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   Introductien. A flat vector bundle over a smooth manifold Xis,' by definition,

a bundle which admits a connection with curvature O. It is a vector bundle

induced froma representation of xi(X). (Asada [1], Nomizu [8]). Moreover, we

can prove: "A vector bundle tvhich is induced from a rePresentation of rri(X) is

toPologically trivial tf and only if it adnzits a connection form {0di such that 0u=

01 U, where e is a global matrix valued form on X and de+0AO---O". (This theorem

is essentially proved by R6hrl in his study of Riemann-HilberVs problem. (R6hrl

[9], G6rard [4])). On the other hand, any connection form 0 with curvature O

of the trivial bundle e" satisfies dO+0AO=O and this 0 corresponds to a (unique)

class Z=Z(0) of Hom (zi(X), GL(n,F)>. (F==R or C). If g(z)is the bundle induced

from Z, then we have

            ker.D in CO (X; e") cy ker.d in CO (X; 6),

where D==d÷0 and CO (X; e) means the sheaf of germs of smooth cross-sections

   In this paper, we prove these theorems together with their relations between

the representative functions of X Their analogy for the differentiably trivial

holomorphic vector bundles are also stated. In the last paragraph, we also prove

"z(0) belongs in Hom (Ti(X), U (n)) if and only if there exists a Positive deLfinite matrix

valued smooth fttnctions A on X such that

            AO + (AO)* == dA,

zvhere B* means tB". This theorem has some relations to the theorem of Fuchs.

                         g 1. An exact sequence.

   We start from the following two lemmas.

    Lemma 1. Let fbe a matrix valued junction and ea 7natrix valued 1-form.,

Then the eqMation

(1) `if == .fO, (resp. cif= of),

has a local solution if and only lf
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(2) dO+0.e =: O,
and this solution is unique uP to the multiPle of constant matrices,

   Lemma 2. 111' the equation (1) is given on a simPly connected manijbld M, then

(1) has a gtobal solution on M. Moreover, we have

(3) det.f(x) 74O for all xEM if and only if detf(y) iLO for some yEM.

   Lemma 1 follows from Frobenius' theorem (Cartan [3] chap. 10). Moreover,

   .

           o = =hidxi,
               i
f is given by

              A           f= S (1 + h,dx,), (i is arbitrary).

     AHere S(1+Adt) means the product integral (Sasaki [10], g23). Then we have

lemma 2.

   On X) we set
GL(n, F), : the sheaf of germs of constant GL (n, ]i')-valued junctions.

GL(n, F)d : the sheaf of germs of smooth GL (n, F)-valued junctions.

M : the sheof of germs of smooth GL (n, li')-valued 1-.forms zvhich satisLfy (2).

   We note that Hi(X; GL (n, F),) and Hi(X) GL(n, F)d) are the sets of equiva-

ience classes of flat vector bundles and differentiable vector bundles respectively.

(Hirzebruch [6] S3).
   For these sheaves, we obtain trie following theorem by lemma 1.

   Thearem 1. 0n X) zve have the following exact sequence.

                           In i           HO(X; GL (n, F),)-HO (X; EJJI)-----> Hi (X; GL (n, F>,)-

             i
              >Hi(X; GL(n, Ii')d),

Hbre n2(f> = fLicly1 ti(0)uv = huhv-i were hb-idhu == 01 U. Moreover, we get

           6(0) == ti(0') if and only if

           e, = f-i6lf÷ fL-icly1 fEHO(X; GL(n, F)d).

   Note. If X is a complex manifold, then by Koszul-Malgrange's theorem

<Koszul-Malgrange [7]), we have the following exact sequence.

                         in" 6tt           HO(X GL(n, C)d)--> HO(X] SMO･i)-H'(X] GL(n, C).)-

             i
           -)p Eli(X) GL(7t, C)d)'
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Here GL(n, C). is the sheaf of germs of holornorphic sections of GL(n, C), MZO･i

is the sheaf of germs of matrix valued (O, 1)-type forms e such that Oe-l-eAe = O

and m"(f) == f-iOf

   We denote the universal covering space of X by XN. The projection from 5r to

K is denoted by P. Then by lemma 2, ,we get

            p:k(e) =h-idh, eEHO(X} EM).

For a matrix valued function f on X, we set fi'(x)=f<a-ix), aEr,i(X). Then we

may set
                     '
            h" =:= z.h, z is a homomorphism from zi (X> into GL(n, F),
                                                                     '
because P'(0) is invariant under the operation of zi (X). And by the uniqueness

of h, the equivalence class of z is determined by 0. Moreover, we obtain

   Lemma 3. {gl gti = Zag, g is a smooth matrix valued .fttnction on X} forms a

left F -right z" (He(X) gr(n, F)d) -modul. Here rc" (HO(X] gt(n, F)d) means thering

of all smooth matrix valued junctions on X evhich are invariant ttnder the oPerations

of the elements of ni (X).

   Lemrna 4. x becomes the characteristic homomorPhism of a bttndle in i-kernel

if and only if there exists a GL(n, F)-valued smooth junction h such that

(4) ha === z.h.

   Note. Since the diagram

                            i
            Hi(X) GL(n, F),)-H'(X; GL(n, F)d)
                         x<' Sor

                            Hi(X GL(n, F),)

is commutative, if there exists a GL(n, .F')-valued continuous function h' which

satisfies (4), then there exists a smooth h which satisfies (4). Here GL(n, F),

means the sheaf of germs of continuous GL(n, F)-valued functions.

   By theorem 1 and lemma 4, we obtain (cf. G6rard [4], R6hrl [9)],

   Theorem 2. The following conditions are equivalent :

(i) A flat vector bundle 6 is dipClerentiably trivial.

(ii) e has a connection form {eu} such that 0u=0[ U, whereebelongs t'n HO (X) MZ).

(iii) There exists a GL(n, li')-valued junction h on X zvhich satishes (4), where xe

    Hom (ni (X), GL(n, F)) is the characteristic homomorPhism of g. (Steenrod

   Note. Similarly, if X is a complex manifold and e is a holomorphic vector

bundle on X; then e is differentiably trivial if and only if e has a connection

form {0u} such that{euO,'}=={eO,i 1 U}, where eO,i belongs in HO(X, EMO,i). Moreover,
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by Grauert's theorem (Grauert [5]>, if X is a Stein manifold, then we may write

             p* (eo,i) = h-ioh, ee,iEHo(K swto,i).

Here h satisfies '

            ha =:= x.h, az.=O, Z..=Z.rZ.,

ancl since hniah = h'rriOh' implies h' == gh, ag= O, we may consider

            {Zti}rNu{Za'} if and only if X.'=:gaXagni, Og=O.

Hence we may consider {Xa} to be an element of H' (zi (X), GL(n, Cw (jt))). Here

C,,(X) means the ring of holomorphic functions on XL

                                                  '
                 ss2. EIIiptic complexes associated with E".

   If a" is the n-dimensional trivial vector bundle over X then eEHO(X; swt)

becomes its connection form with curvature O and the converse is also true.

Hence setting ･
            Dop =: Deg = (d+e)g,

we have the following sequence. Here CP(X; E'i)-"vCP(X)(g>F'i is the group of smooth

e"-valued p-forms on X for any P, (PlO), and m=dim.X

(s> co(x; E")4ci(x; E")=2->.......liL>c,n(x ,n).

Since DD=dO+0Ae is equal to 0 and the symbol sequence of (5) is exact (Asada

[2]), (5) is an elliptic complex. Moreover we have .

   Lemma 5. 1]f Dg is equal to O, then g is written as D¢ locally.

   Proof. We set 01 U == hu'idhu. Then on U, D g is equal to O if and only if

d(hug) is equal to O. Hence by Poincare's lemma, we may set <with suitable U)

            hcmp = d(ti.
                               '
From this, we get g ::= D(humaito), because e1 U =: hu"dhu.

   By lemma 5, we have

(6) Be'(X, E")/DCP-'(X; e") =:: H7'(X; BeO(XL E")).

Here BeP(X) e") is {qlgECP(X; E"), Dg=:O}.

   On the other hand, if E is a flat vector bundle, then we obtain the following

                   d dd(7) CO(X, e)-Ci(X; e)-･･････------>CM(X; e).

If e is in 5-image (i.e. in i-kernel), then setting 6=ti(0), we get the following
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                   d dd           Co(X; 6)-Ci(X) e)--->･･････-cm(x, g)
             h#T . h#T .                                     . h#T

           CO(X, e'i)--Ci(X di)--->-･････ >CM(X e'i).

Here h#(g)={h[up}, where hum'dhu=01 U. By this diagram, we have

   Theorem 3. BeO(X, e") is isomorPhic to BO(X, g-), where Be(X; g') is {flfE

CO(X; e), c(f=O}. in general, we get

           BP(X, e)/dCPLi(XL E) :r:BoP(X; e'i)/DCP-'(XL E").

Moreover, the elliPtic comPlexes (5) and (7) are equivalent if 6 = O(e).

   Proof. We need only to prove the equivalence of (5) and (7) which follows

from the commutativity of the diagram

                   o(d) o(d) a(d)
           o -->- rc:ic(e) - T;ls(exT*) - ･-･･･- D n}ls(gcibA"tT,k) -> o

           h'ts" .(D) h"A a(D) a(D)h"T
           O --> z"(s") ---> ff*(s'iop T'k) - ･-････ -----> rc*(s'iop AMT*) -> O.

Here a(d) and a(D) mean the symbols of d and D.

   In general, if i(e) := i(e'), then setting g == {guv},

6' == {hu(x)guvhutx)-i}, we have the elliptic complexes

                   d dd(8) CO(X; e,)-Ci(X] 6t)-･･････-Cni(X) 6,),

                   D DD
(g) Co(X, c-)--> Ci(X) e) ----> ･･････-CM(X) 6),

Where D=d+eu, eu=hu-idhu; Then since the diagrams

             d ad     co(x; c' t) D ci (x ei) ---> ･･･ ny ･･ > cm(x, Er>

      h#T D h#TD D                                    h,T

     CO(X, g) --->Ci(X] e) ---->････-･---->Cm(X; g),

             a(d) o(d) a(d)
     o -> rt*(gr) ---> z*(etcg) T:k)- ･･････ -> T:i:(etopAmT*) --> o

        h"' A.( D) h"T a(D) o( D) h"                                      T

     O -> n"(g) - T"(g"(29T") - ･･･-･･ --> n*(gopA"'T*) -> o,

are commutative, the elliptic complexes (8) and (9) are equivalent. ･

   Note. Similarly, if g and e' are differentiably equivalent holomorphic bundles,

then the elliptic complexes

                   o oo           co(.x; 6t)---->co･i(x, e,) >･-････ >co･m(x er),

                   DU Dtt Dtt
           Co(X; e) ---> DO･i(X] g) ---> ･･････ --> ce･,n(x; g),
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are equivalent each other. Here, setting gE' == {huguvhv-i}, g= {gu･T?[}, D" means

O+huh'Ohu, 2m=dim.X(i.e. m=the comPlex dimension of X) and CO･P (･X, e) is

the group ot' smooth (O, P)-type forms with coeflicients in e.

        g3 Bundles induced frem tke represeRtation of rri (X) in U (n).

   Since -i (X) may not be a finite group in general, Hom (Ti (X), U(n)) (or Hom

(rri (X), O (n))) may be different from Hom (ffi (X), GL (n, C)) (resp. Hom (rri (X),

GL (n, R))). But since U(n) is a subgroup of GL (n, C), there is a map

            e =: eu : Hom (fft (X), U (n)) -)h Hom (ni (X), GL (n, C)).

In this g, we characterize these bundles6 that belong to i-kernel and whose

characteristic homomorphisms belong to t-image.

   Theerem 4. The characteristic homomorPhism of g"=o"(0) belongs to c-image if

and only if there exists a Positive dofnite matrix valued smooth junction A on X

sztch thal

(10) AO÷(AO)*-dA.
   Proof. If g =- o"(0), then setting

            p"(0) = h-idh, ha := Xah,

the characteristic homomorphism of e is the class of z. If z is in c-image, then

by lemma 4, we get

(11) h':`=Ah-i, Aa=A, oErri(X).

   By (11), A must be a function on X and as A=h"h, A is a smooth positive

definite matrix valued function, Furthermore, since e* = dh*h*ni, we have

            ev ==dAA-i - AOA-i,

which is equivalent to (10). This proves the necessity.

   On the other hand, if 0 satisfies (10), then we obtain

(l2) h:k := Ah-iC,
where C is a constant matrix and since C == hA"h*, C is a positive definite matrix.

Therefore we may set

(13) C== BB", B is a (constant) regular matrix.

Using this B, we set h' =B-ih. Then we have

            h'-idh' = p*(0), (h')a = B-ix.Bh',

and by (12), (13), we get

            (h')* =: Ah-iB, ((h')*)o == (h')*(B-iZ.B)-i.
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Hence (B-'X.B)']` is equal to (B-'XtiB)-i. This proves the sufllciency.

   Corollary. 11f e ::= ti<e) is a eomPlex line bztndle, then the characteristic homo-

morPhism of g" is indztced from a rePresentation of rri (X) in U U) if and only if

                                                        "
(14) e+o .., clyc,

tvhere f is an arbitrary smooth real valued .fletnction on Xl

   Proof,. Since n == 1, the condition (10) is rewritten as

            e+o'i` -m AmidA = dlogA,

Then as e*' := e, and logA is an arbitrary smooth function on X, we have the

corollary.

   Note. If n=: 1, then GL<1, C) =: R'xU(1), where R' is the multiplicative

group of all positive real numbers, and we can prove the characteristic homo-

morphism of e= o"(g) belongs in eR(Hom (Ti <X>, GL (1, R))) if and only if

(15) gg+go=dg, Ig]==1.

   On the other hand, since we get

            ker. i - Hi(X, C)/i"(Hi(X] Z)), i.IC n = 1,

Setting z=:ziz2, ziEHom(rti(X), R'), z2EHom(rci(X), U(1)), there are functions A,

f2 on X such that

            fia =] Xiafi, Aa == Z2ak, fiXO, hlO on X;

if z is a characteristic homomorphism of a bundle e::= ti(e) in ker.i. Hence we

have

(16> 0= P"'i(dlogfi) + P*-i(dlogk) + dlogg,

            g is a smooth function on Xand g#O on XL

Since HO(X; M'l) is the group of all closed 1-forms on X] we have by (14), (15) and

(16),

(17) tu =g+e+ clyCL to is a closed 1-form on .)C g satisfies (15), 0 satisfies (14).

   In the same way, we can prove

   Theorern 5. The characteristic homomorPhism of e:= ti(e) belongs to

c(Hom (r,i (X), O(n)) if and only ijC there exists a Positive dofnite smooth matrix

valzted fttnction A on X such that

(18) AO+t(AO) == dA. .
    Example. We assume X = Ci-{zi･･-･･･z.}, then the characteristic homo-

morphism of 6(e) belongs in etiHom(ffi (X), U(1)) if
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                 iil             0 := i=i z t" zi + d 10g L evi are real numbers.

Similarly, the .chracteristic homomorphism of o"(0) belongs to

tR (Hom(rti(Xi, GL (1, R))) if

                                       tt             0 ::=i..,11 (EizP,' +dlogL Pi are real numbers.

Hence e has poles of order at most 1 on {zi,･････････,z.} if there exist pi,･･････,pm

such that

              Iim ]z-zilpifiz) == O, i= J, ･･･ny･･,m.

              z->zi
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