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Introduction

The aim of this paper is to determine the real and complex representation
rings RO(F) and R(F, of F,, which is a simply connected compact Lie group of
exceptional type F. Let J denote the Jordan algebra of all 3-hermitian matrices
over the division ring of Cayley numbers, We know that the group F, is obtained
as the automorphism group of J. In Chapter I, we shall arrange some properties
of F,: the subgroups Spin{8), Spin(9), maximal torus 7, the Weyl group W and
the Lie algebra %, The origin of the results of Chapter I are found in H. Freu-
denthal [1], however we rewrite them with some modifications. In Chapter II,
we shall determine the ring structures of RO(F'y) and R(Fy). Let Jo be the set of
all elements of 3 with zero trace and let ¥, be the Lie algebra of F,, Then J
and §4 are Fy-R-modules in the natural way. The results are follows : RO(F,) is
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a polynomial ring Z[2,, A, 4s, x| with 4 variables A;, 1, 43, x, where 4; is the
class of the exterior Fy-R-module A{(Jy) in ROF,) for i=1, 2, 3, and « is the
class of & in RO(Fy). R(F,) is also a polynomial ring Z[A¢, 2§, 1§, 7], where

&, %, 3, € are the complexification of 4, A, 2, & respectively. In the final
section, we consider the relationship between R(F,) and R(Spin(9)), R(Spin(8)).

Cuarter [
1. Jordan algebra
Let € be the division ring of Cayley numbers. § is an 8-dimensional RD module
with a base ¢, -+, ¢; and the multiplications among them are given as follows;

¢, is the unit of € (which is often denoted by 1)

¢ = —g, for i £ 0,
ee; = —e;e; for i, j5£0, =47
and
€
(for example e, = e5, €3¢ = €;, €364 = —¢).
€y €,
€y
e e
3 es 6

7 7
The conjugation # of #u€® is defined by @=ey, +Z‘,eiui = eouo—Zeiui (o, u;

i=1 i=1
€R) and the real part Rex of u by —%(quﬁ). We define the inner product (#, v)

7 7 7
of u=>lea;, v=2ev; (; v;<R)by > uw; and the length of u by [u] =({u, )
_i=0 i=0 i=0 :
=A/ui.
We describe here some formulae in € used in later.
1.1 Foru, v, a, be§, we have

(1) u=u, W=7,

(2) Re(uv) = Re(vz), Re(u(vw)) = Re((uv)w),

(3) 2u, v)=ub+ vt =dqv + u, | 2= uit = iu,
(4) albu) + blaw) = 2(a, bu,

(5) alaw) = (agyu, oua) = (anw)a, uled)= (uaa,

alaw) = (aay, a(ua) = (au)a, wu{aa) = (uaa,

1) R is the field of real numbers.
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6) (au)v + u(va) = aluv) + (uv)a.

Let 3 denote the space of 3-hermitian matrix X over §

& uy iy
X: _I;tg 52 ul; EiER, uie@.
s Uy &

Such X is often denoted by X(&, u). We define the Jordan product in & by
Xo¥ = H(XY 4 YX)

where the product XY is the usual matrix product. Then & is a non-associative
commutative 27-dimensional R-algebra.
We shall adopt the following notations;

1 0 0 0 0 0 0O 0 o0
E=0 0 0, Ee=|l0 1 0}, Es=l0 0 0],
0O 0 0 0 0 O 0 0 1
E=FE + E;, + E,
0 0 0 0 0 = 0 =« 0
Fi=(0 0 wu{ Ff={0 0 0}, Fi=\w 0 0l
0 u O v 0 0 0O 0 O

Then E, F* fori=1, 2, 3, ue® generate § additively and we have
EioEi = Ei, EioEj = O fOl‘ i?éj,
EiOFiu = U, ZEiDFj“ =F* fori 7’1—" j,

J

FreFY=(E — E)u, v), 2F*F?,=F%,
for ¢, =1, 2, 3 and suffixes are modulo 3.
In J, we define the trace, the inner product and triple inner product by

tr(X) = & + & + &,
(X, V)= ti(XoY),
(X, Y, Z)= (XY, Z)

respectively for X = X{(§, u), ¥, Z 3.
1.2 Lemma. (XY, A)= (YA, X) for X, Y, Ac3.
Proof. Let X=(r;), Y=(3), A=(a;), Then (XY, A)=Re(XY, A)=- Re(tr

2) The notation tr(X, Y, Z,) is differ from that of [1] where (X, Y, Z) is used for this, We
avoid here the notation (X, Y, Z) because this is used in another sense in almost every H.,
Freudenthal's papers (for example, Zur ebenen Oktavengeometrie, Indag. Math, 15, 1953).



38 Icmiro Yokora

((XY)A‘FA(XY)))*“RG( Z (Xieypan + apxuy) = _(12_ (Yuaiey + Cu(vua)
ki
‘*’Re(tr((YA)X + X(YA))) (YA, X) b

1.3 Lemma. For X, X', Y, Z& 3, we have

O X )=, X)

@ X+X, V)=(X, V)+X, Y), (X Y)=¢&X Y) for ¢€R,

B (X, E)=tr(X),

4) ( , )isrvegular, i.e. if (X, Y)=0 for all Y € 3, then we have X = 0.
1.4 Lemma. For X, X', Y, Z< X, we have

) trX, Y, Z)=tr(Y, Z, X)=tr(Z, X, V)=tr(X, Z, V)=1tr(Z, ¥, X)
=1t(Y, Z, X),

@2 uwX+X, YV,Z)=t(X, Y, Z)+tr(X", Y, Z),
tr(Xe, Y, Z)=¢w(X, Y, Z) for £ € R,

(B) tr(X, Y, E)=(X, Y).

Proof. (Jtr(X, Y, Z) = (XoY, Z)=

—

LXY4YX, Z)=4 (XY, 2)+(VX, Z) =

Lz, X)+2Y, X)=(Yoz, X)=t(¥, Z X). (2) (3 are easily seen.

2. Definition of group F\

2.1 Definition. Let F, denote the group of all automorphisms of &, that is,
each x € F, satisfies ‘

1) %(X4Y)=xX+xY, x(XE=@xX)E

(2) x is non-singular

(8) HXoY) = xXox¥
for X, Y3 ¢=R.

Let F denote the group of R-homomorphisms ¥ : § - & under which (X, Y)
and tr(X, Y, Z) are invariant, that is, each x € F} satisfies besides 2.1 (1),

4) (xX, «V)=(X, Y)

(6) tr(xX, Y, xZ)=1tr(X, Y, Z)

2.2 Lemma. F} is a subgroup of F,: F,cC F,.

Proof. If x&F|, X, Y &g, then &(XoY), xZ)=(XoY, Z)=tr(X, Y, Z)=tr
(xX, xY, 2Z)= (xXoxY, xZ)forall Z e J. This implies x(XoY) = ¥XoxY¥, that is
xe F, ‘

2.3 Lemma. (1) xE =F for x F, (2 trxX)=tr(X) for xc F|, X& 3.

Proof. (1) We have EoX = X for any X & J. Operating ¥ on EoX = X, then
xFEoxX = xX. Here put X = x71E, then ¥EoE = E. This implies xE = E., (2) tr
(xX) =X, E)= X, sE)= (X, E)=tr(X).

2.4 Lemma. Fi is the subgroup of F, consisting of all x € Fy under which

for X, Y, Z 3.

the trace of every X € & is invariant,
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Proof. If the trace of every X € & is invariant under x € Fy, then (xX, xY)
= tr{xXoxY) = tr(x(XoY)) = tr(XoY) = (X, Y) and tr(xX, xY, xZ)= (xXoxY, xZ) =
(#(XoY), xZ)= (XY, Z)=1tr(X, ¥V, Z) Hence x < Fi. The converse follows
from Lemmas 2.2, 2.3 (2).

We shall see that Fy = F} in Theorem 4.2, in particular, that the trace of
every X € X is invariant under x € F,. '

3. Deformation to diagonal form
3.1 Lemma. Fj is a compact group.
3
Proof. Since the inner product (X, Y)= Z}(&im + 2(u;, v;)) is invariant under
i=1
each element of F}, where X = X(§, u), Y=Yy, v)e I, Fiisa closed subgroup
of the orthogonal group O(27) which is compact. Therefore F} is compact.
3.2 Lemma. For ac @ (a+0), define an R-homomorphism x : S—>J by xX
(&, u) =Yy v), where

n =&y,

po=kinz 0 + 258 coszja) + 5255

g = ___(a,lalul) Sin 9 [al E 63 COS2 la| + 52 + 53
—&)a 2Aa, u)a .

v = ul—(éz—-zm—fg) sin 2 || —(—MTI) sin? |q| ,

ans .
Vg = Uy COS |a| — Wsm lq,
vz = #3COS |a| + _lal sin |a| ,

then we have x < Fj.
Proof. We shall show first that %(XocX) = #XoxX by the direct computation.

E% 4 us]® + ug)® (&1 + EaJutg + uyuy *
XoX = ® &% A [ug |2+ [uy |B (€a + Ealts + st |.
(&s + Enuts + wguy * &%+ |u|® + ug|®
The (1, 1)-component of xXoxX = % 4+ |va|? -+ |vg|% = &2 + |z cos la] — |—| sin |a} |2
+ luy cos |a] + |a| = &2+ |up| 2+ |us| 2 = the (1, 1)-component of x(XoX), The
(2, 2)-component of xXoxX = 72+ |vg|2 |02 = ... = —’lel—( (&s -+ Eg)ty + usg)sin |a|
"|—%(§22 — & + |ug|® — |uz|*)cos 2 |g| +%(522 + &% 4 2]y |® + | ua|? + |ug|?) = -+ = the

(2, 2)-component of ¥(XoX). About the (3, 3)-component, the computation is similar
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to the (2, 2)-component. The (2, 3)-component of x(XoX) = (& + &)ty + Ugtty ~%

(Eo2 — Ea2 -+ |utg|2— | Us| )~IQ]—st la] — (a, (&3 + &)uy + %u—a)%sinz la] = .- (we shall
use the formula 2a(@ usus) = alusus)a + ugus|al? (cf. 1.1 (3)) - = (patya)vy + Vats =
the (2, 3)-component of xXoxX. The (3, 1)-component of x(XoX)=-.-(we shall use
ausuts) + @ilans) = 2(a, uduy (cf. 1.1(4)-- = the (3,1)-component of xXoxX. The
(1,2)-com-ponent is similar to the (3, 1)-component. Thus we have x(XoX) = xXoxX
for any X & . By the polarization X X + Y, we have

#(XoY) = xXoxY for X, Ye3

Hence x € Fy. Finally, it is easily seen that trxX) =9+ e+ =86+ & + & =
tr(X). Therefore, by Lemma 2.4, we have x € Fi.

3.3 Theorem. [1]. For X, & 3, there exists x = F} such that xX, is of a
diagonal form,

Proof. For a fixed X, € JF, ¥, = {xX)| x € Fi} is a compact subset in J. Let
X be an element in ¥, which attains the maximum value of &2 4 &? 4 &2 for
X = X(¢, u)= ¥, then we shall show that X; is diagonal. Assume that X, =
Xi(é, u) is not diagonal, for example, #, 540. Put at)= ’lelt for t & R (¢ £ 0) and

construst an element x(f)eF} as in Lemma 3,2, Then the value of 7:2(f) + 7.X?)
sl in DX, s &2+ (“('2( ),“1) in? 2 |a(t) + 2 (S 53) cos?2 |alt) + 2(E2+ E“) +

fz@itx_lzgglé:_észsmz la(t)] cos2 la)

Ea

—gpq Gl (= ] sin2 |¢] 4 &

<éry (52+53)+2(|¢1|2 o 53))

= &2 4 £ o+ & + 2|u,y|? (its mximum value).

2
cos2 [t} )

This contradicts to the fact that &} -+ & + &% in X, attains the maximum value.

4. Cayley projective plane GCP,

4.1 Proposition. [1]. For X3, the following five statements are equivalent.

(1) X540 and X is an irreducible idempotent, i.e. XoX =X and X =X, + X,,
XoX; =X, X;eJ(=1, 2)imply X; =0 or X; =0,

(2) XoX = X and tr(X) = 1.

B) trX)=(X, X)=tr(X, X, X)=1

(4) X ==xE; for some x € Fy and for some i =1, 2, 3.

(6) X =xE, for some x € F,,

3
Proof. (1)->(2). For X, there exists ¥ € F; C Iy such that xX=>]E£, The
=
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idempotency of X induces that of xX, so that we have §2=¢, hence ;=0 or 1
for i =1, 2, 3. We see that the only one & of them is 1 and the others are 0.
In fact, if not, xX is reducible. Since the reducibility is invariant under x e I,
X is reducible. This contradicts to the hypothesis of X, Now, by Lemma 2,3 (2),
tr(X) = tr(xX) = tr(E;) = 1. (2)->(8) is obvious. (3)—>(4). For X, there exists x = F,
such that xX is of a diagonal from i}Ei&. The condition (3) means £+ Ea + E3=
=1

E2 L83 &3 =8 - &3+ & = 1. Hence we have the only one &, =1 and the others
are 0, i.e. xX = E; for some i. Therefore X=x"1E; where x1 € F,, (4)—> (5). It
suffices to show that E; (and FEj) can be deformed to E; by some a € F, For
the matrix A = E; 4+ F§, we have AE,A = E;,. Since A is a real matrix, ¢: X
-+ AXA for Xe 3 (AA = E and associativity!!) is an element of Fy and we
have aE; = E;. (5)>(1). We shall show first that E, is an irreducible idempotent.
Assume E, = X, + X, XoX;, =X, X, €3 @ =1, 2. Then X; + X;=E, = EjoE;
= X + X; + 2X;0X,, hence X;0X, =0, Multiply X; on E, = X; + X,, then we
have E;oX; = X,. This shows that X, is of the form FE.& - E.&; + Es&s -+ F\'1,
From E, = X, + X;, we have X, = Eyp — E.f; — Egfy — F“1 where & + 9, = 1.
Since XjoX, = E\&ym — Fo€o? -+ |uy|2) — E3(&s® + |4y|?), XX, =0 implies that &, =
&=u;=0and & =0 or 5 = 0. Thus we have X, =0 or X, =0. Now, since the
irreducibility and idempotency are invariant under x € Iy, we see that xE, is
an irreducible idempotent in J.

Let §P, denote the space of X & J satisfying one of the five conditions of
Proposition 4.1. Then we remember that €P, is the projective plane over € [17,
[57.

4.2 Theorem. F\=F, that is, the trace of every X & I is invariant under
each x € Iy,

Proof. Note that the trace of an element of the form zE; (z&F,, i=1, 2, 3)
is 1 by (4)—>(2) of Proposition 4.1. Now, let xel'y and X € . For this X, choose
y e I, such that yX is of a diagonal form f]E,Ei = X;. Then we have xX =

i=1

i
3 3 3

xy~1X; = 2X; (where z = xy~'€ F,) = > (zE;)¢;, whence tr(xX) :Etr(zE,.)é,- :Zéi =
tr(Xy) = tr(yX) = tr(X).

i=1 i=1 =1
5. Principle of triality in S0O(8) and Spin(8)
For the results of this section, we refer to [1], [3], however we rewrite
them with proofs.

Let SO(8) denote the rotation group in €. Let b, be the Lie algebra of SO(8),
that is, the R-module consisting of R-homomorphisms D : €€ such that



42 Icuiro Yoxrora

(Du, v)+ (#, Dv)=0 for u, ve@.

5.1 Proposition. [17] (Principle of infinitesimal triality in by
Ror every Dy € b, there exist D, Dy < by such that

(D + w(Dyw) = Dgluv) for u, ve 6,
and for Dy, such D, D, are unique.

5.2 Proposition [1]. (Principle of triality in SO(8))
For every d, € SO(8), there exist d,, dy = SO(8) such that

(du)daw) = dy(uv) for u, v G,

and for dy, such d,, ds are unique up to the sign.
Proof. As is well known, for d; € SO{®), there exists Dy € b, such that d; =

expDI:ZZ, By Proposition 5.1, there are Dy, Ds € by such that (Dyu)v-+u(Dyv)
n=0

= Dy(uv) for u, v< 6. Put dy = expD, and dy = expD;, then dsuv) = expDy{uv) =
Dy (v i i
S = 33 33 (DrukDe)_ (53Di) (53 — (expD expDay = (i,

n=0 * n=0iti=n 1!
To prove the uniqueness, 1t is sufficient to show that for d,=e we have d,= e,

d; = ¢ (where ¢ is the idenﬁty of SO@®)). Assume that u(dsw) = dy(uv) for u, veE.
Put u =1, then dyw = dyv for all v §. Therefore u(dyw) = dyfuv). Put v =1 and
denote d,1 = ¢, then uc = dyut. This implies u(vc) = (uv)e for u, v € €. From this
associativity we have ¢ € R, whence ¢ = 1. Therefore dyu = tu for all u €.

Thus, for d; = e, only two cases dy = dz = ¢ and d, = dy = —e occur.
5.3 Lemma, [3]. Let O8) be the orthogonal group in §. Assume that for d,
dy, dy = O8)
(du)dyw) = dyuv) Jor all u, v G,
then we have
dou)dyv) = di(uv
(d5e)dy?) 1(—14—11) Jor all u, ve€.
(dgu)d ) = dsuv)
Proof. Multiply d on the left side and d,uv) on the right side of the given
formula, then we have |u|¥dyv)(dsuv)) = diu|uv|?, hence (do)(dy(v) = dyt|v]2.
Replace # by vw, then (dy)dy(|v|®w)) = d\(vw)|v]|?, hence we have (dw)dsw)=d ow)
5.4 Lemma, [3]. Assume that for dy, d,, ds<= O8),

(dyu)(dq) = ds(uv) Jor all u, v G,

then we have dy, d,, d; & SO(@).
Proof. If d;&SO@8), then there exists a; € SO(8) such that aydiu = for ucG,
Using the triality, for this a;, there exist @, @ & SO(8) such that (adu)(asdy) =
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as((dyu)dw)) = asdy(uv). Denote aydy = by, asdy = by, then @(bw) = by(uv). Put # =1,
then by = by0. Thus we have @(byw) = by(uv). Put v = 1 and b1 =c. then sic = byu,
hence #(ic) = (wv)e. Put v = ¢, dcc = cic, hence #¢ = cit for all u=@. hence ceR.
Therefore #v =uv for all v, v € @. This is a contradiction. Hence we have d;
e SO@®). dy, ds € SO(@8) follows from Lemma 5.3 and the above.

Let J; denote the space of F* where uc @ for i=1, 2, 3. I, is an 8-
dimensional R-module and X € &; is characterized by

5. 5 ZE“.IOX = X, 2Ei+20X: X
And we have
5.6 2XoY =(E — E)X, Y) for X, Y3,

Let Spin(8) be the subgroup of F, consisting of x such that xE; = E; for {=
1, 2, 3. Moreover it is convenient to define the following group spin(8) : spin(8)
is the subgroup of SO(8) x SO(8) x SO(8) which consists of (dy, ds, ds) such that
(dyu)dav) = dy(uv) for u, v < 6.

5.7 Propositon. [3]. spin(8) and Spin(8) are isomorphic as group by the cor-
respondence (d;, di, ds)—>d;

& us Uy & diug  datts

dlus & u1:573_u; &y dyy |.

[*2]
o]

s Uy & datty  dyuy &

Proof. Let d = Spin(8), then for X, Y € 3;, we have dX & 3; and (X, dY)
=(X, Y)fori=1, 2, 3 by 5.5, 5.6, hence d induces an orthogonal R-homomo-
rphism d; in &, such that dF#* = Fdi* for i =1, 2, 3. 2F/Fy" = Fg implies
(d)dqw) = dy{uv) for u, v = ®. By Lemma 5.4 di, ds, d; e SO@®), that is, (di, ds,
d) € spin(8).

In the sequel, we shall identify spin(8) and Spin(8) by the correspondence 5. 8,

Spin(8) has a sequence of subgroups

Spin(8) o Spin(7) D Gy D SU(8)

where Spin(7) is the subgroup of SO(8) consisting of & such that for some a=SO(7),
(au)av)=a(uv) for u, v € €. (The projection p : Spin(7)—>SO(7) is defined by p(@) =
a). G, is the group of automorphisms in €, that is, the subgroup of SO(7) consi-
sting of a such that (au)av) = a(uv) for u, v =€ SU@E) is the subgroup of G,
consisting of @ such that ae, = ey,

5.9 Proposition. Spin(8) is a simply connected covering group of SO(8),

Proof. We identify J; with € by F¢ »u and let S7 be the unit sphere in €.
spin(8) operates on S? by (di, ds, dou = dyu. This operation is transitive by the
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principle of triality and its isotropy group of ¢ is Spin(7). Thus we have spin(8)
/Spin(7) = S7. The fiberings G,/SU{B) = S8, Spin(7)/G, = S7, spin(8)/Spin(7) = 57
vield the connectivity of spin{(8). Now, define p : spin(8)->SO(@8) by p(di, ds, ds) =
d;, then p is an epimorphism and its kernel is (e, e, ¢e), (¢, —e, —e) by the
principle of triality. Hence p:spin(8) —»SO(8) is a twofold covering of SO(8).

6. Spin(9) and construction lemma

Let Iy denote the subspace of I consisting of X such that E,0X =0 and
tr(X) = 0. Such X is of the form (E; — Eg)¢ + Fy“ for £ R, u =@, Hence Jn
is a 9-dimensional R-module, and (X, X') = 2(6&" + (u, ') and XoX' = (E; + Ej)
X, X') for X, X' & Sp.

Let J:; denote the subspace of & consisting of Y such that 2E oY =Y, Such
Y is of the form Fy* 4 Fy® for u, v € €. Hence 33 isa 16-dimensional R-module
and (Y, Y')=2((u, ')+ @, v) forY, YV el

Let SO(9) denote the rotation group in I, i.e. a € SOO) is an R-homomor-
phism of Iy such that (@X, aY)=(X, V) for X, Y & Ju. Let Spin(9) be the
subgroup of Fy consisting of x such that xE, = E;.

The following lemma is sometimes convenient to construct an element of
Spin(9) satisfying the given conditions.

6.1 Lemma, (construction lemma)
For any given element A € Iy, such that (A, A)=2,
choose any element X, € oy such that (A, Xo) =0, (X, Xo) =2,
choose any element Yy € Sg3 such that 2A0Y, = —Y,, (Yo, Yo) =2
and put Zy = 2Xy0Y,.

Next choose any X; € Iy such that (4, X)) = (X, X)) =0, (X, X)) =2,

choose any X, & Ju such that (A, Xi) = (Xy, Xo)=(X;, Xo) =0, (Xp, Xg) =2

and put Yy = —2ZpX,, Zy= —2X,0Y,, Xs= —2Y 07,

Choose any X.=Jo1 such that (4, X)) =X, X=X, X=X, X)=(X; X)=0,
(X, Xi) =2

and put Zy= —2X0Yy, Yo= —2Zp0X, V3= —2Z0X;,
X5 = —2Y 07, Xy =2Yy0Z, X;= —2Y3Z,
and then put YV, = —2Zp0X, Jor i =4, 5, 6, 7,
Z; = —2X;0Y, Jori=1, 3, 5 6, 7.

Now, let a: I—>J be the R-homomor phism satisfying

all = E, aEl = El; a(Ez - Eg) = A,
aFfi= X, aFyi =Y, alFyi=2Z; for i=0, 1,7,
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then we have a = Fy (apriori a € Spin(9)).

The proof is not trivial, we don’t however give the proof, because its calcu-
lation may be independent from the consideration of the present paper. It will
appear in a forthcoming paper [7].

6.2 Proposition. Spin(9) is a simply connected covering group of SO(9),

Proof. Let a € Spin(9) and X & Jp. Operate ¢ on E;0X =0 and tr(X) =0,
then EjoaX =0 and tr(eX) =0, hence aX € Jo;. And (E — E))aX, aX') = aXoaX'
= aq((E — E)X, X")=(E — E)X, X'}, hence we have (aX, aX') = (X, X'). Thus
a induces an orthogonal R-homomorphism « in Jy. Let S® be the unit sphere
in Sy, that is S8 ={X &Il (X, X)=2}. Spin(9) operates on S® transitively;
this transitivity follows from the construction lemma 6.1. We show that its
isotropy group G={a & Spin(9)}|«(E; — E;) = E; — E;} is Spin(8). For, since always
a(Ey + Ey) = Ey + Ey for a < Spin(9), we have aF,=F; (i=1, 2, 3) for any ¢ G.
Therefore G = Spin(8). Thus we have Spin(9)/Spin(8) = S8, and this implies that
Spin(9) is simply connected. Define the projection p : Spin(9)—>SO©) by p(a) = «,
then p is a homomorphism and its kernel is (e, ¢, ¢} and (e, —e¢, —e). In fact,
let a € Spin(9) satisfy aX = X for all X e Jn. First we shall see a e Spin(8).
Denote a by (a;, a,, a3) € spin(8). Since Fi* & Jy; we have aFy* = F*. Hence,
operating a on 2F % F,® = F3*. then we have u(av) = a(uv). By the principle of
triality, we have a = (e, ¢, ¢ or (e, —e, —e). Hence p:Spin(¥)—>SOW) is the
twofold covering of SO(9).

6.3 Remark. Let S!® be the unit sphere in Sy, that is S5 ={¥ & Jp| (¥, V)
= 2}. Spin(9) operates on S'® transitively. The proof of the transitivity is as
follows. Give a fixed element Fy'o and any element Y, € Jy35. Choose any A=Jy,
such that 240Y, = ~Y,, (4, A) =2 and then take X;, Y, Z;, for i=0, 1, .-, 7
and construct a € Spin(9) as well as in Lemma 6.1. Then aFy%0 =Y, for this a.
Next it is easily verified that its isotropy group {a=Spin(9)|al'; o=Fy%} is Spin(7).
Thus we have the well known fact

Spin(9)/Spin(7) = SY.
F operates on the Cayley projective plane @P, transitively by Proposition
4.1 (5) and its isotropy group of FE, is 5pin(9). Thus we have
F/Spin(9) = GF,,
Therefore, we have the following
6.4 Theorem. I, is a 52-dimensional simply connected compact group.
6.5 Remark. F,; has 3 subgroups of type Spin(9); SpinM(9)=Spin(9), Spin@(9)
and Spin®(9), where Spin®(9) = {a = FyjakL; = E;}. And we have

Spin(8) = Spin®(9) N Spin®(9) N SpinGX9).
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7. Maximal torus 7 and Weyl group W
7.1 Definition. Let G be a (connected) topological group. A subgroup T of

G is a maximal torus in G provided T is a torus with G = \_JxTx"L,
xe6G

It is easy to see that maximal tori are conjugate to each other in G. The
dimension of a maximal torus T is called the rank of G.

7.2 Theorem, The rank of F, is 4.

Proof. Let x & IY,, Since the Cayley projective plane €P; is a homogeneous
space Fy/Spin(9), x induces a homeomorphism f* of P, in the natural way (X->»
xX, X eP;). Hence f* induces an isomorphism f§;: H(€P;) - H@P;) for all
i==0. We shall calculate the Lefschetz number L(fi)zg(—l)ftr(fﬁi). For this,
we recall that €P; is a CW-complex with 0, 8, 16-dimensional cells [5], so that
its homology groups are Ho@®P;) = Hy@Py) = H((€Ps) = Z and H{EP;)=0 other-
wise. Hence we have L(fj) = tr(ffs) + tr(fis) + tr(fiw) = e + & + e (Where ¢; is
— 1 or 1)=£ 0. Therefore, by the fixed point theorem, there exists a point ¥ &
§P, such that xY =Y, For this Y, we can find y e F, such that Y = yE, by
Proposition 4.1 (5). x¥yE; = yE;, so y'xyE; = E; and so that y~!xy & Spin(9). As
is well known, the rank of Spin(9) is 4. Hence for a maximal torus 7 (dim T =4)
in Spin(9), there exists z € Spin(9) such that z-'(y~'xy)z € 7, so that x &(y2)T(yz)"!

where yz € F,. Hence we have F, ={_JyTy~!, Thus the proof is completed.
yely

We shall choose a maximal torus in Spin(8) == spin{8) as follows. Define a
homomorphism ¢:R*=R x R x R x R—>spin(®) ({0) = ({.(0), 10), t3(#) where 6=
(61, 05, 63 04 is denoted by ¢ =(t;, t;, s briefly) by

tiey = eycosty + egsindy, tie; = —ewsind; + ejcosf,
. tiey = e;cosly, + egsinfs, t1e; = —ep8indy + e5c080s,
73 hes = ecosly + essinfy,  tiey = —eysinfs -+ e;costs,
Utes = egcosly + essinfly, tie, = —egSindy + €,c080y,
taey = €9CoS(—01 + by 4 O3 + 04)/2 + ersin(—0y + Oz + 05 + 04)/2,
tyey = —eosSin(—0; + s + O3 + 04)/2 + e;cos(—0; + 05 + 05 4 04)/2
taey = egcos{— 0, + Oy — Oy — 0,)/2 + egsin{—0, + 0y — 03 — 04/2,
- gty = —eoSin(—0; + Oy — Oy — 04)/2 - eyco8(—b; + Oy — 85 — 04)/2

toes = €cos(—0; — Oy + O3 — 04)/2 + essin(—0; — Oy + 0y — 04)/2

loes = —esin(—68y — Oy + 05 — 04)/2 + escos(—0; — b, -+ 5 — 04)/2
foes = €Co8(— 0 — Oy — O3 -+ 04)/2 + ezsin(—0; — 0y — 04 - 05)/2

toer = —eesin(—0, — 0y — 0y + 04)/2 + e,co8(—8; — O3 — 85 + 0,)/2
lyeo = €cos(—0y — Oy — O3 — 00)/2 + esin{—0; — 0y — 0y — 04)/2

lye; = —eysin(—0; — Oy — O3 — 0 )/2 4 ecos(— 0 — 0y — O3 — 64)/2
fyer = €qco8(0y + Oy — Oy — 00)/2 + eysin(0; -+ Oy — Oy — 64)/2
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tyes = —egsin(ly + Oy — 3 — 04)/2 + escos(fy + O3 — G5 — 04)/2
tyey = e,cos(ly — O + 03 — 0)/2 + essin(@y — Oz -+ 03 — 0,)/2

faes = —eusin(ly — Oy + 05 — 04)/2 -+ escos(@y — Oy + 03 — 04)/2
tses = escos(fy — Oy — 05 + 04)/2 + esin(@y — 03 — 05 + 04)/2

tye; = —egsin(fy — Oy + O3 + 84)/2 + ejcos(by — 0y — G5 + 6.)/2.

7.5

Then we can verify that

(t120) (Fo) = ty(u0) for u, v e €.

Hence the image #(R*) == T is a maximal torus in Spin(8) (also in Iy).
7.6 Definition. Let G be a topological group with a maximal torus 7. The
Weyl group W(G) of G is N(G)/T, where N{(G) is the normalizer of T in G.
7.7 Lemma. If x & Ny(F,), then xE,=FE:, xE,=E, xE;=E; where (i,
1s, 1) 1S @ substitution of (1, 2, 3).

Proof. Let x & Np(Fy), then xUYx e T < Spin(8) for all = 7. So that we
3
have x-'%xE, = E;, hence {(xE;) = xE;. Put xE, :Z(Eié,- + IF), then t(xE,) = xE;

=1

3 3
shows E(Eié,- + Frit) = Z(Ei& 4 F*), therefore tyuy = uy, flg=uty, f3us = tts for
=1 ;

i=1
all ¢ = (t;, t;, ts) € T. By the formulae 7.3—7.4, these imply #; = us = u3 = 0.

3
Therefore xE; :Z‘,E,»E,-. By Proposition 4.1 (1), xE; is an irreducible idempotent
=1

in §, hence xE; is Ey, Ey or E;. Similarly xE, and xE; are one of £}, E, E,
respectively. Obviously xE,, xE,, xE; are different to each other. Thus the proof
is completed.

By Lemma 7.7, each w € Ny(Fy)/T induces a substitution among E;, E, E,.

Thus we have a homomorphism
h:WEF)—> S,

where &, is the symmetric group of all permutations of E), E,; FE,;. We shall
show that % is epimorphic. Since &; is generated by o=(1, 2, 3) and r=(2, 3), it
suffices to construct elements », y € Fy which induce ¢, ¢ respectively. Define
x = x(v) by the R-homomorphism of J satisfying sE; = E,,,, xIF} = F{,, for u e
€, i=1, 2, 3. Since aUxE,=E, xUx[' =x"FY% =51, et = Flia® for
i=1, 2, 3, we have x Y, t;, t3x = (ty, 13, #) (cf. Lemma 5.3), so that xeN;,
(Fy) and x obviously induces ¢. Next, let y = y(¢) be the R-homomorphism given
by

YE, = E yE, = Ey yE; = E,
yF0 = Fyfo yFy0 = F% Yy = —Fy
yFlcl — "”Fl"l ng“'l - F3e,, ngel _ —Fgco

YE = I\ s = Iy VI = Iy
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v = Fi% yFfs = Iy Y’ = —Fy*
Y = Fif s = —Fyfs YE = Fy’s
Y% = Fy% yFys = gt yFg% = — Fy's
yF (‘s = Fy% Y = — Iy YF e = gt
yF 1= Fy, Y = Fyfs, Y1 = —Fy's,

then y is in Spin(9), because it is easily verified that y satisfies the construction
conditions of Lemma 6.1. And y induces ¢« obviously.

The kernel of & is W(Spin(8) which is the Weyl group of Spin(8). In fact,
suppose Aw) = 1 where w & W(F,), then any representative x € Np(Fy) of w sati-
sfies xE;, = F; (i = 1, 2. 3) so that we have x & Spin(8) (apriori, x & N(Spin(8))).
Therefore w € W(Spin(8)). Thus we have an exact sepuence

1 —> W(Spin(8)) —>» W(Fy) —>» S5 —> 1,

And it splits by ¢ = x(0), v — ). Thus we have the following
7.8 Theorem. The Weyl group W(IFy) of F, is a semidirect product of &, and
W(Spin(8)). That is,

W(F,) = G, W(Spin(8)), S; N W(Spin@)) = 1.

We remember that W(Spin(8)) consists of 2%4!=192 permutations of 4 variables
(01, 05 03 0, composed with substitutions (¢;, 0, 05, 0s) > (101, cola, estls, &4y
with ¢, = =1 and & ¢ &3 64 = 1.

7.9 Remark. Let Z; denote the subgroup of &; generaetd by ¢. Then we

have a splitting exact sequence
1— W(Spin(9)) —> W(F ) —> Z; —> 1.

7.10 Since it is easy to see that %(0)J; = J;4; for ¢ =1, 2, 3 and y@)J; =3Iy,

e

() = Js, ¥)Js = Iz by 5.5, any element of &; induces a substitution among
3

o
1y 32

LR

3.

8. Lie algebra %,
Let M denote the space of 3-matrices over ¢ and M- denote the space of
3-skew-hermitian matrices over § (skew-hermitian matrix X is meant by Xs? =
— X). We extend the inner product of J to Dt by

(X, )= Str(XY + Y*X)

8.1 Lemma. (XY, A)={A, X)for X, Y, AcM. .
The proof is the same as L.emma 1.2.
We define the bracket product by

3) X+ is ‘X,
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[4, X|=AX— XA for A, X M.
If AcsM-, X3, then [A, X is often denoted by Ax. Obviously we have

8.2 Lemma. M-, 31c I, [F Jlcm.
8.3 Lemma. [1]. For X € §, ‘there exists a pure imaginary Cayley number u
such that

(X, XX7=Eu.

Proof. Let X = (u;;) where #; = u;; and v;; be the (i, j)-component of [X,
3
XX, namely v;; = Z (:e(%pX1;) — (¥p%p)%,;). Note that the parenthesis contain-
Bi=1

ing a #, (with double suffixes)is zero. If i+ 4, using 1.1 (5) we have v;; = 0. For
the case i = j, vy = Vg = Vg3 by 1.1 (6). Thus we have [ X, XX | = Eu for some
ues @ Since X, XX €I, we have [X, XX e, hence # = —u, whence Reu
= (),

8.4 Lemma, (1) For A, X, Y €I, we have

€4, X1, Y)+ (X, [4, Y=o
(2) For A e M such that tr(A) =0, we have
tr([A, X1, Y, Z)+te(X, [A Y] Z)+t(X, Y, [4, Z]) =0

for X, Y, Ze 3.

Proof. (1) is obvious by Lemma 8.1. (2) (4, [X, XX ) =(4, Eu) (where i =
—) = %-tr(Au + @A*) = %-tr(Au + #A) = 0. Hence (4, X(XX)) = (4, (XX)X). Thus
(AX, XX)= (XA, XX) by Lemma 8.1. Hence((4, X], XX])=0. By the polariza-
tion X>X+Y+Z (A X)), YZ+ZY)+([4, Y], XZ+ZX) 4 ([4, Z], XY+
YX)=0. This means (2).

8.5 Definition. Let $, denote the set of R-homomorphisms ¢ : 3—>J such that

o(XoY) = pXoV -+ XogY,
Let I} denote the set of R-homomorphisms ¢ : I > J satisfying

{(@X, Y+ (X, ¢Y)=0,
tripX, Y, Z) -+ tr(X, oY, Z)+ tr(X, Y, ¢Z)=0.

%, and i are Lie R-algebra by the bracket multiplication
Lo, ¢1X = o¢pX) — ¢lpX) for X € 3.

8.6 Lamma. {. is a Lie subalgebra of Fy; Fi C Fa.

Proof. Foree @, X, Y, Ze g, (pXoY, Z)+4 (XopY, Z)=tripX, Y, Z)+
tr(X, oY, Z)= —tr(X, Y, ¢Z)= —(XY, ¢Z)=(p(XoY), Z). Hence we have
pXoY -+ XopY = ¢(XoY).
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The lemma 8.4 shows that for A € M- such that tr(d) =0, 4  F..
8.7 Remark. We see that §i = . It will be remained to the readers.
We shall use the following notations; for ¢ &€ 3

0.0 0 0 0 —a 0 a O
${ =10 0 a|, A5 =10 0 0}, A3 =|—-a 0 0].
0 —a@ o0 a 0 O 0 0 0
Then we have
: ziaEz' =0, ZiaFi“ = (Ej1 — Ep0)20a, u),

A apu s an
FE = —Fia, A; Fi+1 = Fi+2>

! )

AfE =1, ZiaF:ﬂz = _Fia?l-

Let ©, denote the Lie subalgebra of &, consisting of D such that DE; =0 for
i=1, 2, 3.

Let D e Dy EoF* =0, 2E,oF*=F/(i+}j) imply E;ocDF* =0, 2E;oDF/ =
DF;*. Thus we can set DF* = F;Di*, And F/oF;" = (E;.y + Ep9)u, v) and 2F%
F2,=F7 imply (Du, v)+(u, D)=0 and (Dup + u(D;sv) = Digfuv). Hence
we have

8.8 Proposition. b, and D, are isomor phic as Lie algebra by the correspondence

D, € b>D & Dy;
& Uy iy 0  Dsuy D,
Dia, & wuy =|Dwus 0 Dy
uy &g Doty Dy 0

where D,, D € b, arve given by the infinitesimal triality for D;.
We shall identify by and D, by the above correspondence in later.

Cuapter 11
9. Representation rings
Let G be a topological group. By a G-K-module (K=R or (433 is meant a finite
dimensional right K-module V together with a left action of G. That is for each
x e G, ueV, there should be defined an element sz € V depending continuously
x and # so that
x(u + v) = xu -+ xv, 2(u€) = (xu)é,

9.1
(xy)u = x(yu), e =u

for 2, y G, u, veV, ¢ K and ¢ denotes the identity of G.

4) C is the field of complex numbers,
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Two G-K.modules V; and V; are G-K-isomorphic if there exists a G-K-
isomorphism f : V;—>V,, that is, f is a K-isomorphism such that f(xu) = xf(u) for
xeG, ues V. v

Let Mg(G) denote the set of G-K—isomorphism classes [V] of G-K-modules
V. [V] will be denoted l?y 14 simbly.

The direct éum Vi®V, the tensor product Vi®V, of two G-K-modules Vi,
V, and the exterior G-K-modules 4¢V) (0 i< dimV) for a G-K-module V define
a A-semiring structure on Mx(G). That is, 47 : Mg(G)>Mg(G) for i =0 satisfy

AV) = K, AV) =V,

9.2 ,
’ A%VG(DVE):3£§léA%VG)CDAKVE»

In particular, we have

9.3 Lemma. Let Vi, - , V., be 1-dimensional G.K-modules. Then AV D
@V,) and D V; @ Vs, are G-K-isomor phic.
i<y,

The representation ring Rg(G) = (Bg(G), ¢¢) is the universal A-ring associated
with the 2-semiring Mg(G). The Z-ring Rg(G) is meant a commutative ring with
the unit 1 and functions X : Rx(G)>Ry(G) for i = 0 satisfying the following prope-

rties
o) =1, Aa) = e,

9.4
2 ) :Z_E Xi(@)i(p).

+i=k

The universality is as follows : ¢g : Mg(G)>Rg(G) is a i-semiring homomorphism
and for any A-ring A and any semiring homomorphism ¢ : Mg(G)—+A, there exists
a unique A-ring homomorphism ¢ : Rg(G)—>A such that ¢ = &g.

M(G) has one more operation so called conjugation : for each G-K-module V,
there corresponds the dual G-K-module % (/V is Homg(V, K) as K-module and
group action is (e = w(x ') for x € G, o € Homg(V, K), uecV) If Wis a
1-dimensional G-K-module, then we have W®f/\V = K, so that V/[> is often denoted
by W-1.

Let H and G be topological groups and h: H—»G be a continuous homomor-
phism. Then to every G-K-module V, there corresponds an H-K-module ##V)
by the rule of group action

yu = h{y)u  foryeH, ueV,

The correspondence V->iH(V) gives rise to'a A-ring homomorphism h* : Rg(G)—
Ry(H) such that the following diagram is commutative
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hé
Mg(G) —» My(H)

l¢c I l¢H

Ri(G) —> Ry(H).

Mr(G), Rgr(G) are denoted by MO(G), RO(G) and Mc(G), Rc(G) are denoted by
M(G), R(G) respectively.

10. Spin(8)-C-module 3¢ and Spin(9)-C-moules 35, 3%

Since for d = Spin(8), X = J;, we have dX e J;, by 5.5 each de< Spin(8)
induces a R-homomorphism of &, Hence J; is a Spin(8)-R-module and 3¢ =
%,QrC is a Spin(8)-C-module for i=1, 2, 3.

Let 7 be the maximal torus in Spin(®) which is indicated in the section 7
and let jy : T-—>Spin(8) be the inlcusion.

10.1 Lemma. In j¥ : M(Spin(8) - M(T), we have

IMIG) = DW; ® WY,

i=1

jz*(sg) = @ Wiae Q@ Wat @ W2 Q WEsi2,

e£16aEgey = —1

JH3G) = @ WarE Weae® WeskE Wen
c£1¢0Eg84 = 1
where W V2 is a 1-dimensional T-C-module, W;~V2 is the dual T-C-module of %
and W is WeE2g WeE2 for j=1, 2, 3, 4 (¢;, e= =1).
Proof. Choose an additive base in J,€ as follows;

Co:_ o€ 1 /T 25 e, tes i V=1 . .
10,2 X) = FEre T R e T a0
eaj-2=ezj-1 /=] o e2j-gtezj-1 ¥ 1 )
10.3 Y, =r, , YV, =F, in 3%,
ezj-2=e2j-1 4 —1 > ezj-2tenj-1 v 1" .
10.4 Z -—F s Zj:Fg 1N .53

for j=1, 2, 3, 4. For t = {0) = (£,(0), 1.(0), t3(0)) & T where § = (6, 5, 05, 0y
R4, then we have

10.5 tX; = Xexpln/—10)), tX; = Xjexp(—/=10))

for j=1, 2, 38, 4. In fact, #y(es;-s — €aj-14/—1) = £1€9j-2 — l1€a;.14/ 1 = (€5;_0C080;
+eg;-18In0 ) — (—ey;_95In8; + 5;.1C080 )a/ —1 = (€3j-2 — €;-14/ —1)(COSO; - o/ T sind})
= (egj-2 — €2j-1a/ —1)6XD (v/ =10;), and fyes; 5 + €;14/ 1) = (€52 + €3;-1 4/ —1)EXD
—4/=10;). Similarly we have by 7.4, 7.5,
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1Y, = YleAxp(«/A?l( — 01+ 0y -+ 05 + 04)/2),

1Y = Yiexp (—V/ —1(—0y + 0y + 05 + 0,)/2),
tY, = Ygexp«/ =0y 4 0y — 0y — 04)/2),

1Y, = Vyexp (—/=1(— 0, + 0y — 05 — 0)/2),

10.6
1Yy = YseXp ’\/ 1 —8y — 03+ 03 — 04)2),
1Y, = Yaexp —A/=1(—8; — Oy + O3 — 04)/2),
1Y, = Y4£3\xp '\//\—1 (—6y— 0z — 05+ 04)/2),
1Yy = Yexp(—v/—1—0, — 0, — 05 + 0/2),
17y = Zlexpf\/ 1(—0; — 0y — 65 — 0,)/2),
tZl Zlexp( A =1(=0; — 0y — 0y — 0,)/2),
tZg = Zzixp '\//‘\—1 01 -+ 02 o 04)/2)1
10.7 {Zy = Zyexp (—A/—1(0y + 0, — 03 — 04)/2),

tZg = Zg(/%\Xp(’\//\:—i(lﬂ - 02 + 03 - 04)/2)7
tZy = Zyexp (—/ —1(01 — 05 -+ 05 — 6,)/2),
tZy = Zexp/ —1(0y — 0y — 03 + 04)/2),
A _
tZ = Z©xp (—A/ =10 — Oz — 03 -+ 04)/2).

These formulae 10.5-10.7 give the proof of the lemma.
Putting ¢(W;¥3) = a1/2 for =1, 2, 3, 4, then we have (cf. [2], [4]))

RT) =20y, o7, ay a7l ag a7, @y, ag™, (qopopei/?],
Put »f = dspin(SE),  4C = Pepin@(IS), 4G = Psoin@SF),  v§ = Pspine(AAIF)) in

R(Spin(8)) and denote @ = jy* (f), b = jo* (49), ¢ = j* (4F), d = jo* (.§) in R(T).

10. 8 Lemma.
4
a = j*(0%) =D ) (e; + ;7Y),
i=1
b= ]21=(A_C_) = Z &1 a2 a2 oo Fal,
e1egtgea=—1
= jz*(dg) = Z a1 o5l pl? o fal?,

e38p6g68E4=1

= Jy*@C)) = fo¥ (2 (49) = ju*(AD) = 4 + D Jasi e

i#]
Proof. The first three formulae are the direct consequences of Lemma 10,1,

To prove the last formula, we shall use Lemma 9.3. Pick up two different mo-
4

nomials from 8 monomials in a:Z(aj—ij'l), multiply them and sum up C, =28
7=1

monomials (the result polynomial is denoted by as). Then we have a2~——4+Eam
i
a;; =d. Similarly we have by = ¢; = d. These show the last of the lemma.
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Recall that we have (cf. [2], [4]) by using Lemma 10.8
10.9 (Spln @) = Z[W5, »§, 4°, 457.

We have seen that Sy and Jes are Spin(9)-R-modules (cf. 6). Hence we have

two Spin(9)-C-modules 3 = Ju®gC and 32 = I3p@rC. Put 1§ = ¢Spm (35, o5

= ¢spin(e) (A4(I§), ,Usc‘ = Pspin(4A(IG)) and 4C = ¢Spin(9)((\o§23). Andu-: }et{; 71 ¢ T>Spin(9)

be the inclusion. Then we have easily the following
10. 10 Lemma. As a Spin(8)-R-modules,

301 = R @ 31,
323 = 3‘2 @ Js.

Hence we have in R(T)
(pl):1+a-1+2 —&—aj)
JHAC) =b + ¢ = H @/ +a ),

() =a+d, j§) = —a+d+be)
Therefore we see (cf. [2], [4]) that
10. 11 RSpin®) = Z[1€, 5, §, 4¢7,

11. F.-C-module Sg

Since F, is the automorphism group of J, J is obviously an F,-R-module.
Remember that the trace of every X & & is invariant undér the operation of I,
by Theorem 4.2. Let J, denote the set of X € § such that. tr(X) = 0. Then J, is
invariant under F,, so that &, is an Fy-R-module and & is decomposable into
the direct sum of two Fy-R-module R (which is spanned by E with the trivial
group action) and S ; I =R® I by

X= E—g—tr(X) + (X — E§-tr(X)).
And we have an Fy-C-module 3§ = J & rC.
‘Let T be the same maximal torus in Iy as in the sections 7, 10 and let j: .

T~ F4 be the inclusion.
. A1:1 Lemma. As a Spin(8)-R-module, we have

:R@R@S1@32@3‘3.
 Putting K =¢p(36), 5= prAXIC) and 2§ = ¢F4(/13(3‘oc ), then we have the
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following
11. 2 Proposition.
) =2+ (@ +b+o),
FE) =1+ 2a+ b+ c) + (ab + be -+ ca) + 3d,
o J*AS) = 3(ab + be + ca) + abe + 6d + 2a + b + c)d.

Proof. The first formula is the direct consequence of Lemma 11.1, To prove
the second formula, we shall use the result az=b, = ¢, =d in Lemma 10.8. Now,
FOS) =1+ 2a + b+ c) + (ab + be + ca) + as + by + ¢
=1+ 2(a+ b+ ¢) + (@b + be + ca) + 3d.

To prove the last, we shall apply the same technique as the above. Pick up 3
different monomials from ¢, multiply and sum up them (the result polynomial
is denoted by a;). Then we have a; = be — a by the direct calculation, Similarly
we have by =ca — b, ¢y = ab — ¢. Hence
JHS) =(a + b+ ¢) + 2Aay + by + ;) + 2ab + be + ca)
+ (@b + aze + bse + boa 4 co0 + ¢3b) + abe + (as + bs + ¢3)
=(a+b+c)+6d + 2(ab + be + ca) + 2a -+ b + c)d
+ abc + (bc —a +ca — b + ab —¢)
= 3(ab + be + ca) + abe + 6d + 2(a + b + c)d.
4
11.3 Remark. (1 + 8211 (1 + a)l + a;8)  TT (1 + o Pl e at™s)
i=1

e1ep8p64 =1

= 1+ PCI + SN + FHENE + -

12. F,-C-module §¢

The group F, operates on its Lie algebra &, in the natural way, that is, for

xeFyand o € Fy, xp & Fy is defined by

(59)X = x(p(x~1X)) for X e 3,
Thus §, is an Fy-R-module, whence its complex form §¢ = §QgrC is an F,-C-
module.

To decompose j{FS), we shall extend the operation of Spin(8). Let %" denote
the space of X & M with real diagonal elements. For d =(d,, ds, ds) € spin(8)
and X €MW", we define dX by

Ey Uiy Ugs & dgttyy daytiyg
12.1 dlusn &  Uey| =|dsfisr & dittas).

Usy Usz &3 dottsy  diitsg &3
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12.2 Lemma, For d € Spin(8), we have
A(XoY ) = dXodY for X, Yem

where XoY = ~(XY + Y*X*),
Proof. We shall show d(XoX)=dXodX for X € M". The (1,1)-component of
dXodX = %‘( 12 (dgtt10)(datinr) + (dottrafdatbar) + 812 -+ (daitar)dathin) + (dottar)(dettys)) = (use

1.1(3) = €% + (dsttse, dafin)) + (dattsy, dstlss) = &% + (tsg, Tas) + (g1, Hs) = %(512—*‘”12”21
+ Ugghyg + &% + Goyilys + Higilgr) = the (1, 1)-component of d(XeX). The (2, 3)-compo-
nent of 2dXodX = (dyts,)dyitss) + Exdithae + Exclittag -+ (dytiyoldatty) + Exdifige + Eodiilys
(since (dyiisy)dyttss) = (dattys)dattar) = dy(ustys) and similarly (dauyo)datty) = dyltygits)) =
di(tigrthyg + Eattag + Egthog + Uyatly; -+ Eatigy + Esflgs) = the (2, 3)-component of 2d(XoX).
About the other components the calculations are similar. Thus we have d(XoX)
= dXodX. By the polarization X - X + Y, we have d(XoY) = dXodY,
12.3 Lemma. For d = Spin@8) and A = M- N W', we have

dA = dA.

Proof. By Lemma 12,2, d(AoX)=dAodX for any X J. This shows that
d(AX — XA) = (dAYdX) — (dX)dA), i.e. dAX)=dAdX). Replacing X by d-'X,
then we have dA(d 1X)) =dAX for all X &. This proves the lemma.

Now, in j#: M(Fg) - M(T), we have

4
124&mmafﬁﬁ):C@C@C@C@®(W~+W’)@ o wirews"®

£1€pegea=—1

83/2®W 4/2® &) . W, I/Z@W 2/2®W 3/2®W84/2®11®1W1 I@Wjej,
£yEpeges= P47

Proof. We shall use the following notations G;; for 0=<i<j=<7:G,; is the
R-homomorphism of € satisfying

Gife;) = e;
Gife) = —e;
G, ier) =0 for ksti, j

(These G;; form an additive base of ®). We choose now an additive hase in
F¢  as follows :

H1 = Gm, Hz _ st, Ha = G45, H4 Gm,

~

~esj-atenj~1,/1

€9;-27024~1 /—1
X, — A 1y

AN
Jj 1 3 X] - Al 3
RO~ Y =1 < ~egi-atea -1,/ 1
Y, AGTTEL g e
_ TregjeaTesj-1y—1 7 oyezj-etesj-1 =1
Zp =4, , Zj= 44

for =1, 2, 3, 4 and
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Sis = Gog — Gig — (Gog + G —1, §12 = Gy — Gig + (Gog -+ G/ —1,
Sis = Gos — G153 — (Gos + GV =1, §13 = Goy — Gis + (Gos + GV —1,
Sis = Gos — Giz — (Gor + G/ —1, /5\14 = Gog — Gz + (Gor + GV —1,
Spy = Gas — G5 — (Gas + GV —1, §23 = Goy — Gys + (Gas + GaV/ —1,
Sos = Gog — Gz — (Gar + GV —1, /8\24 = Gy — Gar + (Gor + GeV/ —1,
Sss = Gy — Gsy — (G + GV —1, §a4 = Gy — Gsy + (Guy + Gsp)V/ —1
T1s = Gog + Gig + (Gog —Gi)V —1, /7\‘12 = Goy + Gz — (Gog — G1aV —1,
T1y = Gos -+ G5 + (Gos — GV —1, /Tls = Gos + G15 — (Gos — GV —1,
T1 = Gos + Gir + (Goy —GigV —1, /7\114 = Gos + Gir — (Goy — GV —1,
Ty = Gas + Gy + (Gas —GahV/ —1, /Tza = Gys + G5 — (Gas — G/ — 1,
Tos = Gog + Gyy + (Gay — GV —1, T24 = Gy + Gy — (Goy — GV —1,
Ty = Gy + Gaz + (Giy —Goo/ <1, Tys = Gug + Gaz — (Guy — G/ —1.

Then, for t=#0,, 0, 0, 0)e T, we have
tH; =H; for y=1, 2, 3, 4.

As for X, )?j, Y, ff\j, z;, /Z\j, we have the same formulae as 10.5—10.7 for
=1, 2 3, 4and

1S:; = Si; expV/—=1(0; + 0,), 15;; =S, exp(—/=1(0; + 0,),

tT,] = T” exp('\/:i (01 — 01)), t/Y\‘,] :/i‘” eXp(—“/\/—l 01- — 0]))

Some of them will be proved. For example, tY, = tZZ )

(eo—ex /=) ¢ ) O1-+02+03+604) /2 —
eo—ey J=1 Azeo e1 y=1)exp( /1 (—01+05+0s 4)/)“Y1(3Xp’\/‘—1(—01+02—|—03‘|‘04)/2)-

An another example 7Ty, = Tysexp(a/—1 (0 — 0,) will be proved. To do so, it is
sufficient to show that (4 7Tis)e; = (Tige)exp(n/ —1(0;—0s) for i = 0,1, -+, 7. For i=0,
(t1Ti)eo = ti(Tig(ti7'es) = tx(Tia€ocOS0; — e15indy)) = fy(—ep —ey v/ —1)cost — (—e; + €5
4/=1)sinby) = ti(—es — e/ —1)exp(n/—16;) = (—ey —ey/—1) exp (—v/—10)exply/—1
;) = (Tyge0)exp(n/—1(0; — 05)). For i =1,..., 7, it will be also veirfied analogo-
usly. Thus the proposition is proved.

Putting € = ¢p(FY), then we have by Lemma 12.4

12.5 Proposgition. 7*(xC)=a + b+ ¢ + d.

13. Complex representation ring R(F)
Each element w: T—T in the Weyl group W(Iy) induces an automorphism
w*: R(T) »R(T). Let R(T)W denote the subring of R(T) which is invariant
elementwise under these operation w*. Since j* : R(IFy) » R(T') is a ring monomo-
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rphism and the image of j* is contained in R(T)W([3], [5]), we will regard R(F))
as a subring of R(T)W; R(F,) < R(T)W. We shall determine the ring structure of
R(T)W. From Propositions 11.2 and 12.5, we have

13.1. Lemma. a+b+e¢, ab+ bc + ca, abe and d are polynomials in i$. 15,

&, and C. In fact,

a+b+e=1§—2
ab +be +ca = + 1§ — 3 — 3,
abe = 515 — 31§ + 1§ + € + 20§ ¢ — 22§ x€ + 5,
d= -+ —2 |
Let f € R(T)W, that is, f be a W{Fy-invariant polynomial. We know that
any W(Spin(8))-invaiant polynomial is representable as a polynomials in i, i§,

4, 49 (cf. 10) namely as a polynomial in @, b, ¢, d. Recall that the Weyl
group W(F,) is the semidirect product of W(Spin(8)) and &;, and each element of
©, induces a substitution of 3 factors a, b, ¢ (cf. 7.10). Hence, feR(T )WV is a
polynomial in the elementary symmetric functions a 4+ b +¢, ab -+ be + ca, abe
and d. Thus, from Lemma 13.1, f can be represented as a polynomial in Zlc,

%, 5, .

Next we have to show that 2§, 2§, 2§, and «C are algebraically independent.
In fact, we know that a, b, ¢, and d algebraically independent because R(Spin
(8)=12Z[a, b, ¢, d]. Hence a +-b 4+ ¢, ab - bc + ca, abc and d are also algebra-
ically independent. Using propositions 11.2, 12,5, a non-trivial algebraic relation
among ¢, i, 2§ and s yields a non-trivial algebraic relation among e +b
+e¢, ab +be + ca, abc and d. Therefore i§, i§, i§ and xC are algebraically in-
dependent. And we have Z[X$, 5, v§, «“]Jc RF)c RITW cZ[X, &, X, C].
Thus we can proved the following

13. 2 Theorem. The complex representation rving R(IF,) of Fy is a polynomial
ring LS, 2§, ¥, €7, where i§ is the calss of the Fy-C-module Ai(JS) for i=1,

2, 3 and € is the class of the Lie C-algebra §§ in R(F,).

14. Real representation ring RO(F,)
For a topological group G, we have two correspondence :

¢ : RO(G) —~ R(G), 7 : R(G) -~ RO(G),

where ¢ is a ring homomorphism induced by the tensoring ¢’ with C (that is,
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¢’ . MOG)~ M(G) is defined by ¢/(V) =V ® rC) and # is a homomorphism defined
by restricting scalars from C to R. As is well known, the relation #¢ = 2 holds.
If G is a compact group, then RO(G) is a free module generated by the classes
of irreducible G-R-modules, so that, the relation 7c = 2 implies that ¢ is a ring
monomorphsim,

Let 4, 43, 23 and « be the classes of Fy-R-modules Iy, 4%Jy), 4¥Ip) and Fe
respectively. Since we have obviously ¢(&;) = i§ for i =1, 2, 3 and ¢(x) =«C, ¢ is

“an epimorphism, so that ¢ is an isomorphism. Thus we have the following

14.1 Theorem, The real vepresentation ving RO(F,) is a polynomial ring Z[ 2,
Ao, A5, k| with 4 variables 2, 25, 13 and .

As for RO(Spin(9)) and RO(Spin(8)), we can discuss in the real range. Using
the fact that ¢ is an isomorphism, then we have by 10.9, 10.11.

14.2 RO(Spin(9) = Z[ s, 1, t, 4]

where p; is the class of A(Jy) for i =1, 2, 3, and 4 is the class of Jqs.

14.3 ROSpin(8))y'= Z[ vy, vy, 4., 4.7
where v; is the class of A(y) for i =1, 2 and 4., 4. are the classes of I, Js
respectively.
15. Relations of R(F) to R(Spin(9)) and R(Spin(8))
. k
L Spin(8) —» Spin(9) Do th
et e the inclusions.
i \ / !
F,
15.1 Theoxrem. In the diagram
RO(F))
I* 7
k*
RO(Spin(9)) ———————— RO(Spin(8))
namely, in ' - Y/ T P

o / . ~

Z[iuly e, Mg, A:l — Zl:vlv Vg, A-y A+]
we have
) = 14 + 4
PAg) = g1+ 29 + prg + 4 + pud

M2g) = 2p + 2pt0 — A+ papry + pups + pud -+ 2p0d
I*(K) = M2 + A,
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(k*)ul)zl%—vl

(
15.3 W¥lpn) = w1+ 2
E¥(pg) = —vy + vy + 4.4,
R) = 4 + 4,
M) =2+ v 4+ 4,
15.4 ) = L+ 20 + 4. + 4y) + wd. + A4, + dyvy -+ Bug
i#(2g) = 3 (ud- + A_dy + Ayvr) + middy + 6y + 2oy + 4o + Ay
) = v vy + 4.+ 4,

In the complex case, the velations between R(F,), R(Spin(9) and R(Spin(8)) are
quite analogous to the real case (add the upper suffix C). '

Proof. It suffices to show in the complex case. Since from Lemmas 11.1,
10.10 we have I = R® Iy ® I as a Spin(8)-R-module we have obviously the
first of 15.2. Using 9.2. the 2nd and 3rd of 15.2 are obtained from the first of
15. 2. Since the j;*-image of two sides of the last of 15.2 are hoth a¢ +b+c+d
in R(T) and j;* is an isomorphism, we see that the last of 15.2 is true. 15.3 and
15.4 are the direct consequences of Lemma 10.10 and Propositions 11.2, 12.5
respectively.
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