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   Introduction. It is known that if a vector bundle g- over X has a connection

0 with curvature O, then e is induced from a representation of zi(X). ([1], [2],

[5], [9]). This representation x has been called the characteristic class of e ([10]).

But x may be regarded as a characteristic class of 0, because the classification

of e by x is too fine if we regard 6 as a differentiable vector bundle, (cf. [5]). In

this point of view, it is natural to define the characteristic classes of connections

which have the same curvature. The purpose of this note is to define this class.

In fact, if 0 and 0' have the same curvature e then the characteristic class

cho (e') of e' with respect to 0 is defined to be an element of IIO (ni (Xb), ker. mo).

(The detailed definitions of HO (rri (Xlo), ker. mo) and Xb shall be given in S2 and

g3). Moreover, we have

            che (e') :=.- 1 i'f and only if

            eu' =--- hbLf(0u '- (hof)-id(hof))(hof)-i,

where f is a regular matrix valued smooth function on X and hu satisfies

            dhu == huOur0uhu

   We note that by the uniqueness of the solutions of a linear differential

equation, hu is determined by its value at one point of U. Hence if g== {guv}

and 6' = {guv'} have connections 0={eu} and e' ={0u'} such that che(0') =L- 1,

then e and 0' are equivalent as differentiable vector bundles, Moreover, this

equivalence is finer than usual equivalence. In fact, if 0== O, then e and 6' are

equivalent in this sense, if and only if the representations of ffi (X) by which e

and e' are induced, are equivalent. ･･
   From this point of veiw, although the usual classification of the set of pairs

({guif}, {0cfl}), where {guv} is a vector bundle and {eu} is its connection, should

be (cf. [3])

            ({guv}, {0u})aj({guv'}, {0u'}) if and only if there exists husuch that

            guv' = huguvhvrmi, eu' ==-- hdi0u - hu-idhOhu-i,



we define another classification of the set of pairs ({guv}, {eul}) as follows:

            ({guv}, {0u})?({guvi}', {0u'}) if and only if there existf and {hul}

                                      such that

            gcin' == hu]lguv(huf)-t, 0u' = hof(0u- (hf)-id(hof))(hof)--i,

            f is defined on X dhu:= huOu-euhu.

Using these two equivalence relations, we define two types of Grothendieck groups

Ke(X) and Lo(X) in g5. (for the definition of Kb(X), see also [3]). By thedefini-

tion of the latter equivalence, the representation ring R(Ti(X)) of rti(X) is regarded,

as a subgroup of Le (X). Moreover, we have the following exact sequence.

                           T7              O ---> R. - ll<X) -> Le(X) ---> Kb(X) --> O,

where 1' is the natural map from Le (X) onto Ke (X), R.-ll<X) is the subgroup

of R(rci(X)) generated by those representations for which the Riemann -Hilbert's

problem is solvable. (cf, [5]). The maps from Ke(X) (and Lo(X)) onto K<X> are

also treated in g6.

   The definition of che (e') is based on the property of the equation

            clyc ,= .fe - otf.

Therefore we study this equation in g1 and g2.

                       gl. A differential equation.

   Let e be a matrix valued 1-form over X) a smooth manifold, then we set

a) m(o) = de + o.e,

   Using local coordinate {xi} oS X] e and m(0) are given by

            e= llliill]oidx,, m(e)==XOi,dxi.dxj･

                              i<]
   If h is a regular matrix valued smooth function, then (cf. [2]),

(2) m(h(0 - h-idh)h"i) = hm(e)h-i.

   We fix a coordinate neighborhood U of X and identify it with a bounded

neighborhood of the origin of R", the eu'clidean n-space.

   For a boundded matrix valued function A on U, we set

            k(A, ei, o,') = A,

            4n(A, 0i, 0i')

            = !:i {Ln-i(A, 0i, 0i')0i - ei'Ln-i(A, ei, 0i')}xi-tdt･
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For the simplicity, we often denote Ih, instead of Ln (A, 0i, 0i').

   Then since we get

           l l L. (A, ei, 0i') 1 l S. CMM/(m - 1) ! for suitable constants C

           (1IB(x)11- :p.axu･ Vpe,, ,1 BiJ<x)l2 ),

the series X.2.o I.(A, ei, 0,') converges absolutely and uniformly on U.

we may set

           P(A, fii, e,t)== = I.,(A, e,, e,t).

                       m).O

   Note. If OA/0xi=O, then P(A, ei, ei') is the solution of the equation

           roOTxh';.L== hOi - 0i'h

with data Al.i--e=hl .･i..o. Therefore P<O, ei, ei') is equal to O on U.

   Lemma 1. 11f OA/Oxi -k- aA/0xj = o, then

         o           (P(A, 0,, 0i'))(3)

         OXJ'

    ' :==P(A, ei, ei'>ej-ojtP(A, o,, o,t)-

          -P(P(A, O,, e,')e,,･-e,,･tP(A, 0,, 0/), 0,, 0,').

   Proof, Since we know

           eij - 32; -'o6.0;', + [ei, ej], ([ei, o,s == o,oj - ejo,),

we get

            oo, oej
           wog]-,-==-b7.7. + [ei, ej] - e,,･,

Hence we obtain

            OoLxl = I;n-iOi H ej'Ln--! - Sgi (Int-Pi]' - ei/4n-i)xi-=t dt ÷

               +S"oZ (L.-,[e,, ej] - [e,t, e,t]I.-, - 1...2e,e, +

               + 0i'Ihi--20j + ej'Ln-20i - 0j'0i'ln;-2)xi--tdt +

               --i- !;i ( O,i.'";, i oi - o: OS'k' i.').,=-tdt･

Then since OA/axi = OA/Ox.i -` O, we have

                  )n             -o-2j(ili.il,i'm(A, ei, e,t))

     3

and M
     '

 Hence
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              m-1
            = :Ei](Ik(A, ei, e,t)ej-ejtlk(A, ei, oi'))-

              k==O

               m-lm-s-1
              - :Iill) = I,(I,eij - ei ,-I' ,, ej, oi,) +

                s==o t= o

              + X (-1)S.l}(1}[e,, t7j]-[0,t, 0,･t]1}, 0,t, t7jt).

               s+t == m-1

Then, since we know

            f} = (-1)sl,(I,[e,, e,･]-[0i', 0,･t]I,, 0,', el)Il

              s+t==m-1

            lsll ]l::l BNM"/( s- 1) ! (t - 1) ! (for suitable B and N)

              s+t=fn-1

            <=mBN'"-'i/[Mi1]!, ([ ] is the Gauss' notation),

we have the lemma.

    Coroliary 1. ly' U is simPly connected, then the equation

(4) dh=hO-e,h
has the soltttion on U for the data

            h(O) :.= A, A is a constant matrix,

if and only if

            P(A, 0i, ei')m(0) =:: m(0')P(A, 0i, 0i'),

   Corollary 2. (cf. [8], 7.4). if m(0)=m(e') on U, a simPly connected open set

of .X, then there is a regular matri･x valued amooth function h on U such that

(s) ot == h(e-h-idh)h-i, hm(e)h-i=m(o).

                  g 2. The case e= et.

   In this ss, we consider the equation

(4)t df-fe-0f.
   Lemma 2. (i). if f, g are the solutions of (4)' then fs is also asolution of (4)'.

   (ii). if f is a solution of (4)' and f'i exists on U, then f"ti is also a solution of

(4)'.

   Proof. Since we get

           d(fg) = dLig + fdg == (fe - 0f)g + f(ge - eg),
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             d(f-i) .= mf-iciff-i = wwf-i(re H of)f-i,

we obtain the lemma.

    Corollary Z. Jlf' U is simPly connected and f is a solution of (4)' such thal' f<x)

is regular at x, an arbi.trary Point of U, then f is regular on U.

    Proof. Sincef is continuous, f-i exists on V(x), a neighborhood of x. Then

f"' is extended on U, because it is a solution of (4)' with the data f-'(x)=flx)"i

and U is simply connected. We denote this extension by gL Since gyC is asolution

of (4)' with the data 1, the identity matrix, at x, it mustbe equal to 1 on U by

the uniqueness of the solution of (4)'. Hence we have the corollary.

    Cbrollary 2. If f is a solutian of (4)' such that f(x) is regular at x, an

arbitrary Pond of X) then f is regular on X.

    By lemma 2, (ii), the set of all regular solutions of (4)' form a group. We

denote this group by ker. me, or ker.x m.e, if the equation (4)' in considered on

x
    Note. If X is not simply connected, then the solutions of (4)' may be mul-

tivalent and ker.xme may contain these multivalent solutions.

    By definition, ker.x me may considered to be a subgroup of GL(n,F), Fis R

or C, as an abstract group and has ffi (X) to be ano perator group.

    Definition. A junction x from xi (X) into ker.x mo is called a O-cocycle if it

satisy7es

(6) xaa(xT)=xar, xa is the value ofxataan(l a(zT) is the transform of

                       xr by a.

    Definition. 7"wo cocycles x and x' are said to be equivalent if and only ifthere

exists an element f of feer.x me such that

(7) xa'=f-'xao(D.

   Definition. The set of the all equivalence classes of O-cocycles by the relation

(7) is denoted by HO (rci(X), ker.x me).

   Definition. We caza m(0) and m(0') are equivalent and denote

            M(0) tw m(ot),

ij' there exists {hu}, hu is a regular matrix valued smooth .fatnction on U, such that

            m(0u') == hum(eu)hu-i

for all U.

   By corollary 2 of lemma 1, if m(e)tivm(e'), then there exists h' == {hu'} such

that

            0ut = hut(0u - hut--ldhu,)hu,-1.
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   Defini;ion. We call m(0) and m(e') are strongly equivalent on X or simPly,

strongly equivalent if

            m(0u') == fim(e.)f-i

tvlaere f is a regMlar matrix valued smooth fatnction on X and does not dePend on

X.

   If m(0) and m(0') are strongly equivalent on X then we denote

            m(e) rl;m(e').

   Lemma 3. 11f m(0)･".m(0'), then there is a bil'ection of HO(i(rrX), ker.x me) and

HO (Ti(X), ker.x mo').

   Proof. By assumption, there exists a regular matrix valued smooth function

h such that

            o' =:: h(e - h-idh)h-i = a(h)(0 - ff(h)-'da(h))a(h)-', aGri(X).

Then since we get

            '              d(hfo(h)-i)

             =dhfo(h)-i -I- hfea(h)-i - hOfu(h)m' - hfa(h)-ida(h)a(h)-i

            = hfa(h)-S(a(h)ea(h)-t - da(h)o(h)-i - (heh-i - dhh-')hfo(h)-i,

the correspondence

            h# : ker. xnze -> ker. xme'

defiped by

            h# (f)=-r hfo(h)-i

is a bijection from ker.xmo to ker.x me'. Then by the definition of he and (7),

h# induces a bijection h' from HO(ri(X), ker,x mo) to HO(Ti(X), ker.N me'). Hence

we have the lemma.

              53. Connections which have tlie same curvature.

    We assume the curvature forms of 0={eu} andi e' == {eu'} are strongly equi-

valent. Then we may assume that they have the same curvature form @== {eu},

We assume 0 is a connection of e, 0' is a connection of e' and H is the (linear)

Lie group whose Lie algebra is generated by e. We denote the associated H

-bundle of e (or 6') by Xe. Then by Ambrose -Singer's theorem ([1], [2], [9]),
if we denote the universal covering space of Xe by .Xlb and the projection from

Xo to X by P, P" (e) and P' (6') are both trivial bundles. Moreover e and 0'

induce global forms on Xb. These forms are also denoted by 0 and 0'. We set
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             et =o- rp.

Then since .jkb is simply connected, we may set

(8) v=dhh"i-hOh"!+0,
                                                       'on X. Here v and e mean the induced forms from rp and 0.

    If aGTi (Xe), then by (8), we get

            dhh-` - hOh"i = da(h)a(h)-' - a(h)ea(h)-i.

Hence if we set

            a(h) = hxa,

we obtain

(9)i dxa=xaO-0xa
(9)ii axti(xr) = xar, o, rGwi(Xb).

   Moreover, if h' is another solution of (8), then setting

            h' == hL a(h')=h'xa',

we have

OO)i cCf-re-6VC
(10)ii xa' = f"ixaa(f).

Hence n, therefore e', defines an element of HO (rti(Xb), ker.xe me).

   Definition. Z'7te above dofned element is called the characteristic class of 0'

with resPeet to 0, and denoted by che (e') or ch (0').

   Note. che (e') is defined if m(0) tNv m(0') on Xe. Here Xe means the associated

                        -S
principal bundle of 8 and Xe is its universal covering space.

   Note. If @ = O, then Xb =X andker.x me=GL(n,F), hence the characteristic

class of a connection with curvature 0 is the characteristic class of a flat bundle

in the sense of Steenrod ([10]).

                         g4. Properties of che (e').

   We call e:= {0u} is a connection of 8= {gtiv} if

(11) dgnv =: guvOv-euguv･

   Definition. The transformation of 0== {eu} by h=={hu} is the connection of

huguvhv-i given by

(12) hu(0u-hu-idhu)hu-i.



8 Characteristic Classes of Connections

   Then by the calculations of g3 and the definition of the strong equivalence

of curvature forms, we have

   Theorem 1. che(0') is eqztal to .1 if and only if 0' is a transformation of 0 by

hf== {huf}, where hu satishes '
            dhu = huOu - 0uhu,

and f is a smooth regular matrix valued junction on X.

   Here 1 means the map froni Ti (X) to 1, the identity matrix. (1 belongs in

l<er. xb me because 1 is a solutionof (4)' for any 0).

   Theorern 2. If e and 0' are related by

            e' = h(0 - h-idh)h-i,

then

(13) cha'(g) == h-i"(che(g)),

Here ep is an arbitrary connection such that m(g) is strongly equivalent to e = m(0).

   Corollary, che' (0) is equal to h"i'" (cho(e')).

                     gs. The groups Ke(X) and Lo(x).

   We assume that X is a smooth connected manifold. We denote by E=={guv},

an its vector bundle (real or complex), and by 0= {0u}, a conection of E. We

note that

   Lemma 4. 111C 0i == {0ui} ana 02 == {0u2} are connections of Ei := {guv'} and E2

={gtrv2}, then the inatrix v"lued form ei <D e2 given by

            0i O 02 == {0.i e eu2}

is a connection of Ei O E2.

   We identify the pairs ({g'uv}, {0u}) and ({gu,v,'}, {0u,'}) if there exists a

common refinement {U"} of {U} and {U'} such that

            gtrvl U" n V" == gu, v, 'l U" n llt', oul Uu == eu, 'l U't.

Here and in the rest, a pair ({gtrv}, {eu}) means a pair of vector bundle {gbv}

and its connection {eu} (cf. (11)),

   Definition. The Pairs ({guv}, {0u}) and ({gtiv'}, {0v'}) are said to be eauivalent

if and only i,f {guv} and {gtrv'} are equivalent a7td {0u'} i,s the transformation of

{0u} by h, tvhere h= {hu} gives the equivalence of {guv} and {gzJv'}.

   Defimition. The Pairs ({guv}, {eu}) and ({guv'}, {0u'}) are said to be strongly

equivalent ilf and only if ({guv}, {eu}) and ({guv', {eu'}) are equ･ivalent and'h･f--

{huf}, by which the equivalence is given, satishes
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            dhu == huOu - 0uhu,

            f is a smooth regular matrix valued function on X.

    Then by theorem 1., we get

    Theorem 3. ({g"uv}, {0u}) and ({gtiv'}, {0u'}) are strongty equi.valent if and

onlN if

(14) m(0) 'l;' m(0') on Xo, e:= m(0),

            chep(0) = ch,(ei),

tvhere 0 =: {0u}, 0' = {0u}' and g == {opu} is an arbitrary connection with curvature

m(0).

    We denote

            ({guv}, {0u})tw({gtfv'}, {0u}') if they are strongly equivalent,

            ({gicrv}, {0u})'ly({gtrv}', {0u}') if they are strongly equivalent.

Then we get

(15) ({gvviOguv2}, {0uieo.2})N({g..iiegti.2t}, {e.i,eo.2t),

            ij ({gtrvi}, {0ui}) tw ({guyi'}, {eui'})

            and ({gtrvZ}, {0.2})tw({gu,2'}, {o.2'}).

(15)s ({gtrvi (D gtrv2}, {0v'O O.2}) ? ({gt,.i' <D gtrv2'}, {0.i' (D e.2'}),

            ij (guvi}, {0ui})?({guvi'}, {0ui'})

            and ({gtrv2}, {eu2})izataJ({g..2'}, {eu2'}).

   By (15) and (15)s, we can define the Grothendieck groups generated by the

equivalence (or strong equivalence) classes of ({gtrv}, {ou})･

   Definition. The Grothendiecle grouP generated by the equivalence classes of

({gtiv}, {eu}) is denoted by Kb(X).

   Definition. Tlhe Grothendieck grouP generated bN the strong equivalence classes

of ({guv}, {0u}) i･s denoted by Le(X).

                   g6. The mappings p, o, P, ffA artd j.

   By the definitions of Le(X) and Klp(X), there is a homomorphism of Lo(X)

onto Ke(X) defined by

(16) 2'(({gtrv}, {0u}))=J({gtfv}, {0u})･

Here the ({guv}, {0u}) at the left hand side means its class in Le(X) and at the
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right hand side, it means the clas of ({guy}, {eu}) in Kb(X).

   We denote the representation ring of rti(X) over F (lll;'= R or C) by RF(ni(X))

or R(Ti((X)).

   By the definition of the strong equivalence, we get

   Lemrna 5. There is an isomorPhism T of RF(rri(X)) into Lo(X). (F is lt if Le(X)

is generated by real vector bundles and their connnections and ii' is C if Le(X) is

generated by camPlex vector bundles and their connectios).

   Definition. The subgrouP of RF(Ti(X)) generated by those rePresentations such

that the Riemann -Hilbert's Problem given bN them are solvable, i,s called the Riemann

-Hilbert grouP of X and denoted by R. -HL F(X) or R. -H. (X).

   Since we know that a vector bundle which is defined by a representation x

of xi (X), is trivial if and only if the Riemann -HilberVs problem given by x is

solvable (cf. [5]), we obtain

   Theorem 4. We have

(17) ker. d= T(R. -IL (X)).

   Note. By Chern's theorem and Peterson's theorem, we get

            R. -IL c(X) = Rc(rci(X)),

if X has no torsion.

･ Definition. YIZe denote

(ls) Kb(X) == Kb(X)k'oT(R.(rct(X))) -ev Le(X)/T(RF(Ti(X))).

By definition, Ke(X) is the Grothendieck group generated by the equivalence

classes of curvatures.

   Definitino. VVe deYine a homomorPhism of Kb(X) onto K(X) by

            p(({gtrv}, {0u})) == ({gtiv})-

Here ({gtJv}) means the class of {gbv} in K(X).

   We also set

            A.            p= Pol･

By definition, P is a homomorphism of Le(X) onto K<X).

   On the other hand, if we denote the cotangent bundle of X by T", then we

have the sequence

                 D DD(19) r(E)Dl"(E op T*)D---)lp･･････->1"(E (E9 A,iT*),

             D == d+ 0, n == dim. X
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X. Here r(E), etc. mean the groups of Coo-cross -sections of bundles E, etc,and

E means {guv}･

   Although the sequence (19) is not a differential complex, its symbol sequence

                     p(D) p(D) p(D)
            o -> rt*(E) ---)ta x*(E (g) T*) - ･･････ - z*(E c}g) AnT*) " o

is exact. ([4], [5]). Here n" means the projection from the Thom complex M(X)

of T* to X and p(D) is the symbol of D. Then setting

(20) a((guv, 0u)) '
             =d(n"(E), rc"(E(E9 T'), ･･････,rt"(E(g)A"Tij:), a(D),･･････, a(D)),

                                      dyif defines a homomorphism of Kb(X) ontoK(M(X)). Here d(F!,･･t･-･, Fk,oi,･･････, ak)

means the difference bundle 6f Fi,･･-･i･ ,Fk. ([6]).

   Definition. a is called the sNmbol homomorPhism.

   We also set

            A-            a == loa,

By definition, o" is a homomorphism of Le(X) onto itM(X)).

   We denote the Thom isomorphism from K(X) onto rt(M(X)) by ip. Then we

know (cf. [7], [4]),

              ip([E])

             = [d(rc"(E), rr"(EopT"),･･････ ,rc"(EC9A"T'), a(D),･･･-･･,a(D))],

where [E] is the class of E in K<X). Hence we obtain the following

    Theorem s. The following diagram is con7.nzutative.

                                       .ptSih･ K(M(X))
                                 Ke(X)

                                      ×
                                  6
                                          pdi

                    Le(X)

                                         p
                                                K(X)
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