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Introduction. A flat vector bundle over a smooth manifold X is, by definition,
a bundle which admits a connection with curvature 0. It is a vector bundle
induced from a representation of = (X). (Asada [1], Nomizu [87]). Moreover, we
can prove: “A wvector bundle which is induced from a representation of wm(X) is
topologically trivial if and only if it admils a connection form {0y} such that 0y=
0| U, where 0 is a global matrix valued form om X and df+0,6=0". (This theorem
is essentially proved by Roéhrl in his study of Riemann-Hilbert’s problem. (Réhrl
[9], Gérard [4]). On the other hand, any connection form ¢ with curvature 0
of the trivial bundle ¢" satisfies df0+0.0=0 and this # corresponds to a (unique)
class X=%(0) of Hom (7y(X), GL(n, F). (F=R or C). If &()is the bundle induced
from %, then we have

ker. D in C° (X, ¢") >~ ker.d in C° (X, &),
where D=d-+60 and C° (X, & means the sheaf of germs of smooth cross-sections
of &. .

In this paper, we prove these theorems together with their relations hetween
the representative functions of X. Their analogy for the differentiably trivial
holomorphic vector bundles are also stated. In the last paragraph, we also prove
“4(60) belongs in Hom (=(X), U () if and only if there exists a positive definite matrix
valued smooth functions A on X such that

A+ (AGY = dA,

where B* means *B”. This theorem has some relations to the theorem of Fuchs.

§ 1. An exact sequence.
We start from the following two lemmas.
Lemma 1. Let f be a matrix valued function and 6 a matrvix valued I1-form. -
Then the equation

1) df = f0, (resp. df =0f),

has a local solution if and only if
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() dg + 0,0 =0,

and this solution is unique up to the multiple of constant matrices.
Lemma 2. If the equation (1) is given on a simply connected manifold M, then
(I) has a global solution on M. Moreover, we have

(3) det. f(x) %0 for all xeM if and only if det. f(y) %40 for some yeM.

Lemma 1 follows from Frobenius’ theorem (Cartan [37] chap. 10). Moreover,
setting

0 = Zh,dxh

f is given by
f= S(z 1 hdx), (i is arbitrary).

Here S(Z + Adt) means the product integral (Sasaki [10], §23). Then we have
lemma 2.

On X, we set
GL(n, F),: the sheaf of germs of constant GL (n, F)-valued functions.
GL(n, F),: the sheaf of germs of smooth GL (n, F)-valued functions.
M : the sheaf of germs of smooth GL (n, F)-valued 1-jforms which satisfy (2).

We note that H{X, GL (n, F);) and H{(X, GL(n, F),) are the sets of equiva-
lence classes of flat vector bundles and differentiable vector bundles respectively.
(Hirzebruch [6] § 3). .

For these sheaves, we obtain the following theorem by lemma 1.

Theorem 1. On X, we have the following exact sequence.

H(X, GL(n, F))—> HO (X, M)—> H' (X, GL (n, F))—>
~'5> H{X, GL(n, F),),

Here m{f) = fdf, d0)uv = huhy™ were hy='dhy = 0| U. Moreover, we get

86) = §(¢") if and only if
0 = f1f + f1df, feHYX, GL@#n, F),).

Note. If X is a complex manifold, then by Koszul-Malgrange’s theorem
(Koszul-Malgrange [7]), we have the following exact sequence.

m” 8"
HY(X, GL(n, C),)—> HYX, M>1)—> HYX, GL(n, C)) —>

s HY(X, GL@m, C)y).
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Here GL(n, C), is the sheaf of germs of holomorphic sections of GL(n, C), IM®!
is the sheaf of germs of matrix valued (0, 1)-type forms # such that 80--6.0 = 0
and m"(f) = f14 1.

We denote the universal covering space of X by X. The projection from X to
X is denoted by p. Then by lemma 2, we get

PHO) = htdh, 0 HYAX, M)

For a matrix valued function f on X, we set fo(x)= flo™'x), o7 (X). Then we

may set
h? = ysh, y is a homomorphism from =; (X) into GL(x, F),

because p*(#) is invariant under the operation of z; (X). And by the uniqueness
of 7, the equivalence class of y is determined by 6. Moreover, we obtain

Lemma 3. {g|g°= %.g, g is a smooth matrix valued function on X3} forms a
left F -vight =* (HYX, glin, F),) -modul. Here =* (HYX, ¢l(n, F),;) means the ving
of all smooth matrix valued functions on X which are invariant under the operations
of the elements of =, (X).

Lemma 4. y becomes the characteristic homomorphism of a bundle in i-kernel
if and only if there exists a GL(n, F)-valued smooth function h such that

{4) W = %sh.

Note. Since the diagram

H\(X, GL{n, F)g\ —> Hi(X, GL{n, F),)
i
l:
\H YX, GL(n, F),)
is commutative, if there exists a GL(n, F)-valued continuous function A’ which
satisfies (4), then there exists a smooth % which satisfies (4. Here GL(n, F),
means the sheaf of germs of continuous GL(#, F)-valued functions.
By theorem 1 and lemma 4, we obtain (cf. Gérard [4], Réhrl [9)],
Theorem 2. The following conditions are equivalent :
(i) A flat vector bundle ¢ is differentiably trivial.
(ii) & has a comnection form {0y} such that 0y=01|U, where § belongs in H° (X, M.
(iii) There exists a GL(n, F)-valued function h on X which satisfies (4), where y&
Hom (= (X), GLn, F)) is the characteristic homowmorphism of &. (Steen?od
[11], §13).
Note. Similarly, if X is a complex manifold and & is a holomorphic vector
bundle on X, then ¢ is differentiably trivial if and only if & has a connection
form {0y} such that {0,%1}={6%1]| U}, where ! belongs in HYX, IM"1). Moreover,
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by Grauert’s theorem (Grauert [5])), if X is a Stein manifold, then we may write
(Y = h~Bh, 1eHY(X, ML),

Here & satisfies

he = Lok, 0o = 0, Xor=X1 %,
and since ™%k = W'~'0k' implies W' = gh, 0g = 0, we may consider
{2 3~{7,3 if and only if ¥,/ =ge¥,g7!, 8g=0.
Hence we may consider {%,} to be an element of H'(z; (X), GL(n, C, (X)). Here
Co(X) means the ring of holomorphic functions on X.
§ 2. Elliptic complexes associated with ¢".

If & is the n-dimensional trivial vector bundle over X then #H%X, M)
becomes its connection form with curvature @ and the converse is also true.

Hence setting
Do = Dogp = (d+0)p,

we have the following sequence. Here C/X, &)>xCHX)QF" is the group of smooth
¢"-valued p-forms on X for any p, (p = 0), and m = dim. X.

. D 5 »
(5) CO(X, E") .y CI(X, (-:") N T —_— C"I(X, En).

Since DD=df-+}0,0 is equal to 0 and the symbol sequence of (5) is exact (Asada
[2]), (5) is an elliptic complex. Moreover we have

Lemma 5. If Dy is equal to 0, then ¢ is written as D¢ locally.

Proof. We set 6| U = hy'dhy. Then on U, D ¢ is equal to 0 if and only if
d (hpe) is equal to 0. Hence by Poincaré’s lemma, we may set (with suitable U)

ho = do.

From this, we get ¢ = D(hy '), because 6| U = hydhy.
By lemma 5, we have
(6) B X, ¢"/DCPY(X, &) = HHX, BsX, &").
Here Bo?(X, ") is {¢] oeC¥X, "), Dp=0}.
On the other hand, if ¢ is a flat vector bundle, then we obtain the following
elliptic complex

7 X, &)~y CUX, £)—y e —y CP(X, &),

If £ is in §-image (i.e. in i-kernel), then setting & = d(6), we get the following
commutative diagram
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7 d d
C(X, 5);_,@()(, P — > C"(X, &)
]’L# b I’L# o 5 h,#
CUX, ) —r CUX, &)= oo ——CMX, &)
Here h#p) ={hup}, where hy-‘dhy=6|U. By this diagram, we have
Theorem 3. ByX, ¢") is isomorphic to B° (X, &), where B*(X, &) is {f|fe
CYX, &), df=03}. In general, we get

BYX, £)/dCt-\(X, &~ Bo¥(X, ¢")/DCP-1(X, &").

Moreover, the elliptic complexes (5) and (7) are equivalent if & = ().
Proof. We need only to prove the equivalence of (5) and (7) which follows

from the commutativity of the diagram

R ON _a(d) old) ﬂ
0> TL'"‘(E) —> TE'}‘(E(? TY) RN — Tf"(&@/lmT"z) 30
By M oD) oD

0 —> Efﬁ(sn) 3 71‘*(5"@ T:'{-) A 3 TC'*(S”@ Am T,<) N 0.

Here ¢(d) and ¢(D) mean the symbols of 4 and D.
In general, if (&) = i{(&'), then setting & = {guv},
& = {hulx)guvhvix)™}, we have the elliptic complexes

d d d

(8) CO(X) EI) —> CI(X: 5,) R —> Cm(Xy 5’)7
D D D

(9) CYX, &) ——> CYX, &)—> -cont — C"(X, &),

where D = d+0y, 0y = hy-'dhy. Then since the diagrams

d d d
CUX, &) CUX, E)—p wres > C(X, EN)
h;;T D h#T D D Iy

CUX, &) —> CHX, &) —> s —> C(X, &),

o(d) o(d) o(d)
0> 7¥E) > T (E QT*) >+ —> " E' QAT > 0

“Tapy 1 apy wpy #
O > 7[*(6) _—> n—ﬁ(é‘@T‘ﬁ) Y eeenen — 7[*(6@/ . T:'ﬁ) —> 0’

are commutative, the elliptic complexes (8) and (9) are equivalent.
Note. Similarly, if & and ¢’ are differentiably eyuivalent holomorphic bundles,

then the elliptic complexes
9 J a
CX, &) —> COYX, &)—> o —> (X, &),
D" D" D" '
CyX, &)—> DMWY(X, &)— oo — CH"( X, &),
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are equivalent each other. Here, setting & = {hygyvhv—'}, & = {guv}, D" means
3 + hy~'0hy, 2m=dim. X (i.e. m = the complex dimension of X) and C%? (X, &) is
the group of smooth (0, p)-type forms with coefficients in &.

§3 Bundles induced from the representation of =, (X) in U (n).

Since #; (X) may not be a finite group in general, Hom (x, (X), U () (0¥ Hom
(m, (X), O0(n)) may be different from Hom (z, (X), GL (n, C)) (resp. Hom (= (X)),
GL (n, R))). But since U(n) is a subgroup of GL (n, C), there is a map

¢=¢y: Hom (= (X), U (®)—> Hom (z, (X), GL (n, C)).
In this §, we characterize these bundles £ that belong to i-kernel and whose
characteristic homomorphisms belong to ¢-image.
Theorem 4. The characteristic homomor phism of &=6(0) belongs to c-image if

and only if there exists a positive definite matrix valued smooth function A on X

such that
(10) A + (A9 = dA.
Proof. If & = §(6), then setting
PHO) = h-'dh, he = %;h,
the characteristic homomorphism of & is the class of y. If y is in ¢-image, then
by lemma 4, we get
(11) h* = Ah-1, As = A, s=m(X)

By (11), A must be a function on X and as A = A*h, A is a smooth positive
definite matrix valued function. Furthermore, since 6* = dh*h*~t, we have

0% —dAA- — AGA,

which is equivalent to (10). This proves the necessity.
On the other hand, if ¢ satisfies (10), then we obtain

(12) h* = Ah—'C,
where C is a constant matrix and since C = hA-11*, C is a positive definite matrix.

Therefore we may set
(13) C = BB*, B is a (constant) regular matrix.
Using this B, we set A’/ = B-th. Then we have
W=dh' = p¥0), (') = B~%,Bl,
and by (12), (13), we get
(WY = AR1B, (('Y¥y = (W'Y*(B-12.B)'.
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Hence (B-'%.B)* is equal to (B-'%,B)-*. This proves the sufficiency.
Corollary. If & =80} is a complex line bundle, then the characteristic homo-
mor phism of & is induced from a vepresentation of = (X) in U (1) if and only if

(14) 0+0 = df,
where f is an arbitrary smooth real valued function on X.
Proof. Since n = I, the condition (10) is rewritten as

0+ 0% = A~1dA = dlogA.
Then as #* = ¢, and logA is an arbitrary smooth function on X, we have the
corollary.
Note. If n =1, then GL (I, C)= R+xU (1), where R* is the multiplicative
group of all positive real numbers, and we can prove the characteristic homo-
morphism of & = §lp) belongs in g (Hom (r; (X), GL (I, R)) if and only if

(15) 08 + gp=dg, |g|=1.
On the other hand, since we get
ker. i = H\(X, C)/i*HYX, Z)), if n=1,

Setting y=yx1%2, 11€Hom(z(X), R*), yecHom(x(X), U(I)), there are functions fi,
fs on X such that

S =Awfi, Jof =Aefe, 170, o720 on X,

if ¥ is a characteristic homomorphism of a bundle & = @) in ker.i. Hence we
have

(16) 0 = p*-(dlogfy) + p*-Ydlogfs) + dlogg,
g is a smooth function on X and g0 on X,

Since HYX, M) is the group of all closed 1-forms on X, we have by (14), (15) and
(16),

(17) w=¢+0+df, ois a closed 1-form on X, ¢ satisfies (15), 0 satisfies (14).

In the same way, we can prove

Theorem 5. The characteristic homomor phism of & =d(0) belongs to
¢ (Hom (a; (X), O ®) if and only if there exists a positive definite smooth matvix
valued function A on X such that

(18) A6 + {Af) = dA.

Example. We assume X = Ct—{z;----- Z,}, then the characteristic homo-
morphism of §(¢) belongs in ¢«{Hom(r; (X), U (1)) if
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R4

6:22

i=1 i

+ dlog f, «, are real numbers.

Similarly, the chracteristic homomorphism of §(0) belongs to
¢r (Hom (=, (X, GL (1, R))) if

o v/, :
0 _Z"Z_:Z_Jr dlog f, B; are real numbers.

i=1
Hence # has poles of order at most I on {zq, - , 2, if there exist pg, - ) Om
such that
lim. |z—z;| #if(2) = 0, i =1, .
Z—»z;
References

[1). Asapa, A, ! Connection of topological vector bundles, Proc, J. Acad., 41 (1965), 919-
922.

(2]. Asapa, A. ! Elliptic semi-complexes, J. Fac. Sci. Shinshu Univ., 2 (1967), 1-17.

[3]. Cartan, E. : Legans sur les invariants intégraux, Paris, 1922,

[4). Gerarp, R, : Le probléme de Riemann-Hilbert sur une variété analytique complexe,
C. R. Acad. Sc. Paris, 264 (1967), 1133-1136.

[(5]. Graugert, H. : Holomorphe Funktionen mit Werten in komplexen Lieschen Gruppen,
Math, Ann,, 133 (1957), 450-472.

[63. Hirzesrucu, F. : Neue topologische Methoden in der algebraischen Geometrie, Berlin, 1956,

[7). Koszui, J. L.-MaLcrance, B, : Sur certaines structures fibrées complexes, Arkiv der
Math., 9 (1958), 102-109.

[8]. Nowzv, K. : Lie groups and differential geometry, Tokyo, 1956,

(9]. Roare, H. : Das Riemann-Hilbertsche Problem der Theorie der Linearen Differential-
gleichungen, Math. Ann,, 133 (1957), 1-25.

[10]. Sasaxi, S. : Riemannian geometry (in Japanese), Tokyo, 1957,

[11]. Steenrop, N. E. : The topology of fibve bundles, Princeton, 1951,



