as a subgroup of Ly (X). Moreover, we have the following exact sequence.

T J
0 —> R. - H(X)—> Lo(X ) —> Ko(X ) —> 0,

where j is the natural map from L, (X) onto Ky (X), R.-H(X) is the subgroup
of R(ny(X)) generated by those representations for which the Riemann -Hilbert's
problem is solvable. (cf. [5]). The maps from Ky¢X) (and LyX)) onto K(X) are
also treated in §6.

The definition of chy (8') is based on the property of the equation

df = f0 — 0'f.

Therefore we study this equation in §1 and § 2.

§1. A differential equation.
Let # be a matrix valued I-form over X, a smooth manifold, then we set

(1) m(f) = di + 0 0.
Using local coordinate {x;} of X, # and m(0) are given by
0= D \0.dx;, m0) :%@i dx; dx .
If 2 is a regular matrix valued smooth function, then (cf. [2]),
(2) mh(0 — h~dhh=Y) = him(O)h~1.
We fix a coordinate neighborhood U of X and identify it with a bounded

neighborhood of the origin of R", the euclidean n-space.
For a boundded matrix valued function A on U, we set

IO(Ar 01’, 0il):A’
Im(A: 01’: ﬁil)

= S:l {Im—l(A: 0{; 0il)0i - 6il17ll—1(Ay 01’, 0il)}xt.=t dt-
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For the simplicity, we often denote I, instead of 7,, (4, ¢, 0,).
Then since we get

1, (4, 8, 6| < CM”/m~—1)! for suitable constants C and M,

Blx)| 1= max, /3 B, (x)*
(1863 1= max. /S B 1)

the series Zmzo LA, 6, 6/) converges absolutely and uniformly on U,

we may set
P(A) 0[; 0:',): 2 Im(A» (}ia 6:'/)-
m=0

Note. If 0A/0x;=0, then P(A, ¢, 6;') is the solution of the equation

on o
F ho, — 0,'h

with data A |;;—o=A| ;;=0. Therefore PO, ¢, 0,)is equal to 0 on U.

Lemma 1. If 90A/ox; = 0A/0x; =0, then

0 Y
(3) W(P(A, 01: 01 ))
=P(A, 0, 0/Y;—0;PA, 0, 0/)—
»_P(P(A) ()iy {)il)eij - @ij,P(A, 01') 01"): 01" 01")'
Proof, Since we know

. o0
= o o

L+ [0, 651, ([0, 071 =008;— 0,00
i

we get

.00, | _
“‘a‘q:;j’:’a}i_“l‘ [ ‘9jJ - @ij-

Hence we obtain

X
%%: 10y — 0 Ly — Sol (I-10:; — 0,5/ Lo 1)pymr dE +
i

+SO (Lpor[0:y 0,1 — 0., 0/ per — Lo, +
+ 0i’1”"20j + 0111”1‘201' - ﬁjlﬁi,1)11—2)$i=tdt +
0 0x

xi aIm—l L {alm—l
= 0t e,

Then since 9A/dx; = 8A/9x; =0, we have

it

?i—(z Im(A’ 0;’, ,9{/))
Vi k=0

Hence
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m—1
:;;O(I’M’ 0, 0)0; —0;'IA, 0, 0/)—

m—1m—s—1

- Z Z I(1,6;; — 0,1, 0;, 0/)-+
s=0 (=0

4+ D3 (YL, 0010, 0/1L, 0/, 6)).

s+t =m~—1
Then, since we know

2 (UL, 6010/, 0/, 0/, 0))]]

< 2 BN"-t/{g— 1)1 (t — 1)1 (for suitable B and N)

s+t=m—1

émBN’"‘l/[”i—;—l»]!, (C 7] is the Gauss’ notation),

we have the lemma.
Corollary 1. If U is simply connected, then the equation

(4) dh =ho —0'h
has the solution on U for the data

h(0) = A, A is a constant matrix,
if and only if

P(A, 6, 6, Ym(6)=m@"PA, 0i, 0;).

Corellary 2. (cf. [8], 7.4). If m) = m(t') on U, a simply connected open set
of X, then there is a vegular matrix valued amooth function h on U such that

(5) 0 = h(t — h-'dh)h=, him(@h-t = m(0).

§2. The case ¢ =&,
In this §, we consider the equation
4y af = fo — 6f.

Lemma 2. (). If f, g are the solutions of (4) then fg is also a solution of (4).
(i), If f is a solution of (4) and f=' exists on U, then f-!is also a solution of
().

Proof. Since we get

d(fg) = dfg + fdg = (f0 — 0f)g + f(g0 — 0g),
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A(f )= —f1rafft = —fNf0—0f)f 7,
we obtain the lemma,

Covollary 1. If U is simply connected and f is a solution of (4) such that f(x)
is vegular at x, an arbitrary point of U, then f is regular on ,U.

Proof. Sincef is continuous, f~! exists on V(x), a neighborhood of x. Then
S is extended on U, because it is a solution of (4) with the data f~}(x)= f{x)!
and U is simply connected. We denote this extension by g Since gf is a solution
of (4) with the data I, the identity matrix, at x, it must be equal to I on U by
the uniqueness of the solution of (4). Hence we have the corollary.

Corollavy 2. If fis a solution of (4) such that f(x) is regular at x, an
arbitrary point of X, then f is regular on X,

By lemma 2, (ii), the set of all regular solutions of (4) form a group. We
denote this group by ker. my, or ker.x myp, if the equation (4) in considered on
X.

Note. If X is not simply connected, then the solutions of (4) may be mul-
tivalent and ker. x ms may contain these multivalent solutions,

By definition, ker.y s may considered to be a subgroup of GL(n, F), Fis R
or C, as an abstract group and has =, (X) to be ano perator group.

Definition, A function y from =z, (X) into ker.x mp is called a 0-cocycle if it

satisfies

(6) xo0(yz) = yav, %o is the value of y at ¢ and o(y-) is the transform of
¥+ by o.

Definition. Two cocycles y and y' are said to be equivalent if and only if there

exists an element f of ker.y mo such that

(7) 1’ = Fpe0(f).

Definition. The sef of the all equivalence classes of 0 —cocycles by the relation
(7) is denoted by H (ny(X), ker.x o).
Definition. We call m(0) and m(0') are equivalent and denote

m(6) ~ m(@'),

if there exists {hy3, hy is a regular matrix valued smooth function on U, such that
m(By') = hym(0y)hy ™

for all U.

By corollary 2 of lemma 1, if m(0)~m(0’), then there exists A’ = {hy'} such
that
Oy’ = hy'(0y — hy'~tdhy" )y’ L.
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Definition. We call m(0) and m(0") are strongly equivalent on X or simply,
strongly equivalent if

m(fy') = foly)
where f is a regular matrix valued smooth function on X and does not depend on

X.
If m(0) and m(8') are strongly equivalent on X then we denote

m(6) ?m(ﬂ’).

Lemma 3. If m(O)?m(O’), then there is a bijection of H'yzX), ker.x mo) and
H° (WI(X), kel‘.X 7710’).

Proof. By assumption, there exists a regular matrix valued smooth function
h such that

0 = WO — h-tdh)h~t = oh)0 — o(k)-*da(h)o(h), c=m(X).
Then since we get

d(hfa(h) )
—dhfolh)t -+ hfba(h)™t — hOfa(h)™t — hfa(h)do(R)a(h)*
= hfolh)yHo(Ra(h)t — do(h)a(h)* — (AR~ — dhh-Dhfa(k),

the correspondence

h¥ . Kker. ymo - ker. xmy'
deﬁqed by

B (f)=hfo(h)!

is a Dbijection from ker. ym» to ker.x m¢’. Then by the definition of k% and (7),
¥ induces a bijection A* from Hzy(X), ker.y mp) to Hm(X), ker.x mo'). Hence
we have the lemma.

§ 8. Connections which have the same curvature.

We assume the curvature forms of 0={0;} and ' ={6;'} are strongly equi-
valent, Then we may assume that they have the same curvature form @={6,}.
We assume # is a connection of &, 0 is a connection of & and H is the (linear)
Lie group whose Lie algebra is generated by ©. We denote the associated H
-bundle of & (or &) by X¢. Then by Ambrose -Singer’s theorem ([1],( r21, (90,
if we denote the universal covering space of Xo by Xs and the projection from
5(@ to X by p, p* (6) and p* (&) are both trivial bundles. Moreover ¢ and #'
induce global forms on Xs. These forms are also denoted by ¢ and ¢'. We set
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0 =0—n.
Then since Xo is simply connected, we may set
8 n = dhh~t — hOh~! + 0,

on X. Here » and # mean the induced forms from 7 and 4.
If o&m; (Xs), then by (8), we get

dhh~t — hoh~' = do(h)o(h)™t — a(h)da(h)".

Hence if we set

a(h) = hya,
we obtain
(9 dys = 3o0 — Oys
(9 oxo(yr) = Yor, 0, TET {Xe).

Moreover, if A’ is another solution of (8), then setting

h' = hf, olb')y=h'y,

we have
(10% df = f0 — 6f
(10) X = fyeo(f).

Hence 7, therefore ¢, defines an element of H® (n(Xe), ker.xo #25).

Definition. The above defined element is called the characteristic class of 0’
with respect to 6, and denoted by che (0') or ch (¢').

Note. chy (0') is deﬁne(j if m(6) o m(0') on X:. Here X: means the associated
principal bundle of & and X: is its universal covering space.

Note. If ® =0, then Xo = X and ker. x my=GL(n, FF), hence the characteristic
class of a connection with curvature 0 is the characteristic class of a flat bundle
in the sense of Steenrod ([10]).

§4. Properties of chy (0').
We call 6 = {6,} is a connection of & = {gyy} if
(11) dguy = guvlv — Ou8uv.
Definition. 7The transformation of 0 = {0y} by h = {hy} is the connection of
hyguvhy™t given by
(12) hy(Oy — hy~tdhy)hy .



8 Characteristic Classes of Connections

Then by the calculations of § 3 and the definition of the strong equivalence
of curvature forms, we have

Theorem 1. cho(6") is equal to 1 if and only if 6' is a transformation of 0 by
R = {hyf3}, where hy satisfies

th = hyﬁU — 0UhUy

and f is a smooth regulay matriz valued function on X.

Here I means the map from =; (X) to I, the identity matrix. (I belongs in
ker. x, mo because I is a solutionof (4) for any 6).

Theorem 2. If 6 and 0' are related by

@' = h(@ — h~idh)h1,
then

(13) Cha'(p) = h™*(cha(p)).

Here ¢ is an arbitrary connection such that miy) is strongly equivalent to © = m(6).
Corollary. che' (0) is equal to h~'* (cho(0")).

§5. 'The groups KoX) and Lo(X).

We assume that X is a smooth connected manifold. We denote by E={gyv},
an its vector bundle (real or complex), and by 0={;}, a conection of E. We
note that

Lemma 4. If 0! = {0,'} and 0° = {04} are conmnections of E' = {gyv'} and E?
={gyy?}, then the matrix vvlued form 0 @ 6% given by

0D 0= {05 @ 07

is a connection of E' @ E=.
We identify the pairs ({guv}, {fv}) and {gorv/'}, {07’} if there exists a
common refinement {U"} of {U} and {U'} such that

gUV| U”ﬂ V/l — gZ/.,V,II Ulln V(l’ 0U| UllzﬂU,I’ U//.

Here and in the rest, a pair ({gyy}, {fv3) means a pair of vector bundle {gyy?}
and its connection {0y} (cf. (11)).

Definition. The pairs ({guv}, {03 and {gyy'}, {00’} are said to be equivalent
if and only if {gyy} and {gyy'} are equivalent and {0y} is the transformation of
{0u3 by h, where h={hy?} gives the equivalence of {gyv} and {gyv'}.

Definition. The pairs {guv}, {0v}) and {gyv'}, {0u')) are said to be strongly
equivalent if and only if ({guv}, O} and {guv', {03 are equivalent and hf=
{huf3}, by which the equivalence is given, satisfies
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dhy = hyly — Oyhy,

f is a smooth regular matrix valued function on X.
Then by theorem 1, we get
Theorem 3. ({gyv}, {0v}) and {gyv'}, {0y')) are strongly equivalent if and
only if

(14) m(0) 5 m(0') on Xo, 6= ml(0),
Chy(0) = chy(8'),

where 0= {0y}, 0 ={0y}Y and ¢ = {py} is an arbitrary connection with curvature
m(0).
We denote
Heuv}, {0vh~Lguv'}, {65} if they are strongly equivalent,

{gwv}, {003 3{guv}, {0u}) if they are strongly equivalent.

Then we get

(15) Levv' @ gov™}, {0p' @ 0u"}) ~ {Lguv" @ guv™}, (00" @ Ov™),
if Cauv'}, (00" ~{&uv"'3 {6u"))
and  ({guv?}, {0y™) ~ {Lguv™}, {00™]).

(15)s (Lavv' @ gov®}, {00 D 0] 7 Levv" @ guv™3, {00 ® 0™},
if (gov'}, {0v'}) 3 Lewv''), 00''])
and  ({guv*}, {0073 ~ {guv™}, {6073

By (15) and (15),, we can define the Grothendieck groups generated by the
equivalence (or strong equivalence) classes of {gyv}, {6v}-
Definition. The Grothendieck group generated by the equivalence classes of

{euv}, {0v)) is denoted by Ku(X).
Definition. The Grothendieck group generated by the strong equivalence classes

of {guv3, {0v}) is denoted by LoX).

§6. The mappings p, o, 7, @ and j.
By the definitions of LX) and KyX), there is a homomorphism of LX)
onto KyX) defined by

(16) i{govy, {0v}) = {euv}, {0u)).

Here the {gyv}, {0y}) at the left hand side means its class in Lyo(X)} and at the
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right hand side, it means the clas of {gyv}, {f0u3) in KoX).

We denote the representation ring of my(X) over F (F= R or C) by Rp(m(X))
or R(m((X)).

By the definition of the strong equivalence, we get

Lemma 5. There is an isomor phism v of Rp(ny (X)) into Lo(X), (F is R if Lo(X)
is generated by real vector bundles and their conmnections and F is C if Ls(X) is
generated by complex vector bundles and their connectios).

Definition. The subgroup of Rp(x (X)) generated by those representations such
that the Riemann -Hilberl’s problem given by them are solvable, is called the Riemann
-Hilbert group of X and denoted by R. -H, »(X) or R, -H.(X).

Since we know that a vector bundle which is defined by a representation yx
of =; (X), is trivial if and only if the Riemann -Hilbert’s problem given by y is
solvable (cf. [57]), we obtain

Theorem 4. We have

(17) ker, j=¢(R.-H. (X))
Note. By Chern’s theorem and Peterson’s theorem, we get
R.-H.c(X) = Rc(my(X)),

if X has no torsion.
Definition. We denote

(18) Ko(X) = Ko(X)/jor(Rp(m( X)) 2= Lo(X)/r(Rp(m(X)).

By definition, Kg(X) is the Grothendieck group generated by the equivalence
classes of curvatures.
Definitino. We define a homomor phism of KoX) onto K(X) by

ol{guv}, {0v}) = {Leuv]).

Here ({gyy}) means the class of {gyv} in K(X).
We also set

0 = pod.

By definition, ¢ is a homomorphism of L¢X) onto K(X).
On the other hand, if we denote the cotangent bundle of X by 7%, then we
have the sequence

D D D
(19) F(E)——)F(E ® T*)D___) ...... __.)[’(E ® AHT*)’

D=d+0 n=dim X
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X. Here I'(E), etc. mean the groups of C~-.cross -sections of bundles E, etc.and
E means {gyv}.
Although the sequence (19) is not a differential complex, its symbol sequence
o(D) o) p(D)
0> a¥E)—>a*(EQ TF) —» v - g E & A"T*) -0
is exact. ({4], [5]). Here »* means the projection from the Thom complex M(X)
of T* to X and p(D) is the symbol of D. Then setting

(20) o((guv, Ouv))

=d@ME), 7 (EQT*), - , mE Q@ AT, o(D), -, o(D)),
¢ defines a homomorphism of Ky(X) onto K(M(X)). Here d(Fy, - , Fuyaq,oveen , k)
means the difference bundle of Fy, .- , Iy ([6]).

Definition. ¢ is called the symbol homomor phism.
We also set
& = joo.

By definition, & is a homomorphism of Ly(X) onto K(M(X)).
We denote the Thom isomorphism from K(X) onto KM(X)) by ¢. Then we
know (cf. [7], [4]),

#(LET)
= [dx*(E), ={EQT*), - , mHEQAT™), o(D), - o(D))J,

where [E] is the class of E in K(X). Hence we obtain the following
Theorem 5. The following diagram is commutative,

Ko
\
(V)
P ¢

LB(X)

\
K(X)
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