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                               Introduction

   The aim of this paper is to determine the real and complex representation

rings RO(F4) and R(F4) of F4, which is a simply connected compact Lie group of

exceptional type F. Let 3 denote the Jordan algebra of all 3-hermitian matrices

over the division ring of Cayley numbers, We know that the grottp F4 is obtainedi

as the automorphism group of 5. In Chapter I, we shall arrange some properties

of F4 : the sttbgroups Spin(8), Spin(9), maximal torus T, the Weyl group VV and

the Lie algebra &, The origin of the results of Chapter I are found in H, Freu-

denthal [1], however we rewrite them with some modifications. In Chapter II,
t.

we shall determine the ring structures of RO(F4) and R(Fi). Let 5o be the set of

all elements of S with zero trace and let &4 be the Lie algebra of F4. Then So

and & are .F4-R-modtiles in the natural way. The results are follows : RO(F4) is
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a polynomial ring Z[Ri, R2, R3, rc] with 4 variables Ri, R2, 23, rc, where 2i is the

class of the exterior F4-R-module ni(5e) in RO(F4) for i-- 1, 2, 3, and rc is the

class of &4 in lll?O(F4). R(F4) is also a polynomial ring Z[R9, 2S, Rg, mC], where

Rf), RS, Rg, KC are the complexification of 2i, R2, 13, rc respectively. In the final

section, we consider the relationship between R(F4) and R(Spin(9)), R(Spin(8)).

                              CHApTER I

                          !. Jordan algebra 5
                                                               1)
   Let E be the division ring of Cayley numbers. E is an 8-dimensional R-module

with a base eo,･･･, e7 and the multiplications among them are given as follows;

            eo is the unit of E (which is often denoted by 1)

            ei2 :== -ee for i#O,
            eiej=-ejei for i, j'40, i41'
and

             el

e2

e4

e7

(for example ele2 = e3, e2es = e7, e2e4 =:= -e6).

                      , e6e3
            es

                                               7
   The conjugation it of uEE is defined by a:=eeue+=eiui

                                              i=1ER) and the real part Reu of u by -iY(u + tz). We define the

of tt=Zeizti, v===eivi (ui, viER) by=uivi and the length

     i--o i.-=o i--o
== Vuit.

   We describe here some formulae in E used in later.

   1. Ll For tt, 'v, a, bEii g, we have

      va-   (1) "== u, ttv =r. trit,

   (2) Re(uv) == Re(vu), Re(t{(vzv)) == Re((uv)w),

   (3) 2(u, v) =:: u･v -l- vit := av+Vte, lttl2= uti := u-u,

   (4) it(bu) + b(au) =: 2(a, b)zf,

   (5) a(tzte) =L- (atz)et, a(ted) = (au)di, u(ake) = (ua)tz,

       a(aza) L- (aa)u, a(zta) =: (au)a, u(aa) == (ua)a,

       7
= eozto -Xeiui

       i-1
inner product

 of zt by [z{l=

(uo,

 (u,

V(u,

ui

v
)

u)

1) R is the field of real numbers.



              Exceptional Lie Group li14 and its Representation Rings 37

   (6) (au)v + u(va) = a(uv) + (uv)a.

   Let 5 denote the space of 3-hermitian matrix X over E

                gl U3 za2

            X= it3 62 u,, 6iER, ui (!E ig.

                u2 nl 63

Such X is often denoted by .X<8, u). We define the Jordan product in 5 by

            XoY = t(XY + YX)

where the product XY is the usual matrix product, Then 5 is a non-associative

commutative 27-dimensional R-algebra.

   We shall adopt the following notations;

            .,.,(,i g, g,), .,..(g g, g), .,..(g, g, i),

                         E == E, -F E, + E3,

            "i-(g, .8 i)･ Fg-(Sig)･ Fg-(2gi)

Then Ei, Fi" for i-- 1, 2, 3, uEor generate S additively and we have

             EioEi = Ei, EioEj = O for i7<L            Ix;,7.F.i",.:.,1･.2//:,e.i`],"j,".,iO.},3.ft".,,,,

for i, 1'--1, 2, 3 and suthxes are mddulo 3.

   In 3, we define the trace, the inner product and triple inner product by

            tr(X) = ei + 62 + G3,

            (X; Y) = tr(Xo Y),
                     2)            tr(X] Y, Z)-(XoY, Z)

respectively for X=i¥(e, za), Y, ZGS.

   1.2 Lemma. (XY, A) ==(YA, X) forX Y, Ae3.
   Proof. Let X==(xij), }'"=r(yij), A==(ai,･), Then (XY, A) =Re(XY, A)=-li-Re(tr

2) The notation tr(X, Y, Z,) is differ from that

 avoid here the notation (X, IY; Z) because this

 Freudenthal's papers (for example, Zur ebenen

of [1] where (X, Z Z) is

is used in another sense in

Oktavengeometrie, Indag.

used for this. We

almost every H.

Math. 15, 1953).
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(rm.(XT;iY.R)

e(,",(A/liSlllllY)]l)l).=tlR.e),:s･)],liill]),:.,(IXi;tl/ki)Kl';.-'aik(xktJyti)))==rl}rRe(,l,Iii:),,,((ykiaii)xik+xki(yt,ai,)))

  1.3 Lemma. For X, X', Y, ZeS, we have

  (1) (X, Y)=(Y, X),
  (2) (X+ Xt, Y) - (X, Y) -i- (X,, Y), (X6, Y) - 6(X, Y) for gE R,

  (3) (X, E)-=tr(X),

  (4) ( , )is regular, i.e. if (X, Y)=O.fbr all YE3, then we have X== O.

  1.4 Lemma. For X, X', Y, ZE3, we have
  (1) tr(X, Y, Z)==tr(Y, Z, X)=tr(Z, X, Y)-tr(X, Z, Y):=:tr(Z, Y, X)

    == tr(Y, Z, X),
  (2) tr(X -i- X', Y, Z) =- tr(X, Y, Z) + tr(X', Y, Z),

    tr(X}, Y, Z) == gtr( X, Y, Z) for eE R,

  (3) tr(X, Y, E) -= (X, Y).

  proof. (1) tr(x, y, z) = (xo y, z)= -l}-(xy+ yx, z) - nl}- ((x Y, Z) + (YX, Z)) =

-;((YZ, X)+(ZY, X)) -=(YoZ, X) -tr(Y, Z, X). (2), (3) are easily seen.

               2. Definition of group F4
  2. 1 Definition. Let F4 denote the group of all automorphisms of 3, that is,

each x E F4 satisfies

  (1) x(X+ Y) = xX + xY, x(de) - (xX)8

  (2) x is non-singular

  (3) x(Xo Y) == xXoxY

for X) YE 5, g Eii R.

  Let F4 denote the group of R-homomorphismsx:3->3 under which (X, Y)

and tr(X, Y, Z) are invariant, that is, each xEF4 satisfies besides 2.1 (1),

  (4) (xX, xY)===(X, Y)
                      for X, Y, ZE5.  (5) tr(xX] xY, xZ)-tr(X, Y, Z)

  2.2 Lemma. ]F"3 is a subgrouP of L: F4 cr F4.

  Proof, lf xEiiF;, X, Ye5, then (x(XoY), xZ)==(XoY, Z) :tr(X] Y, Z)=tr

(xX; xY, xZ)== (xXoxY, xZ)forallZE3, This implies x(XoY)= xXoxY, that is

xe F4.

  2.3 Lemma. (1) xE ==Efor xEF4. (2) tr(xX) =tr(X) for xEF4, XEii 3.

  Proof. (1) We have EoX== X for any XE!E 3. 0perating x on EoX= X] then

xEoxX=xX. Here put X=: x-iE, then xEoE== E. This implies xE=E. (2) tr

(xX) ==: (xX, E) =- (xX) xE) :T- (X, E)= tr(X).

  2.4 Lemma. Fk is the subgrouP of F4 consisting of all xEF4 under which

the trace of every Xe 5 is invariant.
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   Proof. If the trace of every XES is invariant under xEF4, then (xX) xY)

=: tr(xXoxY)=tr(x(XoY))=tr(XbY)=(X Y) and tr(xX] xY, xZ)= (xXoxY, xZ)=

(x(XbY), xZ)=(XbY, Z)==tr(X] Y, Z). Hence xGF4. The converse follows

from Lemrnas 2.2, 2.3 (2).

   We shall see that'F4 == Fk in Theorem 4.2, in particular, that the trace of

every Xe5 is invariant under xE F4, "

                     3. Deformation to diagomal forit}

   3.1 Lemma. F3 is a comPact grouP.
                                        3
   Proof. Since the inner product (X) Y) == X(eirpi + 2(ui, vi)) is invariant under

                                       i--1
each element of F4, where X== X(e, u), Y= Y(n, v) E 3, Fa isa closed subgroup

of the orthogonal group O(27) which is compact. Therefore F4 is compact,

   3. 2 Lernma. For a E E (a # O), dq17ne an R-homomorPhi,snz x : 5 -> 3 by xX

(e, u)=Y(v, v), where

             771 = 61,
             rp2 ==(a'taff')sin2 lal + g2 E 8-3･ cos2 lal +e2 i g3,

             v3 ==: -(a'laff') sin 2 [al -g2 E e3 cos2 [al + 62 ll; g3,

                                   2(a, ut)a                    (62 - e3)a
                           sin 2 la[ - lai 2                                          sin2 lal ,             vi == Uim 2 Ial

             V2 = U2 cos Ial - faU]B sin [al ,

             v3 = us cos lal + eege sin la] ,

then we have xE F4.

   Proof. We shall show first that x(XoX) = xXbxX by the direct computation.

                   e,2 +lu,I2+[u,i2 (ei + e2)U3 + uiU2 ce

            x.x,,. es g,2 +[u, 12+ [u, l2 (e, + g3)Ui + U2za3 ･

                   (63+&)U2+zaaui ee ' es2+luij2+iu212

The (1, 1)-component of xX6xX= rpi2 +1v212+]v312 = ei2 + lu2 cos ial - faUt3 sin [al l2

+ iu3 cos lai + tzf sin ]a] I2 == ei2+lu212+iu3I2= the (1, 1)-component of x(XbX). The

                                             1(2, 2) - component of xX6 xX == rp 22 + I v3 1 2+ I vi l 2 =: ･ ･ ･ = iaJ (a, (e2 + g3)ui + it'2'iiT3)sin2 la]

+-
l}-(e22 - e32 +Iu312-lu2I2)cos2 ]al +-l}-(e22 + 632 + 21ui12 +lu212 + [u312) = -･･ = the

(2, 2)-component of x(XbX). About the (3, 3)-component, the computation is similar
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to the (2, 2)-component. The (2, 3)-component of x(XoX) = (e2 + g3)ui + u2us --ll'

              '(e22 - 632 +1u312- 1 z{212)--IZI--sin2 ial - (a, (e2 + e3)ui + u2u3)･ ?aal 2sin2 lal = ･･･ (we shall

use the formula 2a(a, u2u3) =: a(u2u3)a {- u2u31al2 (cf. 1.1 (3))) ･･･ = (v2+v3)Vi+ V2V3 :=-

the (2,3)-component of xX6xX. The (3,1)-component of x(XoX) == ･･･(we shall use

de(UiU2) + tii(aU2) = 2(a, ui)u2 (cf. 1.1(4)))･･･ = the (3,1)-component of xXoxX. The

(1, 2)-com-ponent is similar to the (3, 1)-component. Thus we have x(XoX) = xXbxX

for any XEii £Y. By the polarization X->X+ Y, we have

           x(.XbY) == xXbxY for X] }iES,

}lence x ff F4. Finally, it is easily seen that tr(xX) = rpi + v2 + v3 = ei + 62 + g3 ==

tr(X). Therefore, by Lemma 2.4, we have xE Fk.

   3.3 Theoreilt. [1], For Xh E!i 5, there exi,sts xEFa such that xXb is of a

diagonal form.

   Proof. For a fixed Xh E 3, eeo ::= {xXh 1xE F4} is a compact subset in S. Let

Xl be an element in eeo which attains the maximum value of eiZ+g22+632 for

X== X(g, zt)Eeeo, then we shall show that Xi is diagonal. Assume that Xi ==

Xi(e, it) is not diagonal, for example, ui 7L O. Put a(t)== ltU til t for t en R(t 7L O) and

construst an element x(t)EFa as in Lemma 3,2. Then the value of oi2(t)+rp22(t)

-i- rp32(t) in x(t)& is ei2 + 2("-(-1(.-)-/rt-)IUi)2sin2 2 Ia(t)l + 2 (g2 iEi e3)2cos22 la(tx + 2(g2 :} es)2+

4(a(t), ui)(e2 - 63)
     ta(t)1 sin2 1a(t)l cos2 1a(t)1

           (e2 + e3)2     :=: ei2+- 2 -- +2( t lu,1 sin2 ltl +e2 I5 g3cos2 ltD2

     ;:{. e,2 + (e2 +2 eB)"2. + 2(1 zt,12 + (e2 E e3)2)

     =':='- ei2 + e22 + 832 + 2luiI2 (its mximum value).

This contradicts to the fact that gl + e3 + eg in Xi attains the maximum value.

                    4. Cayley projective plane orP2

   4.1 Proposition. [1]. For XEiiS, the followingfive statements are equivalent.

   (1) XIO ana X is an irreducible idemPotent, i,e. X6X== X and X== Xl + Xla,

X}oXl -: X,, .X} e5 (i = 1, 2) imPly Xl :- O or Xh = O,

   (2) XbX =r- X and tr(X) = 1.

   (3) tr(X) == (X) X) =:: tr(X) X) X) -= 1.

   (4) X== xEi for some xE.F'4 and for some il == 1, 2, 3.

   (5) X== xEi for some xEF4.

                                                        3
   Proof. (1)-->(2). ForX there existsxeFacF4 such that xX=XEi8i. The
                                                       i-1
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idempotency of X induces that of xXl so that we have 6i2 == gi, hence ei un- O or 1

fori=1, 2, 3. We see that the only one ei of them is1 and the others are O.

In fact, if not, xX is reducible. Since the reducibility is invariant under x E! F4

X is reducibie. This contradicts to the hypothesis of Xl Now, by Lemma 2, 3 (2),

tr(X) = tr(xX) := tr(Ei) = 1. (2)-->(3) is obvious. (3)->(4). For X] there exists x Ei F{

                               3.such that xX is of a diagonal from XEi8i. The condition (3) means 6i + e2 + E3==

                               i, =1
g? +eij + eg = g? +e: + 6g ::= 1. Hence we have the only one ei -- 1 and the others

are O, i.e. xX =Ei for some i. Therefore X==xHiEi where x-iGF4. (4)- (5). It

suflices to show that E2 (and E3) can be deformed to Ei by some aEF`. For

the matrix A= E3 + FgO, we have AE2A = Ei. Since A is a real matrix, a: X

-ptAXA for XE5 (AA==E and associativity!!) is an element of F4 and we

have aE2 = Ei. (5)->(1). We shall show first that Ei is an irreducible idempotent.

Assume Ei == Xi + Xh, .IL･oXL･ =:: Xl･, .¥} G3 (i =: 1, 2). Then Xl + JYh = Ei == EioEi

::[: Xl+Xh+2XloXh, hence XloX2=O. Multiply Xl on Ei == Xl+Xh, then we

have EioXl =:= Xl. This shows that Xi is of the form Ei8i+E2e2+E3g3+Fi"i,

From Ei == Xl + Xb, we have Xb = Eirpi - E282 - E3e3 -Fi"i where ei + rpi == 1.

Since XloXli = Ei&vi - E2(622 +1uil2) - E3(632 +1ui12), XloXh =O implies that 62 =

63 =zti =:: O and 6i -- O or ryi == O, Thus we have Xi == O or Xh == O. Now, since the

irreducibility and idempotency are invariant under xEF4, we see that xEi is

an irreducible idempotent in S.

   Let agP2 denote the space of XEi 5 satisfying one of the five conditions of

Proposition 4.1. Then we remember that SP2 is the projective plane over ig [1],

[5].

   4.2 Theorem. F4 =F4, that is, the trace of every XEi 5 is invariant under

each x E F4.

   Proof. Note that the trace of an element of the form 2Ei (2EIF" i= 1, 2, 3)

is 1 by (4)-->(2) of Proposition 4.1. Now, let sceF4 and XES. For this X] choose

                                       3
yEF4 such that yX is of a diagonal form i.Iiil=iEig'i=Xi. Then we have xX==

                                3 33xN-!Xi := 2Xl (wheye z == xy"e jF'4) =: X(2Ei)gi, whence tr(xX) ==Xtr(zEi)ei ==6i =

                               i:-1 i=1 i-H.:1
tr(Xl) =: tr(yX) == tr(X).

                5. Principle of triality in SO(8) and Spin(8)

   For the results of this section, we refer to [1], [3], however we rewrite

them with proofs.

   Let SO(8) denote the rotation group in E. Let bi be the Lie algebra of SO(8),

that is, the R-module consisting of R-homomorphisms D : E->or such that
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             (Du, v)+(u, Dv) =::O for u, v(iiE E.

   5.1 Proposition. [1] (Principle of infinitesimal triality in b4)

Ror every Di E b4, there exist D2, D3 EE b4 such that

             (Dtu)v+u(D2v) == D3(tz-v) for u, vEg,

and for Di, such D2, D3 are unique.

    5.2 Proposition [1]. (Principle of triality in SO(8))

For every ai E SO(8), there exist d2, d3 E SO(8) such that

            (ditt)(d2v)=d3(llrti) fbr u, vEig,

and for di, such d2, d3 are unique uP to the sign.

   Proof. As is welt known, for di E SO(8), there exists Di E b4 such that di =

expDi'=Z9il'Z .By Proposition 5. 1, there are D2, D3 E b4 such that (Diu)v-Yu(D2v)

       nlO '
== D3(uv) for u, v G E. Put d2 = expD2 and d3 = expD3, then ds(u'v) == expD3(liTdi) ==

tl.,D3h'(!"") =: .g.,,.li.ll-rm.(Di'!'")(t9,?jV) = (i,{iil.m,9.l/'") (,X. ]=,Di･2!jV) -- (expDi)u(expD2)v := (diu)(d2v).

To prove the uniqueness, it is suffiM
cient to show that for di:=e we have d2=:±e,

ds = t e (where e is the identity of SO(8)). Assume that u(d2v) = d3(litlv) for u, vEg.

Put u ==: 1, then d2v=d3b for all vEg. Therefore u(d2v) == d2(uv). Put v=1 and

denote d21=c, then uc := d2u. This implies u(vc) =:: (uv)c for u, vES. From this

associativity we have ce R, whence c == ±1. Therefore d2u -- ---zt for all uG ag.

Thus, for di = e, only two cases d2 = d3 == e and d2 == d3 == -e occur.

    5.3 Lemma. [3]. Let O(8) be the orthogonal grouP in g. Assume that fbr di,

d,, d, EEi O(8)

             (diu)(d2v)=d3(itzi) .fbr all u, vEor,

then we have

             (d,z{)(d,v) == d,(uv)
                                  for all u, vEg.
             (d,u)(d,v) == d,(ifv)

   Proof. Multiply dpt on the left side and d3(TJ) on the right side of the given

formula, then we have 1u12(d2v)(d3(mo)) =diuluv12, hence (d2v)(ds(iiQ)) =:diulvl2.

Replace a by vw, then (d2v)(d3(lvl2w)) [== di(ljTv)lvl2, hence we have (d2v)(d3w) =di(MvJ)

    5.4 Leffima. [3]. Assume that for di, d2, d3 ffii O(8),

             (diu)(d2v) = d3(u',) for all u, ve or,

then we have di, d2, d3 e SO(8),

    Proof. If di(fSO(8), then there exists ai E SO(8) such that aidiu= tz for uEE,

Using the triality, for this ai, there exist a2, a3 G SO(8) such that (aidiu)(a2d2v) =
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a3((diu)(d2v)) == asd3(uv). Denote a2d2 =:: b2, a3d3 = b3, then tz(b2v) = b3(uv). Put u == 1,

then b2v = b3D. Thus we have di(b2v) = b2(uv). Put v == 1 and b21 == c. then ac = b2u,

hence di(Vc) = (ZiTv)c. Put v ::= c, abbc == bdic, hence the =:: et-t for all uEE. hence cER.

Therefore tlv- =iiTv for all u, ve g. This is a contradiction. Hence we have di

E SO(8). d2, d3 E SO(8) follows from Lemma 5,3 and the above.

   Let Si denote the space of Fi" where uEE for i=1, 2, 3. Si js an 8-

dimensional R-module and XE 5i is characterized by

5.5 2Ei.ioX=X] 2Ei+2oX=Xl

And we have

5.6 2XoY=::(E-E,)(X, Y) for X, YE3i.

   Let Spin(8) be the subgroup of F4 consisting of x such that xEi un- Ei for iun-

1, 2, 3. Moreover it is convenient to define the following group spin(8): spin(8)

is the subgroup of SO(8) × SO(8) × SO(8) which consists of (di, d2, d3) such that

(diu)(d2v) = d3(IIzi) for u, v G ig.

   5.7 Propositon. [3]. spin(8) and Spin(8) are isomorPhic as .oroztP by the cor-

respondence (di, d2, d3)->d;

               61 u3 u2

5.8 dza-a g2 ui=
               u2 uni e3

   Proof. Let d E Spin(8),

= (X; Y) for i= 1, 2, 3 by

rphism di in 5i such that

(diu)(d2v) =: d3(uv) for u, v E ny.

tl) E spin(8).

   In the sequel, we sha!1

   Spin(8) has a sequence of

where Spin(7) is th

(aza)(hv) =a(uv) for u, vEE.

a). G2 is the group of

sting of a such that (au)(av) ==

consisting of a such that aei =:

   5.9 Propesition. Spin(8) is

   Proof. We identify Si

spin(8) operates on S7 by (di,

            then

            5. 5,

            dF

            identify

              subgroups

Spin(8) D Spin(7) ) G

   e subgroup of SO(8)

            (The

       automorphisms

              a(uv)

           with

              d2,

 ei d3zt3 d2u2

d3u3 e2 dlul.

d2u2 dlul g3

  for X] YE5i, we have dXGSi and (dX) dY)

  5.6, hence d induces an orthogonal R-homomo-

i" = Fidi" for i = 1, 2, 3. 2Fi"oF2" = F3"V implies

By Lemma 5.4 dt, d2, d3 E SO(8), that is, (di, d2,

     spin(8) and Spin(8) by the correspondence 5. 8.

  2 D SU(3)

     consisting of b such that for some aeSO(7),

  projection P : Spin(7)-)pSO(7) is defined by P(a) ==

      in E, that is, the subgroup of SO(7) consi-

    for u, vGg. SU(3) is the subgroup of G2

el,

a simPly connected covering grouP of SO(8).

 g by Ff ->u and let S7 be the unit sphere in ig.

   d3)u == diu. This operation is transitive by the
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principle of triality and its isotropy group of eo is Spin(7). Thus we have spin(8)

/Spin(7) =S7. The fiberings G2/SU(3) = S6, Spin(7)/G2 == S7, spin(8)/Spin(7) ==S7

yield the connectivity of spin(8). Now, define P : spin(8)->SO(8) by P(dt, d2, d3) ==

di, then P is an epimorphism and its kernel is (e, e, e), (e, -e, -e) by the

principle of triality. Hence P:spin(8) ->SO(8) is a twofold covering of SO(8).

                  6. Spin(9) and construction lemma
   Let Soi denote the subspace of ge consisting of X such that EioX==O and

tr(X) =:= O. Such Xis of the form (E2-E3)8+Fi" for eER, uEEii ag. Hence Sei

is a 9-dimensional R-module, and (X, X')= 2(8g'+(u, u')) and XoX' =(E2+E3)

(X] X') for X, X'G5oi.

   Let 323 denote the subspace of 5 consisting of Y such that 2EioY == Y. Such

Y is of the forrn F2" + F3V for u, vE g. Hence S23 isa 16-dimensional R-module

and (Y, Y')== 2((zt, u')+(v, v')) for Y, Y' ES23.

   Let SO(9) denote the rotation group in 3oi, i.e. ec E SO(9) is an R-homomor-

phism of Sei such that (crX, evY)=(X, Y) for X, YESoi. Let Spin(9) be the

subgroup of F4 consisting of x such that xEi := Ei.

   The following lemma is sometimes convenient to construct an element of

Spin(9) satisfying the given conditions.

   6.1 Leinma. (constrtiction lemma)

For any given element A E Sei such that (A, A) = 2,

choose any element Xb E Set such that (A, Xb) ::] O, (Xb, Xb) == 2,

choose any element Yo GS23 such that 2AoYe == -Yo, (Yo, Yo)= 2

and Put Zo == 2XboYo.

Aiext choose anN XI G goi such that (A, Xi) = (Xb, Xt) == O, (Xi, Xi) == 2,

choose any Xh Ei! 3oi szach that (A, Xli) =r- (Xh, Xb)=(Xi, Xb)=O, (Xli, Xh)= 2

and Put Yt == -2ZooXt, Z2 == -2XlioYe, -Xb == -2YioZ2.

Choose any X4ESoi such that (A, X4) ==(Xb, X4)=:(Xi, X4) =(Xle, X4)==(Xh, XIL) = O,

(X,, X,) =:;2

and Put Z4 =:: -2X4oYb, Y2 :=: -2Zoo&, Ys -- -2ZboXh,

           Xts =r- -2YioZ4, Xh :- 2Y2oZ4, X÷= -2Y3oZ4
and then Put Yi -- -2ZooXi fori= 4, 5, 6, 7,

           Zi -= -2XioYo fori-- 1, 3, 5, 6, '7.

2Vow, let a : 5->5 be the R-honfomorPhism satisflying

           aE -- E, aEi -- Ei, a(E2 - E3) -- A,

           aFiei= Xi, aF2ei rm- Yi, aF3ei -- Zi for i -- O, 1,･･･,7,
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then we have a E F4 (aPriori a E Spin(9)).

   The proof is not trivial, we don't however give the proof, because its calcu-

lation may be independent from the consideration of the present paper. It will

appear in a forthcoming paper [7].

   6.2 Proposition. Spin(9) is a simPly connected covering gro"P of SO(9).

   Proof. Let aESpin(9) and XEi 3oi. Operate a on EioX::=O and tr(X) := O,

then EioaX =O and tr(aX) == O, hence aXG Set. And (E - Ei)(aX, aX') == aXbaX'

= a((E - Ei)(X, X')) L- (E - Ei)(Xl X' ), hence we have (aX) aX') =:: (X) X' ). Thus

a induces an orthogonal R-homomorphism ev in 5oi, Let S8 be the unit sphere

in 3ot, that is S8={XE'Soil(X] X)=2}. Spiia(9) operates on S8 transitively;

this transitivity follows from the construction lemma 6.1. We show that its

isotropy group G=={a E Spin(9)la(E2 - E3) = E2 - E3} is Spin(8). For, since always

a(E2 + E3) == E2 + E3 for aG Spin(9), we have aEi = Ei (i -- 1, 2, 3) for any aE G.

Therefore G = Spin(8). Thus we have Spin(9)/Spin(8) = S8, and this impiies that

Spin(9) is simply connected. Define the projection P : Spin(9)-->SO(9) by P(a) == cr,

then P isa homomorphism and its kernel is (e, e, e) and (e, -e, -e). In fact,

let aESpin(9) satisfy aX=X for all XESoi, First we shall see aciiSpin(8).

Denote a by (ai, a2, a3)Espin(8). Since I7i"G5oi we have aFi"== Fi". Hence,

operating aon 2Fi"oF2W =-= Fs"V. then we have tt(a2v) = a3(uv). By the principle of

triality, we have a=:= (e, e, e) or (e, -e, -e). Hence P:Spin(9)->･SO(9) is the

twofold covering o'f SO(9).

   6.3 Remark. Let Si5 be the unit sphere in 523, that is Si5={YE rv231(Y, Y)

=2}. Spin(9) operates on Si5 transitively. The proof of the transitivity is as

follows. Give a fixed element F2eo and any element Yo E S23. Choose any AeSoi

such that 2Ao Ye = - Yo, (A, A) =2 and then take Xi, Yi, Zi for i= O, 1, ･･-,7

and construct aESpin(9) as well as in Lemma 6.1. Then aF2"o= Yo for this a.

Next it is e'asily verified that its isotropy group {aESpin(9)iaF2eo=F2eo} is Spin(7).

Thus we have the well known fact

            Spin(9)/Spin(7) = Si5.

   F4 operates. on the Cayley projective plane GP2 transitively by Proposition

4.1 (5) and its isotropy group of ffi i$ Spin(9), Thus we have

            F4/Spin(9) :L- agP2.

Therefore, we have the following

   6.4 Theorem, F4 t's a 52-dimensional simPly connected comPact group,

   6.5 Remark. F4 has 3 subgroups of type Spin(9); Spin(O(9)=:=Spin(9), Spin(2)(9)

and Spin(3)(9), where Spin(i)(9) == {a E F41aEi '#= Ei}, And we have

            Spin(8) =7- Spin(i)(9) f) Spin(2)(9) n Spin(3)(9).
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                  7. Maximal torus T and Weyl group JV

   7.1 Definition. Let G be a (connected) topological group. A subgroup T of

G is a maximal torus in G provided T is a torus with G = VxTx-i.
                                                    xEG
   It is easy to see that maximal tori are conjugate to each other in G. The

dimension of a maximal torus T is called the rank of G.

   7.2 Theorem, The rank of F4 is 4,

   Proof, Let x e F4. Since the Cayley projective plane EP2 is a homogeneous

space F4/Spin(9), x induces a homeomorphism f" of EP2 in the natural way (X-->

xX] XE EP2). Hence fX induces an isomorphism fti : Hi(agP2) ->h Hi(orP2) for all
i>--O, We shall caiculate the Lefschetz number L(f:･)=M.,(-1)'tr(fllii). For this,

we recall that EP2 is a CUPi-complex with O, 8, 16-dimensional cells [5], so that

its homology groups are Hb(orP2) = Hts(gP2) : Hi6(agP2) = Z and Hi(agP2)=O other-

wise. Hence we have L(fl) == tr(f,X,o) + tr(rcs) + tr(f*Xt6) = Ee + es + ei6 (where ei is

-1 or 1)4O. Therefore, by the fixed point theorem, there exists a po.int YE

gP2 such thatxY=Y, For this Y, we can find yem F4 such that Y=yEi by

Proposition 4.1 (5). xyEi == yEi, so y-ixyEi :=: Ei and so that y'ixy GSpin(9). As

is well known, the rank of Spin(9) is 4. Hence for a maximal torus T(dim T== 4)

in Spin(9), there exists z E Spin(9) such that 2"`<y-'xy)z E T, so that x (!(yz)T(yz)-i

where yz EI'4. Hence we have F4 =-VyTN-', Thus the proof is compieted.
                                yeA
   We shall choose a maximal torus in Spin(8) ='n spin(8) as follows. Define a

homomorphism t : R` =-- R × R × R × R -> spin(8) (t(0) =7- (ti(e), t2(0), tB(0)) where 0 =

(ei, e2, 03, 0{) is denoted by t == (ti, t2,, t3) briefiy) by

              tleo =:= eocosOl + elsinOl, tlel = -eesinel + elcosOl,

              tle2 = e2cosO2 + e3slne2, tle3 := -e2slnO2 + e3cosO2,
7. 3
              tie4 == e4cosO3 + essine3, tles == -e4sinO3 + escosO3,

              tle6 == e6cose4 + e7slne4, tle7 =:: -e6slne4 + e7cosO4,

7,4

t2eo == eocos(-0i + e2 t･- e3 -i- 04)/2 + eisin(-ei + 02 + 03 + 04)/2,

   t2ei :='=T -eoSin(-0i + 02 + 03 {- 04)/2 + eiCOS(-0i + 02 + 03 + 04)/2

t2e2 :-T e2cos(--et + e2. - e13 -- e4)/2 + eBsin<-oi + e2 -- es - e4)/2,

   t2e3 =-=:-- --e2Sill(-0i + 02 --- e3 - e4)/2 -l- e3cos(-ei + e2 - C73 - e4)/2

t2e4 = e4COS(-ei - 02 + 03 - e4)/2 + esSill(-0i - e2 + 03 - 04)/2

   t2es i=] -e{sin(-0i - e2 + 03 - 04)/2 + escos(-0i - t72 + 03 - 04)/2

t2e6 = e6COS(-0i - e2 - 03 -F 04)/2 + e7Sin(-ei - 02 - 03 + 0t)/2

   t2e7 = -e6Sill(-0i - 02 - e3 + 04)/2 + e7COS(-ei - 02 - 0B + 04)/2

tBeo == eocos(-el - e2 - 03 - 04)/2 + eisin(-ei - 02 - 03 - 04)/2

   t3et =-T -eosin(-01 - 02 --- a3 - 0 )/2 {- etcos(-01 - 02 - e3 - ee)/2

t:ie2 = e2COS(0i + 02 - 03 - 0e)/2 -{- e3Sill(0i -l- e2 -- 03 - ei)/2
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                 t3e3 = -e2Sin(0i + 02 - 03 - 04)/2 + e3COS(0i + 02 - 03 - 04)/2
7.5
              t3e4 == e4COS(0i - e2 + 03 - 04)/2 + esSin(0i - 02 + 03 - 04)/2

                 t3es :== -e4sin(0i - 02 + t73 - (74)/2 + escos(0i - e2 + e3 - 04)/2

              t3e6 == e6COS(ei - 02 - 03 + e4)/2 + e7Sin(0i - 02 - 03 + 04)/2

                 t3e7 = -e6Sin(0i - 02 + 03 + 04)/2 + e7COS(0i - 02 - 03 + 04)/2.

Then we can verify that

            (titt)(t2v) =- t3(tinv') ' for t{, vEE.

Hence the image t(R`) =･=- T is a maximal torus in Spin(8) (also in F4).

   7.6 DefiRition. Let G be a topological group with a maximal torus T. The

Weyl group VV(G) of G is NT(G)/T, where IVT(G) is the normalizer of T in G.

   7.7 Lemma. 11f' xdiNT(F4), then xEi=Eii, xE2=Ei2, xE3 ==Ei3 where (ii,

i2, i3) is a substitt{tion of (1, 2, 3),

   Proof. Let xEIVT(F`), then x'itx (ii TcSpin(8) for all tG T. So that we

                                           3
have x-!txEi == Et, hence t(xEi) = xEi. Put xEi ==(Eig'i+ Fi"i), then t(xEi) = xEt

                                           i=1

shows X(Eigi + Fiti"i) = =(Eigi + Fi"i), therefore tiui == ui, t2u2==u2, t3u3 = zt3 for

      i-1 i--1
all t[=: (ti, t2, t3)E T. By the formulae 7.3-7.4, these imply zti =- u2 == u3=O.

               3
Therefore xEi ===Ei6i. By Proposition 4.1 (1), xEi is an irreducible idempotent

              i-1
in S, hence xEi is Ei, E2 or E3. Similarly xE2 and scE3 are one of Ei, E2, E3

respectively. Obviously xEi, xE2, xE3 are different to each other. Thus the proof

is completed.

   By Lemma 7. 7, each w E AiT(F4)/T induces a substitution among Ei, E2, E3.

Thus we have a homomorphism

            h : VV(F,) -----)> S,

where S3 is the symmetric group of ali permutations of Ei, E2, E3. We shall

show that h is epimorphic. Since g3 is generated by o==(1, 2, 3) and T=:=(2, 3), it

suthces to construct elements x, yEF4 which induce a, r respectively. Define

x [= x(a) by the R-homornorphism of 5 satisfying xEi = Ei+i, xFff wu- F7'+i for tt EEi

g, i= .L, 2, 3. Since x-ttxEi =- Ei, x"!tx17i" =x-itF'f･,i -rm x-iFi,i'i+!" =:: Fi`iu" for

i=1, 2, 3, we have x-t(ti, t2, t3)x=(t2, t3, ti) (cf. Lemma 5.3), so that xesArT

(F4) and x obvious!y induces if, Next, let y =:= y(T) be the R-homomorpliism given

by

            yE, == E, yE, == E, yE, =:: E,
           (;･Xl:1:-Eni7',e, ($i:1:.X,3[i (iF"#ee:.ilF":,ej

           tyFlt"a -- FleL] tyF2e2 .-um -F3e3 YyF3eu, -= F2eu
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            yFle3=Fle3 yF2e3=F3e2 yF3e3 ,= -F2e2
            yFle4 == Fle4 yF2e4 ., -F3es yF3e4=F3es
            yFles == Fles yF2es=.Fse4 yF3es=mF2e4
            yFle6 ,,. Fle6 yF2e6 .. ndF3e7 yF3e6 ,. F2e7

            yFle7=Fle7, NF2e7=F3ee, yF3e7 .. -F2e6,

then y is in Spin(9), because it is easily verified that y satisfies the construction

conditions of Lemina 6. 1, And y induces r obviously.

   The kernel of h is W(Spin(8)) which is the Weyl group of Spin(8). In fact,

suppose h(w) = 1 where w E W(F4), then any representative x ff NT(I;'4) of tv sati-

sfies xEi -- Fi (t' = 1, 2. 3) so that we have x Ei Spin(8) (apriori, x (ii NT(Spin(8))).

Therefore w E VI7(Spin(8)). Thus we have an exact sepuence

            1 ----)i VV(Spin(8)) --> W(F,) ---)- g, ---> 1.

Ancl it splits by a --> x(a), T -> y(r). Thus we have the following

   7.8 Theorem. The VYeyl grouP VV(F4) of I74 is a semidirect Product of S3 and

VV(Spin(8)). That is,

            W<F4) -= g3W(Spin(8)), S3 n VV(Spin(8)) = 1.

   We remember that Vti(Spin(8)) consists of 234! =19' 2 permutations of 4 variables

(Ol, 02, 03, 04) composed with substitutions (0d,, e2, e3, 0a)->(elOl, e202, e3e3, e404)

with Ei = ±1 and ei e2 E3 s" = 1.

   7.9 Remark Let Z3 denote the subgroup of gs generaetd by a, Then we

have a splitting exact sequence

            1 ----> W(Spin(9)) ----> W(F4) ----> Z3 ---> 1.

   7. 10 Since it is easy to see that x(a)£Yi= £3}i+i for i -- 1, 2, 3 and y(T)3ii=£Yi,

y(T)£Y2 == £Y3, y(T)£Y3 == S2 by 5.5, any element of g3 induces a substitution among

5,, $,, 5,.

                           8. Lie algebra Eifi

   Let Mt denote the space of 3-matrices over ag and MZ- denote the space of
                                                                  3)3-skew-hermitian matrices over E (skew-hermitian matrix X is meant by X* =･

- X), We extend the inner product of S to Mt by

            (x, y) == etr(xy + y*x*).

   8,1 Lemma. (XY, A) =: (YA, X) for X, Y, A ff EM.

   The proof is the same as Lemma 1.2.

   We define the bracket product by

           tt . tt..3
)

X* is tX,
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        [A, Xl -= AX-XA for A, XG swZ,
I'f AE EMm, XEi 5, then [A, X] is often denoted by "AVX. Obviously we have

  8. 2 Lemma. [EIJI-, £Y] c :", [$, £lj] c swV.
  8. 3 Lemma. [1]. For XG S, 'there exists a Pure imaginary Cayley number zt

sttch that

        [X, XX] =: Ez{,

  Proof. Let X:;- (uij) where zMe,･i :-:=--i{i,･ and vi,･ be the (i,1')-component of [X,

            3XX], namely vi,･ ==i = (xik(xkixij) - (xikxki)xtj). Note that the parenthesis contain-

           le, l=1
ing a ti,, (with double suffixes) is zero. If i X i, using 1.1 (5) we have vi,･ =O. For

the case i-- i, vii == v22=v33 by 111 (6). Thus we have [X, XX] := Ea for some

u E ig. Since X, XX E 5, we have [X, XX] ur swZ-, hence ti == -u, whence Reu

== o.

  8.4 Lemma. (1) For A, X, YEswt, we have

        ([A, X], Y) + (X, [A, Y]) -: O.

  (2) For A E swt such that tr(A) == O, we have

        tr([A, X], Y, Z)+tr(X, [A, Y], Z)+tr(X, Y, [A; Z]) ==O

for X, Y, ZE,3.

  Proof. (1) is obvious by Lemma 8.1. (2) (A, [X, XX])=(A, Ez{) (where zMt =
-u) =:= -h-tr(Att + tZA") :- -i}-tr(Au + uA) -- O. Hence (A, X(XX')) =-=, (A, (XX)X). Thus

(AX, XX) == (XA, XX) by Lemma 8.1. 'Hence([A, X],XX]) =- O. By the polariza-

tion X->X+Y+Z, ([A, X], YZ+ZY)+([A, Y], .XZ÷ZX)+([A, ZJ, XY+
YX) = O. This means (2).

  8. 5 Definition. Let & denote the set of R-hornomorphisms g : S->5 such that

        ip(XoY) =:: gXoY -I- XegY.

  Let F4 denote the set of R-homomorphisms rp:S->$ satisfying

         (gX, Y) + (X, gY) -= O,        (
         tr(goX, Y, Z)+tr(X, sDY, Z)+tr(X, }i, goZ)=O,

ew4 and g4 are Lie R-algebra by the bracket multiplication

        [g, ip]X=g(ipX)-ip(gX) for XE5.

  8.6 Lamma. ewa is a Lie subalgebra of &; &4c&.

  Proof. For gE &a, X, Y, ZE 3, (g Xo Y, Z) ÷ (XogY, Z) =:: tr(g X, Y, Z) -s-

tr(X, gY, Z)=-tr(X, Y, gZ)=-(XoY, opZ)=(g(XoY), Z). Hence we have
goXoY -l- XogoY ==: gD(XoY).
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                                                           N    The lemma 8.4 shows that for AE Mt- such that tr(A) =O, AE &.

    8.7 Remark. We see that &a == &. It will be remained to the readers.

    We shall use the following notations; for a G 5

             Af -=(g･ eo.- O,), As =(2, 2-gM), ., .. (g, a, g,)

Then we have

               -w nw              , A.,aEi =o, Ai"Fi" ==: (Ei.i-Ei,2)2(a, u),
             (i':."S,`,:;i'.-,ii"',4;."g"t+;.I'E`fa,.,h,,.

    Let S4 denote the Lie subalgebra of & consisting of D such that DEi =O for

i= 1, 2, 3.

    Let D e N4. EioFi" = O, 2EjoFit` == Fi" (i :7!:j) imply EioDF,t` = o, 2EjoDF,t` ==

DFi". Thus we can set DFi" = FiDi". And Fi"o17i" = (Ei+i + Ei.2)(u, v) and 2Fi"o

F,",i = F,-V.fE imply (Dint, v) + (u, Div) = O and (Diza)v + u(Di,iv) == Di+2(uv). Hence

we have
    8.8 Proposition. b4 and D4 are isomorPhic as Lie algebra by the corresPondence

Di E! b4->D Eii S4 ;

               el u3 di2 O D3z{3 D2u2

             Dab3 62 ul == D3u3 o Dlul

               u2 al 63 D2u2 Dtul o

where D2, D3 (i! b4 are given by the injinitesimal triality for D,.

    We shail identify b4 and D4 by the above correspondence in iater.

                                CHApTER II

                          9. Representation riRgs
                                                         4)   Let G be a topological group. By a G-K-module (K==R or C) is meant a finite

dimensional right K-module V together with a left action of G. That is for each

x E G, u E V, there should be defined an element xu E V depending continuousiy

x and za so that

g.i V.(X=V).7,i)lf+xv･ gi,u,g-.=(xu)6,

for x, yEG, u, vE V, eGK and e denotes the identity of G.

4) C is the field of complex numbers.
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   Two G-K-modules Vi and V2 are G-K-isomorphic if there exists a G-K-

isomorphism f: Vi-->Vh, that is, f is a K-isomorphism such that flxu) == of<u) for

xEG, en EIi Vl. ･, ,
   Let MK(G) denote the set of G-K-isomorphism classes [V] of G-K-modules

V. [V] will be denoted by V simply.

   The direct sum VieV2, the tensor product Yi(g>V2 of two G-K-modules Vi,

k and the exterior G-K-modules Ai(V) (O :.i! i .:S dimV) for a G-K-module V define

a 2-semiring structure on Mi<(G). That is, A' : MK(G)-)･M]rc(G) for i>=O satisfy

9"? ･'' (::[VieM'v"i,)'=,.g=EAiA(;`waJ'Yv'2)).

In particular, we have

   9.3 Lemma. Let Vi, ･･-･･･,V), be 1-dimensional G-K-modules. 77zen Ak(VtO･･･

eZt) a7e,d.,<..(Il<l)ik Vi,op･･･ <E9Vife are G-K-isomorphic.

   The representation ring RK(G) == (RK(G), ipG) is the universal 1-ring associated

with the R-semiring MK(G). The A-ring RK(G) is meant a commutative ring with

the unit 1 and functions Ri : RK(G)->･RK(G) for i -2}i O satisfying the foliowing prope-

rties

g.4 (10,[:),/rmB')iL ･x h,(.:S/<p))li= ev'

                      i+i--k

             .t
The universality is as follows : ¢c : MK(G)->RK(G) is a R-semiring homomorphism

and for any R-ring A and any semiring homomorphism g : Mic(G)->A, there exists

a unique 2-ring hornomorphism ip : RK(G)->A such that g ::= ipipG.

   MK(G) has one rnore operation so called conjugation : for each G-K-module V,

                                   AAthere corresponds the dual G-K-module V (V is HomK(V, K) as K-module and

group action is (xto)u=ca(x'-'tt) for xEG, a)EHomK(V, K), uE V). If VV is a
1-dimensional G-K-module, then we have W(2])fi' == K, so that 1fi is often denoted

by W-i.

   Let H and G be topological groups and h : H->G be a continuous homomor-

phism. Then to every G-K-module V, there corresponds an H-K-module h#(V)

by the rule of group action

                          '                  '                                                    '
     .., ptu.i.f, h(y)u ., ,,, foryEii,l"., zaEV. . ,, .

The correspondence V-kg(V) gives 'rise' tdX a 2-ring homomorphism h".:･Rx(C)->

RK(H) sinch that the follqwiAg di'agram is'commutative , , '.･,,, ･, :.,,

                                                                   '                                  ttt tt t t tttttt tt tt/
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                                h#
                         MK(G) optbl"> Mk(H)

                          J{bG h. ,l,g6ll

                         R.(G) --> ]?.(H).

    MR(G), RR(G) are denoted by MO(G), RO(G) and Me(G), Rc(G) are denoted by

M(G), R(G) respectively.

          10. Spin(8)-C-module S: and Spin(9)-C-moules 5& Sgs

    Since for dESpin(8), XESi we have dXE3i by 5.5, each dGSpin(8)
inducesaR-homomorphism of Si. Hence Si is a Spin(8)-R-moduie and S9･ =

SiXRC is a Spin(8)-C-module for i=1, 2, :3.

   Let T be the maximal torus in Spin(8) which is indicated in the section 7

and let 7'2: T-->Spin(8) be the inlcusion.

    10.1 Lemema. in y'2# : M(Spin(8)) -> M(T), we have

                    4
            j2#(SS) - e (Wj e W,-t),
                   J'--1

           jr'2#(EiiS ) :== O WIEi t2 X liV2ei i2 (21> VV,E3 f2 op W4e4t2,

                  sle2e3e4 = -1

           j',#(5S) =- e WIEi/2 op W2E212 op VV3E3i2 <E9 V[Z4e41z
                   eis-oe3e4 =t 1

where Wji/2 is a 1-dimensional T-C-module, VJI)rj-if2 is the daial T-C-neodzele of ViVji12

and Wje is WjE/2QWj612 for 1'=1, 2, 3, 4 (Ej, e=±1).

   Proof. Choose an additive base in SiC as follows;

lo.2 xJ .. ,F:"J-L'-'e2J'-'iV-neni, ftJ =. Fie2j'2"e2J'-iV:ii in £yg,

lo.3 yj .. F:2i-2-e2iL'iV rEI, 9j =FsS2J'"'2'"2J'-i V;[ in sg,

lo.4 zj -- Fg2j-'2"e2j-iV=i, zAJ,=,ITg2j-2+e2j-iV=rl in sg

for j'=1, 2, 3, 4. For t =-` t(0) == (ti(0), t2(0), t3(0)) Eli! T where e == (et, e2, e3, e4)G

R4, then we have

10.5 tXj=Xjexp(･v'=0j), t2j=x",exp(-･v' Irloj)

for 1' -- 1, 2, 3, 4. In fact, tl(e2j.2-e2j-1,vt=E[)=:tle2j.2-tle2j･--IVrl=(e2J･-2COSeJ･

+e2j-isinej) - (-e2jL2sinOj + e2j-icosOj)v'=Li = (e2j-2 - e2j-iVX)(cosOj + ,vtlJril sinOj)

=:= (e2,･-2 - e2,t.iV=i)eXP (VIII'llO,･), and ti(e2,･-2 + e2,-..i ,V'ij) == (e2j-2 + e2i.i ,vifi)exP

(-.v'=ej). Similarly we have by 7.4, 7.5,
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             tYi = Yiexp(tv'=-i( - 0i + 02 + e3 + e4)/2),

                    AA                   tYi = Yiexp (-･v'ny(-0i + 02 + 03 H- 04)/2),

             tY2 = Y2exp(ivX=(-0i + e2 - 03 - 04)/2),

                    AAlo.6 tY2 == Y2exp (-V-1(-ei+e2-03-e,)/2),
             tY3 = Y3exp(iVny(-0i - 02 + 03 - e4)2),

                    AA                   tYB :::: Y3exp (-tV'=(-ei - 02 + 03 - e4)/2),

             tY4 = Y4exp(tN/=(-0i - 02 - e3 + e4)/2),

                    AA                   tY, == Y,exp (-iV=iJ(-0, - e, - 0, + e,)/2),

             tz, = z,exp(ivX" (-ei - o2 - o, - e,)/2),

                    AA                   tZi = ZiexP (-･VX;[ (-0i - 02 - 03 - e4)/2),

             tZ2 =: Z,exp(V=il(0, + e, - 0, - e,)/2),

io.7 t22 := 22 exp (- iv' :'I(oi + e2 - o3 - e4)/2),

             tZ3 := Z3exp(tV'=(0i - e2 + 03 -- 04)/2),

                   tAz, = 2,exp (-ivt=i(oi - e2 + e, - e,)/2),

             tZ4 = Z4exp(Vfi(0i - 02 - 03 + 04)/2),
                   t2, = 2,exp (-tv'fi(oi - e, - o, + o4)/2).

These formulae 10.5-10.7 give the proof of the lemma.

   Putting ¢T(VVji12)=a,･i12 for 1'=1, 2, 3, 4, then we have (cf. [2], [4])

           R(T)=Z[ai, ai-i, a2, at2-i, a3 cr3-i, cr4, av4-i, (atia2ex3a4)i12].

Put pf == ¢spincs)(S9), AC- = ipspin(s)(S9), dC+ = ipspin(s)(Big), vS == ipspin(s)(A2(39)) in

R(Spin(8)) and denote a = j2* (vf), b = ]'2" (riC-), c == ti2" (d."), d == j2" (vS) in R(T).

10. 8 Lemma.

a == j2 "(vf)
  4
=X (ctj + cr,--i),

 j--1

b = j,*(idC-) == X] alelt2 a2e2t2 cr3e312 cr4e4t2,

 ete2ese4 == -1

c = j,*(AC.) ..,   = a2el/2 cr2e2t2 a3e3/2 cr4e412,

el,e2eseBe4=i

           d == d2"(Z2(v9)) = J'2"(12 (idCm)) := d2"(Z2(dC.)) = 4 + ]a,ei evjey

                                              itg'
   Proof. The first three formulae are the direct consequences of Lemma 10. 1.

To prove the last formula, we shall use Lemma 9.3. Pick up two different mo-

                            4
nomials from 8 monomials in a==X(aj+evj"i), multiply them and sum up BC2 == 28

                            e'-ml

monomials (the result polynomial is denoted by a2). Then we have a2==4+Xaiei

                                                              i'tj'
ajej = d. Similarly we have b2 = c2 = d. These show the last of the lemma.
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   Recall that we have (cf. [2], [4]) by using Lemma 10.8

               /,- xt ,t
lo.g fe(spin(s)) ::-=- z[vf, vS, nc-, Ac.].

   We have seen 'that 5oi and 323 are Spin(9)-R-modules (cf. 6). Hence we have

two spin(g)-c-moq,g.les £y8, == £"oi<g)Rc and £"33 = £g2,opRC ..?at'pt9'= @spin(g)(£igi), ptg

= ¢spi.(g)(A2(3gi)), ltg'= ¢spi.(g)(A3(£y8i)) and aC = ¢spin(g)(£ii&). 'And,-l..g.ti･ 7'i : T->･Spin(9)

l

b'e the inclusion. Then we have easily the following ,/'

 ' 10.10 Lemma. AsaSpin(8)-R-modules, ,,,,,/ ,,.".

            5,,=::R05. . -,.'.･ i
            5,, == 3,OS･3. , ""''
Hbnce we have in R(T) 4 1'"
            j'i"(tt9) nd- 1 +a == 1 + :2ill](aj + crj-i), ''' ･

                         '' 4 i' -Mi . g t'1

            Y'i*(dC) =:: b+c 1,, j=,(avl12 +.].-i12), ･ , .

                      t tt /tt tt
          '' ( j'i* (ttS) == a + d, k'(pt8) == -a + a + bc ). .' '

                                            '                                      ･ - 1- 1,    Therefore we see (cf. [2], [4]) that

                                                 '
10.11 R(Spin(9)) =Z[Ltf, stg, ptg, AC],

                                           '

                          11. F4-C-module S8 .

    Since F4 is the automorphism group of S, S is,obvigg,siy an F4-R-module.

Remember that the trace of every X (iE 5 is invariant under the operation of F4

by Theorem 4.2. Let 5o denote the set of XES such that. tr(X) == O. Then 5o is

invariant under F4, so that 5e is an Ft-R-modtiJe qnd 5 is decomposable into

the direct sum of two F"-R-module R (which is spanned by E with the trivial

                                            v' ,'group action) and 3o;5==RG3o by '"'
                                           ",.//. '/' g. k ?, ',            xJ-E-l}-tr(X)+(X-Eel}"tr(X))･ '. ,,,./,

And we have an F4-C-module £Yg = £Yo E) RC.

 ･ ･Let T be the same maximal torus in F4 as in the sections 7, 10 and let 1':

T'-S'Fi' be the inclusion.

 f': ･.ll.:1 Lemma. As a Spin(8)-R-module, we have

    ., .. $, =ReRo rv,es,es,.
    Iw,, .1.t
    Putting 29=g5F,(£Yg), RS:== ¢F,(A2(£Yg)) and 2g-ipF,(A3(£Y8)), then we have the



              Exceptional Lie Group li;t and its Representation Rings 55

following

   11. 2 Proposition.

            i'k(2f) = 2 + (a + b + c),

            7'"(2S) = i + 2(a + b + c) + (ab + bc + ca) + 3a,

            j"(2g) = 3(ab + bc + ca) + abc + 6al + 2(a + b + c)d.

   Proof. The first formula is the direct consequence of Lemma 11.1, To prove

the second formula, we shall use the result a2=b2=c2=d in Lemma 10.8. Now,

            1'"(2S) = 1 + 2(a + b + c) + (ab + bc + ca) + a2 + b2 + c2

                 =1+ 2(a +b+ c) + (ab + bc + ca) + 3a.

To prove the last, we shall apply the saine technique as the above. Pick up 3

different monomials from a, multiply and sum up them (the result po{ynomial

is denoted by a3). Then we have a3 = bc - a by the direct caiculation. Similarly

we have b3 = ca - b, c3 = ab - c. Hence

            i"ts(2,C) == (a + b + c) + 2(a2 + b2 + c2) + 2(ab + bc + ca)

                   + (a2b + a2c + b2c + b2a + c2a + c2b) + abc + (a3 + bs + cs)

                 =: (a +b + c) + 6a + 2(ab + bc + ca) + 2(a +b + c)of

                   + abc + (bc -a+ ca -b+ ab - c)

                 == 3(ab + bc + ca) + abc + 6ol + 2(a +b+ c)d.

                       4   11.3 Remark. (1 + t)2II (1 + ait)(1 + aiit) H (1 + a,ei/2aij2/2ev:3t2cti4/2t)

                      i=1 ete2ese4 == ±1
--
 1+ Y'*(2,C)t + ti*(2,C)t2 + 7'*(2g)t3 + ...

                           me･ Ri-C-module&C

   The group l74 operates on its Lie algebra &. in the natural way, that is, for

xEF4 and ge&, xge&4 is defined by

            (xg)X == x(g(x-iX)) for XG S.

Thus & is an F4-R-module, whence its complex form &2 == &{ (g)RC is an F{-C-

module.

   To decompose j'#(&f), we shall extend the operation of Spin(8). Let EIJI' denote

the space of XEE MZ with real diagonal elements. For d== (di, d2, d3) ff spin(8)

and X'E swtr, we define dX by

              gl u12 u13 61 d3u12 d2ab13

12.1 d u2i 82 u23 == d3a2t 62 diu23･

              u31 u3". e3 d2u31 dpta2 e3
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   12.2 Lemir{a. For dE Spin(8), we have

          d(XoY)=dXodY for JC YE MI"

where xoy = -li(xy+ y'tsx;k).

   Proof. We shall show d(XoX) == dXodX for XE EMr. The (1,1)-cornponent of

dXodX = -
li-(ei2 -t- (d,u,,)(d3di2,) + (d2ui3)(d2ab3t) + ei2 + (d3ti2i)(dsui2) + (d2u3i)(d2ai3)) = (use

1. 1 (3)) = g,2 + (d,u12, d3ti,1) + (d,u31, d2a13) =: &2 + (u12, di2t) + (u31, di!,) == }(et2+U12U21

+ U3iUi3 + ei2 + a2iabi2 + zai3tisi) = the (1, 1)-component of d(XoX), The (2, 3)-compo-

nent of 2dXodX =: (d3di2i)(d2abi3) + 82diue3. + e3diu23 + (d3ui2)(d2u3i) + e2didi32 + esdpt32

(since (d3za2i)(d2zai3) = (d2iti3)(d3ti2i) = di(u2iuis) and similarly (d3ui2)(d3u3i) : di(dii2is3i)) =

di(U2iUi3 + 62U23 + tsfi3U23 + abi2ab3i + e2di32 + 63ti32) = the (2, 3)-component of 2d(XoX).

About the other components the calculations are similar. Thus we･have d(XoX)

== dXodX. By the polarization ¥-)pX+ Y, we have d(XoY)=dXodY.

   12.3 Lemma. For dESpin(8) and AG MI" n MY, we have

          dA-"-d'AV,

   Proof. By Lemma 12,2, d(AoX) ==dx4odX for any XE5. Th･is shows that
d(AX- XA) == (dA)(dX) - cdX)(dA), i.e. d<A"VX) = d"AS' (dX), Replacing X by d'`X,
then we have d<AN(d-iX)) ==dAA"X for all XE 5. This proves the lemma.

   Now, in j# : M(F4) --> M(T>, we have

   i2. 4 Lemma, d*( }2) -= cocececo&) (w, + vv, -i)e cD vviii2owg2/2 op

                              3'=1                                           cie2ese4 -- -1
                                          4W3E3/2 op VV24i2 op ,,,,,e,,,..i Uifii2o w2e2/2 op pvS'3/2 op vapx24/2 op i,tttrm-,.i vv,Eiewj9-.

   Proof. We shall use the following notations Gi,･ for O;Si<1' .S7:Gi,･ is the

R-homomorphism of E satisfying

           [g,iil`ii],'L8-iej ,,,,.,,,.

(These Gij form an additive base of N). We choose now an additive base in

gf as follows:

           H/t [= Got, "Elli = G2B, Hli =:: G4s, ll'4 := G67,

           x,,. ... 21:2j'--2"e2JLiV-･-1, k .. 2(f2J'-2+e2,･-iV-1,

           yl ... ?iE2j'-2""e2jLiNt ri, Ay], ,,. 2i32i-2Fe2j-･lvli,

           zj .L AA'e32J'-2-e2J''IV-1, 2g, ..,, 21g2j-2be2)'--lv--!

for 1' -- 1, 2, 3, 4and
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      S,, = G,, - G,, - (G,, + G,,)･vX=if, S,, == G,, - G,, + (G,, + G,,)tvt-1,

                      A      Si3 == Go4 - Gts - (Ges + Gi4)･v'=rT, Si3 =: Gio4 - Gis + (Gos + G!4)･V=II,

                      A      S,, = G,, - G,, - (G,, + G,,)ivX::'il, S,, == G,, - G,, + (G,, + G,,)･v' =I,

      S,, == G,, - G,, - (G,, + G,,)･V=iil, S,, == C,, - G,, + (G,, + G,,),vl-1,

                      A      S24 == G26 - G,, - (G,, + G,,)･V-, S,, = G,, - G,, + (G,, + G,,)V-,

                      A      S,, = G,, - G,, - (G,, + G,,)tvlli, S,, = G,, - G,, + (G,, + G,,)ivt=1,

                      A      Ti2 =: Ge2 + Gi3 A- (Gos -Gi2)･V", Ti2 = Go2 + Gt3 - (Go3 - Gi2)･v'n,

                      A      TiB = Ged + Gis + (Ges -Gi4)V=rl, Ti3 == Go4 + Gis - (Gos - Gi4)V'rl,

                      A      Ti4 == Ge6 + Gi7 + (Go7 -Gi6)'v/=i., Ti4 = Go6 + Gi7 - (Ge7 mm Gi6)'V'=-iil,

                      A      T,, :== G,4 + G,, "- (G,s -G,,)･V=l], T,, = G,, + G,, - (G,, - G,,),v' :'i],

                      A      T2, = G,, + G,, + (G,, -G,,)iV rl, T,, == G,, + G,, - (G,, - G,,)･v':=rl,

                      A      T,, = G,, + G,, + <G,, -G,,)tv!II l, T,, == G,, + G,, - (G,, - G,,)･vX7ii.

Then, fort== t<0t, 02, 03, 04) E!i T, we have

      tll(j =:= L(j for j' :::: 1, 2, 3, 4.

     A A AAs for Xj, X}, Yj, Yj, Zi, Zj, we have the same formulae as 10.5-10.7 for

7 == 1, 2, 3, 4 and

                    AA      ts,i = si,･ exp(･v'=1 (o, + ej>), ts,,- = s,,･ exp (-･Vq (o, + ej)),

                    AA      tTi,･ == Ti,･ exp(･Vii:i (oi - ej)), tTij = Tij exp(-ivXn (oi - ej)).

SOMe Of them will be proved. For example, tyl ,. tA"" 2eO-eiV=i ,= t"AV 2eO"etV=if .. 2r2t2

(e,-e,v :i).. x2(eo-eiv=i)exp(v=?(-ei+e2+Os+e4)12) .. yl (exp.vXIJi (- ol + o2 + 03 + e4)/2).

An another example tTi2= Ti2exp(･v'-(0i - 02)) will be proved. To do so, it is

suflicient to show that (ttTi2)ei -- (Ti2ei)exp(V=1(0!-02)) for i = O, 1, ･･･, 7. For i=O,

(tiTi2)eo == (i(Ti2(ti-'ee)) -- ti(Ti2(eecosOi - eisinOi)) == tt((-e2 -e3 ･v'l)cosOi - (-e3 + e2

iV=l)sinOi) = ti(-e2 - e3iv'=)exp(V :Tlei) := (-e2 -esivil) exp (-ivl=e,)exp(V=Tl

0i) =(Ti2eo)exp(iV'=i(0i-02)). Fori=1,･･･, 7, it will be also veirfied analogo-

usly. Thus the proposition is proved.

  Putting mC =-, ¢F,(&2), then we have by Lemma 12.4

  12. 5 Proposition. i'k(rcC)J= a + b + c + nf.

          13. Complex represeRtation ring R(,li'4)

  Each element tv : T-->T in the Weyl giroup U7(FD induces an automorphism

w":R(T) -).R(T). Let R(T)W denote the subring of R(T) which is invariant

elementwise under these operation w". Since 1'* : R(F4) -> R(T) is a ring monomo-
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rphism and the image of ]" is contained in R(T)W([3], [5]), we will regard R(F4)

as a subring of ,R(T)W; R(F4) c R(T)WT. We shall determine the ring structure of

R(T)W. From Propositions 11.2 and 12.5, we have

   13.I. Lemma. a+b+c, ab+bc+ca, abc and d are Polynomials in 29. RS,

2g, and NC. in foct,

                               '
                a+6+c -- R9 -2,

              ab + bc + ca = R9 + 2S - 3rcC- 3,

                     abc =: -5R9 - 328 + 2g + 7rcC + 2(2f)2 - 2zf rcC + s,

                       d == -R9 + .C - 2.

   LetfER(T)iV, that is, f be a VV(Ii'4)-invariant polynomial. We know that

any W(Spin(8))-invaiant polynomial is representable as a polynomials in 2f, 2fi,

 idC-, AC+ (cf. 10) namely asa polynomial in a, b, c, d. Recall that the Weyl

group W(F4) is the semidirect product of 9V(Spin(8)) and @3, and each element of

gB inducesa substitution of 3 'factors a, b, c (cf. 7.10). Hence, fEiR(T)PV is a

polynomial in the elementary symmetric functions a +b + c, ab + bc + ca, abc

and d. Thus, from Lenima 13.1, fcan be represented as a polynomial in R9,

2s, 2g, .c.

   Next we have to show that 29, RS, Rg, and reC arealgebraicallyindependent.

In fact, we know that a, b, c, and d algebraicaliy independent because R(Spin

(8)) ==Z[a, b, c, d]. Hence a+b+c, 'ab+bc+ca, abc and al are also algebra-

ically independent. Using propo$itions 11.2, 12.5, a non-trivialalgebraic relation

among 29, 22C, Rg andrcC yields a non-trivial algebraic relation among a+b

+c, ab+bc+ca, abc andd. Therefore 29, 2S, lg and rcC are algebraically in-

dependent. And we have Z[Rf, RS , vg , rcC] c R(F4) c R( T) vr c Z[2f , 2S , 28 , rcC ].

Thus we can proved the following .
    13.2 Theorein. The comPlex rePresentation ring R(F4) of F4 is a Polynomial

ring Z[29, RS, 2g, rcC], where R9･ is the calss of the F4pC-module Ai(£Yg) fori=1,

                                                  '2, 3 and rcC is the class of the Lie C-algebra &2 in R(F4).

                    14. Real representatiom ring RO(F4)

   For a topological group G, we have two correspondence:

            c: RO(G) Dp 1?(G), r: R(G) -> RO(G),

where c is a ring homomorphism induced by the tensoring c' with C (that is,
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c' : MO(G)-> M(G) is defined by c'(V) == V(E9 RC) and r is a homomorphism defined

by restricting scalars fr.om C to R. As is well known, the relation rc = 2 holds.

If G is a compact group, then RO(G) is a free module generated by the classes

of irreducible G-R-modules, so that, the relation rc=2 implies thatc isa ring

monomorphsim.

   Let Ri, l2, ZB and rc be the classes of F4-R-rnodules So, A2(5o), A3(So) and &

respectively. Since we have obviously c(2i) == R9･ for i= 1, 2, 3 and c(rc) = rcC, c is

an epimorphism, so thatc is an isomorphism. Thus we have the following

    14. 1 Theorem. The real rePresentation ring RO(F4> is a Polynomial ring Z[2i,

22, 23,lk] zvith 4 variables ai, 22, 2s and m.

   As for RO(Spin(9)) and RO(Spin(8)), we can discuss in the real range. Using

the fact thatc is an isomorphism, then we have by IO.9, 10.11.

  '
14.2 RO(SPin(9))FZ[pti, pt2, Ft3, id]

where Fti i's the class of Ai(£Yoi) for i= 1, 2, 3, and td is the class of £Y23.

14.3 Ro(spin(s))=z[v,, v,, `d-, ia.]

where vi is the class of Ai(£ii) for i=1, 2 and A., d+ are the classes of ge2, £"3

respectively.

              15. Relations of R(F4) to R(Spin(9)) and R(Spin(8))

              , le
              Spin(8) -----> Spin(9)

 Let iXx,q /l be the inclusions,
                     F,

     15.1 Theorema. in the diagram

                            RO(F,)
                      /x
                   l* i*
                            k*
             RO(Spin(9)) ----------･--- RO(Spin(8))

 namely, in '' ''' Z[Ri, R2, Xa, rc] '
                   ln'/ le,, "'×'ts` i*

             Z[gtt, Ft2, Fts, `1] - Z[vi, v2, tl-, d+]

we have

              l*(2,) = 1+ pt, + A

              l"(22) = rti + 2Ft2 + Ft3 + A + ,aild
15. 2
              l*(2s) == 2th + 2pt2 - d + th;t2 + pti,a3 + ptia + 2pt2d

              l'ge(m) = Ft2 + A,
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               k*(pt,) = 1 + v,

               le'k(Ae2) = vi + v2
15. 3
               le*(tt3) == -vl -F v2 + ti-d.

               le*(A) == lin + ta,

               i'"(Ri) = 2 + vi + zlm + ri+

               i*(22) == 1 + 2(vi + A- + d.) + piam + tiHd+ + ld+vi + 3v2
15. 4
               i:ts(R,) == 3 (v,a. + id..A. + ,a,v,) + viA-A, -- 6v, + 2(v, + ,d. + tl,)v,

               i*(rc) == vi + v2 + Am + g+.

    Iit the comPlex case, the relations between R(F4), R(Spin(9)) and R(Spin(8)) are

quite analogous to the real case (add the uPPer suLfiix Q. '

    Proof. It suMces to show in the complex case. Since from Lemmas 11.1,

10.10 we have So =RervoiOS23 as a Spin(8)-R-module we have obviously the

first of 15.2. Using 9.2. the 2nd and 3rd of 15.2 are obtained from the first of

15.2. Since the jl"-image of two sides of the last of 15.2are both a{-b+c+al

in R(T) and ]'i" is an isomorphism, we see that the last of 15.2 is true. 15.3and

15.4 are the direct consequences of Lemma 10.10 and Propositions 11.2, 12.5

respectively.
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