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1 Introduction

On the homotopy groups of rotation groups R,, considerably many results
have been obtained : In [7] and others, Mmwura determined groups =; (R,) and
their generators for i < 14, and in [5] Kervare determined the groups =; (R,) for
i=zn+4.

In the present paper, we shall determine the 2-primary components of groups
w; (R,), i =15, 16 and 17, together with their generators. For this purpose, we
consider the homotopy exact sequence

Ty

>y (Ry) > 7y (Ryur) —> 7S") > m,o(R,) —>
of bundle (R,.;, p, S"), and /J-homomorphism
-/: ﬂi(Rn)———)n)ﬂl(S")'

Starting with R; which is homeomorphic to real projective 3-space, we obtain
our results inductively. The auther wishes to thank to S. Saito for his advice
throughout the preparation of the paper.

2 Preliminaries
For any fibre space (X, p, B), we have the following homotopy exact sequence

4

(2.1) Iy *
""" —> 7 {F) = n(X) —> 1(B) —> a; y(F) 0o,

where F is the fibre p~Y(xo) on a base point %, of B, i:F—> X is the inclusion
map and 4 is the boundary homomorphism. Homomorphisms iy, py and 4 of
(2.1) satisfy the following relation

i(af) = iua)B for a e x(F), §e (S

(2.2) Dilaf) = Dyla) for e € my(X), e =(S)),
HMaEp) = Aw)B for a € 7/B), f & m-y(SiY),
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where E : n{Si)—> r,;.1(S/*1) is the suspension homomorphism.

Let R,.; be the rotation group of euclidean (n--1)-space, and i: R,—> R,
be the inclusion map. Then (R,;;, p, S") is a fibre space with fibre R,. Since the
group Rj is topologically equivalent to real projective 3-space P? my(Rs)~ Z with
a generator [7y| (¢f. [127), and the correspondence [7;] &« —> pr, « & x;(SY),
induces the homomorphism

(2.3) Da o wi(Rg) ——> m(S?),

which is an isomorphism for i‘> 2.

For n=3 or 7, the bundle (R,.,, p, S% is equivalent to product bundle
S* x R, over S*, and if we denote the homotopy class of the cross section of
this bundle by [¢,], the correspondence (¢, p) —> i + [¢,18, asn(R,), BEn(S"),
yields an isomorphism

(2 4) TCE(RH) + ﬂ'-i(Sn) = ni(Rn-rl)'

Now, the notations of this paper conform to those of [137; in particular,
7;(X:2) denotes the 2-primary component of the group =;(X), and a subgroup =/
of =(S") is defined by setting

7, (S") if i =mn,
(2.5) = Elmg, (S"1:2) if i = 2n — 1,
w(S":2) if is4n, 2n—1.

Groups =;* and their generators are given in Table 1.
Applying (2.1) to the bundle (R,.;, p, S*), we have

i, by 4
(2.6) > 1R 2) —> Ry 2) —> 1" —> 1, o(R, 2 2) —>

Let [«] denote an element of =;(&,,;:2) such that p, (¢l =« ", and let j :
R,y —> R,, m>n+ 1, be the inclusion map, and define [a], € =;(R,:2) by
setting [a], = j.({[al).

The groups ={R,:2) and their generators are known for i< 14. We need
them in the subsequent calculation, so we give them in the Table 2.

For the image of the boundary homomorphism 4 : z* —> x;_((R,:2), we have
the results given in the Table 3. '

The homomorphism

J . n-i(Rn)_"_>7Ci+n(Sn)

of G. W. Wurreneap was defined as follows :
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Table 1 : =2,;
for n>i+1
7= 0 1 2 3 1 4 | 5 6 7 8
i z z, z, zo | o 0 Z, | ze | 2o Z
generators tn N 73 Y I vi oy Va,  &p
n = 2 3 “ 4 5
- Zi Zy Zo |24 Zo Z Zs Z Z, Zy 2y Z,
generators | papd!, pav'vg, pavies |, eavin, vieg vao!, Eel, Naks vi, M5 Msce
i Zy Zg Zy Zy| Zy Zy Zy Zy Zy Zy Zy Zy
7 generators | nav'pe, pav!neer, | vipe, vinmeer Ve pua, veer, vith, ewis, (EvYe, Ep!|l vyos, Vs e
o Zs Z, Zy Zy Z Zy Zy Zp Zy Zy Zy
generators v poper, Vigepn  vao'nty, vi, vapte, vagies, (B, Evinees| L5, vsos,  uses
lh Zy Z, Zg Zy Z, Zy Zy Z,
generators Degavhy egvly Vio o, vanapts,  (Ev) s vi, vsps, Vshsco
s Zy Zy Zg Zy Zy Z Zy
generators Nzes &3 vala, E4V12, Yayivis VsOglis,  Yssile
n= 6 7 8 9
[ Zy Zy Zy
generators Vs, &g al
s Zy Zy Zy Zy Zy Zy z Zy
generators | v, ps, Metr | 6'pu, Vi, e U Eqg!
e Zs Zy Zy Zy Zy Zy Zs Zs Zs Zy
generalors | vege,  epr 07 77?4, Vi, o mige| Osnus,  (Eo')pis, Vs, g
n:‘7 Zy  Zy Zy Zs Zy Zs Zy Zy Zy Zy Zy Zy
generators | (s, vevu | 0w, s 0573 (Eo'ipls vk e msts | Oomie Y9, &
aly Zo | Z Z Zy Zy Z Z, 7y Zy 7y
generators Ho1s) ’ Crs Vvt TgV1s, VgOiy, Nslto 0977%6: v, Hay T9€10

Let f:Si—> R, be a representative of an element =,(¢,).
F:Si x §1—3 §"1 by setting

Flx, y)= f(x)y

for any x € §¢ and y € §*1,

Define a mapping
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Let G(F): S = Si%S" !t —>S5" be the Hopi-construction of F, where AxB
denotes the join of A and B. Then, G(I') represents an element J(«) € m;.,(S").
We have a diagram

Du
""" > TL’t(R” 2) -—> ﬂi(Rn'l-l:Z) —i) ﬂ:i" —_> 71‘[—1(1";1:2) s A
2.7 ] ] Vgoer
! E g vETY

+1 2nt1 -
""" P s TP Wiy P T T T P

which is commutative up to sign, and its lower sequence is exact ({117, Proposition
4.2). Moreover, the homomorphism J : z{R,) —» 7;,,(5") satisfies

(2. 8) Jp) = J@E"B for any @ € n(R,) and § € =,(SJ).

Recall that

(2.9) J(erd) = o for n> 8.
J(I:Vﬁ:ln) =V, for n > 8.

3 Groups x5(R,) and their generators
In this section, we shall determine the generators of the 2- priméry components
of ms(R,).
In the sequel, we shall use the abbreviated notation =(R,) for =,(R,:2)
The homotopy groups of spinor groups Spin (n), n <9, are given in [ 7] and

[97, and we have isomorphisms
3.1 7 Rs) == w (S pin(5)) = (S p(2)),
(3. 2) 7w {Rs) == 7, (Spin(6)) =~ = (SU(4)).

The results for m5(R,:2) are stated as follows :
PI‘Op()Siti()n 2. 1. 7[15(1?3:2) = {[7/2])),[13} -+ {':7/2]1)/7/657} ~ Zg -+ Zz

ws(R:2) = {[nale' 16} + {[pedev'meend + {Laa ' i} + {LaslV'mpe ~ Zy + Zo + Zy + 7,
w5 R5:2) = {[vao' 4 |} =~ Z,

w3s(R6:2) = {{va0'1els} + ([ vslos} m Zy + Zs

mis(Re:2) = {{vso'piale} + {{vslos} + {pe e} + {[nelec} = Zy + Zs + Z2 + Z,
m15(Rs:2) = {[vs0 n1als + {LvsJsos {7 levr }+{{n6Joss} +{lezJo" pua}+-{{ ez Ion} +-{ ez e}

~hot 2yt e+ 2o+ 2o+ 2o+ 7y
mig(Ry:2) = {[Bos |} + {[exlov} + {Lexdosr} + {[vsloost = Z + Zo + Z» + Zs
715(R10:2) = {[80s 10} + {{endwove} + {[vs]w0s} ~ 7 + Zy+ 4y
mig(R,:2) = {[80s],} + {[vs]uos} = Z + Z, for n=11, 12
m15(R15:2) = {9} + {vs Juwos} = Z + Z,
(R 2) = {[nfs = Z for n= 14, 15
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wys(Ri6:2) = {[ e lie} + [20s 1= Z + Z
(R 2) = {{nb iy = Z Jor n=17.
The following relation hold . 8oy iz = 2[ 53]
Proof. - The reults for =;5(Rs) and =5(Ky) follow diectly from (2.3), (2.4) and

Table 1.
R; : Since m(R;) =~ Z and =(R,) is finite,

(3. 3) ip Ry —> m(R) is trivial, i, e., i[pa]e') = ig([zs]) = O.

Therefore i, : a;(Ry) —> n5(Rs) is trivial, too. From this and (2.6), we have the

exact sequence

Dy 4
0 = m15(R5) —> whs —> m14(Ry).
Using Table 2 and 3, we can prove that the kernel of J : afy—> mR)) is
generated by vu'n..
In fact, from Table 1, =t = {vw'nie} + {viba} + {vaes} + {ewie} + {EV'D} + {En'}
Lo+ Lyt Zy+ Zy+ Zy + Z,. Then we have
Avso'nyy) = dveo Yiis by (2.2),
= 2 es)e' s by Table 3,
= 2L ] p1a) = 0.
A(vapy) = dvavs = (310" D6 -+ al 92 o' Ds.
Ayzq) = d(vi)es = [ta]v' e + al ]’ es.
4(541)12) = 4(14)531)11 = 2[‘3]531)11 - [7]2]4531’11 = [7/2]4531)11-
A(EV'er) = Aeges = [no]scs.
NEp) = dry' = 2Leglp’ — Ln2dagt'.

Thus, from the above exact sequence and by definition of [v,'7;4], we have
TRy} = {vao' s} = Zs.

Let (2.6), denote a part of the exact sequence (2.6) starting with =z{, and

ending in m(R,), i.e.,

A iﬂ: p:l: A
(2 6)11 75;‘6 —> 77:15(Rn) — ﬂ-lﬁ(Rll‘f'l) > 71"1[5 e ﬂ'-l'i(RH)’

Ry @ Consider (2.6);. Since [ty s’ = 4[ 2v40’ ]} in w4(Rs), using Table 3 we have

dpsprs) = Aeshpapss by (2. 2),
= [eglonips by Table 3,
= 2] by (7.7) of [137,

= 8[2v0'] %0,
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Table 2 : z; (R,:2) for 3<i=14

n= 3 4 5 6 7
7y (R,:2) Z A Z VA
generators (7] [nels [zs] Cesls
7y (R,:2) Zy Zy Zy Zy 0
generators | [9a]ns (pedans  Leadys Lealsms
s (R,:2) Z 7, Z, Zs z 0
generators | [p]q3 Cosdeny [l Cesdoni [24]
w5 (R,:2) Z Z Z, 0 0 0
generators | [ g V! [p2]e! [ea]v!
7y (R,:2) Z Z, Z, z ' z z
generators | [9a)v'ne | [edav'ne, Ltalv'7e [4vy] I (9] [7e]
5 (R,:2) Zs Z, Z 0 Z, Z, Z
generators | p'ys ([l vk Les]vind l [vs] [vs e [nelns
7o (R,:2) 0 | 0 0 Z, Z Z
Zeneralors [vs]ns [vslms,  [odn?
710 (Ry:2) 0 0 Z, Zs Z, PA
generators ] [vile, [vslni it

n= 8 9 10 11 12
g (R,:2) 0
Zenerators
71 (R,:2) z z z
generators (7615, Cer] [endo
w(R:2) | Z Z Z Z, Z Z
generators | [vsls, [melsys, Lelim [vsdo, [erdons [erdiony
my (R,:2) Zy Zy Zs Zy Zy Zs zZ Zs
generators | [vslans, [nolen?, [edn? | [vsdons, [eedon? |[vsdioms, [2t]|[vslins=Lendunt
o Ri2) | Z Z, Z z | A 0
generators l < [, Cerlve Ceqdovr [er]iovr l [eadivr
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7= 3 4
_7}'11<Rn52> Zy Zy Zy
generators [noles (72 acs, [esles
7y9(12,:2) Zy Z Zy Zy Zy Zy
generators. [mslnses, el (%2 1amses, [a]atts, Leanse, Lealps
713(1%, 1 2) Zy Zy Z, Zy Zy Zy
generators [7e]e!, _ Doalmapes [nele!s  [modamapss  Leale!s  [Leslmap
7(;4([\’12) Zg Zg, Z‘), 2477 ZQ g-)‘ Z4 é ZE ]
generators | o)ty [nsdv'%e,  [alv'es ,L[@A/i',z,,@zl“"76',[7/2]4’!.' sty Lealrt!s Lewleavn, [ealv'eq
"= 5 6 | 7 | 8
715(Ry 1 2) Zy Zy Z, 4 Zy A
generalors (5 ]ses [vs los [vslove,  [2dey5] [vs Jsvs, [24ey570s
719(#R,:2) Zs Zs Zy 0 0
generators |[talsmascs, [tslspta Aot
713(Rn:2) Zy Zy Z, Zy o Zs Zy
generators |[v¥ vy, [talsyapta| [ evio AR | Dilevie, [er )08
7y4(fy12) Zyg Zw  Zy Zy Zy Z, Zy Zy Zy Zs
generators [2v40] ([mseods Cvs 1ok (L0580 ds, [veteal, [vstevg |[mseels, [vs-+eols, [valsvl, [erlo’
n= 9 10 11 12 13
74y (Rya) Zs A4 4 4 4 4 zZ
generators | [vslws, [2dusde | [240T00 | [2dey]s [2des)ie,  [200] | [2deig])ss
m12(R,:2) 0 Zy Zy Zy Z Zy
generators [2vq] (i) [7h 12, (711 [n0dus
T13( Ry 2) Zy Zy Zy Zy Zy Zy Zy
generators Ler)ovs Cendiovd | Lerhuvdy Dododne | Dofodiomie, [pudme | (ool
T14(Ry2) Zs Zy Zs | Zs Zy Zy Zy
generators | [ve+egle, [vslovd | [Ve+ealio [ve+eslus [veteolis, dyip l [ve+ee]is
n= 14 15 16
wyo(d,2) 0 0 1
generators
m1(Ry2) z 0 0
generators [2¢15]
w14( Ry 2) Zy Zy 0
generators [voteelis [we 42015 }
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Table 3 :

o e 71':»1 l [ 143 113 4

do | e —Tnde | Ll 2] — [oale [vedl + [ecdons
aent 11 ’ g 15 ‘ Vs Ns Vi Vg

da ‘ [57]11V7 [7711]13 |:V6+66]5 ’ 0 ‘ 0 ‘ 0 2[57]“7 - [”ﬂ
a & at vyo! Ug ’ Eg! vg

da 2Le e [adol = Do el | 2Lelol = D] 2[x4]
o € a? A

Ao Ceslv! +alpe o’ for 0=a=3

From Table 2, there exists an element [vslag € n5(Rs) such that p.([vs]os) = vsos.
Since [vs] is of order 8, [vs] o5 is of order 8. On the other hand, by (3.2) and
Theorem 6.1 of [7], =is(Rs) = Zs + Z,. Thus, from (2.6);, we have

715(Re) = {[wsdos} + {{va0'n1ele} = Zs + Z,
and
(3.4) g 1 mwys(Rs) —> m15(Re) 1S @ monomor phism,

R, : Consider (2.6). From Table 1 and 3, we have relations;

A(neeq) = A% = 5gby) = 0 by 4(ns) = 0,
Ape) 0 by Table 2.

(3. 5) A())e(fg) = A(VS)UB = 2[125:]05 by Table 3 and (2. 2),
Apeptr) = 0 by Table 3.

Therefore, from (2.6);, we have the following exact sequence

i* p*
0> {[Vsjetfs} + {lv o' prade —> mis(B) —> {8} + {peer} —> 0.

From Table 2, there exist a element [7s]e; and [#s]v, in m5(Ay) such that p{7e Jer)
= ng&; and P76 v} = 1eb; = i (by Lemma 6.3 of [13]).
Since v; and &; are of order 2, [ ]v; and {s]e; are of order 2. Thus we have

m5(R) = {6 o} -{neJer} -+ {{vs hos} H{ v pia i} = 2+ 21+ Z 4 Z.

Rs : The result for m;; (Rs) follows from the result for =;5(R;), (2. 4) and Table 1.
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Ry : From Table 3, we have following relations

(3.6) A(ve) = ey =[5 Jowr,
d(es) = Aes)er = [0 Jser,
dognss) = Lerdo'pus,
AEa'n1s) = [v40' 914 ]s.

From (2.6)s and Table 3, we have the exact sequence

Dy
0 —> {Terdain} + {Lenlosr} + {5 loos} — m15(Rg) —> {80s} —> 0.

Thus, from the fact that 8g¢ is of order infinite, we conclude

w1s(Ro) = {[8s [} +{[ e Joba}+-{LerJoer3A-{[vs Joos} =~ Z+ Zo+Zs+ Zo.

Moreover, from the exactness of the sequence (2.6), we have

3.7 iy o mwie(Re) —> no(Rg) is an epimor phism,

Ry : Consider (2.6),. Using Table 3, we have

A(wE) = Aeo)§ by (2.2)
= [ws Jov§ -+ [trJonrvi by Table 3
= [y Jovd by =, = 0.

Thus, from (2.6),, we have the exact sequence

s
71'61;6 = {0'9} e 4 7515(R9) e 7t'15(R10) e 4 O.

For the homomorphism 4 : ajs —» m5(RKy), We have

(3.8) A(ag) = Aeg)os by (2.2)
= [ Jompros + [v5 oo by Table 3
= [tz Joba Loz loeq4-[vs Joos by (7.4) of [137,

Therefore, from the above exact sequence, we have
7i5(Rio) = {[ 808 ]} + {Levdiove} + {[vslwos} = Z + Z; -+ Zs.
Ry : Consider the diagram (2.7)

4 T4
vio} = wi5(R1g) —> mis(Ryy) —> 7}§ = 0
PR
= Dht —> 2} —> 7} —> 2§ =0

3
Go

I
s

21
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Then we have
AElll)%[) = A(V%l) = 0'101—)17 # 0 by (10. 20) Of [13]‘

Therefore, from the above diagram and zl{ ~Z, we have that 4 : z}l—>
m5(Rye) must be non-trivial. On the other hand, we have

J(CerJ105e) = H([erJuo) E 09y by (2.8)
= O10P17 by (2.9).
J([vs J100s) = J([v5 110) B0 by (2.8)
= VyyTis by (2.9)
=0 by Lemma 10.7 of [13].

From the above diagram we have
Av1o®) = [egJ10vr + 2[5 11008

where x =1 or 0. Therefore, the exactness of the upper row sequence of the
above diagram, we have

TRy = {[808]11} + {{vsluost = Z + Z,,
and from the exact sequence (2.6) we have that
(3. 9) g o me(Ryg) —> mig(R1y) is an epimor phism.

Ry @ Since #if = i} =0, we have the result for m;(Ry) from (2. 6)s0.
To show the result for R;5, we shall need the following
Lemma 3.10. (Sucawara [117). Let « be an element of x,..(S"). Then We have
(0 if nis odd,
Bl = o
2 By if nis even,
where 4 m.(S"Y—>r(R,) is boundary homomor phism and p, : n(R,) —>
7 (S"-1) is @ homomor phism induced by the bundle projection p : R, —> S L,

Ris @ From (3.10), E%p,d(vs) = E¥2vy). Since EV : zgli—> 78 is an iso-
morphism, we have pudv;s) = 2vy;. By definition of [2vy], 4{vy) = [2vi]. From
the fact that order of [2v;] is equal to 4, we have that the kernel of 4 : z}—>
m14(f0ss) is generated by 4vip = 7). Thus there exists an element [9] € m(IRs)
such that pu(nh]) = 4vs,.

Consider the following diagram

Iy o
0 = alf —> my5(Rig) —> my5(Rys) —> {9} —>0
l‘] B ] % l E13
O=aff —> =mf —> 8 —> {ph}—> 0

(3.11)

B
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of (2.7). The upper row sequence is exact by the above fact and the lower seq-
uence is exact by (10.11) of [13]. We have

whf = {E%'} + {enn} = Zss + 2 by Theorem 10.5 of [13],

whf = {p} + {es} = Zs2 + Z; by Theorem 10.10 of [13],

Etp' = 204 by Lemma 10.9 of [137,
and H{pys) = 4ves = 785 by (10.11) of [13].

Next we prove
Lemma 3.12 J([8osi2) = E%0" + xepp for x =0 or 1.
Proof. Consider the diagram

i* . pﬂ:
15 Rg) —> mw15(Ro) —> w5

T Lom [P

Tpg® —> 7Yy —> 7w}
of (2.7). Then we have

H J([80s])) = :=E%80s)
= 8oy,

= H(p) by (10.2) of [13].

Thus, J([80s] = p' mod Erfs.
By definition of [8¢s ]z and the diagram (2. 7),

J([80s]12) = J(7:{[80s)])
= E3J([ 804 )
= E%' mod Enl,
= B3’ + xey5,

where £ =0 or 1 and j, : wis(Ro) —> mi5(Ry) is a homomorphism induced by the
inclusion map j : Ry—> Rys. g.ed
From the above diagram, we have

H[9t:]) = p1s mod Exf.
Therefore, from (3.11),
[80s]is = 2l 1.
Thus we have, from the exactness of the upper sequence of the diagram (3.11),

wi(Ris) = {9} ]} + {{vsJuos} = Z + Z,.
R, and Ry; : Consider (2.6);3 and (2.6);4. According to Theorem 3 of [5],
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we have
(3.13) Aviy) 250, 2d(vis) = 0 5 d(yis) 250, dlg14) % 0.
Therefore we conclude
Ti5(Rust) = {[h i} = Z for n = 13 and 14.
R : Consider (2.6);;. From Theorem 23,4 of [12], we have
(3.14) Pudleg) = 2egs.

On the other hand 4 : =l &~ Zy—> n5(Rys) = Z is trivial. Thus we have the

exact sequence
0 —> wi5(Ry5) —> wyp(Ryg) —> {205} =~ Z —> 0.
Therefore we obtain that
mis(Re) = {[9}el} + {[205)3 = Z + Z.
R, for n= 17 : From (3.12), (2.6);s and the stability of =;(R,), we have

Wlﬁ(Rn) = {[7/?2]11} ~ Z fOl' n % 17

4. Groups ms (R,) and their generators
The results for =g R,:2) are stated as follows :
PrOpOSitiOn 4.1. 7516(R3:2) = {[7]2]))’776‘[[7} ~ Zg

mio(R4:2) = {Lea v neprn | 3-+{ [ dev nen} = Zo+-Z

76 Rs:2) = {{va0'na s} {1} =~ Zo+ Z»

T1o(Re: 2) = {{vao" nralonss }H{{v i} -H{LC T3+ { s 1063 +{[ 5 Jea
SN AR YA YA AR A

m1o(R7:2) = {[we0"n1aJopus {0 TwAo - {LC T3+ {[vs Jobe 3+-{[ws Tresd -+ {6 Ipees } + 6 10}
2 Lyt Lot Lot Lot Lo+ Zot- 2o

mia(Rs:2) = {[va0"p1a Jonus -+ {8 Jsvho} -+ {[Cs e +{[vsJovs} +{[vsJees I+ {76 Joren +
{6 Jemrea }+-{ ez 1o’ ni b +{Lea A3 {{ex s {0 Jeea}
Lot ot Lo+ 2o+ 2ot Lot Lot Zot-Fot+-Zot- 2y

mig(Re:2) = {[LsTo +{[vs Joms}+{[wsJocad+{Lerlowd}-+{{ e Jopted -+ {Lerloaee3
SN AR A AR A ALY A

mio(Rro: 2) = {{20g - {{eJiv}+{{edop} = Zys+ Zot- Z

me(R11:2) = {Le i3+ {Le s} ~ Zs+ Z,

mg(Ry:2) = {{tg]uptn} = Z» for n=12, 13

wio(R14:2) = {[e g} H{ [ 2vs 3 =~ Z, - 2,
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mi(R15:8) = {[to hspa }H-{{ 7} ]} = Z2 -2,
T1e(R16:2) = {[Falie}+{[endispt 3 H s )3 = Zo+ Zo+ Z»
w16{R17:2) = {2 Junpta - {15 e} == Zo4-Zs
ﬂlG(Rﬂ:Z) = {[‘7])1#7} =~ Z2 fOV n > 17
Proof. From (2.3), (2.4) and Table 1, we have the results for mye (Rg) and
7516(R4)-

R; : Consider the exact sequence

i:&: pﬂ: 4
T1g(Ry) —» wig(Ry) — iy —> wi5(Ry).

By the same argument as in the case of i, : ms(Ry)—> mi5(Rs), we have that
1y © mig(Ry) —> mo(R5) is trivial. On the other hand from Table 3 we can prove
that the kernel of 4 : nfg—> n5(R,) is generated by veo'pd and »i. Then, the
exactness of the ahove sequence, we have an isomorphism

Py ¢ wie(s) —> {vao'nl} + (v}

From Table 3 and the result for =;5(R;), there exist elements [v'n] € m15(Rs)
and [vi] € mp(#) such that pu((vee'iel) = vao'ny and pu((vi]) = v} Therefore we
obtain from (2.2) that

T16(Rs) = {[va0 p1alyisy + {Dibh} ~ Z; + Z,.

Ry : From Table 3 and (3.4), it follows that the sequence

0> 1T16(R5) — WIG(RG) — 7[51’6 —% 0

is exact. From (3.2) and Theorem 6.1 of [7], the above sequence splits. From
Table 3, there exists an element [vs] € ns(Rg) such that p.vs]) = vs.
Thus we have from (2, 2)

w16(Re) = {8513 -+{[Ds s} +{[vs Jes } --{[ve0' p1edomis H{ [V Jov5o}
Lyt Lot Lot 2yt s,
R, : From (3.5), the exact sequence (2.6) vields the following exact sequence

A i* P*
7[?7 b 4 ﬁ]g(RG) ——3 7'1.'16(R7) B {41)60‘9} -4 {_776#7} 3 (),

Now we have following relations :

A(Ce) = 2[5 + al510s + bl vsles a, b=0or 1,

4.1
@y Aygbyq) = 0.
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In fact, since E®p,A(C) = 2E%; by (3.10), we have 4(s) = 2[s] + alvs1vs + blvsles
for some integers @, b. And

dlvev1s) = A(vg-+-e6)v1a) by e =0,
= dvg+eg)via by (2.2)
=0 by Table 2.

By (7.10) of [13], 4veo9 = nes. From Table 2, there exist elements [#]y.us and

[z such that py ((nelnape) = 9éps = dvess and pu((neles) = neptr. Since 14 and
are of order 2, it follows that [9s]pes and [7s]u; are of order 2. Thus, from the
above exact sequence, we have

mia(Ry) = {{Ls 3+ {[vsla¥s} -+ {[ws les} +{vao" i dpmus } {005 oo }
H (e lpeat i nelpm} = Zot-Zo+-Zo+-Zo+ Lot 2+ 2.

Moreover, by Lemma 6.7 of [137], we obtain that the kernel of
(4. 2) A . 71'(137-—)71'16(}?3)

is generated by 4{s = nips and Devse.
R : By (2.4) and Table 1, the results for =R are given.
R, : By (3.7), (2.6) yields the following exact sequence

4 Ty
7y > w16(Rg) —> w1(Rg) —> 0.

For the homomorphism 4 : z8; —> n4(Rs), making use of the Table 1 and 3 and
the formula (2.2), we have that

Aw3) = [vilevio,
Aps) = (96 Jatrs
(4.3) HMognis) = Lerdo' i
HEo'1%s) = [wa0'n1alenss by (3.6),
Angeq) = (16 orres.

Thus, from the exactness of the above sequence, we have

m16(80e) = {[CsJo}-H{[wsloPs}-+H w5 loes -+ LLer Tovit+{ [ ertoptr 3 +{[¢r lomaes}
Lot Lot Lot ZotZot-Zs.

From (4.3) and the exact sequence (2. 6),
(4. 4) 1y 1 7 Rg) —> w(Ry) is an epimor phism.

R, : From (3.8) and (2.6), we obtain that the sequence
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4 Iy by
g 3 T 1o( Ry) > wig(R10) —> {209} —> 0

is exact. By the use of (2.2), (3.8) and Tables 1 and 3, we have the following
relations :

Aeo) = Atg)es = [v5Jocs + [exdonncs,
(4.5) Avg) = deg)vs = [w5evs -+ [erlonave
= [vs lgvg + [¢7 Jgv3 by Lemma 6.3 of [13],
Mognie) = ooy = (e obois + Lerloermss + (5 Je0sh1s
= g Jovd + Lerlonres -+ (5 leoemis by Lemma 6,3 and (7. 5) of [13.],

where [v;oos715 is a linear combination of [s]e, [vslobs and [vslees.
Thus, from the above exact sequence, it follows that the sequence

7’.* p*
(4.6) 0 —> {[erJopr} + {L[& 1o} + {Lealevi} — m1g(Ryg) —> {2063 —> 0

is exact. Consider the diagram

4 Dy
7y = {010} —> me(Rig) —> nfs = {00}
wa 4 1 g =lEv

w3 = {00} —> 7"%8 —> a3} = {019}
of (2.7). Then we have
E3p, Moy )= 2E%a, Dby (3. 10).

Since E : gl —> z is an isomorphism, p,d(o1) = 20s.

Therefore, by definition of [2¢y], we have

4.7) (a10) = [2o4].

By (12.19) of [13], the homomorphiom 4E" : 7} —> =i} is a monomorphism,
On the other hand

HAEY(g,y) = =204 by Proposition 2.5 and 2.7 of [13],
= == H]d(o10)
E

H
Thus, from the exact sequence nls —» ni) —> x4l of [13] and (4.6), we have
{4.8) [ 20q)) = =d(oy) mod Exs.

Therefore it follows that [2¢4] is of order 16. We have a relation :

J(8[ 204]) = JA(801q) by (4. 6),
= 4 E%(8ay),
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= =4(80sy),
= G1oft1y 1+ M09 (cf. the page 156 of [13)),
= J{er Jroptr) + 110019 by (2.9).

Thus we have J(8[209] — [t J1ott) % 0. From the exact sequence (4. 6),
8[200] — [trJ10tr = [ Lo -+ Y7 d1ovd.
for some integers x, y (x, ¥ =0 or 1). On the other hand,

J(edsov®) = JerJu) EOv? by (2. 8),
= gyqul; = 0 by (7.1) of [137] and (2.9).

Therefore we have ¥ = 1 and J{ &) = #1001, Thus we have obtaind a relation
8[204] = Ltz it +,[C5]m + Yt iovd,
where y =0 or 1, It follows from the exactness of the above sequence that
mio(Ri0) = {[ 2091} + {[eeTwoprn} + {Leaiov®} = Z1s + Zz + Za.
Ry, : By (3.9), we have an exact sequence

4 i,
Tfig e 7F15(R10) — ﬂlB(Rll) — O

Then it follows from (4.7) that
4.9) 4 1wl —> zl(Rio) is a monomor phism
and

mo(Ry) = {Le it} + {[en i} = Zy + Zs.

R,s : Consider the exact sequence

Ty
7l = {Wh} —> mig(Ryy) —> w16(Rig) p* ~—> 2l = 0
of (2.6). We have the relation;

A(v) = der)vho : hy(2. 2),
= [tq i} by Table 3.

Then it follows from the exactness of the above sequence that
(4.10) 4 @zl —> 75 Ryy) is a monomor phism

and
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wie(R12) = {LesJupin} = Zs.

Ry : wii =xlg = 0 by Table 1. Then, from the exactness of (2.6), it follows
that

mia(Rys) = {[‘7]13#7} ~ 7.

Ry : From (3.13) and (2.6), the following sequence

| i\ b
() = TL'%% —— TEIG(R13) ——— ﬂlS(Rl‘i) —— {21)13} — 0
is exact. Consider the diagram
by
{via} > mie(Ryy) —> wfd = {vi5}

w§) = {vag} —> whf —> 75y = {var}

y

L

14
17

L

of (2.7). Then we have
E”p*duu = 2E171)13 by (3. 10)

Since EY7 : #lf —> =8} is an isomorphism, we havep.dvy, = 2vy;. Then, by defini-

tion of [2v3], we have
(4 11) ADM = [21)13].

On the other hand,

iy = {ow} + {owpa} ~ Zs + 7 by Theorem 12.16 of [13],
H{wy) = vy by Lemma 12.15 of [13],
and Allgg = i2(014 (Cf. page 159 or [13])

Thus, from the above diagram

(4.12) J([(2v1s]) = Jdvy,
- "_"‘_ZIEMUM
- idl)gg

= 2wy,

If [2vis] is of order 8, then, from the above exact sequence, we have 7. ¢t ia)
= [t 1aptr = 4[2v3], and

0 5% oyaptar = I 60 1ot by (2.9)
= Jd(2v13)
= 8wy by (4.12)

=0
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This is a contradiction, and hence [2v;3] must be of order 4. From the exactness
of the above sequence, we have

me(Rie) = {{(2vis |} + {{er )} = Zy + Z.

Moreover,

(4. 13) The kernel Of 4 751714—'>W15(R14) is {4”14} = {7)?5}.

Ris : From (2.6), (4.10) and m5(R,s) =~ Z, it follows that the sequence

~ ' Dy
0 > [ t7 lisptr} —> wie(Ryg) —» 7wlg = {}s}s —> 0
is exact. Consider the diagram

by
O —> {Lerusptr } —> m(Rys) = {nh}—>0

; I
0 —> {opea}-H{opt—>nll  —> {9k} —>0

of (2.7), where the lower sequence is exact by Lemma 12.14 and (12.20) of [137.
We have

J([er Jaspta) = Oaspten by (2.8) and (2. 9).
Thus, from the above diagram, we have
(4. 14) J @ mg(Rys) —> wld  is a monomor phism,
On the other hand,
7 = {wst+H{opte}+{e" Y = Zy+Zy+Z; by Theorem 12, 16 of [13]
and
H(p*') = 7l by Lemma 12,14 of [13].

Therefore, there exists an element {7%] € ng(Ry5) of order 2 such that p.(9%])
= 5%, Thus, from the exactness of the above sequence, we have

wielRys) = {Ler usptay +{l} = 23 + 2,
and
(4. 15) J(n3ad) = 9.

R : Consider the diagram
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i* pﬂ:
71} = {9}} —> w1g(Rys) —> w16(Rig) —> 7§} = {715}
~ le 41 g 1Y gl
i ={ph) —> = —> m  ——> il = (g}

fo (2.7). From (4.14) and by five lemma, we have
(4. 16) J ¢ mg(Rig) —> i is a monomor phism.

From Lemma 12,14 of [137], 4 : a§f—> =il is trivial. Thus, from (4.14) and

the above diagram, it follows that
(4.17) 4 ¢ w3 o(Rys) IS trivial.

On the other hand, from Lemma 12,14 of [137], there exists an element 3 €=}

such that H(yf) = 731 and 27, = 0. Moreover, from the above diagram, there
exists an element [75] € m4(Ry6) such that

Dbellms)) = s,
2[7715] = 07

and
(4.17) Jpis)) = 7.
Thus, from theexact sequence

i* p %

0 —> m16(R15) —> mig(R16) —> wid —> 0,

we have
m16(R16) = {151} + {{nfa e} + {Lerluorr}
_ Zg + Zz + Zz.
From the above diagram, we have also
(4. 18) J([’?%ﬂw) = J@*[’?ﬁ])

= EJ([(%]) by (4.15)
= Eyp*.

R;; : Consdier the diagram

718 = {916} —> T1s(R16) —> wyg(F1y) =—> 0

~ [o17 A J E J H
3= {nn}—>mi —>ail > il = {}

=

of (2.7, where the upper sequence is exact by (3. 14),
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We have a relation
A(nes) = Ep*! mod Erl} (cf. page 160 of [137).
Thus, from (4. 18) and (4.16), we have

(4.19) A(n16) = [13e]s6
and
m6(R) = H{ns]id + {Ledinpe} = Zs + Za.
Also, we obtain
(4. 20) J 1 wg(Ryg) —> =il is a monomor phism.
R, for n =18 : Consider the diagram

A i*
i}l > myg(Rq) —> wig(Rig) —> 7l = 0
~ 18
~ lE 4 lJ E lJ
il —> xi] —> #wff —>adi=0

of (2.7). Then

Id(erz) = degs = 9¥, (cf. page 160 of [137)
= J([(7517) by (4. 20).

Thus, from (4.20) and the stability of =(R,), it follows that

nIG(Rn) = {_[{7]71#7} ~ Z2 fOI' n % 18.
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