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Visual systems & control on polynomial space and
its application to sloshing problems

Satoru Sakai and Masakazu Sato

Abstract— This paper proposes a novel approach for camera
based modeling and control for a large class of continuous sys-
tems and the validity is confirmed by liquid sloshing experiments.
It is an unsolved problem to design a model based control in
non-planar sloshing cases. This is because the whole shape of the
liquid surface is a complex curve (a set of an infinite number of
points) in coordinate spaces. This paper solves this problem. First,
the whole shape of the liquid surface corresponding to the output
measured by a camera is a single point in a polynomial space
as well as the input and the state. Second, without any physical
parameter identification, input-output modeling on polynomial
space, unlike existing types of modeling, captures the whole
dynamics even in non-planar sloshing cases and is linked to
design of implementable controllers. Finally, in the presence
of occlusion, the non-planar sloshing are controlled well by
state estimation on polynomial space without adding any image
processing technology.

Index Terms— Visual systems & control, Hilbert space, con-
tinuous systems

I. INTRODUCTION

Visual feedback will be a key technology in this century.
Especially, the intersection of two technologies, control sys-
tems technology and image processing technology, has become
a focus. This paper proposes a novel approach for camera
based modeling and control. The proposed approach is directly
applicable to a large class of continuous systems (continuum
system) that is too difficult for existing approaches. The
validity of the proposed approach is confirmed by liquid
sloshing experiments which are important in the fields of civil,
chemical and aerospace engineering as well as robotics and
automation [1] [2] [3].

Fundamental problems in modeling and control of liquid
sloshings are unsolved [4]. Physical modeling [5] [6] has
been discussed to capture the whole dynamics including the
interconnection between the fluid dynamics (liquid dynamics)
[7] and the mechanical dynamics (the tank dynamics, the
vibration absorber dynamics and the other structural dynamics)
[8], assuming simple boundary conditions. Physical modeling
also captures the input (e.g., the driving force for the tank
dynamics) in coordinate spaces (n-spaces) R

n in many cases
or Cn in case of the Euler formula expression A exp(jω).
However, the resultant input-state signal mapping is nonlinear
1 and physical modeling is too complex for applying existing
designs in nonlinear systems & control (e.g., [9] [10]) even in
simple boundary conditions.
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1The corresponding state space equations are not discussed here because
the equations can be nonlinear even if the input-state signal mapping is linear
[9].

Without assuming simple boundary conditions, numerical
modeling [11] [12] can capture the whole dynamics, namely,
the computational fluid dynamics interconnected to the me-
chanical dynamics forced by the input. But it is clear that nu-
merical modeling cannot be linked to design of implementable
controllers due to the heavy computational cost.

Equivalent mechanical modeling [2] [5] [13] [14] [15], is
a practical reduction from the original liquid dynamics to a
mechanical dynamics in which forces and moments acting on
the tank wall are equivalent to those in the original liquid
dynamics. Equivalent mechanical modeling is less complex
and may be linked to design of implementable controllers.
For example, in planar sloshing cases [5], the original liquid
dynamics is reduced to single-pendulum dynamics [16] [17]
[18] or mass-damper-spring dynamics [19] [20]. Since the
interconnection between these reduced mechanical dynamics
and the tank dynamics generates another mechanical dy-
namics, equivalent mechanical modeling is not complex for
applying existing designs in mechanical systems & control
(e.g., [21] [22]). In addition, the designed controllers are
implementable because the mechanical configuration, namely,
the liquid inclination has been already measured by a level
sensor in planar sloshing cases.

However, in non-planar sloshing cases [5] [23], the designed
controllers are not implementable. Although the original liq-
uid dynamics is reduced to spherical pendulum dynamics
or multiple-pendulum dynamics, these mechanical configura-
tions, that is, the whole shape of the liquid surface, is not
always measured by a few level sensors.

In the absence of occlusion (visual obstacles), the whole
shape of the liquid surface is measured by a camera instead
of a few level sensors. However, to our knowledge, for
control, the vertical displacements of only a few points (e.g.,
an edge point contacting to a tank wall) on the liquid surface
are measured by image processing technology [19]. That
is, a camera just plays the role of a few level sensors and
the whole shape of the liquid surface is never used. This is
because the whole shape of the liquid surface is a set of an
infinite number of points in the coordinate space R

n. If one
increases the number of measured points on the liquid surface,
equivalent mechanical modeling is not linked to design of
implementable controllers due to the heavy computational
cost again.

On the other hand, conventional input-output modeling
(system identification) on coordinate space [2] [24] [25] R n

in case of a state space expression or Cn in case of a
transfer function expression is almost always linked to design
of implementable controllers for linear time invariant (LTI)
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TABLE I

A CLASSIFICATION OF MODELING, CONTROL DESIGN AND IMPLEMENTATION FOR LIQUID SLOSHINGS

Modeling Control design Implementation
Physical modeling Whole dynamics , white-box on Rn, Cn (Nonlinear systems & control) Impossible
Numerical modeling Whole dynamics+ — Impossible
Equivalent mechanical modeling Whole dynamics , white-box on Rn Mechanical systems & control Impossible*
Conventional input-output modeling Partial dynamics♦ , black-box on Rn, Cn Input-output/linear systems & control Possible
Proposed visual modeling Whole dynamics , black-box on Pn−1[-1,1] Input-output/linear systems & control Possible

+ = “Numerical modeling captures chaotic sloshing (non-planar sloshing with overturned waves) cases that the other types of modeling do not.”
∗ = “Equivalent mechanical modeling is linked to design of implementable controllers in planar sloshing cases. ”
♦ = “Conventional input-output modeling captures planar sloshing cases as long as the liquid inclination and its velocity are small.”

systems. However, conventional input-output modeling cannot
capture the whole dynamics because a signal mapping from
the input to any liquid surface displacement corresponding to
the output is “strongly nonlinear” on coordinate space in non-
planar sloshing cases. Indeed, non-planar sloshing is called
nonlinear sloshing even in recent works [5] [7].

Overall, it is an open problem to develop new type of
modeling which captures the whole dynamics of both the
liquid and the tank even in non-planar sloshing cases and
which is linked to design of implementable controllers.
Similar problems exist in other continuous systems.

This paper proposes a novel approach to solve this prob-
lem and visual systems & control on polynomial space is
introduced. Since a polynomial space is isomorphic to a
coordinate space R

n [26], it is possible to execute input-output
modeling (system identification) on polynomial space just as
on coordinate space. This modeling is justified if a signal
mapping from the input to the whole shape of the liquid
surface is “almost linear” on polynomial space even when
a signal mapping from the same input to any liquid surface
displacement is “strongly nonlinear” on coordinate space.

It is NOT a main contribution of this paper to see the
whole shape of the liquid surface as a polynomial (a single
point in the polynomial space). This is because the whole
shapes of some continuous systems [27] [28] are already
seen as the specific functions (not polynomials but the Bessel
function [5] and the Riesz function [2] etc.) from the viewpoint
of dynamical systems without inputs. In a similar way, the
whole shapes of other continuous systems [29] are seen as the
classical Fourier series from the viewpoint of signals instead
of dynamical systems.

In this paper, from the viewpoint of dynamical systems
with inputs (signal mapping), not only the whole shape of
the liquid surface corresponding to the output but also the
input and the state are polynomials. The output is a visible
polynomial measured by a camera and the input is known and
a visualizable polynomial. The state is unknown and never
visualizable but exists and causes the liquid sloshings.

Without any physical parameter identification, the whole
dynamics of both the liquid and the tank is captured by
executing input-output modeling (system identification) on
polynomial space even if the output is a high-degree polyno-
mial in non-planar sloshing cases caused by complex boundary
conditions or the inputs. The proposed visual modeling (the
input-output modeling on polynomial space) is easily linked

to design of implementable controllers since it is also possible
to execute existing control designs on polynomial space just
as on coordinate space again. In this paper, the validity of
the proposed visual modeling is confirmed by liquid sloshing
experiments in the absence of occlusion at first.

In general, occlusion is an important issue in visual feed-
backs. The closed-loop stability or control performance is
lost in the presence of occlusion between a camera and a
plant. Since the shape and size of the visual obstacles are
unknown in actual control situations, their effects are difficult
to be rejected by image processing technology. To solve this
occlusion problem, in this paper, the camera occlusion effects
are modeled as disturbances in the polynomial space and then
rejected by executing state estimation on polynomial space.
In other words, the occlusion problem is solved by control
systems technology instead of image processing technology.
This is a new result and important at the intersection of the
two technologies.

The rest of this paper is organized as follows. In Section II,
time-varying polynomial space is reviewed. In Section III, the
modeling of the liquid sloshing is numerically and experimen-
tally discussed on polynomial space. It is confirmed that the
proposed visual modeling captures the whole dynamics even
in non-planar sloshing cases. In Section VI, the control of the
liquid sloshing is numerically and experimentally discussed
on polynomial space. It is confirmed that the proposed visual
modeling is linked to design of implementable controllers.
Furthermore, the camera occlusion effects are rejected by
executing state estimation on polynomial space. Finally, this
paper is concluded in Section V.

II. TIME-VARYING POLYNOMIAL SPACE

This section reviews a polynomial space in the time-varying
version. Though a polynomial space is isomorphic to a coor-
dinate space, from the viewpoint of visual systems & control,
it is not relevant to identify both spaces.

Let us consider a finite dimensional space of polynomials of
degree at most n−1(n ∈ N) on the real interval [a, b] which is
denoted by Pn−1[a, b]. Also, let us suppose that a time-varying
polynomial f(r, k) ∈ Pn−1[a, b] depends on the discrete time
instant k ∈ Z+ := {0} ∪ N as well as the horizontal space
parameter r ∈ [a, b].

The polynomial space Pn−1[a, b] is a Hilbert space and
is closed with respect to the standard addition and scalar
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Fig. 1. Experimental setup.
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Fig. 2. System configuration.

multiplication. Furthermore, the following inner product

〈f(r, k), g(r, k)〉 :=
∫ b

a

f(r, k)g(r, k) dr ∈ R

is well-defined for ∀f(r, k), ∀g(r, k) ∈ Pn−1[a, b] and brings
the completeness with respect to the inner product norm
‖f(r, k)‖ :=

√〈f(r, k), f(r, k)〉.
The Legendre polynomials in a special polynomial space

Pn−1[−1, 1]

Lh(r) :=
1

2h ·h!
· dh

drh
(r2 − 1)h, h = 0, · · · , n − 1

generate a normalized orthogonal basis [30] in the order

em(r) :=

√
2m − 1

2
Lm−1(r), m = 1, · · · , n (1)

satisfying the property

〈emi(r), emj (r)〉=
{

0 (mi �= mj)
1 (mi = mj)

, mi, mj = 1, · · · , n.

Thus, a time-varying polynomial

f(r, k) =
n∑

m=1

〈f(r, k), em(r)〉em(r) ∈ Pn−1[−1, 1]

is expressed as [f1(k), f2(k), · · · , fn(k)]T whose component
has the form of

fm(k) := 〈f(r, k), em(r)〉.

Fig. 3. Example image.
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Fig. 4. Extracted features and outputs y for the example image.

III. INPUT-OUTPUT MODELING ON POLYNOMIAL SPACE

In this section, a signal mapping between time-varying
polynomial spaces is introduced and input-output modeling
(system identification) to capture the whole dynamics is dis-
cussed numerically and experimentally.

A. Experimental method (Modeling)

A liquid surface at the discrete time instant k is measured
via the following feature extraction as an image processing
technology and is modeled as an object in a polynomial space.

Let us define a Cartesian coordinate for every image in a
digital camera and make each pixel center correspond to each
lattice point (r, s) ∈ Z × Z. Scanning along the horizontal
r-axis and the vertical s-axis, the liquid surface is measured
as

∂Ω(r, k) := max
(r,s)∈Ω(k)

s

Ω(k) := {(r, s) | r1 ≤ R(r, s, k) ≤ r2,

g1 ≤ G(r, s, k) ≤ g2,

b1 ≤ B(r, s, k) ≤ b2}
where R(r, s, k), G(r, s, k), B(r, s, k) are the RGB-values of
each pixel (r, s) at the discrete time instant k and rj , gj , bj(j =
1, 2) are the corresponding thresholds as the features of the
liquid whose boundary is the tank wall and the liquid surface
∂Ω(r, k).
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Fig. 5. Time-response of the output components y1, · · · , y10.

By the projection theorem [26], the liquid surface ∂Ω(r, k)
in a Hilbert space is projected to an ny − 1 th-degree
polynomial as the output in the polynomial space. More
precisely, based on the basis (1), the output is expressed as
[y1(k), y2(k), · · · , yny(k)]T whose component has the form of

ym(k) = 〈∂Ω(r, k), em(r)〉, m = 1, · · · , ny (2)

via the scaling of the r-axis to match the interval [−1, 1] and
the transition of the s-axis to make the horizontal surface be
expressed as [0, · · · , 0]T.

Consider a finite dimensional discrete time LTI system as a
signal mapping between polynomial spaces and describe by⎧⎨
⎩

x(r, k + 1) = A ◦ x(r, k) + B ◦ u(r, k) + v(r, k),
y(r, k) = C ◦ x(r, k) + D ◦ u(r, k) + w(r, k)

≈ ∂Ω(r, k)
(3)

where the state x(r, k) ∈ Pnx−1[−1, 1] and the disturbance
v(r, k) ∈ Pnx−1[−1, 1] are the nx − 1 th-degree polynomials,

the input u(r, k) ∈ P0[−1, 1] is the constant polynomial, the
output y(r, k) ∈ Pny−1[−1, 1] and the disturbance w(r, k) ∈
Pny−1[−1, 1] are the ny − 1 th-degree polynomials. The
symbol ◦ denotes operation of the linear mappings A,B, C
and D between the polynomial spaces.

Remark So many existing modeling and control methods
(e.g., ARX, N4SID, LQG, H∞ and so on) are constructed
on coordinate space R

n. On the other hand, in abstract linear
algebra, it is well known that a polynomial space Pn−1[−1, 1]
is isomorphic to a coordinate space Rn. That is, roughly
speaking, the mathematical structure of the polynomial space
Pn−1[−1, 1] and that of the coordinate space Rn are the same.
This fact allows us to apply the same modeling and control
methods to both spaces.

Remark Generally, since a mapping can not be defined before
the domain and the co-domain are defined, the mapping
depends on the choice of the domain and the co-domain. In
other words, a system depends on the choice of the input
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space and the output space. In this sense, the proposed LTI
system (3) choosing the polynomial spaces and any conven-
tional LTI system choosing the coordinates spaces are always
different objects even if the mappings A,B, C,D in the state
space expression of both LTI systems have the same matrix
representations.
Remark In the proposed visual modeling, both the input u
and the state x are polynomials as well as the output y.
The output y is a visible polynomial as the liquid surface
but the input u and the state x are invisible polynomials as
are the disturbances v and w. Of course, the input u is not
unknown and visualizable but the state x is never visualizable
even in the absence of the disturbances v and w. In this
sense, the existence of the “state polynomial” is a key of
this paper. Interestingly, we can imagine and estimate that the
invisible polynomial x behaves because polynomial spaces,
unlike coordinate spaces, make it possible to draw the high-
dimensional (more than four-dimensional) state directly.

To identify the matrix representation of each mapping
A,B, C,D, input-output modeling (system identification) is
executed on polynomial space. Single-input and single-output
(SISO) models G1(s), · · · , Gny(s) from the input component
to each output component is identified based on the auto
regressive exogenous (ARX) method with the following chirp
input

u(r, k)=Aucos
((

ω1 +
ω2 − ω1

M
Tsamk

)
Tsamk + θ0

)
e1(r) (4)

with the amplitude Au, the initial frequency ω1 [rad/s], the
last frequency ω2 [rad/s], the experimental time M [s], the
initial delay θ0 [rad] and the sampling time Tsam [s]. Fur-
thermore, due to the computational cost, the reduced models
Ḡm(s) (m = 1, · · · , ny) are constructed from the full-order
model Gm(s) via the balanced realization [31] keeping the
controllability and observability.

In order to confirm the validity of the identified models
Gm(s) and Ḡm(s), the FIT ratio

FIT :=

(
1 −

√
Σ(ŷm(k) − ym(k))2

Σ(ym(k) − E[ym(k)])2

)
× 100

is evaluated for the actual output components ym(k) and
the model output components ŷm(k) where the symbol E[•]
denotes expectation.

Table I summarizes the relations between the proposed
visual modeling and the other types of modeling. Only the
proposed visual modeling captures the whole dynamics of
the liquid sloshing and is linked to design of implementable
controllers in non-planar sloshing cases as well as in planar
sloshing cases 2. Note that some approximation techniques
make us cross the modeling and the control design in Table
I. For example, an equivalent mechanical modeling and an
control design in input-output/linear systems & control can be
crossed via a linear approximation technique [2].

2A physical modeling along the context [32] may capture the whole
dynamics and be linked to a damping injection into the tank dynamics.
However, such modeling is not yet reported for liquid sloshings.

B. Experimental setup (Modeling)

Figure 1 shows an appearance of the experimental setup
and Figure 2 shows the system configuration. The control
part is mainly constructed with a real-timed PC (Linux, 2.66
[GHz], 32 [b]) with the sampling rate 1/Tsam =15 [Hz], a D/A
board (12 [b]), a counter board (24 [b]) and an image capture
board (RGB, 8× 8× 8 [b]). The actuation part is constructed
with a DC motor (110 [W], 0.183 [Nm/A]), a reduction gear
(31.155 [Nm/Nm]) and a current servo amplifier (1.5 [A/V]).
The input voltage is saturated at ± 5.0 [V]. The detection part
is constructed with a digital camera (640 × 480 [pixel]) under
a room light (25 [lx]).

The plant is constructed with a tank (glass, width 450 [mm]
× long 180 [mm] × height 300 [mm]), water (blue, 0.998
[g/mL(20 ◦C)], 8.10 [L], depth 120 [mm]), liquid paraffin
(colorless, 0.868 [g/mL(20 ◦C)], 12.15 [L], depth 180 [mm])
and a cart which is fixed to both the tank and the camera. The
driving torque of the DC motor is converted to the driving
force for the tank (and the cart) dynamics via a rack and a
pinion (diameter 100 [mm]). The static gain from the input
voltage to the driving force is 171.04[N/V] (= 0.183× 1.5×
31.155/0.05[N/V]).

0 5060 100 150 190 200 2500
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Time [s]
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Fig. 6. Time-response of the norm.

C. Experimental results and discussion (Modeling)

Figure 3 shows an example image and Figure 4 shows
the corresponding liquid surface ∂Ω by the input (4) whose
parameters are Au = 0.9 [V], ω1 = 2π0.175 [rad/s], ω2

= 2π6.0 [rad/s], M = 2700 (= 60×45) [s] and θ 0 =
−1/2π [rad]. The thresholds are (r1, r2, g1, g2, b1, b2) =
(12, 100, 12, 170, 150, 255). The liquid surface ∂Ω in the
example image is no longer a plane. The dots in Figure
4 depict the extracted feature and is used to calculate the
output components (2). The solid line, the dashed line, and the
dash-dot line depict the 9th degree polynomial [y1, · · · , y10]T,
the cubic polynomial [y1, · · · , y4]T, and the affine polynomial
[y1, y2]T, respectively. Clearly, the higher degree polynomial
y better approximates the liquid surface ∂Ω.

Figure 5 shows the time-response of the output components
y1, · · · , y10 by the same input (4). Not only the planar sloshing
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Fig. 7. Bode plots of G1(s) and Ḡ1(s).
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Fig. 9. Bode plots of G3(s) and Ḡ3(s).
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Fig. 10. Bode plots of G4(s) and Ḡ4(s).

corresponding to the components y1(k) and y2(k), but also the
non-planar sloshing corresponding to the other components
y3(k) · · · y10(k) are clearly measured on-line. The odd-degree
components such as the linear polynomial’s component y 2 and
the cubic polynomial’s component y4 are much more domi-
nant than the even-degree components such as the constant
polynomial’s component y1 and the quadratic polynomial’s
component y3. This is due to the mass conservation of the
water since every even-degree polynomial is symmetric with
respect to a vertical center line.
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Fig. 11. Time-response of the output components ym(k) and ŷm(k) (50–
70[s]).
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200[s]).

Figure 6 shows the time-response of the norm of the output
y(r, k) in case of ny = 10

||y(r, k)|| =
√

y2
1(k) + y2

2(k) + · · · + y2
10(k) (5)

by the same input (4). In Figure 5, every output component y m

has its own peaks but the norm (5) has mainly two extremes
around 60 [s] and around 190 [s] where the output components
y2 and y4 are dominant, respectively. Thus, in the following,
the output components y1, · · · , y4 are used for control and the
norm (5) is used for evaluation.
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Figures 7–10 show Bode plots of the identified models
Gm(s). Every maximum gain for the even-degree components
y1 and y3 are much smaller than that of the odd-degree
components y2 and y4.

The identified models G2(s) and G4(s) have the peak
frequencies around 0.285 [Hz] (1.79 [rad/s]) and around
0.567[Hz] (3.56 [rad/s]), respectively. Figures 7–10 also show
Bode plots of the reduced models Ḡm(s). In the lower
frequency region, both models Gm(s) and Ḡm(s) are very
close to each other. In this paper, the higher frequency region
is not of importance.

Figure 11 and Figure 12 show the time-response of the
model output component ŷm(k) by the same input (4). The
solid line with the circles depicts the model output component
ŷm(k) of the identified model Gm(s), the dashed line with
the crosses depicts the model output component ŷm(k) of the
reduced model Ḡm(s), and the solid line with the dots depicts
the actual output component ym(k). The modeling error effect
between ŷ(r, k) and y(r, k) given by Figure 11 and Figure 12
are taken into account by the state disturbance v(r, k) in the
state equation (3).

Table II shows the FIT ratio between the actual output
component ym(k) and the model output components ŷm(k)
of the identified models Gm(s) and Ḡm(s). All FIT ratios
successfully achieve positive values. Also, the FIT ratios for
the odd-degree components y2(k) and y4(k) are quite high.
Overall, the validity of the identified models Gm(s) and
Ḡm(s) is confirmed.

The proposed visual modeling is a new type and directly
applicable to a large class of continuous systems (e.g., a
vibrating nonuniform beam and a swimming fish 3) that are
too difficult for the other types of modeling as shown in Table
I. The identified model by the proposed visual modeling is
quite useful as long as the input-output signal mapping can be
“almost linear” between the polynomial spaces. First, although
there is no physical parameter identification, the identified
model will provide dynamical simulations and vibration ab-
sorber designs even if the camera images cannot be used for

3The input of the nonuniform beam can be the load and the output can be
the whole vertical shape of the centerline. The input of the fish can be the
whole horizontal shape of the centerline and the output can be the straight
running velocity.

on-line control (such as in popular high-speed cameras). Note
that a small-scale (or large-scale) setup based on the similitude
law [8] using the physical parameters can equip the camera, the
(laser sheet) lights and the millers when the full scale setup
does not equip them. Second, if the camera images can be
used for on-line control, the identified model also will provide
controller designs as discussed in the next section.

TABLE II

FIT RATIO OF THE IDENTIFIED MODELS Gm(s) AND Ḡm(s)

Full-order Reduced-order
m Gm(s)[%] Ḡm(s)[%]
1 14.04 13.81
2 82.03 82.03
3 25.94 25.61
4 81.12 80.38

IV. VISUAL FEEDBACK IN THE PRESENCE OF OCCLUSION

In this section, the input-output modeling (system identifica-
tion) on polynomial space is linked to design of implementable
controllers numerically and experimentally. Furthermore, the
camera occlusion effects are rejected by executing state esti-
mation on polynomial space instead of any image processing
technology.

A. Experimental method (Control)

In general, occlusion is an important issue in visual feed-
backs. The existing visual feedbacks are helped by image
processing technology which needs to assume the range of
the shape and size of the visual obstacles. However, in
the framework of visual systems & control on polynomial
space, the camera occlusion effects can be modeled as output
disturbance to be rejected by control systems technology.

In this paper, as a proposed control approach, a Linear
Quadratic and Gaussian (LQG) controller is designed for the
reduced single-input multiple-output (SIMO) model Ḡ(s) :=
(Ḡ1(s), Ḡ2(s), Ḡ3(s), Ḡ4(s))T on polynomial space. Also,
as a conventional control approach, another LQG controller
is designed for the SISO model Ḡ2(s). The conventional
controllers in planar sloshing cases [5] correspond to the
LQG controller for the SISO model Ḡ2(s) because the planar
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Fig. 14. Time-response of the input component (Condition L).
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Fig. 15. Time-response of the input component (Condition H).
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Fig. 16. Time-response of the norm (Condition L).
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Fig. 17. Time-response of the norm (Condition H).

sloshing is expressed as [y1, y2]T but the component y1 is very
small and negligible due to the mass conservation of the water
as discussed in Section III.

First, in the absence of occlusion, the control performance
of these approaches are experimentally compared with each
other and also with that of no control approach. Second,
the control performance is investigated again in the pres-
ence of occlusion which is a student’s left hand and its
effects are modeled as output disturbance w(r, k) expressed
as [w1(k), w2(k), w3(k), w4(k)]T for the SIMO model Ḡ(s)
and w(r, k) expressed as [w1(k)] for the SISO model Ḡ2(s),
respectively.

Before the controls begin, the initial state is made by the
following sinusoidal input for a fixed time (15.00 [s]) starting
from a steady horizontal surface:
Condition L: A planar sloshing with a dominant y2(k)

u(r, k) = 0.55 sin(2π0.285Tsamk)e1(r)

Condition H: A non-planar sloshing with a dominant y4(k)

u(r, k) = 1.50 sin(2π0.567Tsamk)e1(r)

These input frequencies and amplitudes are prepared based on
Bode plots shown in Figures 7–10.

Just after the above sinusoidal inputs end, the control in
each approach begins. The weights of the LQG design [26]

Σ∞
k=0

(
〈x(r, k), x(r, k)〉Qf

+ 〈u(r, k), u(r, k)〉Rf

)
,

E

⎡
⎢⎢⎣
⎡
⎢⎣

v1(k)
...

vnx(k)

⎤
⎥⎦
⎡
⎢⎣

v1(l)
...

vnx(l)

⎤
⎥⎦

T
⎤
⎥⎥⎦ = Reδ(k − l),

E

⎡
⎢⎢⎣
⎡
⎢⎣

w1(k)
...

wny (k)

⎤
⎥⎦
⎡
⎢⎣

w1(l)
...

wny (l)

⎤
⎥⎦

T
⎤
⎥⎥⎦ = Qeδ(k − l)

are Qf = 0.0001× I31, Rf = 1000, Qe = 50000× I31, Re =
ones(31) for the SIMO model Ḡ(s) in Figure 13 and Qf =
0.00002 × I8, Rf = 500, Qe = 50000 × I8, Re = ones(8)
for the SISO model Ḡ2(s) where, via the balanced realization
[31] keeping the controllability and observability, the SIMO
model Ḡ(s) is the 31-dimensional system and the SISO model
Ḡ2(s) is the 8-dimensional system. Note that the SIMO model
in Figure 13 is equivalent to the system of the state space
expression (3). Here the symbol 〈•, •〉X denotes the weighted
inner product by the matrix X and the symbol ones(n) denotes
the n × n matrix whose components are all 1.

B. Experimental results and discussion (Control)

Figure 14 shows the time-response of the input component
in Condition L and Figure 15 shows that of the input com-
ponent in Condition H. The solid line with the circles depicts
the input for the SIMO model Ḡ(s) and the solid line with
the crosses depicts the input for the SISO model Ḡ2(s). No
input saturations are seen since the maximum magnitude of
the input component is −4.99 [V] just after 15.00 [s] for the
SIMO model Ḡ(s) in Condition L but is still larger than −5.0
[V].
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15.0 [s] 16.8 [s] 18.6 [s] 20.4 [s] 22.2 [s]

Fig. 18. Images (Condition L, Proposed).

20.4 [s] 22.2 [s]15.0 [s] 16.8 [s] 18.6 [s]
Fig. 19. Images (Condition L, Conventional).

15.0 [s] 16.8 [s] 18.6 [s] 20.4 [s] 22.2 [s]
Fig. 20. Images (Condition L, No control).

15.0 [s] 16.8 [s] 18.6 [s] 20.4 [s] 22.2 [s]
Fig. 21. Images (Condition H, Proposed).

20.4 [s] 22.2 [s]15.0 [s] 16.8 [s] 18.6 [s]
Fig. 22. Images (Condition H, Conventional).

15.0 [s] 16.8 [s] 18.6 [s] 20.4 [s] 22.2 [s]
Fig. 23. Images (Condition H, No control).

Figure 16 shows the time-response of the norm (5) in
Condition L and Figure 17 shows that of the norm (5) in
Condition H. To compare the control performance, a settling
time ts is introduced as the last time when the norm is less
than 15% of the initial norm at 15.00 [s] when the controls
begin.

The settling times in Figure 16 are ts = 7.50 [s] by the
proposed control approach, ts = 6.44 [s] by the conventional
control approach and ts = 21.68 [s] by no control approach
in Condition L. The proposed control approach improved the
settling time by 65 [%] compared with that by no control
approach while the conventional control approach improved

the settling time by 70 [%]. In Condition L, the effectiveness
of both the control approaches is confirmed.

In addition, the settling times in Figure 17 are ts = 4.62
[s] by the proposed control approach, ts = 12.57 [s] by
the conventional control approach and ts = 12.79 [s] by
no control approach in Condition H. The proposed control
approach improved the settling time by 63 [%] again compared
with that by no control approach. However, the conventional
control approach improved the settling time just by only 2.0
[%]. In Condition H, the effectiveness of the proposed control
approach is confirmed, but the conventional control approach
fails.
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Fig. 24. The state x(r, 15.0/Tsam) and the estimated state x̂(r, 15.0/Tsam).
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Fig. 25. The state x(r, 16.8/Tsam) and the estimated state x̂(r, 16.8/Tsam).
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Fig. 26. The state x(r, 39.0/Tsam) and the estimated state x̂(r, 39.0/Tsam).

Figures 18–23 show the example images in Condition L
and Condition H, respectively. Indeed, the planar sloshing is
generated in Condition L while the non-planar sloshing is
generated in Condition H. It is confirmed that the control
performance of the proposed control approach is good even
in Condition H where the conventional control approach is
useless. Indeed, there is few difference between the images
by the conventional control approach and those by no control
approach in Condition H.

In a word, the conventional control approach for the planar
sloshing case does not work for the non-planar sloshing case
at all. Clearly, this is because the SISO model Ḡ2(s) has no
peaks around the input frequency 0.567[Hz] in Condition H.

In all, the effectiveness of the proposed control approach is
confirmed in the absence of occlusion.

Figures 24–26 draw the state x(r, k) in the SIMO model
Ḡ(s) and the estimated state x̂(r, k) in the correspond-
ing LQG controller at the discrete time instant k =
15.0/Tsam, 16.8/Tsam, 39.0/Tsam, respectively. These figures
verify the LQG design for all of the experiments in this paper.
The state x(r, k) is not visualizable in general and thus every
state in these figures is made by just a numerical simulation
with the same experimental conditions as in Condition H.
The polynomial space makes it possible to draw this 31-
dimensional state directly though coordinate spaces can not
allow us to draw even four-dimensional state.

Although the initial state x(r, 15/Tsam) differs from the
initial estimated state x̂(r, 15/Tsam) which is defined as a
zero constant polynomial in Figure 24, the two states become
closer to each other in both Figure 25 and Figure 26. It should
be noted that the state x(r, 16.8/Tsam) is still approximated
well by the estimated state x̂(r, 16.8/Tsam) even when the
norm (5) is at the transient state as shown in Figure 17. These
results imply that a state estimation on polynomial space is
achieved well by the Kalman filter which is different from
all the other Kalman filters [33] [34] on coordinate space
in the conventional visual feedbacks. Also, at the almost
steady state in Figure 26, both states converge to the zero
constant polynomial. That is, the origin in the polynomial
space is asymptotically stabilized. The LQG design used in
the experiments are justified numerically.

In the presence of occlusion, Figure 27 and Figure 28 show
the time-response of the input component in Condition L and
Condition H, respectively. Figure 29 and Figure 30 show the
time-response of the norm (5) in Condition L and Condition
H, respectively. In comparison with Figure 16 and Figure 17,
the measured outputs y are strongly effected by the occlusion
which is the student’s hand as shown in Figure 31 and Figure
32. Clearly, such camera occlusion effects can be modeled
as the output disturbance w(r, k) which may lose the control
performance at least.

However, in both Condition L and Condition H, the camera
occlusion effects are successfully rejected by the same LQG
controller without any modification. That is, due to the Kalman
filter on polynomial space, the control performance with the
camera occlusion effects are the almost same as that without
occlusion. Note that no image processing technology was
added to solve the occlusion problem. In all, in the presence of
occlusion, the effectiveness of the proposed control approach
is confirmed. The ARX method and the LQG design in this
paper are just examples and various existing modeling and
control methods on coordinate space are directly applicable
on polynomial space.

V. CONCLUSION

This paper proposes a novel approach for camera based
modeling and control and the validity is confirmed by liquid
sloshing experiments. In existing types of modeling, non-
planar sloshings are not modeled well for control because all
signal mappings from the input (the driving force for the tank)
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Fig. 27. Time-response of the input component (Condition L, Proposed +
Occlusion).
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Fig. 28. Time-response of the input component (Condition H, Proposed +
Occlusion).
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Fig. 29. Time-response of the norm (Condition L, Proposed + Occlusion).
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Fig. 30. Time-response of the norm (Condition H, Proposed + Occlusion).

to any liquid surface displacement are strongly nonlinear on
coordinate space. However, in the proposed visual modeling,
since the whole shape of the liquid surface is the object in
a polynomial space as well as the input and the state, a
signal mapping from the same input to the whole shape of
the liquid surface can be “almost linear”, that is, the non-
planar sloshings are modeled well for control. The proposed
approach will solve many modeling and control problems of
a large class of continuous systems that are too difficult for
existing approaches using coordinate spaces.

More precisely, first, not only the whole shape of the liquid
surface corresponding to the output, but also the input and the
state are introduced as time-varying polynomials. The output
is a visible polynomial measured by a camera and the input is
a visualizable polynomial. The state is never visualizable but
exists and causes the liquid sloshing.

Second, the proposed visual modeling captures both the
planar and the non-planar sloshing cases. As long as the signal
mapping between the polynomial spaces are “almost linear”,
the mapping is identified as an LTI model which is quite
useful because the identified LTI model will provide dynamical
simulations and vibration absorber designs without physical
parameter identification even if camera images cannot be used
for on-line control.

Furthermore, even in the presence of occlusion, the pro-
posed visual modeling is linked to implementable controllers.
The actual liquid surface is controlled well by executing a
control design and a state estimation on polynomial space
without adding any image processing technology.

Although chaotic sloshing cases with overturned waves are
not yet captured in this paper, so many existing modeling and
control methods (e.g., ARX, N4SID, LQG, H∞ and so on)
constructed on coordinate space are now applicable to so many
continuous systems from the viewpoint of the polynomial
space.

Following the proposed visual modeling in this paper, one
may propose to change the space. Indeed, instead of the
polynomial space, another Hilbert space, whose basis is from
the Bessel functions in physical modeling, may lead to a
faster control computation in the liquid sloshing problems.
However, such a basis is specific to each continuous system
and also needs the exact physical parameter identification
which actually boils down to physical modeling. In contrast,
the proposed visual modeling on polynomial space is directly
applicable to a large class of continuous systems as long as the
input-output signal mapping between the polynomial spaces
can be “almost linear”. Also, there is no need of physical
parameter identification. In this sense, the proposed visual
modeling is robust in the presence of parameter perturbation
and uncertainty such as in a vibrating nonuniform beam and
a swimming fish.

This paper is motivated by application. There are no theo-
rems. Nevertheless, this paper extends the range of application
of various existing modeling and control methods by a choice
of the new input and output spaces (domain and co-domain)
without thinking any new type of controllers (mappings).
The authors believe that this paper successfully highlights an
original role of control systems technology.
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15.0 [s] 16.8 [s] 18.6 [s] 20.4 [s] 22.2 [s]
Fig. 31. Images (Condition L, Proposed + Occlusion).

15.0 [s] 16.8 [s] 18.6 [s] 20.4 [s] 22.2 [s]
Fig. 32. Images (Condition H, Proposed + Occlusion).
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