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Abstract. The lattice Boltzmann method (LBM) with an elastic model is applied to the
simulation of two-phase flows containing a deformable body with a viscoelastic mem-
brane. The numerical method is based on the LBM for incompressible two-phase fluid
flows with the same density. The body has an internal fluid covered by a viscoelastic
membrane of a finite thickness. An elastic model is introduced to the LBM in order
to determine the elastic forces acting on the viscoelastic membrane of the body. In the
present method, we take account of changes in surface area of the membrane and in
total volume of the body as well as shear deformation of the membrane. By using this
method, we calculate two problems, the behavior of an initially spherical body under
shear flow and the motion of a body with initially spherical or biconcave discoidal
shape in square pipe flow. Calculated deformations of the body (the Taylor shape pa-
rameter) for various shear rates are in good agreement with other numerical results.
Moreover, tank-treading motion, which is a characteristic motion of viscoelastic bodies
in shear flows, is simulated by the present method.
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1 Introduction

Problems of solid–fluid two-phase flow containing deformable bodies can be found, for
example, in biological fields connected with blood flow in capillaries. In this problem, the
interaction between red blood cells (RBCs) and blood plasma becomes important in small
blood vessels where the cellular size is comparable to the vessel diameter. A normal RBC
is easily deformed, and the deformability of the RBC is related to the erythrocyte config-
uration, the viscosity of the internal fluid, and the viscoelasticity of the membrane [1, 2].
In particular, the elastic behavior of the RBC is determined by the nature of the elastic
membrane. Although investigations of the complicated behavior of the RBC are needed,
it is difficult to examine the phenomena that are involved, particularly in microscale ves-
sels, by means of experiments. Therefore, numerical simulation is considered to be an
effective approach for microscopic investigation of such flow problems.

With regard to numerical studies of solid–fluid two-phase flows, Ramanujan and
Pozrikidis [3] studied the deformation of a liquid capsule enclosed by an elastic mem-
brane in shear flows with the boundary element method. Boryczko et al. [4] and Dzwinel
et al. [5] have proposed discrete particle models for simulation of RBCs in capillary ves-
sels by the Lagrangian coordinates technique. Tsubota et al. [6] carried out a simulation
based on the particle method [7] to examine a peculiar rotary motion (i.e., tank-treading
motion [8, 9]). Although these studies have produced interesting results, because of the
complexity of the algorithms employed for the solid–fluid coupling problems, elaborate
computing code is required and computation times are rather long.

Recently, the lattice Boltzmann method (LBM) [10–12] has been developed into an
alternative and promising numerical scheme for simulating multicomponent and mul-
tiphase fluid flows. In particular, for solid–fluid two-phase flows, Ladd [13–15] was the
first to simulate solid–fluid suspensions of spheres in shear flows. In addition, flow prob-
lems including deformable bodies are simulated by combining LBM with various meth-
ods. Sui et al. [16, 17] simulated the motion of a body with elastic membrane in shear
flows by using an immersed boundary method. Dupin et al. [18, 19] also simulated the
motion of red blood cells in fluid flows. They discretized the 3D capsule membrane into
flat triangular elements, and the elastic forces acting at the triangle vertices are inserted in
LBM nodes. The authors [20] have recently investigated behavior of a deformable body
with viscoelastic membranes in two-dimensional flows. In the present study, we extend
the numerical method to three-dimensions, and moreover, we take account of changes in
surface area of the membrane and in total volume of the body as well as shear deforma-
tion of the membrane. By using the method, we simulate the behavior of a viscoelastic
body under shear flow and the motion of a viscoelastic body in square pipe flow.

The paper is organized as follows. In Section 2, we describe how to determine the
elastic forces acting on the viscoelastic membrane of the body and how to introduce elas-
tic force into the two-phase LBM. In Section 3, we present numerical results of the behav-
ior of a deformable body in two flow fields: under shear flow and in square pipe flow.
Finally, concluding remarks are given in Section 4.
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Figure 1: Model of a body with viscoelastic mem-
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Figure 2: Discretization of body with spherical shape
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Figure 3: Diagram of triangular mesh (left) and spring model (right).

2 Numerical method

As described in [21], we use nondimensional variables defined by a characteristic length
L, a characteristic particle speed c, a characteristic time scale t0 = L/U where U is a char-
acteristic flow speed, a reference order parameter φ0, and a reference density ρ0. The
three-dimensional 15-velocity model is used in the present study. The velocity vectors of
this model are given by ci =(0, 0, 0), (±1, 0, 0), (0, ±1, 0), (0, 0, ±1), (±1, ±1, ±1).

2.1 Model of body with viscoelastic membrane

Because the viscous effect of the body is inherent in the original LBM for two-phase flows,
only an elastic force based on the Kelvin–Voigt model needs to be introduced into the
LBM. As shown in Fig. 1, a body with a viscoelastic membrane of a finite but relatively
thin thickness is considered, where the membrane is composed of particles that are con-
nected with their neighboring particles by springs. The body has an internal viscous fluid
covered by the viscoelastic membrane. The internal fluid is referred to as Fluid B, which
is distinguished from the surrounding viscous fluid called Fluid A. Because these fluids
have their own character, it is required to distinguish them in some way to give differ-
ent values of physical properties (e.g., viscosity). In the present model, these fluids are
distinguished by an order parameter in the LBM for two-phase flows [22, 23] described
later. However, the membrane is not autonomously determined but the region of the cu-
bic lattices containing particles are assumed to be a membrane, so that the elastic force is
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applied to all vertices of the cubic lattices. An elastic model based on the minimum en-
ergy principle [6] is introduced to the LBM in order to determine the elastic force acting
on the viscoelastic membrane of the body.

Three-dimensional structural membrane models are discretized into flat triangular el-
ements. The triangulation procedure is similar to those of Ramanujan and Pozrikidis [3]
and of Sui et al. [16]. To discretize the unstressed interface, each triangular face of a reg-
ular octahedron is subdivided into 4n triangular elements, where n is a positive integer.
These elements are then projected radially onto a sphere. The geometry of each element
is described by its three vertices. The discretization of a spherical surface is shown in
Fig. 2 (left). The biconcave discoidal model in Fig. 2 (right) is constructed by means of the
mapping system [24]. The parameters are the same as those by Sui et al. [16]. As shown
in Fig. 3, the elastic membrane models are composed of small triangular elements con-
nected by springs where Lagrangian particles are positioned at the vertices. A body with
a viscoelastic membrane which encloses a viscous fluid has mechanical property of elas-
tic resistances to the stretching, dilation, and bending. For example, a normal RBC and a
vesicle have strong resistance to the dilation of the body as well as to the stretching of the
membrane. This is attributed to the fact that such bodies have an inherent property of
conserving surface area of the membrane and total volume of the body. Moreover, in the
case of a body with a thin viscoelastic membrane, the effect of the elastic resistance to the
bending is negligibly smaller than that of the others [25]. Therefore, only the resistances
to the stretching and dilation are introduced in the present model.

First, the elastic resistance to the stretching of the membrane is described. We assume
that this resistance force is modeled by the stretching force of the spring. The membrane
is composed of the N particles Pj( j=1, 2, 3, .. ., N ). Moreover, the particles are connected
by M elastic springs that have an initial length lm0(m = 1, 2, 3, .. ., M) and an elastic
modulus Kl

m. The elastic energy El stored in the stretch/compression of the spring due
to change in the length lm from its reference lm0 is expressed as

El =
1
2

M

∑
m=1

Kl
m

(
lm−lm0

lm0

)2

, (2.1)

where lm is the stretch/compression displacement between the two particles Pj and Pk at
the positions r j and rk.

Next, the elastic resistance to the dilation of the body is described. We assume that
there are two contributions to this elastic resistance: (i) surface area of the membrane;
(ii) total volume of the body. Hence, in the present model, we take account of the elas-
tic forces based on the resistance to changes in area of triangular elements and in total
surface area of the membrane. As shown in Fig. 3, we define the following quantities
and notations: e is the index of a triangular element consisting of a membrane, Ae is the
area of the element e, and A is the total surface area of the membrane. The energy EA
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Figure 4: Cubic lattice with sides Δx where particle Pj is included. The weighting coefficient ω(A) is equal to

the shaded volume VA divided by volume (Δx)3 of the cubic lattice.

generated by change in the surface area of the membrane is given by

EA =
1
2

Ka
Ne

∑
e=1

(
Ae−Ae0

Ae0

)2

+
1
2

KA
(

A−A0

A0

)2

, (2.2)

where Ka and KA are the elastic moduli for dilation of the local area and total surface area,
respectively, the subscript 0 indicates the initial value, and Ne is the number of elements．
In addition, the energy EV generated by change in the total volume of the body (from
initial value V0 to V) is expressed as

EV =
1
2

KV
(

V−V0

V0

)2

, (2.3)

where KV is the elastic modulus for dilation of the total volume. On the basis of the
energy principle, the behavior of the body is determined by moving the particles so that
the total elastic energy E = El+EA+EV leads to a minimum value. According to the
principle of virtual work, the elastic force acting on the particle is determined as

F j =− ∂E
∂r j

. (2.4)

2.2 Coupling of particle and fluid dynamics

The dynamic behavior of the particles is as follows. Let r j be the position of a particle Pj
and xΨ the position of a fluid lattice node Ψ in Cartesian coordinates. During the time-
step Δt, the particle Pj at the position r j(t) moves to the position given by the following
equation:

r j(t+Δt)= r j(t)+uj(t)Δt, (2.5)
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where uj(t) is the velocity of the particle. As shown in Fig. 4, the velocity uj(t) is obtained
by the linear interpolation of the fluid velocities u(xΨ,t) at the surrounding eight nodes,
Ψ=A, B, C, ..., and H, which indicate the vertices of the cubic lattice with sides Δx where
the particle Pj is included:

uj(t)=∑
Ψ

ω(Ψ)u(xΨ,t) for Ψ =A, B, C, ... , H, (2.6)

where ω(Ψ) is the weighting coefficient such that ∑Ψ ω(Ψ)=1. The weighting coefficient
ω(Ψ) is related to the diagonally opposite, cuboidal volume defined by the position of
the particle; e.g., for Ψ=A in Fig. 4, the weighting coefficient ω(A) is equal to the shaded
volume VA divided by the volume (Δx)3 of the cubic lattice. At the same time, the dis-
placement of the springs, surface area, and total volume are changed, and the particle is
subject to an elastic force F j, as given by Eq. (2.4). In addition, because the particle does
not lie on lattice nodes, the redistribution of the elastic force at Pj to the surrounding
lattice nodes is carried out by the linear extrapolation. Similarly, the elastic force acting
on the particle Pj multiplied by the weighting coefficient is distributed to the eight lattice
nodes of the cube containing the particle. The elastic force F j(xΨ,t) at the lattice node Ψ
distributed from the particle Pj is given by

F j(xΨ,t)=ω(Ψ)F j(t). (2.7)

The net elastic force F(xΨ,t) at the lattice node Ψ can be obtained by sum of the contribu-
tions from the relevant particles. Hence, F(xΨ,t) is given by

F(xΨ,t)=
N

∑
j=1

F j(xΨ,t)δ(r j,xΨ), (2.8)

where δ(r j,xΨ) is the function to cut off nodes that are too distant from r j to be included
in the calculation [18, 19]. In the three-dimensional model, we need to consider particles
in a reference domain around the lattice node Ψ, which is composed of eight cubes where
Ψ is a vertex. Thus, δ(r j,xΨ) is given by

δ(r j,xΨ)=

{
1 if the particle Pj is in the reference domain,
0 otherwise.

(2.9)

2.3 Formulation in LBM

The numerical algorithm of fluid flows is based mainly on the LBM for incompressible
two-phase fluid flows with the same density proposed by Inamuro et al. [22, 23]. In the
calculations, the physical domain is divided into a cubic lattice, and the evolution of
particle population at each lattice node is computed.

Two particle velocity distribution functions, fi and gi, are used. The function fi is used
for the calculation of an order parameter which represents two phases, and the function
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gi is used for the calculation of the pressure and the velocity of the two-phase fluids with
the same density. The evolution of the particle distribution functions fi (x,t) and gi (x,t)
with velocity ci at the lattice node x and at time t is computed by

fi(x+ciΔx,t+Δt)= f c
i (x,t), (2.10)

gi (x+ciΔx,t+Δt)= gc
i (x,t), (2.11)

where f c
i and gc

i are functions of macroscopic variables and their derivatives given below,
and Δt is a time-step during which the particles travel the lattice spacing Δx. It should
be noted that the present method is based on the lattice kinetic scheme [21] which is an
improved scheme of the LBM.

The order parameter φ distinguishing the two phases and the macroscopic variables
of two-phase fluids (the pressure p and the velocity u) are defined in terms of the two
particle velocity distribution functions:

φ =
15

∑
i=1

fi, (2.12)

p =
1
3

15

∑
i=1

gi, (2.13)

u =
15

∑
i=1

gici. (2.14)

The function f c
i in Eq. (2.10) is given by

f c
i = Hiφ+Fi

(
p0−κ f φ∇2φ− κ f

6
|∇φ|2

)
+3Eiφciαuα+Eiκ f Gαβciαciβ, (2.15)

with
p0 =φT

1
1−bφ

−aφ2, (2.16)

and
Gαβ =

9
2

∂φ

∂xα

∂φ

∂xβ
− 3

2
∂φ

∂xγ

∂φ

∂xγ
δαβ, (2.17)

where α, β,γ=x,y,z (subscripts α, β, and γ represent Cartesian coordinates and the sum-
mation convention is used), κ f is a constant parameter determining the width of the in-
terface, a, b, and T are free parameters determining the maximum and minimum values
of φ, δαβ is the Kronecker delta, and the coefficients are

E1 =2/9, E2 =E3 =E4 = ···=E7 =1/9,
E8 =E9 =E10 = ···=E15 =1/72,
H1 =1, H2 = H3 = H4 = ···= H15 =0,
F1 =−7/3, Fi =3Ei(i=2,3,4, .. . ,15),

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

. (2.18)



8

Note that Eq. (2.16) is the Van der Waals equation of state, which is one choice among
several types of equation of state. On the other hand, the function gc

i in Eq. (2.11) is given
with an additional term related to the elastic force as follows:

gc
i = Ei

[
3p+3ciαuα− 3

2
uαuα+

9
2

ciαciβuαuβ+
3
4

Δx
(

∂uβ

∂xα
+

∂uα

∂xβ

)
ciαciβ

]

+3Eiciα
∂

∂xβ

[
μ

(
∂uβ

∂xα
+

∂uα

∂xβ

)]
Δx+3EiδΠMFαciα, (2.19)

where Π = FA,FB,M (subscripts FA, FB, and M indicate fluid phase A, fluid phase B,
and membrane, respectively), μ is the viscosity, Fα is the elastic force described in Section
2.2, and δΠM is the Kronecker delta. It should be noted that the interfacial tension is
assumed to be free in the present study in order to investigate only the effect of the elastic
force. The last term 3EiδΠMFαciα in the right-hand side of Eq. (2.19) is an external force
term to recover an elastic force F acting on the membrane in the macroscopic level. For
the calculation of the first and second derivatives in Eqs. (2.15), (2.17), and (2.19), the
following finite-difference approximations given by the Taylor series expansion are used:

∂ψ

∂xα
≈ 1

10Δx

15

∑
i=2

ciαψ(x+ciΔx), (2.20)

∇2ψ ≈ 1

5(Δx)2

[
15

∑
i=2

ψ(x+ciΔx)−14ψ(x)

]
. (2.21)

As in [21, 22], applying the asymptotic theory [26, 27] to Eqs. (2.10)–(2.19), we can ob-
tain the phase-field advection–diffusion equation (the Cahn–Hilliard equation plus ad-
vection), the continuity equation, and the Navier–Stokes equations including the elastic
force as an external force term for incompressible fluids with relative errors of O[(Δx)2].
As mentioned in Section 2.1, the surrounding fluid (Fluid A) and the internal fluid (Fluid
B) are not generally the same. In the present study, however, these two fluids are assumed
to be the same Newtonian fluid without elasticity in order to compare the present results
with those by the available previous work [16]. Thus, the viscosities of the surrounding
and the internal fluids are specified as the same value in the following simulations.

2.4 Algorithm of computation

We now summarize the algorithm of computation.

Step 1. Compute uj(t) using Eq. (2.6), and then compute r j(t+Δt) using Eq. (2.5) with the
obtained uj(t).

Step 2. Using Eqs. (2.10) and (2.11), compute fi(x,t+Δt) and gi(x,t+Δt), and then com-
pute φ(x,t+Δt), p(x,t+Δt), and u(x,t+Δt) with Eqs. (2.12)–(2.14).
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Step 3. Using Eqs. (2.1)–(2.4), compute F j(t+Δt), and then compute F(x,t+Δt) with
Eqs. (2.7)–(2.9).

Step 4. Advance one time step and return to Step 1.

3 Results and discussion

3.1 Deformation of a body under shear flow

The transient deformation of a spherical body with a viscoelastic membrane under shear
flow is investigated. As shown in Fig. 5, a viscoelastic body with radius R is placed at the
center in a suspending fluid between two parallel walls with length Lz apart. The size
of the whole domain is Lx×Ly×Lz =120Δx×60Δx×120Δx. The membrane is composed
of N particles (N = 258), and the thickness of the membrane is approximately 2Δx. The
initial distance between the centroid and each particle is set to be R = 12Δx. The body
is brought to the equilibrium state at rest and at t =0, the top and bottom walls begin to
move with velocities uw and −uw, respectively. The no-slip boundary condition is used
on the moving walls, and the periodic boundary condition is used on the other sides of
the domain.

It is noted that the dimensionless parameters for this problem are the Reynolds num-
ber (Re = ρFAΓR2/μFA), the dimensionless shear rate (G = μFAΓR/Kl), and the ratio of
the viscosity of the internal fluid to that of the surrounding fluid (η = μFB/μFA), where
Γ=2uw/Lz is the shear rate [16], μFA and μFB are the viscosities of Fluids A and B, respec-
tively, and Kl =Kl

m/l2
m0 is elastic modulus for shear strain of the membrane. The param-

eter η is kept at unity because Fluids A and B are assumed to be identical in the present
simulations. In addition, the ratios of the elastic moduli based on local area, total surface
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t∗=0.21 t∗=0.50

t∗=1.0 t∗=2.0

Figure 7: Temporal evolution of body shape for
G = 0.075 at Re = 0.025. The body is represented
by the iso-surface of the order parameter φ=(φmax+
φmin)/2. t∗= tΓ is the dimensionless time.

Figure 8: Close-up of velocity vectors around de-
formed body in steady state on y/Ly = 0.50 for G =
0.075 at Re = 0.025. The bold line represents the
membrane.

area, and total volume of the body to that for shear strain (Ca=Ka/Kl
m, CA =KA/Kl

m, and
CV = KV/Kl

m), where Kl
m is the space-averaged value of the elastic modulus of springs

for shear strain, are also important parameters. However, the elastic moduli are given
as Ka = KA = KV = Kl

m for comparison with other numerical results, so that the parame-
ters become Ca = CA = CV =1. We chose a =9/49, b =2/21, and T =0.55 in Eq. (2.16); it
follows that the maximum and minimum values of the order parameter are φmax =4.937
and φmin = 2.251. The parameter κ f is fixed at 0.01(Δx)2. The body deformation is de-
fined by the Taylor shape parameter Dxz =(LS−BS)/(LS+BS), where LS and BS are the
major and minor axes of the body, respectively (see Fig. 6). Note that the larger the body
deformation is, the more Dxz increases.

First, the deformation of the spherical body with the dimensionless shear rate G rang-
ing from 0.0375 to 0.3 is investigated. The Reynolds number is fixed at 0.025. The time
evolutions of the body shape for G =0.075 are shown in Fig. 7, where the dimensionless
time is defined by t∗=tΓ. Note that the body is represented by the iso-surface of the order
parameter φ=(φmax+φmin)/2, and that the depiction of the body shape in the following
figures is the same as that in Fig. 7. It is found that the body is stretched out and becomes
deformed into an elongated ellipsoidal shape with inclination as time passes. Also, the
deformation of the body finally becomes time-independent. Close-up of velocity vectors
around the body in the steady state on y/Ly = 0.50 is presented in Fig. 8. From this fig-
ure, a rotating flow inside the body and a circulating flow around the body are observed.
These flow characteristics are similar to those found by Zahalak et al. [28].

Next, the temporal evolutions of the Taylor shape parameter Dxz are shown in Fig. 9.
In this figure, the results of Sui et al. [16] by means of the immersed boundary method
are also shown. Both results are found to be in good agreement with each other. Also,
for various parameters G, the shapes of the body in the steady state on y/Ly = 0.50 are
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Figure 9: Temporal evolution of Taylor shape param-
eter Dxz (t∗= tΓ). The dashed line represents results
by Sui et al. [16].

G=0.0375 G=0.075

G=0.15 G=0.3

Figure 10: Body shape in the steady state on y/Ly =
0.50 under shear flow.

presented in Fig. 10. It is seen that for low G, the body slightly deforms and the shapes
are ellipsoidal, but for high G, they become slender and sigmoidal owing to its large de-
formation. These shapes are similarly observed for a viscous liquid drop under simple
shear flows, in which the effect of the interfacial tension is considered [22, 29, 30]. In the
case of a liquid drop, however, the drop continues to deform and eventually breaks up
as the shear rate becomes larger, whereas the body evolves to a steady shape without
disintegration. Moreover, the rate of deformation of the body is large for low G, and it
monotonically diminishes with increasing G. This tendency is also seen in other numeri-
cal studies [3,16]. In addition, we examine the variations in surface area of the membrane
and in total volume of the body during the deformation. Note that the total volume de-
creases and the surface area increases since the initial state. It is found that the relative
change of the surface area is rather large (8.9% in the case of G=0.3), though the relative
change of the total volume is small (2.1% at most). This result indicates that these varia-
tions (especially the variation in the surface area of the membrane) are directly linked to
the deformation of the body.

In addition, the motion of the membrane is investigated. Figs. 11 and 12 show the
unsteady behavior of the membrane and the temporal position of a certain particle, re-
spectively for G = 0.075 at Re = 0.25. From these figures, it is found that the membrane
performs an ellipsoidal rotation with a constant period (≈17t∗). This periodic motion is
generally called the tank-treading motion [8, 9], which is a rotary motion like that of a
caterpillar track. Thus, an interesting phenomenon characteristic of RBC behavior can be
simulated by the present method. In the case of the largest deformation (for G=0.3), the
relative error between initial mass and final mass of the fluid phase (the region occupied
by Fluids A and B) is less than 0.35%. Hence, the mass conservation for each phase is ver-
ified in the present simulations. We also calculate the behavior of the body with initially
an non-spherical shape, namely, a biconcave discoidal shape. The tank-treading motion
is observed for the body with high deformability. For a body with low deformability, on
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t∗=0 t∗=4.08 t∗=7.08

t∗=11.9 t∗=15.0 t∗=20.2

Figure 11: Unsteady rotary motion of membrane for
G = 0.075 at Re = 0.25. The gray circle indicates a
certain particle in the membrane (t∗= tΓ).
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Figure 12: Temporal position of a certain particle in
the membrane for G = 0.075 at Re = 0.25. zc is the
z-position of the centroid of the body (t∗= tΓ).
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Figure 13: Temporal evolution of Taylor shape param-
eter Dxz for G=0.075 at Re=0.25 (t∗= tΓ).
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Figure 14: Snapshots of body shape on y/Ly = 0.50
under shear flow for G=0.075 at Re=0.25 (t∗= tΓ).

the other hand, we observe the tumbling motion [31, 32], which is an unsteady flipping
motion of the whole body as well as the viscoelastic membrane. However, as the elas-
tic modulus becomes larger, numerical instability occurs for the present lattice resolution.
One main reason for the instability would be complicated configuration of the membrane
due to lack of bending resistance.

Finally, the restoration of the deformed body for G=0.075 at Re=0.25 is investigated.
At t∗ = 0, the top and bottom walls begin to move with velocities uw and −uw, respec-
tively. At t∗ = 1.0, we cease the movement of the walls so as to examine the restoration
of the deformed body. The temporal evolutions of the Taylor shape parameter Dxz are
shown in Fig. 13. In addition, snapshots of the body shape on y/Ly = 0.50 at various
times are presented in Fig. 14. From these figures, it is found that the body restores to its
original state after the deformation. Thus, the present results indicate that the effective-
ness of the viscoelastic membrane model is demonstrated.



13

x

yz

xL

p

H

H

H

HD

z

Outflow

Inflow

yx

c0

yc0

z

p+Δp

Figure 15: Computational domain (left) and cross section (right) of motion of body in square pipe flow. The
body is represented by the iso-surface of the order parameter φ=(φmax+φmin)/2.
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Figure 16: Time variations of shape and position of body (left) and snapshots of the body in the steady state

(right) for Kl = 1.5×10−5Δx at Re = 0.71. The body is represented by the iso-surface of the order parameter
φ=(φmax+φmin)/2. The initial shape of the body is a sphere.

3.2 Motion of a body in square pipe flow

The motion of a body with a viscoelastic membrane in square pipe flow is investigated.
As shown in Fig. 15, a rectangular domain having the square section with sides H is
considered. The size of the whole domain is Lx×H×H = 128Δx×64Δx×64Δx. A body
with diameter D = 32Δx is placed at (xc0/Lx, yc0/H, zc0/H) = (0.50, 0.50, 0.50), where
(xc0, yc0, zc0) is the initial position of the centroid of the body. In this problem, the elastic
modulus of shear strain is set to Kl = 1.5×10−5Δx for both a spherical body and a bi-
concave disk. Also, the other elastic moduli are set to Ka = 0.01Kl

m and KA = KV = Kl
m;

it follows that Ca =0.01 and CA = CV =1. The periodic boundary condition with a pres-
sure difference is used at the inlet and outlet, and the no-slip boundary condition is used
on the other boundaries. The gravitational effect is neglected; it follows that neutrally
buoyant flow is assumed in the simulations. The parameters are the same as those in the
previous problem. The Reynolds number, defined by Re=ρFAHuin/μFA where uin is the
cross-sectional average of flow velocity at the inlet, is set to 0.71 in the simulations.

First, the deformation of a body with initially spherical shape is simulated. The shape
and position of the body are shown in Fig. 16. It can be seen that the body becomes
deformed into a concave shape on the upstream side and a convex shape on the down-
stream side like a parachute. We next simulate the deformation of a body whose initial
shape is a biconcave disk. The shape and position of the body are shown in Fig. 17. From
these results, it is seen that the body becomes deformed into shape like a parachute, re-
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Figure 17: Time variations of shape and position of body (left) and snapshots of the body in the steady state

(right) for Kl = 1.5×10−5Δx at Re = 0.71. The body is represented by the iso-surface of the order parameter
φ=(φmax+φmin)/2. The initial shape of the body is a biconcave disk.
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Figure 18: Time variations of shape and position of body for Kl =1.5×10−5Δx at Re=0.71 (t∗= tuin/D).

gardless of whether the initial shape is a spherical body or a biconcave disk.
Next, in the case of the spherical body, the motion and deformation of the body

which is initially released at various positions in the z-direction are shown in Fig. 18.
The dimensionless time is defined by t∗ = tuin/D. The relative position Z0 represents
the initial distance between the centroid of the body and the center line of the pipe,
Z0 =(zc0−H/2)/(H/2), and the positions in the x- and y-directions, xc0/Lx and yc0/H,
are fixed at 0.50. It is seen that the body flows downstream with various shapes of de-
formation. The body which is released on the center line becomes deformed into shape
like a parachute. On the other hand, the body whose initial position is off the center
line becomes deformed into an asymmetric shape. Moreover, as the relative position Z0
is larger, the shape on the wall side of the body becomes more elongated. This shape
is usually called slipper shape [33]. In addition, a rotary motion of the body, i.e., the
tank-treading motion can be seen in the cases of Fig. 18 (b) and (c). These results corre-
spond to interesting phenomena frequently observed in capillaries such as small blood
vessels [33].

Finally, the tip of the body can be seen in Fig. 18 (c), because the effect of the resis-
tance to bending of the membrane is not taken into consideration in the present model.
Although the bending modulus is smaller than the other moduli in the simulation of
red blood cells [25], much longer computation without the bending resistance can cause
wrinkles of the membrane [17]. Thus, the simulation including the effect of the bending
resistance is required in future work.

4 Concluding remarks

The lattice Boltzmann method with an elastic model has been applied to the simulation
of two-phase flows containing a deformable body with a viscoelastic membrane. By us-
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ing the method, we investigated the behavior of the body under shear flow and in square
pipe flow. Although the calculation of flow including several bodies and more quantita-
tive investigations are required, the method can be a promising approach for simulating
the complex behavior of viscoelastic bodies in capillaries, such as the motion of red blood
cells in blood flows.

In this paper, the parameters concerning the elastic moduli are Ca = CA = CV = 1 for
the shear flow problem, and Ca=0.01 and CA=CV=1 for the pipe flow problem. Besides,
the viscosity ratio is fixed at η =1 for both problems. However, their values are different
from those for real human RBC membranes. For example, the ratio of the compress-
ibility modulus to the elastic shear modulus, which is related to the above parameters
concerning the elastic moduli, is measured to be 6.8×104 in the experiments by Waugh
and Evans [34]. Also, the ratio of the viscosity of internal fluid in RBCs to that of plasma
is normally η = 5 ∼ 6. (According to the literatures [35, 36], for instance, the former is
typically 6.0×10−3 Pa·s and the latter 1.2×10−3 Pa·s.) Therefore, the simulation for other
values of the parameters is of importance in future work.
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