Inverse Electron Demand Asymmetric Cycloadditions of Cyclic Carbonyl Ylides Catalyzed by Chiral Lewis Acids—Scope and Limitations of Diazo and Olefinic Substrates

Hiroyuki Suga, *[†] Satoshi Higuchi,[†] Motoo Ohtsuka,[†] Daisuke Ishimoto,[†] Tadashi Arikawa,[†] Yuta Hashimoto,[†] Shunta Misawa,[†] Teruko Tsuchida,[†] Akikazu Kakehi,[†] and Toshihide Baba[‡]

Department of Chemistry and Material Engineering, Faculty of Engineering, Shinshu University, Wakasato, Nagano 380-8553, Japan, and Department of Environmental Chemistry & Engineering, Interdisciplinary Graduate School of Science & Engineering, Tokyo Institute of Technology, G1-14, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan

sugahio@shinshu-u.ac.jp

RECEIVED DATE (to be automatically inserted after your manuscript is accepted if required according to the journal that you are submitting your paper to)

CORRESPONDING AUTHOR FOOTNOTE. Hiroyuki Suga, Department of Chemistry and Material Engineering, Faculty of Engineering, Shinshu University, Wakasato, Nagano, 380-8553, Japan, Phone: +81-26-269-5392, Fax: +81-26-269-5424, E-mail: sugahio@shinshu-u.ac.jp

ABSTRACT. High enantioselectivities (94 - 96% ee) were obtained for the inverse electron-demand 1,3-dipolar cycloadditions between cyclohexyl vinyl ether and 2-benzopyrylium-4-olate generated via Rh₂(OAc)₄-catalyzed decomposition of *o*-methoxycarbonyl-α-diazoacetophenone. The reactions were effectively catalyzed by Eu(OTf)₃. Ho(OTf)₃, or Gd(OTf)₃ complexes (10 mol%) of chiral 2.6bis[(45,55)-4,5-diphenyl-2-oxazolinyl]pyridine. The reactions with the other electron-rich dipolarophiles such as allyl alcohol, 2,3-dihydrofuran, and butyl-t-butyldimethylsilylketene acetal showed moderate enanantioselectivities (60 - 73%) ee). Good to high enantioselectivities (73 - 97%) ee) were also obtained for the cycloadditions between 3-acyl-2-benzopyrylium-4-olates, generated from methyl 2-(2-diazo-1,3dioxoalkyl)benzoates and butyl or cyclohexyl vinyl ethers, in the presence of binaphthyldiimine (BINIM)-Ni(II) complexes (10 mol%). Under similar conditions, the reaction between methyl 2-(2-diazo-1,3dioxohexyl)benzoate and 2,3-dihydrofuran was highly *endo*-selective, and moderately enantioselective (70% ee). For the BINIM-Ni(II)-catalyzed reactions of cyclohexyl vinyl ether, the use of an epoxyindanone as the 3-acyl-2-benzopyrylium-4-olate precursor revealed that the chiral Lewis acid can function as a catalyst for asymmetric induction. The scope of the cyclic carbonyl ylides was extended to those generated from 1-diazo-2,5-pentanedione derivatives, which were reacted with butyl or TBS vinyl ether and catalyzed using the (4S,5S)-Pybox-4,5-Ph₂-Lu(OTf)₃ complex to give good levels of asymmetric inductions (75 - 84% ee).

KEYWORDS. 1,3-Dipolar cycloaddition, Carbonyl ylide, Chiral Lewis acid, Asymmetric synthesis, Metal catalyst, Diazo carbonyl compound.

1. Introduction

Tandem Rh(II)-catalyzed intramolecular carbonyl ylide formation followed by 1,3-dipolar cycloaddition of α -diazocarbonyl compounds with dipolarophiles,¹ which can efficiently provide epoxy-bridged complex polycyclic products in a one-pot reaction (Scheme 1), has been applied toward the

syntheses of various biologically important oxygen-containing polycyclic natural products, such as brevicomin,² zaragozic acids,³ komaroviquinone,⁴ polygalolides,⁵ pseudolaric acid A,⁶ and aspidophytine⁷ (Figure 1). To improve the asymmetric synthesis of optically active oxygen-containing polycyclic compounds, Hodgson⁸ and Hashimoto⁹ have independently developed a highly enantioselective variant of this methodology featuring a chiral Rh(II)-associated carbonyl ylide in the transition state. In contrast, our laboratory has pursued a different approach – rare earth metal complexes of chiral 2,6-(oxazolinyl)pyridine (Pybox)¹⁰ were employed as chiral Lewis acids to catalyze the enantioselective cycloadditions between 2-benzopyrylium-4-olate and electron-deficient carbonyl and olefinic dipolarophiles. We have recently reported on the first successful examples of chiral Lewis acid-catalyzed inverse electron-demand cycloadditions between 2-benzopyrylium-4-olates and vinyl ether derivatives with high levels of asymmetric induction.¹¹ In this paper, we describe the full account of our investigations on the inverse electron-demand cycloadditions of cyclic carbonyl ylides, along with the scope and limitations of our methodology with regards to the several electron-rich olefinic dipolarophiles and diazo substrates as the carbonyl ylide precursors. It is important to note that the range of diazo substrates have been extended to include several 1-diazo-2,5-pentanedione derivatives with good levels of asymmetric induction. Insights into the mechanism of the Rh(II)- and chiral Lewis acid catalysts, using the corresponding epoxyindanone as the carbonyl ylide precursor, are also presented.

Scheme 1.

Figure 1. Naturally occurring epoxy-bridged polycyclic compounds

2. Results and Discussion

2.1. Reaction of o-Methoxycarbonyl-a-diazoacetophenone with Vinyl Ethers

Initially, we examined the reaction between butyl vinyl ether (2a) and *o*-methoxycarbonyl- α diazoacetophenone (1), as a precursor of 2-benzopyrylium-4-olate, in the presence of chiral Lewis acids that were prepared from 2,6-bis[(4'*S*,5'*S*)-diphenyl-1',3'-oxazolin-2'-yl]pyridine ((4*S*,5*S*)-Pybox-4,5-Ph₂, Figure 2) and lanthanoid triflates (Scheme 2). The reaction was carried out by adding a solution of diazoacetophenone 1 to vinyl ether 2a and Rh₂(OAc)₄ (2 mol%) in refluxing CH₂Cl₂ over a period of 1 h in the presence of the (4*S*,5*S*)-Pybox-4,5-Ph₂-lanthanoid metal complex (10 mol%), which was prepared in advance by mixing the ligand and the corresponding triflates in THF for 2 h followed by drying *in vacuo*. The influence of the ionic radius of the lanthanoid metals on the enanthio- and diasteroselectivities, and the yields of the cycloadducts are shown in Table 1 (entries 1 – 9) and Figure 3. Although strong correlations were not observed (Figure 3), lanthanoid triflates that exhibited higher enantioselectivities generally corresponded to higher yields. Good enantioselectivities (81 – 85% ee) were obtained for reactions involving Eu(OTf)₃, Gd(OTf)₃, Ho(OTf)₃ Er(OTf)₃, and Tm(OTf)₃. The nature of the lanthanoid triflates, however, did not significantly affect the diastereoselectivities. In regards to the R group of the vinyl ether (entries 3 and 10 – 14), a series of (4*S*,5*S*)-Pybox-Ph₂-Eu(III)- catalyzed reactions in CH₂Cl₂ (commercial grade) under refluxing conditions revealed that a cyclohexyl substituent (entry 14) gave the highest enantio- $(95\% \text{ ee})^{12}$ and diastereoselectivities (*endo/exo* = 88 : 12).¹³ Interestingly, both enantioselectivity and yield were reduced when dried and purified CH₂Cl₂ (via distillation over CaCl₂, then CaH) (entry 15) was used as the reaction solvent – the enantioselectivity and yield, however, were restored by the addition of MeOH (10 mol%) to the dried and purified CH₂Cl₂ (entries 16 and 17). Similarly, extremely high enantioselectivities were obtained for the cyclohexyl vinyl ether reactions in commercial CH₂Cl₂ using Gd(III)- and Ho(III)-complexes (entries 18 and 19, respectively).

Scheme 2.

Table 1. Reactions between diazoacetophenone 1 and olefins 2a - f catalyzed by chiral (4*S*,5*S*)-Pybox-4,5-Ph₂-M(OTf)₃ complexes^a

Entry	R	М	Distillation	Additive	Temp	Yield	endo:exo ^c	ee ^d	
		(Ionic Radius (Å))	of CH ₂ Cl ₂ ^b		(°C)	(%)		(%)	
1	Bu	La (1.032)	No	None	Reflux	87	76 : 24	51	
2	Bu	Sm (0.958)	No	None	Reflux	74	79:21	59	
3	Bu	Eu (0.947)	No	None	Reflux	94	81:19	81	

4	Bu	Gd (0.938)	No	None	Reflux	Quant	81 : 19	85
5	Bu	Tb (0.923)	No	None	Reflux	65	79 : 21	67
6	Bu	Ho (0.901)	No	None	Reflux	89	79 : 21	85
7	Bu	Er (0.890)	No	None	Reflux	97	79 : 21	84
8	Bu	Tm (0.880)	No	None	Reflux	78	77:23	81
9	Bu	Yb (0.868)	No	None	Reflux	80	75 : 25	67
10	Et	Eu (0.947)	No	None	Reflux	92	83:17	83
11	Bn	Eu (0.947)	Yes	MeOH (10 mol%)	Reflux	61	80 : 20	61
12	PMB ^e	Eu (0.947)	Yes	MeOH (10 mol%)	Reflux	64	82:18	79
13	<i>t</i> -Bu	Eu (0.947)	No	None	Reflux	91	87:13	88
14	Cy^{f}	Eu (0.947)	No	None	Reflux	Quant	88:12	95
15	Cy^{f}	Eu (0.947)	Yes	None	Reflux	63	89:11	69
16	$\mathbf{C}\mathbf{y}^{\mathrm{f}}$	Eu (0.947)	Yes	MeOH (10 mol%)	Reflux	Quant	89:11	96
17 ^g	$\mathbf{C}\mathbf{y}^{\mathrm{f}}$	Eu (0.947)	Yes	MeOH (10 mol%)	Reflux	99	90:10	95
18	Cy^{f}	Gd (0.938)	No	None	Reflux	93	88:12	94
19	Cy^{f}	Ho (0.901)	No	None	Reflux	99	88:12	96

^a The reactions were carried out by adding a solution of **1** in CH_2Cl_2 to a suspension of **2a** - **f**, $Rh_2(OAc)_4$ (2 mol %), MS 4 Å, and Pybox-M(OTf)₃ complexes (10 mol %) in CH_2Cl_2 under reflux over a period of 1 h. ^b Yes: CH_2Cl_2 was dried and purified by distillation with $CaCl_2$, then CaH. No: commercially available CH_2Cl_2 was used without further purifications. ^c Determined by ¹H NMR. ^d Enantiomeric excess of the *endo*-adduct was determined using chiral HPLC. ^e *p*-Methoxybenzyl. ^f Cyclohexyl. ^g A mixture of **1** and **2f** in CH_2Cl_2 was added over a period of 1 h.

 $R^1 = i$ -Pr, $R^2 = H : (S,S)$ -Pybox-*i*-Pr $R^1 = Ph, R^2 = H : (S,S)$ -Pybox-Ph $R^1 = Ph, R^2 = Ph : (4S,5S)$ -Pybox-4,5-Ph₂

(*R*)-BINIM-2QN: X=H (*R*)-BINIM-4Me-2QN: X=Me (*R*)-BINIM-4(3,5-Xylyl)-2QN: X=Xylyl

Figure 3. Relationship between the ionic radius of the lanthanoid metals and the enantio- or diastereoselectivities for the reaction between diazoacetophenone 1 and olefin 2a catalyzed by chiral (4*S*,5*S*)-Pybox-4,5-Ph₂-M(OTf)₃ complexes

2.2. Reaction of *o*-Methoxycarbonyl-α-diazoacetophenone with Other Electron-rich Dipolarophiles

To investigate the scope of the electron-rich dipolarophiles for diazo substrate 1, reactions were carried out using mono-substituted olefins 4 - 9 in the presence of Pybox-Ph₂-Eu(III) (10 mol%) (Scheme 2, Table 2). In contrast to the alkyl vinyl ethers, TBS vinyl ether (4), which possesses a slightly weaker electron-releasing character, was somewhat unreactive under similar conditions, afforded the *endo*-cycloadduct in a low yield and enantioselectivity (entry 1). Accordingly, weak electron-releasing olefins such as vinyl propanoate (5), 1-pentene (6), and allyl butyl ether (7) did not afford the

corresponding cycloadducts. Surprisingly, allyl alcohol (8), which presumably possesses an electronreleasing character similar to that of allyl butyl ether (7), was reactive in the presence of the (4S,5S)-Pybox-Ph₂-Eu(III) catalyst in CH₂Cl₂ under reflux conditions to exclusively afford the *endo*-cycloadduct in a 32% yield with moderate enantioselectivity (entry 2). Moreover, the yield and enantioselectivity were improved (59% and 51% ee, respectively) when the reaction was carried out in refluxing CHCl₃ (entry 3).

Next, the relationship between the lanthanoid metals on the enantioselectivities and yields in refluxing CHCl₃ were examined. As shown in Figure 4, the yields varied between 36% and 88%, and did not exhibit any strong correlations to the ionic radii. Although the use of the Eu(OTf)₃, Gd(OTf)₃, and Ho(OTf)₃ complexes exhibited higher enantioselectivities than that of other lanthanoid triflates, the maximum enantioselectivity was merely 55% ee (Ho(OTf)₃, entry 4). Subsequent investigations revealed that the addition of basic inorganic salts (10 – 30 mol%) in combination with the (4*S*,5*S*)-Pybox-Ph₂-Ho(III) catalyst improved the enantioselectivity (up to 60% ee) with reasonable yields (entries 5 – 7).²⁸ The (4*S*,5*S*)-Pybox-Ph₂-Eu(III)-catalyzed reaction of styrene (**9**) in CH₂Cl₂ under reflux conditions afforded the alternate regio-isomer with a yield of 22% as a mixture of the *exo/endo* diastereomers with low enantioselectivity (entry 8). The regioselectivity was in good agreement with that observed for the reaction of electron-deficient olefinic dipolarophiles such as 3-acryloyl-2-oxazolidinone.

Scheme 3.

Table 2. Reactions between diazoacetophenone **1** and olefins **4**, **8**, **9** catalyzed by chiral (4*S*,5*S*)-Pybox-4,5-Ph₂- M(OTf)₃ complexes^a

Entry	R' (4, 8, 9)	M (Ionic radius (Å))	Solvent	Temp (°C)	Additive (mol%)	Yield (%)	ee (%) ^b
1	OTBS (4)	Eu (0.947)	$\mathrm{CH}_2\mathrm{Cl}_2^{\mathrm{c}}$	Reflux	MeOH (10)	13	17
2	CH ₂ OH (8)	Eu (0.947)	$CH_2Cl_2^{\ c}$	Reflux	MeOH (10)	32	45
3	CH ₂ OH (8)	Eu (0.947)	CHCl ₃	Reflux	none	59	51
4	CH ₂ OH (8)	Ho (0.901)	CHCl ₃	Reflux	none	70	55
5	CH ₂ OH (8)	Ho (0.901)	CHCl ₃	Reflux	K ₂ CO ₃ (30)	61	60
6	CH ₂ OH (8)	Ho (0.901)	CHCl ₃	Reflux	LiF (30)	73	59
7	CH ₂ OH (8)	Ho (0.901)	CHCl ₃	Reflux	NaOAc (10)	66	58
8	Ph (9)	Eu (0.947)	CH_2Cl_2	Reflux	MeOH (10)	$22(69:31)^d$	10, 20 ^e

^a The reactions were carried out by adding a solution of **1** in CH_2Cl_2 to a suspension of olefins **4** - **9**, $Rh_2(OAc)_4$ (2 mol %), MS 4 Å, and Pybox-M(OTf)₃ complexes (10 mol %) over a period of 1 h. ^b Enantiomeric excess of the *endo*-adduct was determined using chiral HPLC. ^c Dried and purified by distillation with CaCl₂ and then CaH. ^d Diastereomeric ratio. ^e Enantiomeric excess of the adducts were determined using chiral HPLC (Major, Minor).

Figure 4. Relationship between the ionic radius of the lanthanide metals and the enantioselectivities and yields for the reaction between diazoacetophenone **1** and olefin **8** catalyzed by chiral (4S,5S)-Pybox-4,5-Ph₂-M(OTf)₃ complexes

Next, reactions were carried using other electron-releasing olefins such as substituted alkenyl ethers, 2,3-dihydrofuran (13), methoxypropene (14), and silylketene acetal 15 (Scheme 4, Table 3). In the case of 13, the (4S,5S)-Pybox-Ph₂-Eu(III)-catalyzed (10 mol%) reaction in CH₂Cl₂ under reflux conditions gave only the *endo*-cycloadduct in a high yield with 59% ee (entry 1). Upon further investigations using different temperatures and solvents, the enantioselectivity was improved (66% ee, entry 2) using toluene as the solvent and 45 °C as the reaction temperature. Investigations involving various lanthanoid triflates revealed that the combination of Yb(OTf)₃ with (4S,5S)-Pybox-Ph₂-Eu(III)-catalyzed reaction of methoxypropene (14) resulted in a low yield and stereoselectivity (entry 4), the reaction of silylketene acetal 15 in refluxing CH₂Cl₂ afforded the cycloadduct as a mixture of diastereomers (72:28) with a total yield of 54% and ee values of 27% and 53% (major and minor diastereomers, respectively) (entry 5). The enatioselectivities of (4S,5S)-Pybox-Ph₂-Lu(III)-catalyzed reaction were somewhat

improved using a reaction temperature of 45 °C in CHCl₃ (entry 7). It is interesting to note that the use of (*S*,*S*)-Pybox-Ph and (*S*,*S*)-Pybox-*i*-Pr as ligands caused a switch of the major diastereomer with diastereoselectivity of up to 76 : 24 (entries 8 and 9). Moreover, upon a survey of reaction solvents, the use of toluene gave the highest enantioselectivites (about 70% ee) without causing a significant loss in the diastereoselectivity (entries 10 - 12).

Scheme 4.

Table 3. Reactions between diazoacetophenone 1 and olefins 13 - 15 catalyzed by chiral (4*S*,5*S*)-Pybox-4,5-Ph₂- M(OTf)₃ complexes^a

Entry	Olefin	$M(Å)^{b}$	Pybox	Solvent	Temp (°C)	Yield (%)	dr	ee (%) ^c	
						(Products)	F	ormer Latter	
1	13	Eu (0.947)	Pybox-Ph ₂	$CH_2Cl_2^{\ d}$	Reflux	98 (16)	> 99 : 1 ^e	59	
2	13	Eu (0.947)	Pybox-Ph ₂	Toluene	45	96 (16)	>99:1 ^e	66	
3	13	Yb (0.868)	Pybox-Ph ₂	Toluene	45	86 (16)	> 99 : 1 ^e	67	
4	14	Eu (0.947)	Pybox-Ph ₂	$\mathrm{CH}_2\mathrm{Cl}_2^{d}$	Reflux	23 (17)	47 : 53	15 12	

5	15	Eu (0.947)	Pybox-Ph ₂	$CH_2Cl_2{}^{\rm f}$	Reflux	54 (18)	28:72	53	27
6	15	Lu (0.861)	Pybox-Ph ₂	$CH_2Cl_2{}^{\rm f}$	Reflux	41 (18)	42 : 58	56	26
7	15	Lu (0.861)	Pybox-Ph ₂	CHCl ₃	45	36 (18)	46 : 54	67	42
8	15	Lu (0.861)	Pybox-Ph	CHCl ₃	45	29 (18)	64 : 36	58	44
9	15	Lu (0.861)	Pybox- <i>i</i> -Pr	CHCl ₃	45	24 (18)	76 : 24	65	56
10	15	Lu (0.861)	Pybox- <i>i</i> -Pr	Toluene	45	68 (18)	74 : 26	72	55
11	15	Lu (0.861)	Pybox- <i>i</i> -Pr	Toluene ^g	45	63 (18)	74 : 26	70	73
12	15	Lu (0.861)	Pybox- <i>i</i> -Pr	Toluene ^h	45	49 (18)	72:28	70	72

^a The reactions were carried out by adding a solution of **1** to a suspension of olefins **13** - **15**, Rh₂(OAc)₄ (2 mol %), MS 4 Å, and Pybox-M(OTf)₃ complexes (10 mol%, 5.0 x 10⁻³ M calculated from total volume of the solvent used) over a period of 1 h. ^b Ionic radius. ^c Enantiomeric excess of the adduct was determined using chiral HPLC. ^d Commercially available CH₂Cl₂ was used without further purifications. ^e Only the *endo*-adduct was obtained. ^f Dried and purified CH₂Cl₂ was used with MeOH (10 mol%) as an additive. ^g 2.5 x 10⁻³ M for Pybox-*i*-Pr-Lu(OTf)₃. ^h 10.0 x 10⁻³ M for Pybox-*i*-Pr-Lu(OTf)₃.

2.3. Reaction of Methyl 2-(2-Diazo-1,3-dioxoalkyl)benzoates with Vinyl Esters

To investigate the generality of our methodology on other diazo compounds (Table 4), butyl vinyl ether (**2a**) was reacted with $\alpha_{,}\alpha^{,2}$ -dicarbonyl diazo substrate **19**, which was prepared from diazoacetophenone **1** according to the procedure reported by Padwa.⁴ To date, catalysts involving various combinations of chiral Pybox ligands and lanthanoid triflates have yet to afford satisfactory enantioselectivities.¹⁵ However, we have achieved good enantioselectivities (up to 73% ee) with extremely high *endo* selectivity (Table 4, entries 1 – 3) using a chiral catalyst consisting of Ni(ClO₄)₂·6H₂O and optically active binaphthyldiimine (BINIM) ligand.¹⁶ Raising the temperature for the reactions of **19** in CH₂Cl₂ under reflux conditions increased the enantioselectivities to 92% ee,¹² using the (*R*)-BINIM-4Me-2QN-Ni(II) complex as the Lewis acid (entry 4). Under similar conditions, high enantioselectivity was also obtained for the reaction with cyclohexyl vinyl ether (**2c**, entry 5). Similar to the reaction of diazo substrate **1**, the use of dried and purified CH₂Cl₂ (distillation with CaCl₂, then CaH) as the solvent resulted in lowering the enantioselectivity (entry 7), which was recovered to

that of commercial CH₂Cl₂ by the addition of MeOH (10 mol%) (entries 8 and 9). Subsequently, the BINIM-4Me-2QN-Ni(II) catalyst was employed for the reactions of sevral diazo compounds 20 - 27 with vinyl ethers 2c or 2d to give the corresponding adducts with good to excellent enantioselectivities (entries 10 - 18). Among diazo compounds 19 - 27, those that possess substrates with bulky acyl substituents exhibited relatively higher enantioselectivities (entries 11, 12, and 16).

Table 4. Reactions of α , α '-dicarbonyl diazo compounds **19** – **27** with olefins **2a**, **2c**, and **2f** catalyzed by (*R*)-BINIM-Ni(II) complexes^a

Entry	BINIM ligand	19 - 27 (R')	Olefin	Temp (°C)	Product	Yield(%)	ee ^b (%)
1	2QN	19 (Pr)	2a	rt	28 a	78	59
2	4(3,5-Xylyl)-2QN	19 (Pr)	2a	rt	28a	86	42
3	4Me-2QN	19 (Pr)	2a	rt	28a	86	73
4	4Me-2QN	19 (Pr)	2a	Reflux	28a	99	92
5	4Me-2QN	19 (Pr)	2c	Reflux	28c	76	79
6	4Me-2QN	19 (Pr)	2f	Reflux	28f	96	93
7 ^c	4Me-2QN	19 (Pr)	2f	Reflux	28f	85	90
8 ^d	4Me-2QN	19 (Pr)	2f	Reflux	28f	80	94
9 ^e	4Me-2QN	19 (Pr)	2f	Reflux	28f	86	93
10	4Me-2QN	20 (Et)	2f	Reflux	29f	77	73
11	4Me-2QN	21 (<i>i</i> -Pr)	2c	Reflux	30c	85	90

12	4Me-2QN	21 (<i>i</i> -Pr)	2f	Reflux	30f	96	97
13	4Me-2QN	22 (Bu)	2f	Reflux	31f	87	93
14	4Me-2QN	23 (<i>i</i> -Bu)	2f	Reflux	32f	82	88
15	4Me-2QN	24 (Pentyl)	2f	Reflux	33f	66	84
16	4Me-2QN	25 (Cyclohexyl)	2f	Reflux	34f	78	96
17	4Me-2QN	26 (Bn)	2f	Reflux	35f	85	92
18	4Me-2QN	27 (PhCH ₂ CH ₂)	2f	Reflux	36f	87	77

^a The reactions were carried out by adding a solution of **19** - **27** in CH_2Cl_2 (commercial grade without further purifications) to a suspension of **2a** or **2f**, $Rh_2(OAc)_4$ (2 mol %), MS 4 Å, and BINIM-Ni(II) complexes (10 mol %) over a period of 1 h. ^b Enantiomeric excess of *endo*-adduct was determined by chiral HPLC. ^c Dried and purified CH_2Cl_2 by distillation with $CaCl_2$, then CaH was used. ^d The reaction was carried out in dried and purified CH_2Cl_2 with MeOH (10 mol%) as an additive. ^e The reaction was carried out by adding a solution of **19** and **2f** over a period of 1 h in dried and purified CH_2Cl_2 with MeOH (10 mol%) as an additive.

2.4. Asymmetric Induction using Epoxyindanone as a Carbonyl Ylide Precursor

Padwa reported that, in the presence of Rh₂(OAc)₄, carbonyl ylides that are generated from α, α' dicarbonyl diazo compounds in the absence of dipolarophiles cyclize to the corresponding epoxyindanones that, upon heating, revert to the carbonyl ylides.⁴ Accordingly, diazo compound **23** was cyclized, under similar conditions, to epoxyindanone **B** as the precursor of carbonyl ylide **A**. As a note, the reaction also afforded a small amount of 3,4-dihydro-1H-2-benzopyran-1,4-dione derivative as an impurity. Under reflux conditions (CH₂Cl₂) without slow addition of substrates, however, (*R*)-BINIM-4Me-2QN-Ni(II)-catalyzed reaction between diazo substrate **23** and vinyl ether **2f** required a relatively long reaction time (22 h) affording the *endo*-adduct (61% yield) with merely 9% ee. In contrast, slow addition (over a period of 1 h) of epoxyindanone **B** into a solution of vinyl ether **2f** and the Ni(II) catalyst in dry CH₂Cl₂ under reflux conditions gave *endo*-cycloadduct **32f** (60% yield) with 86% ee (Scheme 5). Under the conditions, however, the reaction did not proceed to completion, in which unreacted epoxyindanone **B** was readily hydrolyzed to the 3,4-dihydro-1H-2-benzopyran-1,4-dione derivative during chromatographic separation of cycloadduct **32f**. Our results suggest that the asymmetric

induction is effectively catalyzed by the (R)-BINIM-4Me-2QN-Ni(II) complex, and without the participation of Rh₂(OAc)₄, which may be involved only in the generation of the carbonyl ylides for reactions of diazo carbonyl compounds as substrates. It should be note that the use of commercial grade CH₂Cl₂ as a solvent lowered not only yield (40%) but also enantioselectivity (65% ee) in the reaction of epoxyindanone **B** as a carbonyl ylide precursor. This result indicates that commercial grade CH_2Cl_2 or MeOH as an additive in purified CH₂Cl₂ probably did not also play an effective role for improvement of yield and enantioselectivity in the chiral Lewis acid-catalyzed cycloaddition step of carbonyl ylides, which were generated from diazo carbonyl compounds. As mentioned above, Hodgson⁸ and Hashimoto⁹ showed that Rh(II)-associated species could participate in the transition state of the cycloadditions of carbonyl ylides. However, compared with a free carbonyl ylide, the Rh(II)-associated carbonyl ylide would not easily coordinate with a chiral Lewis acid for activation on a basis of frontier orbital theory. Considering from these facts, one possibility for the effect of MeOH as an additive or commercial grade CH₂Cl₂ is that it can be attributed to the presumed coordination of the chiral Lewis acid to the carbonyl vlide via dissociation of the Rh-associated species to a free carbonyl vlide. The unusual dependence between the selectivity and the reaction temperature (raising the temperature increased the enantioselectivity, Table 4, entries 3 vs 4) may be also attributed to the dissociation of the Rh-associated species in the reaction of diazo substrates as carbonyl vlide precursors.

Scheme 5

2.5. Reaction of Methyl 2-(2-Diazo-1,3-dioxohexyl)benzoate with Other Electron-rich Dipolarophiles

To investigate the range of electron-rich dipolarophiles as diazo substrate **19**, reactions were carried out using mono-substituted olefins **4** – **9** and disubstituted alkenyl ethers **13** – **15** and **37** (Scheme 6, Table 5). In comparison to those from diazo compound **1**, carbonyl ylides that were generated from diazo compound **19** exhibited somewhat different reactivities toward the dipolarophiles. In the case of TBS vinyl ether (**4**, entry 2), the yield of the (4S,5S)-Pybox-Ph₂-Eu(OTf)₃-catalyzed reaction with diazo compound **19** was higher (68%) than that with diazo substrate **1** but with similar low enantioselectivity. For vinyl propanoate (**5**), 1-pentene (**6**), allyl butyl ether (**7**), and styrene (**9**) (entries 3 – 7), the (*R*)-BINIM-4Me-2QN-Ni(II)-catalyzed reactions did afford the corresponding cycloadducts, but in very low yields with only slight asymmetric induction. For allylic alcohol (**8**), the Ni(II)-complex catalyzed reaction with diazo compound **1**, did not give the cycloadduct. For

2,3-dihydrofuran (13), the reaction with diazo substrate 19 afforded only the *endo*-cycloadduct in high yields – moreover, upon a survey of solvents and temperatures, CHCl₃ at 40 or 45 °C was found as optimal reaction conditions affording moderate enantioselectivity (70 % ee, entries 8 and 9). In the case of silyketene acetal 15, its decomposition occurred as the main process under (*R*)-BINIM-4Me-2QN-Ni(II)-catalyzed conditions, to afford the cycloadduct in low yields with little asymmetric induction. Finally, in the cases of α -substituted vinyl ethers, higher enantioselectivity (44 % ee) was obtained in CH₂Cl₂ under reflux conditions for the relatively bulky vinyl ether 37 (entry 12) compared to that of vinyl ether 14 (entry 10).

Entry	Olefins	Solvent	Temp (°C)	Product	Yield (%)	dr ^b	ee ((%) ^c
							Major	Minor
1	4	$CH_2Cl_2^{d}$	Reflux	38	44	>99:1 ^e	(6
2 ^g	4	$CH_2C{l_2}^d$	Reflux	38	68	>99:1 ^e	1	9
3	5	$CH_2Cl_2{}^d$	Reflux	39	2	>99:1 ^e		1
4	6	$CH_2Cl_2^{d}$	Reflux	40	9	> 99 : 1 ^e	2	4
5	7	$CH_2C{l_2}^d$	Reflux	41	1	>99:1 ^e	Ν	D^{i}
6	9	CHCl ₃	Reflux	42	9	90:10	10	0^{f}
$7^{\rm h}$	9	$CH_2C{l_2}^d$	Reflux	42	38	89:11	7	, f
8	13	CHCl ₃	40	43	95	>99:1 ^e	7	0
9	13	CHCl ₃	45	43	98	> 99 : 1 ^e	7	0
10	14	$CH_2Cl_2^{d}$	Reflux	44	85	61 : 39	30	17
11	15	$CH_2Cl_2^{d}$	Reflux	45	12	74 : 26	2	ND ⁱ
12	37	$CH_2Cl_2^{\ d}$	Reflux	46	68	74 : 26	44	44

Table 5. Reactions of diazo compound **19** with olefins 4 - 9, 13 - 15, and **37** catalyzed by the (*R*)-BINIM-4Me-2QN-Ni(II) complex^a

^a The reactions were carried out by adding a solution of 1 to a suspension of olefins 4 - 9, 13 – 15, or 37, $Rh_2(OAc)_4$ (2 mol %), MS 4 Å, and (*R*)-BINIM-4Me-2QN-Ni(II) complex (10 mol%), which was prepared from (*R*)-BINIM-4Me-2QN and Ni(ClO₄)₂·6H₂O, over a period of 1 h. ^b Diastereomer ratio. ^c

Enantiomeric excess of adducts was determined by chiral HPLC. ^d Commercially available CH_2Cl_2 was used without further purifications. ^e Only the *endo*-adduct was obtained. ^f Enantiomeric excess of the major diastereomer. ^g (4*S*,5*S*)-Pybox-Ph₂-Eu(OTf)₃ (10 mol%) was used for the chiral Lewis acid. ^h Ni(BF₄)₂·6H₂O was used for the preparation of the (*R*)-BINIM-4Me-2QN-Ni(II) complex. ⁱ Not determined.

Scheme 6.

2.6. Reaction of 1-Diazo-2,5-pentandione Derivatives with Vinyl Ethers

To further investigate the scope of our methodology for other diazo compounds, the reaction between diazo diketone **47** and butyl vinyl ether (**2a**) was examined (Scheme 7, Table 6). First, catalysts were prepared from Eu(OTf)₃ and three types of Pybox ligands (Figure 2). Next, to the solutions of these Pybox-Eu(III) complexes, along with vinyl ether **2a** (2 equiv) and Rh₂(OAc)₄, in CH₂Cl₂ at 23 °C was added diazo diketone **47** over a period of 1 h (entries 1 - 3). In contrast to the reaction of 2-benzopyryrium-4-olate generated from *o*-methoycarbonyl- α -diazoacetophenone (**1**), which gave the *endo*-cycloadduct with a high diastereoselectivity, the reactions of diazo diketone **47** selectively formed the *exo*-cycloadduct.¹⁷ Among the three Pybox-Eu(III) complexes, the catalyst involving the (4*S*,5*S*)-Pybox-Ph₂ ligand exhibited the highest enantioselectivity (60% ee, *exo*), which was comparable to that of

the reaction with diazoacetophenone 1. Upon a survey of various lanthanoid metals (Figure 5, three metals (Eu, Tm, and Lu) are shown in Table 6), catalysts that involve Tm (67% ee) and Lu (77% ee) (entries 4 and 11, respectively) exhibited higher enantioselectivities than those of other lantanoid metals. Maximum *exo*-selectivity (exo/endo = 92:8 (84% de)) was observed for reactions that employ Gd(OTf)₃ or Tb(OTf)₃ with (4S,5S)-Pybox-Ph₂ as the ligand (Figure 5). For the (4S,5S)-Pybox-Ph₂-Tm(III)catalyzed reactions (entries 4, 5, 9, and 10), a reaction temperature of 30 °C was found to give the highest enantioselectivity (75% ee). The yield and enantioselectivity were improved by modifying the procedure in which a mixture of diazo diketone 47 and vinyl ether 2a was added to $Rh_2(OAc)_4$ and the (4S,5S)-Pybox-Ph₂-Tm(III) complex in CH₂Cl₂ over a period of 1 h (entry 6). In the case of the (4S,5S)-Pybox-Ph₂-Lu(III)-catalyzed reaction (entry 12), the exo-selectivity was also improved by adding a mixture of diazo diketone 47 and vinyl ether 2a. Again, it is noteworthy that, for the reactions of both $Tm(OTf)_3$ and $Lu(OTf)_3$ (entries 7 and 13, respectively), enantioselectivities were reduced when dried and purified CH₂Cl₂ (via distillation with CaCl₂, then CaH) was used as the solvent. In the case of the (4S,5S)-Pybox-Ph₂-Lu(III)-catalyzed reactions, higher enantioselectivities were not obtained by raising the reaction temperature (entries 17 and 18) – the maximum enantioselectivity (78% ee) was observed at 23 °C (entry 12). Finally, the optimal enantioselectivity (82% ee) and exo-selectivity (92:8) was achieved using the (4S,5S)-Pybox-Ph₂-Lu(III) complex in dried and purified CH₂Cl₂ with MeOH (10 mol%) as an additive (10 mol%) (entry 14). It is interesting to note that increasing the catalyst loading (20%, entry 15; and 50%, entry 16) resulted in lower enantioselectivities.

Investigations of the R'-substituent of the vinyl ethers (Scheme 8, Table 7, entries 1 - 6), with the (4S,5S)-Pybox-Ph₂-Lu(III) complex as the catalyst, demonstrated that the enantioselectivity of butyl vinyl ether (**2a**) was higher than those of *t*-butyl or cyclohexyl vinyl ethers (**2e** or **2f**, respectively), which was in contrast to the reactions of *o*-methoycarbonyl- α -diazoacetophenone (**1**). Remarkably, TBS vinyl ether (**4**) gave the *exo*-cycloadduct exclusively, in a reasonable yield and with good enantioselectivity (82% ee). To investigate the R-substituent of the diazo compounds (Scheme 8, Table 7, entries 7 – 11), diazo

diketones 48 - 52 were reacted with vinyl ether 2a in the presence of (4S,5S)-Pybox-Ph₂-Lu(III) complex to afford the corresponding cycloadducts with good enantioselectivities (75 - 84% ee) and high *exo*selectivities (92:8 - > 99:1).

Scheme 7.

Table 6. Reactions of diazo compound **47** with vinyl ether **2a** catalyzed by the chiral Pybox-M(OTf)₃ complexes^a

Entry	Pybox ^b	$M(Å)^{c}$	Add. Conditions ^d	Solvent	Temp (°C)	Yield (%)	exo:endo ^e	$ee (\%)^{f}$
1	<i>i</i> -Pr	Eu (0.947)	А	CH_2Cl_2	23	79	81 : 19	16
2	Ph	Eu (0.947)	А	CH_2Cl_2	23	68	84 : 16	43
3	Ph_2	Eu (0.947)	А	CH_2Cl_2	23	63	84 : 16	60
4	Ph_2	Tm (0.880)	А	CH_2Cl_2	23	68	88:12	67
5	Ph_2	Tm (0.880)	А	CH_2Cl_2	30	60	91:9	75
6	Ph_2	Tm (0.880)	В	CH_2Cl_2	30	71	91:9	76
7	Ph_2	Tm (0.880)	В	$\mathrm{CH}_2\mathrm{Cl}_2^{\mathrm{g}}$	30	70	90:10	65
8	Ph_2	Tm (0.880)	В	Toluene ^k	30	68	95 : 5	68
9	Ph_2	Tm (0.880)	А	CH_2Cl_2	35	55	90:10	68
10	Ph_2	Tm (0.880)	А	CH_2Cl_2	Reflux	65	86 : 14	53
11	Ph ₂	Lu (0.861)	А	CH_2Cl_2	23	57	86 : 14	77
12	Ph_2	Lu (0.861)	В	CH_2Cl_2	23	68	89:11	78
13	Ph_2	Lu (0.861)	В	$\mathrm{CH}_2\mathrm{Cl}_2{}^{\mathrm{g}}$	23	70	90:10	65
14	Ph ₂	Lu (0.861)	В	$CH_2Cl_2^h$	23	64	92:8	82

15 ⁱ	Ph_2	Lu (0.861)	В	$CH_2Cl_2{}^h$	23	53	90:10	75
16 ^j	Ph_2	Lu (0.861)	В	$CH_2Cl_2{}^h$	23	62	94 : 16	64
17	Ph ₂	Lu (0.861)	В	CH_2Cl_2	30	63	87:13	73
18	Ph ₂	Lu (0.861)	В	CH_2Cl_2	35	64	89:11	72

^a The reactions were carried out by adding a solution of the substrates in CH₂Cl₂ (commercial grade without further purifications) to a suspension of Rh₂(OAc)₄ (2 mol%), MS 4 Å, and Pybox-M(OTf)₃ complexes (10 mol%) over a period of 1 h. ^b Ph₂: (4*S*,5*S*)-Pybox-Ph₂, *i*-Pr: (*S*,*S*)-Pybox-*i*-Pr, Ph: (*S*,*S*)-Pybox-Ph. ^c Ionic radius. ^d A: The reaction was carried out by adding a solution of **47** to a suspension of **2a**, the catalyst, and MS 4 Å over a period of 1 h. B: The reaction was carried out by adding a solution of **47** and **2a** to a suspension of the catalyst and MS 4 Å over a period of 1 h. ^e Determined by ¹H NMR. ^f Enantiomeric excess of the *exo*-adduct was determined by ¹H NMR after conversion to the corresponding acetal in the reaction with (*R*,*R*)-hydrobenzoin. ^g Dried and purified CH₂Cl₂ (via distillation with CaCl₂, then CaH) was used. ^h The reaction was carried out in dried and purified CH₂Cl₂ with MeOH (10 mol%) as an additive. ⁱ 20 mol% catalyst was used. ^j 50 mol% catalyst was used. ^k Dried and purified toluene (typical procedures) was used.

Figure 5. Relationship between the ionic radii and the enantio- and diastereoselectivities and the yields for the reaction of diazo compound 47 with vinyl ether **2a** catalyzed by the chiral (4S,5S)-Pybox-4,5-Ph₂-M(OTf)₃ complexes

Scheme 8.

Table 7. Reactions of diazo compounds 47 - 52 with vinyl ethers 2a - c, 2e - f, and 4 catalyzed by the (4*S*,5*S*)-Pybox-Ph₂-Lu(OTf)₃ complex^a

Entry	R (Diazo substrates)	R' (Olefins)	Products	Yield (%)	<i>exo:endo</i> ^b	$ee(\%)^c$
1	Me (47)	Bu (2a)	53 a	64	92:8	82
2	Me (47)	Et (2b)	53b	52	> 99 : 1	71
3	Me (47)	Bn (2c)	53 c	59	95 : 5	60
4	Me (47)	<i>t</i> -Bu (2 e)	53e	56	95 : 5	74 ^d
5	Me (47)	Cyclohexyl (2f)	53f	82	89:11	73
6	Me (47)	TBS (4)	59	54	> 99 : 1	82 ^d
7	Et (48)	Bu (2a)	54a	61	> 99 : 1	79
8	<i>i</i> -Pr (49)	Bu (2a)	55a	76	> 99 : 1	84
9	<i>t</i> -Bu (50)	Bu (2a)	5 6a	73	> 99 : 1	82
10	Bn (51)	Bu (2a)	5 7a	71	92:8	75 ^e
11	Ph (52)	Bu (2a)	58a	75	> 99 : 1	78 ^e

^a The reactions were carried out by adding a solution of diazo compounds 47 - 52 and vinyl ethers 2a - c, 2e - f, or 4 to a suspension of Rh₂(OAc)₄ (2 mol%), MS 4 Å, (4*S*,5*S*)-Pybox-Ph₂-Lu(OTf)₃ complex (10 mol%), and MeOH (10 mol%) over a period of 1 h in dried and purified CH₂Cl₂ at 23 °C. ^b Determined by ¹H NMR. ^c Enantiomeric excess of the *exo*-adduct was determined by ¹H NMR after conversion to the corresponding acetal in the reaction with (*R*,*R*)-hydrobenzoin. ^d Determined by ¹H NMR after stereoselective reduction by NaBH₄, followed by conversion to the corresponding (*R*)- α -methoxyphenylacetate ester. ^e Determined by chiral HPLC.

2.7. Reaction of 1-Diazo-2,5-hexandione with Other Electron-rich Dipolarophiles

Reactions between diazo substrate 47 and other electron-rich dipolarophiles were evaluated under similar conditions using the (4S,5S)-Pybox-Ph₂-Lu(OTf)₃ complex as the catalyst (Scheme 9, Table 8). Although the reactions of α -substituted vinyl ethers 14 and 15 exhibited slight asymmetric inductions (entry 1 and 2, respectively), the reaction with styrene (9) afforded the *endo*-cycloadduct exclusively with 80% ee (entry 3), albeit with a yield of merely 3%.

Scheme 9.

Table 8. Reactions of diazo compound **47** with olefins **14**, **15**, and **9** catalyzed by the (4S,5S)-Pybox-Ph₂-Lu(OTf)₃ complexes^a

Enrty	Olefins	Products	Yield (%)	dr ^b	ee (%) ^c	
1	14	60	27	81 : 19 ^d	22	
2	15	61	61	63 : 37 ^d	ND ^e	
3	9	62	3	$> 99:1^{f}$	80^{g}	

^a The reactions were carried out by adding a solution of diazo compound **47** and olefins **14**, **15**, or **9** to a suspension of $Rh_2(OAc)_4$ (2 mol %), MS 4 Å, (4*S*,5*S*)-Pybox-Ph₂-Lu(OTf)₃ complex (10 mol%), and MeOH (10 mol%) over a period of 1 h in dried and purified CH₂Cl₂ at 23 °C. ^b Diastereoselectivity was determined by ¹H NMR. ^c Enantiomeric excess of the major diastereomer was determined by ¹H NMR after conversion to the corresponding acetal in the reaction with (*R*,*R*)-hydrobenzoin. ^d Major/Minor. ^e Not determined. $[\alpha]_D^{25} = +2.75$ (CHCl₃, *c* 1.0) (Major/Minor = 63:37). ^f Only the *exo*-isomer was obtained. ^g Determined by chiral HPLC.

2.8. Absolute configuration of cycloadduct exo-53f

Cycloadduct *exo*-**53f** was converted to the corresponding acetal via reaction with (*R*,*R*)-hydrobenzoin in the presence of PPTS in toluene under reflux conditions using a Dean-Stark trap (Scheme 10). Recrystallization from hexane gave a single crystal of the acetal (mp 147 – 148 °C) that consisted of a single diastereomer (>99% de, determined by 400 MHz ¹H NMR). Structural analysis of the crystal using X-ray crystallography showed that all the asymmetric carbons of the corresponding cycloadduct *exo*-**53f** possess the (*R*)-configuration (Figure 6). These results suggests that the coordination between the (4*S*,5*S*)-Pybox-Ph₂-Lu(OTf)₃ complex and the carbonyl ylide effectively shields the approach of vinyl ether **2f** from the upper side, and hence, the formation of cycloadduct *exo*-**53f**, with (*R*)-configurations at all three stereocenters (Figure 7), involves an approach of vinyl ether **2f** from the lower side with an *exo*orientation.

Previously, X-ray analysis of the (4*S*,5*S*)-Pybox-Ph₂-La(OTf)₃ complex has shown that the La metal possesses nine coordination sites and includes four hydrates.¹⁸ Moreover, the number of the coordination sites may vary according to the type of the lanthanoid metal. Because the Pybox-lantanoid triflate complexes could possess multi-coordination sites, the exact arrangement of the carbonyl ylide coordinated to the Pybox-lanthanoid complexes that shields the upper side could not be easily estimated at this point. However, a similar facial shielding behavior would also explain the efficient asymmetric induction of the reactions between 2-benzopyrylium-4-olate and vinyl ethers.

Scheme 10.

Figure 6. ORTEP drawing of the acetal prepared from exo-53f and (R,R)-hydrobenzoin

Figure 7. Proposed approaches for asymmetric induction based on the absolute configuration of exo-

53f

3. Conclusion

We have successfully developed the inverse-electron-demand dipole-LUMO/dipolarophile-HOMOcontrolled cycloaddition reactions of cyclohexyl or butyl vinyl ethers towards carbonyl ylides that were generated from o-methoxycarbonyl- α -diazoacetophenone (1) or acyl derivatives 19 - 27 via Rh₂(OAc)₄catalyzed decomposition. High levels of asymmetric induction (73 - 97%) ee) were achieved using chiral Pybox-lanthanoid metal(III) or BINIM-Ni(II) complexes as the chiral Lewis acid catalysts. The Pyboxlanthanoid metal(III)-catalyzed reactions between o-methoxycarbonyl- α -diazoacetophenone (1) and electron-rich dipolarophiles such as allyl alcohol (8), 2,3-dihydrofuran (13), and butyl-tbutyldimethylsilylketene acetal (15) exhibited moderate enanantioselectivities (60 – 73% ee). The reaction between methyl 2-(2-diazo-1,3-dioxohexyl)benzoate (19) and 13 using a BINIM-Ni(II) complex the chiral Lewis acid also gave the cycloadduct with high exo-selectivity and moderate as enantioselectivity (70% ee). During studies of the BINIM-Ni(II)-catalyzed reaction between cyclohexyl vinyl ether and an epoxyindanone (as the carbonyl vlide precursor), the chiral Lewis acid without the participation of $Rh_2(OAc)_4$ was found to be an effective catalyst for asymmetric inductions. For the Pybox-lanthanoid metal(III)-catalyzed reaction with butyl vinyl ether, the scope of diazo substrates was extended to include several 1-diazo-2,5-pentanedione derivatives (47 - 52) with good levels of asymmetric induction (75 - 84% ee). Studies to expand our methodology to other diazo substrates, while optimizing reaction conditions to achieve high enantioselectivities are currently underway.

4. Experimental

4.1. General

Melting points were determined on a melting point apparatus and are uncorrected. IR spectra were taken with a FT/IR spectrophotometer. ¹H NMR spectra were recorded on a 400 MHz spectrometer. Chemical shifts are expressed in parts per million downfield from tetramethylsilane as an internal standard.

¹³C NMR spectra were recorded on a 100 MHz spectrometer using broadband proton decoupling. Chemical shifts are expressed in parts per million using the middle resonance of CDCl₃ (77.0 ppm) as an internal standard. For preparative column chromatography, Wakogel C-300HG was employed. All reactions were carried out under an argon atmosphere in dried glassware.

4.2. Materials

o-Methoxycarbonyl- α -diazoacetophenone (1) was prepared by the procedure in the previous paper.²⁰ α, α '-Dicarbonyl diazo substrates 19 - 27⁴ and 1-diazo-2,5-alkanedione 47 - 52²¹ were prepared according to the procedure reported by Padwa. Ethyl vinyl ether, butyl vinyl ether, t-butyl vinyl ether, cyclohexyl vinyl ether, vinyl butyrate, 2,3-dihydrofuran, allyl alcohol, 1-hexene, styrene, 2methoxypropene and Rh₂(OAc)₄ were commercially available, and used without further purification. Lanthanoid triflates were commercially available, and dried in vacuo at 200 °C for 12 h before use. t-Butyldimethylsilyl vinyl ether,²² allyl vinyl ether,²³ 1-(tert-butyldimethylsilyloxy)-1-butyloxyethylene,²⁴ α butoxystyrene²⁵ and 2,6-Bis(oxazolinyl)pyridines²⁶ (Pybox) were prepared by the procedure in the literatures. Powdered 4Å molecular sieves (MS 4Å) was commercially available (Aldrich) and dried in vacuo at 200 °C for 12 h before use. Ni(ClO₄)₂·6H₂O and Ni(BF₄)₂·6H₂O were commercially available, and used without further purification. Chiral Binaphthyldiimine (BINIM) ligands were prepared by the procedure reported previously.²⁷ Dichloromethane was commercially available, and used without further purification. For purified Dichloromethane, purification was carried out by distillation first from CaCl₂ and then CaH₂ under argon before used. Toluene, benzene, THF, and 1,4-dioxane were distilled from a sodium benzophenone ketyl still under argon. Chloroform was purified by distillation first from CaCl₂ and then P_2O_5 under argon before used.

4.3. General Procedure for the Reaction of *o*-Methoxycarbonyl-α-diazoacetophenone (1) with Olefins Was Exemplified the Reaction with Cyclohexyl Vinyl Ether (2f) Catalyzed by (4*S*,5*S*)-Pybox-Ph₂-Eu(III) Complex A solution of 2,6-bis[(4*S*,5*S*)-4,5-diphenyl-2-oxazolin-2-yl]pyridine ((4*S*,5*S*)-Pybox-Ph₂, 26.1 mg, 0.05 mmol) in THF (1.5 mL) was added to a solution of Eu(OTf)₃ (29.9 mg, 0.05 mmol) in THF (1 mL). After stirring the mixture for 2 h, the solvent was removed under reduced pressure and resulting solid was dried *in vacuo* at room temperature for 5 h. A solution of Eu(III)–Pybox complex in CH₂Cl₂ (3 mL, commercial grade without further purifications) was transferred to a two-necked round-bottomed flask (30 mL) equipped with reflux condenser. After added MS 4Å (0.5 g), cyclohexyl vinyl ether (**2f**) (126 mg, 1.00 mmol), Rh₂(OAc)₄ (4.4 mg, 0.01 mmol) and CH₂Cl₂ (1 mL, without purification), successively, a solution of diazoacetophenone **1** (102 mg, 0.50 mmol) in CH₂Cl₂ (5 mL, without purification) was added over a period of 1 h using a syringe pump under reflux (bath temp. 55 °C). The syringe was washed with CH₂Cl₂ (1 mL, without purification). After removal of MS 4Å through celite, the reaction mixture was filtered through a plug of silica gel (3 cm) with AcOEt/hexane (1 : 1, 80 mL) as an eluent. The solvent was removed *in vacuo*, and the residue was purified by column chromatography (99 : 1 hexane/AcOEt) to provide a quantitative amount (quant) of *endo*-**3f** and *exo*-**3f**.

4.3.1. **7**-*endo*-Butoxy-5-methoxy-8-oxabenzo[c]bicyclo[3.2.1]octan-2-one (*endo*-3a): Colorless viscous oil; $[\alpha]_D^{25}$ -77.4 (*c* 1.00, CHCl₃) (*endo* : *exo* = 81 : 19, 85% ee (*endo*), 62% ee (*exo*)), IR (neat) 3031, 3009, 2961, 2874, 1707, 1603, 1458, 1300, 1267, 1163, 1113, 1055, 1005 cm⁻¹; ¹H NMR (CDCl₃) δ 0.79 (3H, t, *J* = 7.3 Hz), 1.15 (2H, sext, *J* = 7.3 Hz), 1.35 (2H, quint, *J* = 7.3 Hz), 2.02 (1H, dd, *J* = 13.4, 2.7 Hz), 2.60 (1H, dd, *J* = 13.4, 9.8 Hz), 3.27 – 3.34 (1H, m), 3.45 – 3.52 (1H, m), 3.46 (3H, s), 4.53 (1H, ddd, *J* = 2.7, 9.8, 7.1 Hz), 4.96 (1H, d, *J* = 7.1 Hz), 7.42 – 7.48 (2H, m), 7.58 – 7.64 (1H, m), 7.99 – 8.04 (1H, m); ¹³C NMR (CDCl₃) δ 13.9 (CH₃), 19.2 (CH₂), 31.6 (CH₂), 42.0 (CH₂), 51.9 (CH₃), 70.7 (CH₂), 76.6 (CH), 83.8 (CH), 106.4 (C), 122.8 (CH), 126.4 (CH), 128.3 (CH), 131.0 (C), 133.6 (CH), 145.1 (C), 192.5 (C); MS (EI) m/z 276 (M⁺), 247, 203, 176, 161, 147, 133, 117, 103, 91, 77, 61, 50, 37, 26, 13; HRMS (EI) Calcd for C₁₆H₂₀O₄ (M⁺): 276.1360. Found: 276.1387. Anal. Calcd for C₁₆H₂₀O₄: C, 69.54; H, 7.30%. Found: C, 69.14; H, 7.70%. The enantiomeric excess was determined by HPLC analysis (DAICEL Chiralpak AD-H, 1 : 99 *i*-PrOH/hexane, flow 0.5 mL/min, 35°C) t_R = 22.9 min

(minor), 45.7 min (major). Relative stereochmistry (*endo/exo*) of the products could be determined by ¹H NMR analysis on the basis of a coupling constant between H-1 and H-7 which reported previously (*endo*: 7.1 Hz, *exo*: 0 Hz).¹⁹ The *endo/exo* ratio was determined by ¹H NMR analysis (*endo* : *exo* = 81 : 19) on the basis of the integration corresponding to one of the methylene protons at 6 position.

4.3.2. 7-*exo*-Butoxy-5-methoxy-8-oxabenzo[*c*]bicyclo[3.2.1]octan-2-one (*exo*-3a): Although *exo*-3a could not separate by chromatography from a mixture with major *endo*-3a, it could characterize by ¹H and ¹³C NMR. ¹H NMR (CDCl₃) δ 0.93 (3H, t, *J* = 7.3 Hz), 1.31 – 1.45 (2H, m), 1.55 – 1.66 (2H, m), 2.31 (1H, dd, *J* = 13.2, 3.9 Hz), 2.39 (1H, dd, *J* = 13.2, 7.3 Hz), 3.37 – 3.59 (2H, m), 3.55 (3H, s), 3.97 (1H, dd, *J* = 3.9, 7.3 Hz), 4.78 (1H, s), 7.42 – 7.48 (2H, m), 7.58 – 7.64 (1H, m), 7.93 – 7.97 (1H, m); ¹³C NMR (CDCl₃) δ 14.0 (CH₃), 19.4 (CH₂), 29.7 (CH₂), 31.7 (CH₂), 51.9 (CH₃), 69.7 (CH₂), 79.8 (CH), 86.5 (CH), 107.4 (C), 122.8 (CH), 126.7 (CH), 128.5 (CH), 129.2 (C), 134.3 (CH), 145.6 (C), 193.5 (C). The enantiomeric excess was determined by HPLC analysis (DAICEL Chiralpak AD-H, 1 : 99 *i*-PrOH/hexane, flow 0.5 mL/min, 35°C) t_R = 39.6 min (minor), 36.4 min (major).

4.3.3. **7-endo-Ethoxy-5-methoxy-8-oxabenzo**[c]bicyclo[3.2.1]octan-2-one (*endo*-3b): Colorless viscous oil; $[\alpha]_D^{25}$ -95.1 (*c* 1.00, CHCl₃) (*endo* : *exo* = 83 : 17, 83% ee (*endo*), 67% ee (*exo*)); IR (neat) 3012, 2980, 1707, 1603, 1458, 1445, 1300, 1267, 1252, 1215, 1165, 1115, 1053, 1005 cm⁻¹; ¹H NMR (CDCl₃) δ 1.02 (3H, t, *J* = 7.1 Hz), 2.02 (1H, dd, *J* = 13.2, 2.7 Hz), 2.63 (1H, dd, *J* = 13.2, 10.0 Hz), 3.36 – 3.58 (2H, m), 3.47 (3H, s), 4.55 (1H, ddd, *J* = 2.7, 10.0, 7.3 Hz), 4.97 (1H, d, *J* = 7.3 Hz), 7.42 – 7.49 (2H, m), 7.58 – 7.64 (1H, m), 7.99 – 8.06 (1H, m); ¹³C NMR (CDCl₃) δ 15.0 (CH₃), 42.1 (CH₂), 51.9 (CH₃), 66.3 (CH₂), 76.4 (CH), 83.8 (CH), 106.4 (C), 122.8 (CH), 126.6 (CH), 128.4 (CH), 130.9 (C), 133.7 (CH), 145.2 (C), 192.7 (C); MS (EI) m/z 248 (M⁺), 216, 203, 176, 161, 147, 133, 129, 115, 103, 89, 76, 61, 47, 39, 26, 13; HRMS (EI) Calcd for C₁₄H₁₆O₄ (M⁺): 248.1048. Found: 248.1050. Anal. Calcd for C₁₄H₁₆O₄: C, 67.73; H, 6.50%. Found: C, 67.30; H, 6.62%. The enantiomeric excess was determined by HPLC analysis (DAICEL Chiralpak AD-H, 1 : 99 *i*-PrOH/hexane, flow 0.5 mL/min, 35°C) t_R = 23.5 min (minor), 46.9 min (major). Relative stereochmistry (*endo/exo*) of the products could

be determined by ¹H NMR analysis on the basis of a coupling constant between H-1 and H-7 which reported previously (*endo*: 7.3 Hz, *exo*: 0 Hz).¹⁹ The *endo/exo* ratio was determined by ¹H NMR analysis (*endo* : exo = 83 : 17) on the basis of the integration corresponding to one of the methylene protons at 6 position.

4.3.4. 7-*exo*-Ethoxy-5-methoxy-8-oxabenzo[*c*]bicyclo[3.2.1]octan-2-one (*exo*-3b): Although *exo*-3b could not separate by chromatography from a mixture with major *endo*-3b, it could characterize by ¹H and ¹³C NMR. ¹H NMR (CDCl₃) δ 1.25 (3H, t, *J* = 7.1 Hz), 2.32 (1H, dd, *J* = 13.2, 3.7 Hz), 2.41 (1H, dd, *J* = 13.2, 7.3 Hz), 3.35 – 3.60 (2H, m), 3.98 (1H, dd, *J* = 3.7, 7.3 Hz), 4.79 (1H, s), 7.42 – 7.49 (2H, m), 7.58 – 7.64 (1H, m), 7.93 – 7.98 (1H, m); ¹³C NMR (CDCl₃) δ 15.3 (CH₃), 42.2 (CH₂), 52.0 (CH₃), 65.4 (CH₂), 79.7 (CH), 86.6 (CH), 107.4 (C), 122.9 (CH), 126.8 (CH), 128.6 (CH), 129.3 (C), 134.3 (CH), 145.6 (C), 193.5 (C). The enantiomeric excess was determined by HPLC analysis (DAICEL Chiralpak AD-H, 1 : 99 *i*-PrOH/hexane, flow 0.5 mL/min, 35°C) t_R = 32.3 min (major), 42.6 min (minor).

4.3.5. 7-*endo*-Benzyloxy-5-methoxy-8-oxabenzo[c]bicyclo[3.2.1]octan-2-one (*endo*-3c): Colorless viscous oil; $[\alpha]_D^{25}$ -46.0 (*c* 0.44, CHCl₃) (*endo* : *exo* = 80 : 20, 61% ee (*endo*), ND (*exo*)); IR (neat) 3012, 2947, 1705, 1601, 1454, 1400, 1300, 1153, 1092, 1053, 945, 891, 833 cm-1; ¹H NMR (CDCl₃) δ 2.07 (1H, dd, *J* = 2.9, 13.4 Hz), 2.61 (1H, dd, *J* = 9.8, 13.4 Hz), 3.46 (3H, s, OMe), 4.38 (1H, d, *J* = 11.5 Hz), 4.58 (1H, d, *J* = 11.5 Hz), 4.65 (1H, ddd, *J* = 2.9, 7.1, 9.8 Hz), 5.02 (1H, d, *J* = 7.1 Hz), 7.16-7.30 (5H, m), 7.44-7.48 (2H, m), 7.59-7.63 (1H, m), 8.05-8.07 (1H, m); ¹³C NMR (CDCl₃) δ 41.9 (CH₂), 51.9 (CH₃), 72.4 (CH₂), 75.8 (CH), 83.6 (CH), 106.4 (C), 122.9 (CH), 126.6 (CH), 127.6 (CH), 128.2 (CH), 128.5 (CH), 130.9 (C), 133.8 (CH), 137.0 (C), 145.2 (C), 192.7 (C); MS (EI) m/z 310 (M⁺), 281, 267, 250, 237, 219, 201, 190, 173, 161, 145, 131, 115, 103, 91, 77, 65, 50, 39, 27, 15, 3; HRMS (EI) Calcd for C₁₉H₁₈O₄ (M⁺): 310.1205. Found: 310.1221. The enantiomeric excess was determined by HPLC analysis (DAICEL Chiralpak AD-H, 1 : 99 *i*-PrOH/hexane, flow 0.5 mL/min, 35°C) t_R = 51.5 min (minor), 106.8 min (major). Relative stereochmistry (*endo/exo*) of the products could be determined by ¹H NMR analysis on the basis of a coupling constant between H-1 and H-7 which reported previously

(*endo*: 7.1 Hz, *exo*: 0 Hz).¹⁹ The *endo/exo* ratio was determined by ¹H NMR analysis (*endo* : exo = 80 : 20) on the basis of the integration corresponding to one of the methylene protons at 6 position.

4.3.6. **7**-*exo*-Benzyloxy-5-methoxy-8-oxabenzo[*c*]bicyclo[3.2.1]octan-2-one (*exo*-3c): Although *exo*-3c could not separate by chromatography from a mixture with major *endo*-3c, it could characterize by ¹H NMR. ¹H NMR (CDCl₃) δ 2.35-2.44 (2H, m), 3.56 (3H, s), 4.09 (1H, dd, *J* = 4.4, 6.6 Hz), 4.51 (1H, d, *J* = 12.0 Hz), 4.66 (1H, d, *J* = 12.0 Hz), 4.88 (1H, s), 7.16-7.32 (5H, m), 7.34-7.35 (3H, m), 7.93-7.95 (1H, m).

4.3.7. 5-Methoxy-7-endo-(p-methoxybenzyloxy)-8-oxabenzo[c]bicyclo[3.2.1]octan-2-one (endo-**3d**): Colorless viscous oil; $[\alpha]_{D}^{25}$ -45.1 (c 0.50, CHCl₃) (endo : exo = 82 : 18, 79% ee (endo)), 55% ee (exo)); IR (neat) 3008, 2951, 2846, 1705, 1608, 1516, 1458, 1296, 1250, 1173, 1045, 883 cm⁻¹; ¹H NMR (CDCl₃) δ 2.04 (1H, dd, J = 2.9, 13.4 Hz), 2.59 (1H, dd, J = 10.0, 13.4 Hz), 3.46 (3H, s), 3.76 (3H, s), 4.31 (1H, d, J = 11.2 Hz), 4.51 (1H, d, J = 11.2 Hz), 4.63 (1H, ddd, J = 2.9, 10.0, 7.3 Hz), 5.01(1H, d, J = 7.3 Hz), 6.79-6.83 (2H, m), 7.10-7.12 (2H, m), 7.42-7.46 (2H, m), 7.58-7.62 (1H, m), 8.05-8.07 (1H, m); ¹³C NMR (CDCl₃) δ 41.9 (CH₂), 51.9 (CH₃), 55.3 (CH₃), 72.1 (CH₂), 75.4 (CH), 83.7 (CH), 106.4 (C), 113.7 (CH), 122.9 (CH), 126.6 (CH), 128.4 (CH), 129.1 (C), 129.4 (CH), 130.9 (C), 133.8 (CH), 145.2 (C), 159.1 (C), 192.7 (C); MS (EI) m/z 340 (M⁺), 308, 204, 187, 176, 161, 147, 133, 122, 103, 91, 77, 65, 50, 39, 27, 15, 3. Anal. Calcd for C₂₀H₂₀O₅: C, 70.57; H, 5.92%. Found: C, 70.48: H, 6.00%. The enantiomeric excess was determined by HPLC analysis (DAICEL Chiralpak OD-3, 1:24 *i*-PrOH/hexane, flow 0.5 mL/min, 35°C) $t_R = 25.2$ min (minor), 35.6 min (major). Relative stereochmistry (endo/exo) of the products could be determined by ¹H NMR analysis on the basis of a coupling constant between H-1 and H-7 which reported previously (endo: 7.3 Hz, exo: 0 Hz).¹⁹ The *endo/exo* ratio was determined by ¹H NMR analysis (*endo* : exo = 82 : 18) on the basis of the integration corresponding to one of the methylene protons at 6 position.

4.3.8. **5-Methoxy-7***exo-(p***-methoxybenzyloxy)-8-oxabenzo**[*c*]bicyclo[3.2.1]octan-2-one (*exo-*3d): Although *exo-*3d could not separate by chromatography from a mixture with major *endo-*3d, it could characterize by ¹H and ¹³C NMR. ¹H NMR (CDCl₃) δ 2.37 (2H, m), 3.55 (3H, s), 3.79 (3H, s), 4.07 (1H, d, J = 4.6, 6.3 Hz), 4.44 (1H, d, J = 11.5 Hz), 4.59 (1H, d, J = 11.5 Hz), 4.86 (1H, s), 6.86-6.88 (2H, m), 7.26-7.28 (2H, m), 7.42-7.62 (3H, m), 7.93-7.95 (1H, m); ¹³C NMR (CDCl₃) δ 42.0 (CH₂), 52.0 (CH₃), 55.3 (CH₃), 72.1 (CH₂), 75.5 (CH), 78.7 (CH), 106.7 (C), 113.8 (CH), 123.0 (CH), 126.8 (CH), 128.6 (CH), 129.0 (C), 129.4 (CH), 130.9 (C), 134.3 (CH), 145.6 (C), 159.5 (C), 192.8 (C). The enantiomeric excess was determined by HPLC analysis (DAICEL Chiralpak OD-3, 1 : 24 *i*-PrOH/hexane, flow 0.5 mL/min, 35°C) t_R = 28.4 min (minor), 31.0 min (major).

4.3.9. 7-endo-t-Butoxy-5-methoxy-8-oxabenzo[c]bicyclo[3.2.1]octan-2-one (endo-3e): Colorless viscous oil; $[\alpha]_D^{25}$ -112.8 (c 1.00, CHCl₃) (endo : exo = 87 : 13 (88% ee (endo), 74% ee (exo)); IR (neat) 3021, 2978, 1709, 1603, 1458, 1393, 1368, 1298, 1267, 1215, 1150, 1078, 1051, 1028, 1007 cm⁻¹; ¹H NMR (CDCl₃) δ 1.09 (9H, s), 1.92 (1H, dd, J = 13.2, 2.7 Hz), 2.61 (1H, dd, J = 13.2, 9.8 Hz), 3.46 (3H, s), 4.69 (1H, ddd, J = 2.7, 9.8, 7.6 Hz), 4.77 (1H, d, J = 7.6 Hz), 7.36 – 7.51 (2H, m), 7.50 – 7.67 (1H, m), 7.98 - 8.04 (1H, m); ¹³C NMR (CDCl₃) δ 28.0 (CH₃ x 3), 44.1 (CH₂), 51.8 (CH₃), 69.2 (CH), 74.5 (C), 84.9 (CH), 106.5 (C), 122.8 (CH), 126.5 (CH), 128.2 (CH), 131.2 (C), 133.4 (CH), 145.2 (C), 192.6 (C); MS (EI) m/z 276 (M⁺), 261, 221, 203, 179, 160, 145, 129, 115, 103, 91, 76, 57, 49, 39, 26, 13. Anal. Calcd for C₁₆H₂₀O₄: C, 69.54; H, 7.30%. Found: C, 69.44; H, 7.38%. The enantiomeric excess was determined by HPLC analysis (DAICEL Chiralpak AD-H, 1: 99 i-PrOH/hexane, flow 0.5 mL/min, 35°C) $t_{R} = 27.5$ min (minor), 64.1 min (major). Relative stereochmistry (*endo/exo*) of the products could be determined by ¹H NMR analysis on the basis of a coupling constant between H-1 and H-7 which reported previously (endo: 7.6 Hz, exo: 0 Hz).¹⁹ The endo/exo ratio was determined by ¹H NMR analysis (*endo* : exo = 87 : 13) on the basis of the integration corresponding to one of the methylene protons at 6 position.

4.3.10. 7-*exo-t*-Butoxy-5-methoxy-8-oxabenzo[*c*]bicyclo[3.2.1]octan-2-one (*exo*-3e): Although *exo*-3e could not separate by chromatography from a mixture with major *endo*-3e, it could characterize by ¹H and ¹³C NMR. ¹H NMR (CDCl₃) δ 1.21 (9H, s), 2.28 (1H, dd, *J* = 13.2, 4.2 Hz), 2.39 (1H, dd, *J*

= 13.2, 7.6 Hz), 3.54 (3H, s), 4.18 (1H, dd, J = 4.2, 7.6 Hz) 4.67 (1H, s), 7.36 – 7.51 (2H, m), 7.50 – 7.67 (1H, m), 7.94 – 7.98 (1H, m); ¹³C NMR (CDCl₃) δ 28.3 (CH₃ x 3), 44.1 (CH₂), 52.1 (CH₃), 72.5 (CH), 74.9 (C), 89.7 (CH), 107.5 (C), 123.0 (CH), 126.8 (CH), 128.5 (CH), 129.3 (C), 134.2 (CH), 145.5 (C), 193.5 (C). The enantiomeric excess was determined by HPLC analysis (DAICEL Chiralpak AD-H, 1 : 99 *i*-PrOH/hexane, flow 0.5 mL/min, 35°C) t_R = 22.5 min (major), 36.2 min (minor).

4.3.11. 7-endo-Cyclohexyloxy-5-methoxy-8-oxabenzo[c]bicyclo[3.2.1]octan-2-one (endo-3f): Colorless viscous oil; $[\alpha]_{D}^{25} = -99.9$ (c 1.00, CHCl₃) (endo : exo = 88 : 12, 95% ee (endo), 47% ee (exo)); IR (neat) 3021, 2938, 2859, 1707, 1603, 1453, 1300, 1263, 1215, 1161, 1101, 1078, 1053, 1026, 1007 cm⁻¹; ¹H NMR (CDCl₃) δ 1.00 – 1.82 (10H, m), 1.99 (1H, dd, J = 13.2, 2.7 Hz), 2.61 (1H, dd, J = 13.2, 9.8 Hz), 3.22 – 3.32 (1H, m), 3.50 (3H, s), 4.71 (1H, ddd, J = 2.7, 9.8, 7.3 Hz,), 4.91 (1H, d, J = 7.3 Hz), 7.40 – 7.49 (2H, m), 7.57 – 7.64 (1H, m), 7.98 – 8.04 (1H, m); 13 C NMR (CDCl₃) δ 24.0 (CH₂), 24.1 (CH₂), 25.7 (CH₂), 31.7 (CH₂), 32.4 (CH₂), 42.7 (CH₂), 51.8 (CH₃), 73.5 (CH), 77.6 (CH), 84.0 (CH), 106.4 (C), 122.8 (CH), 126.4 (CH), 128.3 (CH), 131.1 (C), 133.5 (CH), 145.1 (C), 192.8 (C); MS (EI) m/z 302 (M⁺), 220, 204, 176, 161, 143, 133, 115, 103, 91, 77, 67, 55, 47, 37, 24, 16. Anal. Calcd for C₁₈H₂₂O₄: C, 71.50; H, 7.33%. Found: C, 71.58; H, 7.60%. The enantiomeric excess (*endo*) was determined by HPLC analysis (DAICEL Chiralpak AD-H, 1: 99 i-PrOH/hexane, flow 0.5 mL/min, 35° C) t_R = 29.4 min (minor), 71.1 min (major). Relative stereochmistry (*endo/exo*) of the products could be determined by ¹H NMR analysis on the basis of a coupling constant between H-1 and H-7 which reported previously (endo: 7.3 Hz, exo: 0 Hz).¹⁹ The endo/exo ratio was determined by ¹H NMR analysis (endo : exo = 88 : 12) on the basis of the integration corresponding to one of the methylene protons at 6 position.

4.3.12. **7-exo-Cyclohexyloxy-5-methoxy-8-oxabenzo**[*c*]bicyclo[3.2.1]octan-2-one (*exo-3f*): Although *exo-3d* could not separate by chromatography from a mixture with major *endo-3f*, it could characterize by ¹H and ¹³C NMR. ¹H NMR (CDCl₃) δ 1.00 – 1.82 (10H, m), 2.31 (1H, dd, *J* = 13.2, 3.9 Hz), 2.39 (1H, dd, *J* = 13.2, 7.3 Hz), 3.32 – 3.38 (1H, m), 3.55 (3H, s), 4.14 (1H, dd, *J* = 3.9, 7.3 Hz), 4.74 (1H, s), 7.40 – 7.49 (2H, m), 7.57 – 7.64 (1H, m), 7.93 – 7.98 (1H, m); ¹³C NMR (CDCl₃) δ 24.1 (CH₂), 24.2 (CH₂), 29.7 (CH₂), 32.0 (CH₂), 32.8 (CH₂), 42.6 (CH₂), 52.0 (CH₃), 76.9 (CH), 77.2 (CH), 87.8 (CH), 107.4 (C), 122.9 (CH), 126.7 (CH), 128.5 (CH), 129.2 (C), 134.2 (CH), 145.5 (C), 193.6 (C). The enantiomeric excess was determined by HPLC analysis (DAICEL Chiralpak AD-H, 1 : 99 *i*-PrOH/hexane, flow 0.5 mL/min, 35°C) t_R = 39.6 min (minor), 36.4 min (major).

4.3.13. 7-*endo*-(*t*-Butyldimethylsilyl)oxy-5-methoxy-8-oxabenzo[c]bicyclo[3.2.1]octan-2-one (*endo*-10): Colorless viscous oil; $[\alpha]_{D}^{25} = -32.1$ (*c* 0.17, CHCl₃) (*endo* : *exo* = > 99 : 1, 14% ee (*endo*)); IR (neat) 3413, 3159, 3070, 2939, 2897, 2858, 1716, 1601, 1462, 1396, 1362, 1292, 1257, 1200, 1161, 1107, 1049, 1011, 960, 899 cm⁻¹; ¹H NMR (CDCl₃) δ -0.05 (3H, s), 0.01 (3H, s), 0.67 (9H, s), 1.91 (1H, dd, *J* = 2.0, 12.9 Hz), 2.58 (1H, dd, *J* = 8.8, 12.9 Hz), 3.45 (3H, s), 4.81 (1H, d, *J* = 7.3 Hz), 4.87 (1H, ddd, *J* = 2.0, 8.8, 7.3 Hz), 7.41-7.50 (2H, m), 7.57-7.65 (1H, m), 7.97-8.00 (1H, m); ¹³C NMR (CDCl₃) δ -5.0 (CH₃), -4.9 (CH₃), 17.9 (C), 25.5 (CH₃), 44.9 (CH₂), 51.9 (CH₃), 69.6 (CH), 84.8 (CH), 106.7 (C), 122.9 (CH), 126.3 (CH), 128.3 (CH), 131.5 (C), 133.4 (CH), 144.9 (C), 192.3 (C); MS (EI) m/z 334 (M⁺), 319, 303, 291, 278, 259, 249, 231, 217, 203, 189, 177, 161, 145, 133, 116, 102, 89, 76, 59, 45, 29, 15, 3. Anal. Calcd for C₁₈H₂₆O₄Si: C, 64.64; H, 7.83%. Found: C, 64.38; H, 8.01%. The enantiomeric excess (*endo*) was determined by HPLC analysis (DAICEL Chiralpak AD-3, 1 : 99 *i*-PrOH/hexane, flow 0.5 mL/min, 35°C) t_R = 14.3 min (minor), 39.9 min (major). Relative stereochmistry (*endo/exo*) of the products could be determined by ¹H NMR analysis on the basis of a coupling constant between H-1 and H-7 which reported previously (*endo*: 7.3 Hz).¹⁹

4.3.14. **7**-*endo*-Hydroxymethyl-5-methoxy-8-oxabenzo[*c*]bicyclo[3.2.1]octan-2-one (*endo*-11): Colorless viscous oil; $[\alpha]_D^{25} = +113.2$ (*c* 0.65, CHCl₃) (*endo* : *exo* = > 99 : 1, 60% ee (*endo*)); IR (neat) 3537, 3032, 2993, 2947, 1697, 1601, 1458, 1392, 1296, 1176, 1065, 972, 864 cm⁻¹; ¹H NMR (CDCl₃) δ 1.65 (1H, dd, *J* = 5.6, 12.9 Hz), 2.49 (1H, dd, *J* = 11.2, 12.9 Hz), 3.10-3.20 (1H, m), 3.25 (1H, dd, *J* = 9.5, 11.7 Hz), 3.51 (3H, s), 3.51 (1H, dd, *J* = 5.9, 11.7 Hz), 4.92 (1H, d, *J* = 8.1 Hz), 7.44-7.50 (2H, m), 7.62-7.67 (1H, m), 8.01-8.04 (1H, m); ¹³C NMR (CDCl₃) δ 36.7 (CH₂), 41.3 (CH₂), 52.1 (CH₃), 62.3 (CH), 83.4 (CH), 107.0 (C), 122.7 (CH), 126.7 (CH), 128.5 (CH), 130.2 (C), 134.5 (CH), 146.5 (C), 195.7 (C); MS (EI) m/z 234 (M^+), 219, 203, 189, 178, 171, 161, 145, 133, 115, 104, 91, 83, 76, 63, 57, 49, 39, 31, 15, 3. Anal. Calcd for C₁₃H₁₄O₄: C, 66.66; H, 6.02%. Found: C, 66.48; H, 5.87%. The enantiomeric excess (*endo*) was determined by HPLC analysis (DAICEL Chiralpak OD-3, 1 : 99 *i*-PrOH/hexane, flow 0.5 mL/min, 35°C) t_R = 21.0 min (minor), 22.4 min (major). Relative stereochmistry (*endo/exo*) of the products could be determined by ¹H NMR analysis on the basis of a coupling constant between H-1 and H-7 which reported previously (*endo*: 8.1 Hz).¹⁹

4.3.15. 5-Methoxy-6-phenyl-8-oxabenzo[c]bicyclo[3.2.1]octan-2-one (12): 69 : 31 Mixture of diastereomers; Colorless viscous oil; $\left[\alpha\right]_{D}^{25} = -7.5$ (c 0.12, CHCl₃) (69 : 31 Mixture of diastereomers, 10% ee (major), 20% ee (minor)); IR (neat) 2954, 2862, 1782, 1712, 1604, 1462, 1389, 1257, 1084, 1038, 895 cm⁻¹; ¹H NMR (CDCl₃) Major: δ 2.00 (1H x 0.69, ddd, J = 2.0, 7.6, 14.2 Hz), 3.04 (1H x 0.69, ddd, J = 9.3, 11.2, 14.2 Hz), 3.49 (3H x 0.69, s), 3.79 (1H x 0.69, dd, J = 7.6, 11.2 Hz), 4.91 (1H x 0.69, dd, J = 2.0, 9.3 Hz), 6.65-6.71 (2H x 0.69, m), 7.04-7.16 (3H x 0.69, m), 7.27-8.09 (4H x 0.69, m); Minor: δ 2.39 (1H x 0.31, ddd, J = 1.7, 9.3, 14.2 Hz), 2.62 (1H x 0.31, ddd, J = 3.7, 9.3, 14.2 Hz), $3.32 (3H \times 0.31, s), 3.38 (1H \times 0.31, dd, J = 3.7, 9.3 Hz), 4.96 (1H \times 0.31, dd, J = 1.7, 9.3 Hz), 6.65$ -6.71 (3H x 0.31, m), 7.04-7.16 (2H x 0.31, m), 7.27-8.09 (4H x 0.31, m); ¹³C NMR (CDCl₃) Major: δ 31.5 (CH₂), 51.6 (CH₃), 52.7 (CH), 79.5 (CH), 109.3 (C), 125.9 (CH), 126.7 (CH), 126.8 (CH), 127.7 (CH), 127.9 (CH), 128.7 (CH), 130.4 (C), 133.0 (CH), 136.6 (C), 141.2 (C), 194.8 (C); Minor: 8 36.1 (CH2), 52.3 (CH3), 53.6 (CH), 78.9 (CH), 108.6 (C), 123.5 (CH), 126.8 (CH), 127.3 (CH), 127.4 (CH), 128.1 (CH), 128.6 (CH), 129.9 (C), 134.2 (CH), 140.9 (C), 145.5 (C), 194.8 (C); MS (EI) m/z 280 (M⁺), 248, 219, 191, 163, 133, 105, 77, 50, 28, 3; Anal. Calcd for $C_{18}H_{16}O_3 + H_2O$: C, 72.47; H, 6.08%. Found: C, 72.40; H, 6.02%. The enantiomeric excess (major diastereomer) was determined by HPLC analysis (DAICEL Chiralpak AD-3, 1 : 200 *i*-PrOH/hexane, flow 0.5 mL/min, 35°C) t_R = 44.6 min (minor), 88.7 min (major). The enantiomeric excess (minor diastereomer) was determined by HPLC

analysis (DAICEL Chiralpak AD-3, 1 : 200 *i*-PrOH/hexane, flow 0.5 mL/min, 35°C) $t_R = 69.6$ min (minor), 117.2 min (major).

4.3.16. 6-*endo*-7-*endo*-5-Methoxy-8-oxabenzo[*c*]tetrahydrofuro[3,2-*f*]bicyclo[3.2.1]octan-2-one (*endo*-16): Colorless viscous oil; $[\alpha]_D^{25}$ -147.1 (*c* 0.26, CHCl₃) (59% ee (*endo*)); IR (neat) 2976, 2951, 2890, 2845, 2361, 2340, 1713, 1601, 1456, 1331, 1310, 1290, 1246, 1200, 1169, 1088, 1061, 1044, 1013 cm⁻¹; ¹H NMR (CDCl₃) δ 1.42–1.52 (1H, m), 1.89–2.02 (1H, m), 2.73 (1H, q, *J* = 8.1 Hz), 3.28 (1H, dt, *J* = 8.8, 2.4 Hz), 3.45 (3H, s), 3.65 (1H, dt, *J* = 8.8, 4.4 Hz), 4.91 (1H, d, *J* = 7.3 Hz), 5.15 (1H, dd, *J* = 8.1, 7.3 Hz), 7.43 - 7.54 (2H, m), 7.61 – 7.68 (1H, m), 8.03 – 8.08 (1H, m); ¹³C NMR (CDCl₃) δ 26.6 (CH₂), 52.3 (CH₃), 52.9 (CH), 72.0 (CH₂), 83.1 (CH), 83.7 (CH), 108.4 (C), 125.2 (CH), 126.6, (CH), 129.0 (CH), 132.3 (C), 133.1 (CH), 141.2 (C), 192.1 (C); MS (EI) m/z 246 (M⁺), 217, 202, 187, 173, 161, 148, 139, 128, 115, 102, 91, 76, 63, 55, 47, 35, 24, 13. Anal. Calcd for C₁₄H₁₄O₄: C, 68.28; H, 5.73%. Found : C, 68.28; H, 5.68%. The enantiomeric excess was determined by HPLC analysis (DAICEL Chiralpak AD-H, 1 : 9 *i*-PrOH/hexane, flow 0.5 mL/min, 35°C) t_R = 17.9 min (major), 18.8 min (minor). Relative stereochmistry (*endo/exo*) of the products could be determined by ¹H NMR analysis on the basis of a coupling constant between H-1 and H-7 which reported previously (*endo*: 7.3 Hz).¹⁹

4.3.17. **5,7-Dimethoxy-7-methyl-8-oxabenzo**[*c*]bicyclo[3.2.1]octan-2-one (17): 47 : 53 (*endo/exo*) Mixture of diastereomer; Colorless viscous oil; $[\alpha]_D^{25}$ -24.0 (*c* 0.21, CHCl₃) (*endo* : *exo* = 47 : 53, 12% ee (*endo*), 15% ee (*exo*)); IR (neat) 3066, 2978, 2835, 1705, 1597, 1454, 1377, 1288, 1149, 1045, 972, 899 cm⁻¹; ¹H NMR (CDCl₃) *endo*: δ 1.16 (3H x 0.47, s), 1.99 (1H x 0.47, d, *J* = 13.7 Hz), 2.63 (1H x 0.47, dd, *J* = 1.0, 13.7 Hz), 3.34 (3H x 0.47, s), 3.54 (3H x 0.47, s), 4.71 (1H x 0.47, d, *J* = 1.0 Hz), 7.43-7.47 (2H x 0.47, m), 7.58-7.64 (1H x 0.47, m), 7.97-7.99 (1H x 0.47, m); *exo*: δ 1.66 (3H x 0.53, s), 2.22 (1H x 0.53, d, *J* = 13.2 Hz), 2.26 (1H x 0.53, d, *J* = 13.2 Hz), 3.13 (3H x 0.53, s), 3.48 (3H x 0.53, s), 4.50 (1H x 0.53, s), 7.43-7.47 (2H x 0.53, m), 7.58-7.64 (1H x 0.53, m), 8.01-8.03 (1H x 0.53, m); ¹³C NMR (CDCl₃) *endo*: δ 25.2 (CH₂), 47.9 (CH₂), 51.8 (CH₃), 52.0 (CH₃), 87.7 (CH), 110.0 (C), 111.1 (C), 122.5 (CH), 126.6 (CH), 128.4 (CH), 134.3 (CH), 136.7 (C), 141.7 (C), 177.2 (C); *exo*: δ 20.8 (CH₂), 47.2 (CH₂), 51.0 (CH₃), 52.3 (CH₃), 89.7 (CH), 106.1 (C), 106.2 (C), 122.7 (CH), 126.7 (CH), 128.6 (CH), 133.7 (CH), 135.6 (C), 140.7 (C), 176.9 (C); MS (EI) m/z 248 (M⁺), 233, 216, 201, 185, 177, 163, 155, 148, 141, 131, 128, 115, 101, 90, 83, 74, 63, 50, 42, 31, 15. Satisfactory elemental analysis was not obtained. The enantiomeric excess (*endo*) was determined by HPLC analysis (DAICEL Chiralpak AD-3, 1 : 200 *i*-PrOH/hexane, flow 0.5 mL/min, 35°C) t_R = 17.2 min (minor), 24.6 min (major). The enantiomeric excess (*exo*) was determined by HPLC analysis (DAICEL Chiralpak AD-3, 1 : 200 *i*-PrOH/hexane, flow 0.5 mL/min, 35°C) t_R = 18.1 min (minor), 19.3 min (major).

4.3..18. 7-Butoxy-7-(t-butyldimethylsilyl)oxy-5-methoxy-8-oxabenzo[c]bicyclo[3.2.1]octan-2-one (18): 74 : 26 Mixture of diastereomer; Pale vellow viscous oil; $\left[\alpha\right]_{D}^{25}$ +21.3 (c 1.00, CHCl₃) (74 : 26 Mixture of diastereomer, 72% ee (major), 55% ee (minor)); IR (neat) 2951, 2866, 1709, 1604, 1462, 1392, 1296, 1261, 1134, 1076 cm⁻¹; ¹H NMR (CDCl₃) Major: δ 0.23 (3H x 0.74, s), 0.26 (3H x 0.74, s), 0.69 (3 H x 0.74, t, J = 7.3 Hz), 0.94 (9 H x 0.74, s), 1.17 - 1.25 (2 H x 0.74, m), 1.36 - 1.48 (2 H x 0.72.39 (1H x 0.74, d, J = 12.9 Hz), 2.50 (1H x 0.74, d, J = 12.9 Hz), 3.27 (1H x 0.74, ddd, J = 6.8, 9.8, 9.8, 9.816.1 Hz), 3.50 (3H x 0.74, s), 3.52-3.58 (1H x 0.74, m), 4.64 (1H x 0.74, s), 7.38-7.45 (2H x 0.74, m), 7.52-7.60 (1H x 0.74, m), 7.95-7.97 (1H x 0.74, m); Minor: δ -0.39 (3H x 0.26, s), 0.04 (3H x 0.26, s), $0.57 (9H \ge 0.26, s), 0.95 (3H \ge 0.26, t, J = 7.3 Hz), 1.36-1.65 (4H \ge 0.26, m), 2.26 (1H \ge 0.26, d, J = 0.57)$ 13.2 Hz), 2.65 (1H x 0.26, d, J = 13.2 Hz), 3.50 (3H x 0.26, s), 3.52-3.58 (1H x 0.26, m), 3.64 (1H x 0.26, ddd, J = 6.3, 7.1, 9.3 Hz), 4.76 (1H x 0.26, s), 7.38-7.45 (2H x 0.26, m), 7.52-7.60 (1H x 0.26, m), 7.95-7.97 (1H x 0.26, m); ¹³C NMR (CDCl₃) Major: δ -3.0 (CH₃), 1.2 (CH₃), 13.8 (CH₃), 18.4 (C), 19.0 (CH₂), 25.9 (CH₃), 31.5 (CH₂), 48.0 (CH₂), 51.7 (CH₃), 63.5 (CH₂), 90.4 (CH), 106.2 (C), 106.9 (C), 122.5 (CH), 126.4 (CH), 128.5 (CH), 130.3 (C), 133.5 (CH), 144.5 (C); Minor: δ -4.0 (CH₃), -3.5 (CH₃), 14.1 (CH₃), 18.0 (C), 19.5 (CH₂), 25.3 (CH₃), 32.1 (CH₂), 48.9 (CH₂), 51.7 (CH₃), 63.1 (CH₂), 85.3 (CH), 105.8 (C), 106.4 (C), 122.9 (CH), 126.5 (CH), 128.5 (CH), 130.6 (C), 133.6 (CH), 144.3 (C), 191.0 (C); MS (EI) m/z 406 (M⁺), 391, 377, 349, 333, 317, 305, 289, 275, 261, 247, 231, 217, 203, 189, 177, 159, 145, 129, 115, 103, 89, 73, 59, 41, 29, 15, 3. Anal. Calcd for $C_{22}H_{34}O_5Si$: C, 64.99; H, 8.43%. Found: C, 64.88; H, 8.52%. The enantiomeric excess (Major) was determined by HPLC analysis (DAICEL Chiralpak OD-3, 1 : 200 *i*-PrOH/hexane, flow 0.5 mL/min, 35°C) $t_R = 7.8$ min (major), 13.8 min (minor). The enantiomeric excess (Minor) was determined by HPLC analysis (DAICEL Chiralpak OD-3, 1 : 200 *i*-PrOH/hexane, flow 0.5 mL/min, 35°C) $t_R = 9.1$ min (minor), 14.5 min (major).

4.4. General Procedure for the Reactions of α, α '-Dicarbonyl Diazo Compounds 19 – 27 with Olefins Was Exemplified the Reaction of Methyl 2-(2-Diazo-1,3-dioxohexyl)benzoate (19) with Butyl Vinyl Ether (2a) Catalyzed by (R)-BINIM-4Me-2QN-Ni(II) Complex: A solution of (R)-BINIM-4Me-2QN (29.5 mg, 0.05 mmol) in CH₂Cl₂ (2.5 mL, without purification) was added to a mixture of powdered MS 4Å (500 mg) and Ni(ClO₄)₂·6H₂O (18.3 mg, 0.05 mmol) in a two-necked round-bottomed flask (30 mL) equipped with reflux condenser, and then stirred for 6 h at room temperature. After added butyl vinyl ether (2a) (100 mg, 1.00 mmol), Rh₂(OAc)₄ (4.4 mg, 0.01 mmol) and CH₂Cl₂ (1.5 mL, without purification), successively, a solution of diazo compound **19** (137 mg, 0.50 mmol) in CH₂Cl₂ (5 mL, without purification) was added over a period of 1 h using a syringe pump under reflux (bath temp. 55 °C). The syringe was washed with CH₂Cl₂ (1 mL, without purification). After removal of MS 4Å through celite, the reaction mixture was filtered through a plug of silica gel (3) cm) with AcOEt/hexane (1:1, 80 mL) as an eluent. The solvent was removed in vacuo, and the residue was purified by column chromatography (99 : 1 hexane/AcOEt) to provide 172 mg (99%) of endo-28a. Relative stereochmistry (endo/exo) of the products 28a, 28c, 30c, 28f - 36f, 38 - 41, 43, and 44 could be determined by ¹H NMR analysis on the basis of chemical shifts of H-2 (and a coupling constant between H-1 and H-2) compared with endo-3a - f, exo-3a - f, endo-10, endo-11, and endo-16.

4.4.1. **1-Butanoyl-7***-endo*-butoxy-5-methoxy-8-oxabenzo[c]bicyclo[3.2.1]octan-2-one (*endo*-28a): Colorless viscous oil; $[\alpha]_D^{25}$ +175.8 (*c* 1.00, CHCl₃) (92% ee); IR (neat) 3025, 2963, 2936, 2874, 1730, 1701, 1603, 1458, 1404, 1368, 1302, 1269, 1217, 1171, 1101, 1065, 1040, 1007 cm⁻¹; ¹H NMR (CDCl₃) δ 0.76 (3H, t, *J* = 7.3 Hz), 0.95 (3H, t, *J* = 7.3 Hz), 1.09 (2H, sext, *J* = 7.3 Hz), 1.20–1.34 (2H, m), 1.61–1.76 (2H, m), 2.08 (1H, dd, J = 13.2, 1.7 Hz), 2.55 (1H, ddd , J = 6.6, 8.1, 18.3 Hz), 2.60 (1H, dd, J = 13.2, 9.5 Hz), 2.73 (1H, ddd, J = 6.6, 8.1, 18.3 Hz), 3.36 (1H, dt, J = 6.4, 9.5 Hz), 3.50 (1H, dt, J = 6.4, 9.5 Hz), 3.50 (3H, s, OMe), 4.55 (1H, dd, J = 1.7, 9.5 Hz), 7.45–7.51 (2H, m), 7.61–7.66 (1H, m), 7.98–8.02 (1H, m); ¹³C NMR (CDCl₃) δ 13.7 (CH₃), 13.8 (CH₃),16.5 (CH₂), 19.1 (CH₂), 31.5 (CH₂), 41.2 (CH₂), 43.0 (CH₂), 52.0 (CH₃), 70.5 (CH₂), 77.8 (CH), 95.3 (C), 106.7 (C), 123.1 (CH), 126.5 (CH), 128.6 (CH), 131.2 (C), 133.7 (CH), 144.1 (C), 189.3 (C), 203.5 (C); MS (EI) m/z 346 (M⁺), 303, 246, 231, 186, 175, 161, 147, 129, 117, 103, 91, 71, 61, 49, 39, 26, 13; HRMS (EI) Calcd for C₂₀H₂₆O₅ (M⁺): 346.1779. Found: 346.1797. Anal. Calcd for C₂₀H₂₆O₅: C, 69.34; H, 7.56%. Found: C, 69.32; H, 7.64%. The enantiomeric excess was determined by HPLC analysis (DAICEL Chiralpak AD-H, 1 : 99 *i*-PrOH/hexane, flow 0.5 mL/min, 35°C) t_R = 13.3 min (minor), 14.2 min (major).

4.4.2. **1-Butanoyl-7***-endo*-benzyloxy-5-methoxy-8-oxabenzo[c]bicyclo[3.2.1]octan-2-one (*endo*-**28c**): Colorless viscous oil; $[\alpha]_D^{25}$ +114.6 (*c* 1.00, CHCl₃) 79% ee (*endo*)); IR (neat) 3012, 2962, 2881, 1724, 1601, 1458, 1362, 1304, 1269, 1215, 1169, 1095, 1041, 930 cm⁻¹; ¹H NMR (CDCl₃) δ 0.95 (3H, t, *J* = 7.6 Hz), 1.69 (2H, m), 2.13 (1H, dd, *J* = 13.4, 2.0 Hz), 2.57 (1H, ddd, *J* = 6.3, 8.3, 18.5 Hz), 2.61 (1H, dd, *J* = 13.4, 10.0 Hz), 2.74 (1H, ddd, *J* = 6.6, 8.3, 18.5 Hz), 3.49 (3H, s), 4.45 (1H, d, *J* = 12.0 Hz), 4.58 (1H, d, *J* = 12.0 Hz), 4.65 (1H, dd, *J* = 2.0, 10.0 Hz), 7.15-7.27 (5H, m), 7.47-7.51 (2H, m), 7.62-7.66 (1H, m), 8.04-8.06 (1H, m); ¹³C NMR (CDCl₃) δ 13.7 (CH₃), 16.5 (CH₂), 41.3 (CH₂), 42.9 (CH₂), 52.0 (CH₃), 72.0 (CH₂), 77.1 (CH), 95.6 (C), 106.5 (C), 123.2 (CH), 126.7 (CH), 127.3 (CH), 127.7 (CH), 127.9 (CH), 128.7 (CH), 131.0 (C), 133.9 (CH), 137.4 (C), 144.1 (C), 189.5 (C), 203.7 (C); MS (EI) m/z 380 (M⁺), 367, 330, 320, 310, 300, 289, 276, 262, 250, 230, 217, 201, 186, 176, 164, 152, 120, 109, 90, 78, 51, 24, 13. Anal. Calcd for C₂₃H₂₄O₅: C, 72.61; H, 6.36%. Found: C, 72.54; H, 6.41%. The enantiomeric excess was determined by HPLC analysis (DAICEL Chiralpak AD-H, 0.5 : 99.5 *i*-PrOH/hexane, flow 0.5 mL/min, 35°C) t_R = 43.0 min (minor), 72.6 min (major).

4.4.3. **1-Butanoyl-7***-endo*-cyclohexyloxy-5-methoxy-8-oxabenzo[c]bicyclo[3.2.1]octan-2-one (*endo*-28f): Colorless viscous oil; $[\alpha]_D^{25}$ +171.4 (*c* 1.00, CHCl₃) (93% ee (*endo*)); IR (neat) 3021, 2936,

2859, 1728, 1701, 1603, 1522, 1456, 1362, 1300, 1269, 1215, 1169, 1098, 1063 cm⁻¹; ¹H NMR (CDCl₃) δ 0.95 (3H, t, *J* = 7.3 Hz), 0.99–1.86 (10H, m), 1.62–1.74 (2H, m), 2.04 (1H, dd, *J* = 12.9, 1.7 Hz), 2.59 (1H, dd, *J* = 12.9, 9.5 Hz), 2.56 (1H, ddd, *J* = 6.4, 8.1, 18.3 Hz), 2.74 (1H, ddd, *J* = 6.6, 7.8, 18.3 Hz), 3.50 (3H, s, OMe), 3.44–3.54 (1H, m), 4.74 (1H, dd, *J* = 1.7, 9.5 Hz), 7.43–7.51 (2H, m), 7.59–7.66 (1H, m), 7.96–8.03 (1H, m); ¹³C NMR (CDCl₃) δ 13.8 (CH₃), 16.5 (CH₂), 23.7 (CH₂), 23.9 (CH₂), 25.8 (CH₂), 31.5 (CH₂), 32.3 (CH), 41.2 (CH₂), 43.6 (CH₂), 52.0 (CH₃), 74.8 (CH₂), 76.5 (CH), 95.5 (C), 106.9 (C), 123.2 (CH), 126.5 (CH), 128.6 (CH), 131.5 (C), 133.6 (CH), 144.1 (C), 189.7 (C), 203.8 (C); MS (EI) m/z 372 (M⁺), 340, 313, 301, 290, 272, 258, 246, 230, 218, 201, 191, 187, 175, 163, 147, 129, 115, 103, 83, 71, 55, 39, 24, 13; HRMS (EI) Calcd for C₂₂H₂₈O₅ (M⁺): 372.1935. Found: 372.1953. The enantiomeric excess was determined by HPLC analysis (DAICEL Chiralpak AD-H, 1 : 99 *i*-PrOH/hexane, flow 0.5 mL/min, 35°C) t_R = 13.8 min (minor), 17.8 min (major).

4.4. **7-endo-Cyclohexyloxy-5-methoxy-1-propanoyl-8-oxabenzo[c]bicyclo[3.2.1]octan-2-one** (*endo-29f*): Colorless viscous oil; $[\alpha]_D^{25}$ +176.9 (*c* 0.60, CHCl₃) (73% ee (*endo*)); ¹H NMR (CDCl₃) δ 0.99-1.78 (10H, m), 1.12 (3H, t, *J* = 6.6 Hz), 2.03 (1H, dd, *J* = 1.7, 13.2 Hz), 2.57 (1H, dq, *J* = 7.1, 18.8 Hz), 2.58 (1H, dd, *J* = 9.3, 13.2 Hz), 2.80 (1H, dq, *J* = 7.1, 18.8 Hz), 3.49 (3H, s), 3.46-3.52 (1H, m), 4.74 (1H, dd, *J* = 1.7, 9.3 Hz), 7.44-7.48 (2H, m), 7.60-7.64 (1H, m), 7.97-8.00 (1H, m); ¹³C NMR (CDCl₃) δ 7.3 (CH₃), 23.8 (CH₂), 23.9 (CH₂), 25.9 (CH₂), 31.5 (CH₂), 32.3 (CH₂), 32.7 (CH₂), 43.7 (CH₂), 52.1 (CH), 74.9 (CH), 76.5 (CH), 95.6 (C), 106.9 (C), 123.2 (CH), 126.6 (CH), 128.7 (CH), 131.6 (C), 133.7 (CH), 144.1 (C), 189.8 (C), 204.6 (C). Satisfactory elemental analysis was not obtained. The enantiomeric excess was determined by HPLC analysis (DAICEL Chiralpak AD-H, 1 : 99 *i*-PrOH/hexane, flow 0.5 mL/min, 35°C) t_R = 13.5 min (minor), 18.6 min (major).

4.4.5. **7-endo-Benzyloxy-5-methoxy-1-(3-methylbutanoyl)-8-oxabenzo[c]bicyclo[3.2.1]-octan-2one** (*endo-30c*): Colorless viscous oil; $[\alpha]_D^{25}$ +133.7 (*c* 0.74, CHCl₃) 90% ee (*endo*)); IR (neat) 3035, 2978, 2943, 1724, 1601, 1458, 1304, 1269, 1173, 1099, 1041, 953, 887 cm⁻¹; ¹H NMR (CDCl₃) δ 1.14 (3H, t, *J* = 6.8 Hz), 1.17 (3H, t, *J* = 6.8 Hz), 2.12 (1H, dd, *J* = 1.7, 13.2 Hz), 2.62 (1H, dd, *J* = 9.8, 13.2 Hz), 3.08 (1H, quint, J = 6.8 Hz), 3.50 (3H, s), 4.48 (1H, d, J = 12.0 Hz), 4.63 (1H, d, J = 12.0 Hz), 4.60 (1H, dd, J = 1.7, 9.8 Hz), 7.16-7.25 (5H, m), 7.47-7.51 (2H, m), 7.62-7.66 (1H, m), 8.05-8.07 (1H, m); ¹³C NMR (CDCl₃) δ 18.4 (CH₃), 18.7 (CH₃), 37.9 (CH), 42.9 (CH₂), 52.0 (CH₃), 72.0 (CH₂), 77.8 (CH), 96.2 (C), 106.4 (C), 123.2 (CH), 126.9 (CH), 127.3 (CH), 127.8 (CH), 128.0 (CH), 128.8 (CH), 130.9 (C), 134.0 (CH), 137.5 (C), 144.1 (C), 189.1 (C), 207.7 (C); MS (EI) m/z 380 (M⁺), 362, 348, 310, 289, 247, 231, 215, 201, 187, 174, 161, 147, 129, 115, 104, 91, 71, 54, 43, 27, 15, 3. Anal. Calcd for C₂₃H₂₄O₅: C, 72.61; H, 6.36%. Found: C, 72.55; H, 6.37%. The enantiomeric excess was determined by HPLC analysis (DAICEL Chiralpak AD-H, 1 : 99 *i*-PrOH/hexane, flow 0.5 mL/min, 35°C) t_R = 23.2 min (major), 26.8 min (minor).

4.4.6. 7-*endo*-Cyclohexyloxy-5-methoxy-1-(3-methylbutanoyl)-8-oxabenzo[c]bicyclo[3.2.1]-octan-2-one (*endo*-30f): Colorless viscous oil; $[\alpha]_D^{25}$ +177.3 (*c* 1.00, CHCl₃) (88% ee (*endo*)); IR (neat) 3568, 3021, 2936, 2858, 2401, 1728, 1703, 1602, 1415, 1366, 1362, 1269, 1215, 1169, 1169, 1098, 1064, 758, 530 cm⁻¹; ¹H NMR (CDCl₃) & 0.84–1.70 (10H, m), 0.94 (3H, d, *J* = 6.5 Hz), 0.97 (3H, d, *J* = 6.8 Hz), 2.06 (1H, dd, *J* = 13.2, 1.7 Hz), 2.25 (1H, m), 2.47 (1H, dd, *J* = 6.5, 17.8 Hz) 2.58 (1H, dd, *J* = 13.2, 9.2 Hz), 2.63 (1H, dd, *J* = 6.8, 17.8 Hz), 3.42–3.54 (1H, m), 3.49 (3H, s), 4.72 (1H, dd, *J* = 1.7, 9.2 Hz), 7.41–7.52 (2H, m), 7.58–7.67 (1H, m), 7.94–8.03 (1H, m); ¹³C NMR (CDCl₃) & 22.6 (CH₃), 22.7 (CH₃), 23.7 (CH), 23.7 (CH₂), 23.8 (CH₂), 25.8 (CH₂), 31.5 (CH₂), 32.2 (CH₂), 43.5 (CH₂), 48.1 (CH₂), 52.0 (CH₃), 74.8 (CH), 76.4 (CH), 95.4 (C), 106.8 (C),123.1 (CH), 126.5 (CH), 128.6 (CH), 131.5 (C), 133.6 (CH), 144.1 (C), 189.6 (C), 203.3 (C); MS (EI m/z 386 (M⁺), 354, 327, 304, 286, 272, 261, 244, 232, 219, 201, 200, 187, 173, 161, 147, 129, 115, 103, 85, 69, 57, 39, 26, 13; HRMS (EI) Calcd for C₂₃H₃₀O₅ (M⁺): 386.2092. Found: 386.2106. The enantiomeric excess was determined by HPLC analysis (DAICEL Chiralpak AD-H, 0.5 : 99.5 *i*-PrOH/hexane, flow 0.5 mL/min, 35°C) t_R = 14.9 min (minor), 18.0 min (major).

4.4.7. **7-***endo*-Cyclohexyloxy-5-methoxy-1-pentanoyl-8-oxabenzo[c]bicyclo[3.2.1]octan-2-one (*endo*-31f): Colorless viscous oil; $[\alpha]_D^{25}$ +180.5 (*c* 1.00, CHCl₃) (93% ee (*endo*)); IR (neat) 3020, 2935, 1728, 1701, 1423, 1302, 1269, 1215, 1168, 1097, 1047, 929, 771, 669 cm⁻¹; ¹H NMR (CDCl₃) δ 0.91 (3H, t, *J* = 7.3 Hz), 0.95–1.74 (10H, m), 1.34 (2H, m),1.64 (2H, m) 2.03 (1H, dd, *J* = 1.7, 12.9 Hz), 2.56 (1H, m), 2.58 (1H, dd, *J* = 9.5, 12.9 Hz), 2.75 (1H, ddd, *J* = 6.3, 8.3, 18.0 Hz), 3.40-3.54 (1H, m), 3.50 (3H, s), 4.73 (1H, dd, *J* = 1.7, 9.5 Hz), 7.42–7.50 (2H, m), 7.59–7.66 (1H, m), 7.95–8.02 (1H, m); ¹³C NMR (CDCl₃) δ 13.9 (CH₃), 22.2 (CH₂), 23.6 (CH₂), 23.8 (CH₂), 25.1 (CH₂), 25.8 (CH₂), 31.4 (CH₂), 32.2 (CH₂), 38.9 (CH₂), 43.5 (CH₂), 51.9 (CH₃), 74.8 (CH), 76.4 (CH), 95.5 (C), 106.8 (C), 123.1 (CH), 126.4 (CH), 128.5 (CH), 131.4 (C), 133.6 (CH), 144.1 (C), 189.7 (C), 203.9 (C); MS (EI) m/z 386 (M⁺), 354, 327, 304, 286, 272, 260, 244, 231, 218, 201, 200, 187, 173, 161, 147, 129, 115, 103, 83, 71, 57, 37, 26, 13; HRMS (EI) Calcd for C₂₃H₃₀O₅ (M⁺): 386.2092. Found: 386.2112. The enantiomeric excess was determined by HPLC analysis (DAICEL Chiralpak AD-H, 1 : 99 *i*-PrOH/hexane, flow 0.5 mL/min, 35°C) t_R = 13.3 min (minor), 17.8 min (major).

4.4.8. 7-*endo*-Cyclohexyloxy-5-methoxy-1-(3-methylbutanoyl)-8-oxabenzo[c]bicyclo[3.2.1]-octan-2-one (*endo*-32f): Colorless viscous oil; $[\alpha]_D^{25}$ +177.3 (*c* 1.00, CHCl₃) (88% ee (*endo*)); IR (neat) 3568, 3021, 2936, 2858, 2401, 1728, 1703, 1602, 1415, 1366, 1362, 1269, 1215, 1169, 1169, 1098, 1064, 758, 530 cm⁻¹; ¹H NMR (CDCl₃) & 0.84–1.70 (10H, m), 0.94 (3H, d, *J* = 6.5 Hz), 0.97 (3H, d, *J* = 6.8 Hz), 2.06 (1H, dd, *J* = 13.2, 1.7 Hz), 2.25 (1H, m), 2.47 (1H, dd, *J* = 6.5, 17.8 Hz) 2.58 (1H, dd, *J* = 13.2, 9.2 Hz), 2.63 (1H, dd, *J* = 6.8, 17.8 Hz), 3.42–3.54 (1H, m), 3.49 (3H, s), 4.72 (1H, dd, *J* = 1.7, 9.2 Hz), 7.41–7.52 (2H, m), 7.58–7.67 (1H, m), 7.94–8.03 (1H, m); ¹³C NMR (CDCl₃) & 22.6 (CH₃), 22.7 (CH₃), 23.7 (CH), 23.7 (CH₂), 23.8 (CH₂), 25.8 (CH₂), 31.5 (CH₂), 32.2 (CH₂), 43.5 (CH₂), 48.1 (CH₂), 52.0 (CH₃), 74.8 (CH), 76.4 (CH), 95.4 (C), 106.8 (C),123.1 (CH), 126.5 (CH), 128.6 (CH), 131.5 (C), 133.6 (CH), 144.1 (C), 189.6 (C), 203.3 (C); MS (EI) m/z 386 (M⁺), 354, 327, 304, 286, 272, 261, 244, 232, 219, 201, 200, 187, 173, 161, 147, 129, 115, 103, 85, 69, 57, 39, 26, 13; HRMS (EI) Calcd for C₂₃H₃₀O₅ (M⁺): 386.2092. Found: 386.2106. The enantiomeric excess was determined by HPLC analysis (DAICEL Chiralpak AD-H, 0.5 : 99.5 *i*-PrOH/hexane, flow 0.5 mL/min, 35°C) t_R = 14.9 min (minor), 18.0 min (major).

4.4.9. **7**-*endo*-Cyclohexyloxy-1-hexanoyl-5-methoxy-8-oxabenzo[c]bicyclo[3.2.1]-octan-2-one (*endo*-33f): Colorless viscous oil; $[\alpha]_D^{25}$ +154.1 (*c* 0.80, CHCl₃) (84% ee, (*endo*)); IR (neat) 3021, 2934, 2859, 1730, 1701, 1651, 1603, 1507, 1456, 1362, 1300, 1269, 1215, 1167, 1098, 1065 cm⁻¹; ¹H NMR (CDCl₃) δ 0.89 (3H, t, *J* = 7.3 Hz), 1.01–1.77 (10H, m), 1.04, (2H, m), 1.31 (2H, m), 1.65 (2H, m), 2.03 (1H, dd, *J* = 1.7, 12.9 Hz), 2.56 (1H, ddd, *J* = 6.3, 8.1, 18.3 Hz), 2.58 (1H, dd, *J* = 9.3, 12.9 Hz), 2.75 (1H, ddd, *J* = 6.6, 8.3, 18.3 Hz), 3.49 (3H, s), 3.45–3.52 (1H, m), 4.73 (1H, dd, *J* = 1.7, 9.3 Hz), 7.44–7.48 (2H, m), 7.60–7.64 (1H, m), 7.96–8.00 (1H, m); ¹³C NMR (CDCl₃) δ 14.1 (CH₃), 22.6 (CH₂), 22.8 (CH₂), 23.8 (CH₂), 23.9 (CH₂), 25.9 (CH₂), 31.4 (CH₂), 31.5 (CH₂), 32.3 (CH₂), 39.4 (CH₂), 43.6 (CH₂), 52.1 (CH₃), 74.9 (CH), 76.5 (CH), 95.6 (C), 106.9 (C), 123.2 (CH), 126.6 (CH), 128.6 (CH), 131.6 (C), 133.7 (CH), 144.1 (C), 189.8 (C), 204.1 (C); MS (EI) m/z 400 (M⁺), 368, 341, 318, 301, 275, 258, 246, 231, 215, 201, 187, 173, 159, 145, 129, 116, 103, 83, 69, 55, 37, 24; HRMS (EI) Calcd for Calcd for C₂₄H₃₂O₅ (M⁺): 400.2248. Found: 400.2242. The enantiomeric excess was determined by HPLC analysis (DAICEL Chiralpak AD-H, 1 : 99 *i*-PrOH/hexane, flow 0.5 mL/min, 35°C) t_R = 42.0 min (minor), 55.7 min (major).

4.4.10. **1-(Cylohexylcarbonyl)-7-***endo*-cyclohexyloxy-5-methoxy-8-oxabenzo[c]bicyclo[3.2.1]octan-2-one (*endo*-34f): Colorless prisms (hexane); mp 95–96 °C; $[\alpha]_D^{25}$ +163.7 (*c* 1.00, CHCl₃) (96% ee (*endo*)); IR (KBr) 3021, 2936, 2857, 1728, 1699, 1557, 1539, 1520, 1454, 1300, 1267, 1217, 1167, 1098, 1051, 974 cm⁻¹; ¹H NMR (CDCl₃) δ 0.98–1.92 (20H, m), 2.01 (1H, dd, *J* = 1.7, 12.9 Hz), 2.58 (1H, dd, *J* = 9.3, 12.9 Hz), 2.82 (1H, tt, *J* = 3.2, 11.2 Hz), 3.50 (3H, s), 3.52-3.56 (1H, m), 4.66 (1H, dd, *J* = 1.7, 9.3 Hz), 7.44–7.48 (2H, m), 7.60–7.64 (1H, m), 7.98–8.00 (1H, m); ¹³C NMR (CDCl₃) δ 23.8 (CH₂), 23.9 (CH₂), 25.7 (CH₂), 25.9 (CH₂), 26.0 (CH₂), 28.5 (CH₂), 28.9 (CH₂), 31.5 (CH₂), 32.4 (CH₂), 43.5 (CH₂), 47.7 (CH), 52.0 (CH₃), 75.5 (CH), 76.4 (CH), 96.0 (C), 106.7 (C), 123.2 (CH), 126.7 (CH), 128.6 (CH), 131.5 (C), 133.6 (CH), 144.0 (C), 189.3 (C), 207.1 (C); MS (EI) m/z 412 (M⁺), 380, 353, 330, 287, 270, 201, 187, 174, 161, 147, 129, 103, 83, 55, 37, 24; HRMS (EI) Calcd for C₂₅H₃₂O₅ (M⁺): 412.2248. Found: 412.2234 The enantiomeric excess was determined by HPLC analysis (DAICEL Chiralpak AD-H, 1 : 99 *i*-PrOH/hexane, flow 0.5 mL/min, 35°C) $t_R = 16.0 \text{ min}$ (major), 19.5 min (minor).

4.4.11. **7**-*endo*-Cyclohexyloxy-5-methoxy-1-(phenylacetyl)-8-oxabenzo[c]bicyclo[3.2.1]-octan-2one (*endo*-35f): Colorless viscous oil; $[\alpha]_D^{25}$ +165.7 (*c* 1.00, CHCl₃) (92% ee (*endo*)); IR (neat) 3020, 2938, 1734, 1701, 1302, 1269, 1215, 1165, 1098, 1067, 1028, 976, 669 cm⁻¹; ¹H NMR (CDCl₃) δ 0.84– 1.72 (10H, m), 2.05 (1H, dd, *J* = 13.1, 1.7 Hz), 2.60 (1H, dd, *J* = 13.1, 9.5 Hz), 3.41–3.56 (1H, m), 3.88 (1H, d, *J* = 17.1 Hz), 4.06 (1H, d, *J* = 17.1 Hz), 4.75 (1H, dd, *J* = 1.7, 9.5 Hz), 7.44–7.53 (2H, m), 7.61–7.67 (1H, m), 7.96–8.04 (1H, m); ¹³C NMR (CDCl₃) δ 23.6 (CH₂), 23.8 (CH₂), 25.8 (CH₂), 31.3 (CH₂), 32.2 (CH₂), 43.6 (CH₂), 45.9 (CH₂), 52.1 (CH₃), 74.8 (CH), 76.4 (CH), 95.7 (C), 107.0 (C), 123.2 (CH), 126.5 (CH), 126.7 (CH), 128.2 (CH), 128.6 (CH), 129.8 (CH), 131.4 (C), 133.2 (C), 133.7 (CH), 144.0 (C), 189.5 (C), 201.1 (C); MS (EI) m/z 420 (M⁺), 388, 360, 338, 307, 294, 278, 262, 247, 234, 219, 203, 187, 173, 160, 147, 129, 104, 91, 77, 55, 37, 24; HRMS (EI) Calcd for C₂₆H₂₈O₅ (M⁺): 420.1935. Found: 420.1942. The enantiomeric excess was determined by HPLC analysis (DAICEL Chiralpak AD-H, 1 : 99 *i*-PrOH/hexane, flow 0.5 mL/min, 35°C) t_R = 24.2 min (minor), 39.0 min (major).

4.4.12. **7**-*endo*-Cyclohexyloxy-5-methoxy-1-(3-phenylpropanoyl)-8-oxabenzo[c]bicyclo[3.2.1]octan-2-one (*endo*-36f): Colorless viscous oil; $[\alpha]_D^{25}$ +135.1 (*c* 1.00, CHCl₃) (77% ee (*endo*)); IR (neat) 2935, 2859, 1730, 1705, 1602, 1497, 1454, 1362, 1302, 1269, 1215, 1165, 1096, 1046, 754, 700, 505 cm⁻¹; ¹H NMR (CDCl₃) δ 0.83–1.84 (10H, m), 2.03 (1H, dd, *J* = 13.1, 1.7 Hz), 2.56 (1H, dd, *J* = 13.1, 9.5 Hz), 2.89 (1H, m), 2.99 (2H, m), 3.07 (1H, m), 3.50 (3H, s), 3.40–3.54 (1H, m), 4.71 (1H, dd, *J* = 1.7, 9.5 Hz), 7.39–7.53 (2H, m), 7.57–7.66 (1H, m), 7.93–8.01 (1H, m); ¹³C NMR (CDCl₃) δ 23.7 (CH₂), 23.8 (CH₂), 25.8 (CH₂), 29.2 (CH₂), 31.5 (CH₂), 32.3 (CH₂), 41.0 (CH₂), 43.7 (CH₂), 52.1 (CH₃), 74.9 (CH), 76.6 (CH), 95.4 (C), 107.0 (C), 123.2 (CH), 125.8 (CH), 126.5 (CH), 128.1 (CH), 128.2 (CH), 128.6 (CH), 131.5 (C), 133.7 (CH), 140.8 (C), 144.0, (C)189.7 (C), 202.8 (C); MS (EI) m/z 434 (M⁺), 402, .375, 352, 334, 309, 292, 279, 263, 248, 231, 217, 201, 187, 173, 149, 129, 105, 91, 71, 57, 39, 26, 13; HRMS (EI) Calcd for C₂₇H₃₀O₅ (M⁺): 434.2092. Found: 434.2104. The enantiomeric excess was determined by HPLC analysis (DAICEL Chiralpak AD-H, 2 : 98 *i*-PrOH/hexane, flow 0.2 mL/min, 35° C) t_R = 44.4 min (minor), 47.1 min (major).

4.4.13. **1-Butanoyl-7***-endo-(t-***butyldimethylsilyl)oxy-5-methoxy-8-oxabenzo[c]bicyclo[3.2.1]-octan-2-one** (*endo-38*): Colorless viscous oil; $[\alpha]_D^{25}$ -40.0 (*c* 1.00, CHCl₃) (19% ee (*endo*)); IR (neat) 2951, 2893, 1948, 1724, 1604, 1462, 1373, 1304, 1261, 1215, 1169, 1111, 1034, 949, 837 cm⁻¹; ¹H NMR (CDCl₃) δ -0.08 (3H, s), 0.06 (3H, s), 0.58 (9H, s), 0.94 (3H, t, *J* = 7.3 Hz), 1.68 (2H, m), 1.92 (1H, dd, *J* = 12.9, 1.5 Hz), 2.55 (1H, ddd, *J* = 6.3, 8.3, 18.3 Hz), 2.55 (1H, dd, *J* = 12.9, 8.8 Hz), 2.74 (1H, ddd, *J* = 6.6, 8.3, 18.3 Hz), 3.49 (3H, s), 4.92 (1H, dd, *J* = 1.5, 8.8 Hz), 7.43-7.47 (2H, m), 7.59-7.63 (1H, m), 7.96-7.98 (1H, m); ¹³C NMR (CDCl₃) δ -5.2 (CH₃), -5.0 (CH₃), 13.8 (CH₃), 16.5 (CH₂), 17.6 (C), 25.3 (CH₃), 41.2 (CH₂), 45.4 (CH₂), 52.1 (CH₃), 71.3 (CH), 95.1 (C), 107.1 (C), 123.1 (CH), 126.5 (CH), 128.5 (CH), 131.7 (C), 133.6 (CH), 144.0 (C), 189.4 (C), 203.4 (C); MS (EI) m/z 404 (M⁺), 388, 374, 362, 346, 328, 315, 302, 287, 273, 261, 250, 231, 217, 204, 188, 175, 159, 146, 138, 115, 101, 85, 74, 59, 47, 35, 24, 12. Anal. Calcd for C₂₂H₃₂O₅Si: C, 65.31; H, 7.97%. Found: C, 65.17; H, 8.09%. The enantiomeric excess was determined by HPLC analysis (DAICEL Chiralpak OD-H, 1 : 800 **i**-PrOH/hexane, flow 0.2 mL/min, 35°C) tR = 6.7 min (minor), 9.0 min (major).

4.4.14. **1-Butanoyl-7***-endo*-butanoyloxy-5-methoxy-8-oxabenzo[c]bicyclo[3.2.1]octan-2-one (*endo*-39): Colorless viscous oil; IR (neat) 3028, 2966, 1736, 1601, 1458, 1369, 1304, 1269, 1161, 1095, 1034, 933 cm⁻¹; ¹H NMR (CDCl₃) δ 0.72 (3H, t, *J* = 7.3 Hz), 0.95 (3H, t, *J* = 7.3 Hz), 1.39 (2H, m), 1.68 (2H, m), 1.96 (1H, dd, *J* = 13.9, 2.2 Hz), 2.07 (2H, m), 2.55 (1H, ddd, *J* = 6.6, 8.3, 18.3 Hz), 2.72 (1H, ddd, *J* = 6.6, 8.1, 18.3 Hz), 2.84 (1H, dd, *J* = 13.9, 9.5 Hz), 3.52 (3H, s), 5.75 (1H, dd, *J* = 2.2, 9.5 Hz), 7.49-7.54 (2H, m), 7.65-7.69 (1H, m), 8.05-8.07 (1H, m); ¹³C NMR (CDCl₃) δ 13.4 (CH₃), 13.7 (CH₃), 16.5 (CH₂), 18.1 (CH₂), 35.9 (CH₂), 41.1 (CH₂), 42.6 (CH₂), 52.2 (CH₃), 71.1 (CH), 92.6 (C), 106.8 (C), 123.2 (CH), 127.0 (CH), 128.9 (CH), 130.5 (C), 134.3 (CH), 144.3 (C), 171.6 (C), 188.5 (C), 202.1 (C); MS (EI) m/z 360 (M⁺), 301, 290, 272, 258, 244, 229, 213, 202, 187, 173, 161, 147, 129, 115, 103, 91, 77, 57, 37, 24, 13. Anal. Calcd for C₂₀H₂₄O₆: C, 66.65; H, 6.71%. Found: C, 66.35; H, 6.44%. The enantiomeric excess was determined by HPLC analysis (DAICEL Chiralpak AD-H, 1 : 9 *i*-PrOH/hexane, flow 0.5 mL/min, 35°C) $t_R = 10.5 \text{ min (major)}$, 21.3 min (minor).

4.4.15. **1-Butanoyl-7***endo*-butyl-5-methoxy-8-oxabenzo[c]bicyclo[3.2.1]octan-2-one (*endo*-40): Colorless viscous oil; IR (neat) 2951, 2873, 1724, 1597, 1454, 1400, 1373, 1296, 1215, 1165, 1088, 1038, 976, 899 cm⁻¹; ¹H NMR (CDCl₃) δ 0.80 (3H, t, *J* = 7.1 Hz), 0.93 (3H, t, *J* = 7.3 Hz), 1.11-1.23 (4H, m), 1.61-1.67 (4H, m), 1.67 (1H, dd, *J* = 12.6, 4.9 Hz), 2.51 (1H, ddd, *J* = 6.3, 7.8, 18.1 Hz), 2.57 (1H, dd, *J* = 12.6, 11.7 Hz), 2.72 (1H, ddd, *J* = 6.8, 7.8, 18.1 Hz), 2.80 (1H, dddd, *J* = 3.9, 8.5, 4.9, 11.7 Hz), 3.52 (3H, s), 7.46-7.50 (2H, m), 7.64-7.68 (1H, m), 8.02-8.04 (1H, m); ¹³C NMR (CDCl₃) δ 13.8 (CH₃), 14.0 (CH₃), 16.6 (CH₂), 22.5 (CH₂), 31.1 (CH₂), 32.0 (CH₂), 39.7 (CH₂), 40.1 (CH), 41.3 (CH₂), 51.9 (CH₃), 94.6 (C), 106.6 (C), 122.8 (CH), 127.0 (CH), 128.6 (CH), 130.1 (C), 134.3 (CH), 146.2 (C), 191.3 (C), 203.9 (C); MS (EI) m/z 330 (M⁺), 314, 302, 288, 276, 259, 250, 241, 232, 217, 199, 186, 174, 167, 157, 119, 108, 101, 91, 78, 51, 24, 12, 3. Anal. Calcd for C₂₀H₂₆O₄: C, 72.70; H, 7.93%. Found: C, 72.50; H, 8.11%. The enantiomeric excess was determined by HPLC analysis (DAICEL Chiralpak AD-H, 1 : 400 *i*-PrOH/hexane, flow 0.5 mL/min, 35°C) t_R = 17.5 min (minor), 18.9 min (major).

4.4.16. **1-Butanoyl-7***-endo*-butoxymethyl-5-methoxy-8-oxabenzo[c]bicyclo[3.2.1]octan-2-one (*endo*-41): Colorless viscous oil; ¹H NMR (CDCl₃) δ 0.74 (3H, t, J = 7.3 Hz), 0.93 (3H, t, J = 7.3 Hz), 1.02 (2H, sext, J = 7.3 Hz), 1.17 (2H, m), 1.61-1.71 (2H, m), 2.10 (1H, dd, J = 5.6, 13.2 Hz), 2.52 (1H, ddd, J = 6.6, 8.1, 18.1 Hz), 2.51 (1H, dd, J = 11.5, 13.2 Hz), 2.71 (1H, ddd, J = 6.6, 7.8, 18.1 Hz), 3.02-3.09 (1H, m), 3.12 (2H, dt, J = 6.3, 1.5 Hz), 3.16 (1H, dd, J = 6.1, 9.5 Hz), 3.50 (1H, dd, J = 3.7, 9.5 Hz), 3.52 (3H, s), 7.43-7.48 (2H, m), 7.60-7.64 (1H, m), 7.97-7.99 (1H, m). The other spectroscopic data and satisfactory elemental analysis were not obtained because of a small amount of the product.

4.4.17. **1-Butanoyl-5-methoxy-7-phenyl-8-oxabenzo[c]bicyclo[3.2.1]octan-2-one (42):** 91 : 9 Mixture of diastereomer; Colorless viscous oil; IR (neat) 3062, 2958, 2904, 1728, 1693, 1597, 1496,

1454, 1373, 1296, 1200, 1161, 1041, 987, 914, 856 cm⁻¹; ¹H NMR (CDCl₃) Major: δ 0.93 (3H x 0.91, t, J = 7.6 Hz), 1.68 (2H x 0.91, m), 2.41 (1H x 0.91, dd, J = 13.2, 4.6 Hz), 2.52 (1H x 0.91, dt, J = 7.1, 18.3 Hz), 2.74 (1H x 0.91, dt, J = 7.1, 18.3 Hz), 2.89 (1H x 0.91, dd, J = 13.2, 12.2 Hz), 3.58 (3H x 0.91, s), 4.39 (1H x 0.91, dd, J = 4.6, 12.2 Hz), 6.80-6.82 (2H x 0.91, m), 7.02-7.11 (3H x 0.91, m), 7.46-7.51 (1H x 0.91, m), 7.60-7.62 (1H x 0.91, m), 7.70-7.84 (2H x 0.91, m); Minor: δ 0.98 (3H x 0.09, t, J = 7.3 Hz), 1.72 (2H x 0.09, m), 2.20 (1H x 0.09, dd, J = 14.6, 8.3 Hz), 2.61 (1H x 0.09, ddd, J = 6.3, 8.1, 18.1 Hz), 2.82 (1H x 0.09, ddd, J = 6.3, 8.3, 18.1 Hz), 3.16 (1H x 0.09, dd, J = 14.6, 11.0 Hz), 3.54 $(3H \times 0.09, s), 3.78 (1H \times 0.09, dd, J = 8.3, 11.0 Hz), 6.66-6.71 (3H \times 0.09, m), 7.02-7.14 (2H \times 0.09, m))$ m), 7.29-7.34 (2H x 0.09, m), 7.40-7.44 (1H x 0.09, m), 8.07-8.10 (1H x 0.09, m); ¹³C NMR (CDCl₃) Major: δ 13.8 (CH₃), 16.7 (CH₂), 41.3 (CH₂), 41.5 (CH₂), 44.7 (CH), 52.4 (CH₃), 95.5 (C), 107.0 (C), 123.2 (CH), 126.9 (CH), 127.9 (CH), 128.4 (CH), 128.9 (CH), 131.4 (C), 134.5 (CH), 136.3 (C), 144.7 (C) 190.7 (C), 203.4 (C); Minor: 13.8 (CH₃), 16.6 (CH₂), 33.1 (CH₂), 41.1 (CH₂), 50.9 (CH₃), 52.7 (CH), 90.3 (C), 109.7 (C), 126.0 (CH), 127.0 (CH), 127.1 (CH), 127.7 (CH), 130.1 (C), 133.2 (CH), 135.8 (C), 140.8 (C), 191.4 (C), 203.8 (C); MS (EI) m/z 350 (M⁺), 291, 274, 250, 231, 219, 191, 175, 161, 149, 129, 115, 104, 91, 77, 57, 39, 25, 12. Anal. Calcd for C₂₂H₂₂O₄: C, 75.41; H, 6.33%. Found: C, 75.42; H, 6.32%. The enantiomeric excess of major adduct was determined by HPLC analysis (DAICEL Chiralpak AD-H, 0.5 : 99.5 *i*-PrOH/hexane, flow 0.5 mL/min, 35°C) $t_{\rm R}$ = 30.5 min (minor), 38.2 min (major).

4.4.18. **6**-*endo*-7-*endo*-1-Butanoyl-5-methoxy-8-oxabenzo[*c*]tetrahydrofuro[3,2-*f*]bicyclo[3.2.1]octan-2-one (*endo*-43): Colorless solid; mp 59-60.5 °C; $[\alpha]_D^{25}$ -137.9 (*c* 1.00, CHCl₃) (54% ee (*endo*)); IR (neat) 3073, 3034, 2957, 2874, 2845, 2361, 2342, 1728, 1699, 1599, 1454, 1404, 1379, 1368, 1333, 1304, 1287, 1256, 1221, 1198, 1167, 1119, 1096, 1080, 1051, 1048, 1015 cm⁻¹; ¹H NMR (CDCl₃) δ 0.96 (3H, t, *J* = 7.3 Hz), 1.52 (1H, m), 1.65–1.76 (2H, m), 1.97 (1H, m), 2.57 (1H, ddd, *J* = 6.6, 8.1, 18.1 Hz), 2.70 (1H, dt, *J* = 8.1, 8.1 Hz), 2.77 (1H, ddd, *J* = 6.6, 8.1, 18.1 Hz), 3.30 (1H, dt, *J* = 2.2, 9.0 Hz), 3.51 (3H, s), 3.66 (1H, dt, *J* = 4.4, 9.0 Hz), 5.12 (1H, d, *J* = 8.3 Hz), 7.44–7.56 (2H, m), 7.63–7.71 (1H, m), 8.04–8.10 (1H, m); ¹³C NMR (CDCl₃) δ 13.7 (CH₃), 16.6 (CH₂), 26.5 (CH₂), 41.1 (CH₂), 52.4 (CH₃), 52.5 (CH), 71.8 (CH₂), 84.9 (CH), 94.4 (C), 108.7 (C), 125.2 (CH), 127.0 (CH), 129.2 (CH), 132.0 (C), 133.3 (CH), 140.8 (C), 188.7 (C), 202.4 (C); MS (EI) m/z 316 (M⁺), 256, 246, 231, 217, 203, 187, 176, 163, 147, 129, 115, 104, 91, 77, 68, 55, 39, 24, 12. Anal. Calcd for C₁₈H₂₀O₅: C, 68.34; H, 6.37%. Found: C, 68.48; H, 6.49%. The enantiomeric excess of major adduct was determined by HPLC analysis (DAICEL Chiralpak AD-H, 1 : 19 *i*-PrOH/hexane, flow 0.5 mL/min, 35°C) t_R = 28.0 min (major), 31.4 min (minor).

4.4.19. **1-Butanoyl-5,7***-endo*-dimethoxy-7*-exo*-methyl-8-oxabenzo[*c*]bicyclo[3.2.1]octan-2-one (*endo*-44): Colorless viscous oil; $[\alpha]_D^{25}$ +43.7 (*c* 0.50, CHCl₃) (8% ee (*endo*)); IR (neat) 3021, 2967, 2833, 2401, 1734, 1967, 1601, 1520, 1456, 1301, 1277, 1254, 1219, 1147, 1086, 1003 cm⁻¹; ¹H NMR (CDCl₃) δ 0.93 (3H, t, *J* = 7.3 Hz), 1.35 (3H, s), 1.64 (2H, sext, *J* = 7.3 Hz), 1.92 (1H, d, *J* = 13.6 Hz), 2.54 (1H, dt, *J* = 7.3, 18.0 Hz), 2.78 (1H, dt, *J* = 7.3, 18.0 Hz), 2.77 (1H, d, *J* = 13.6 Hz), 3.22 (3H, s), 3.60 (3H, s), 7.41–8.03 (4H, m); ¹³C NMR (CDCl₃) δ 13.8 (CH₃), 16.4 (CH₂), 20.8 (CH₃), 42.6 (CH₂), 46.0 (CH₂), 50.6 (CH₃), 52.0 (CH₃), 85.2 (C), 98.2 (C), 105.8 (C), 122.0 (CH), 127.7 (CH), 128.7 (CH), 129.3 (C), 134.3 (CH), 146.6 (C), 188.1 (C), 200.6 (C). Satisfactory elemental analysis was not obtained. The enantiomeric excess was determined by HPLC analysis (DAICEL Chiralpak AD-H, 1 : 99 *i*-PrOH/hexane, flow 0.5 mL/min, 35°C) t_R = 45.7 min (minor), 53.6 min (major).

4.4.20. **1-Butanoyl-5,7***exo*-dimethoxy-7*-endo*-methyl-8-oxabenzo[c]bicyclo[3.2.1]octan-2-one (*exo*-44): Colorless viscous oil; $[\alpha]_D^{25}$ +101.4 (*c* 0.80, CHCl₃) (34% ee); IR (neat) 3021, 2967, 2936, 2833, 2401, 1734, 1697, 1601, 1520, 1454, 1301, 1298, 1277, 1147, 1086, 1003, 970 cm⁻¹; ¹H NMR (CDCl₃) δ 0.93 (3H, t, *J* = 7.6 Hz), 1.42 (3H, s), 1.64 (2H, m), 2.37 (2H, s), 2.51 (1H, dt, *J* = 7.6, 18.0 Hz), 2.70 (1H, dt, *J* = 7.6, 18.0 Hz), 3.18 (3H, s), 3.54 (3H, s), 7.41–8.07 (4H, m); ¹³C NMR (CDCl₃) δ 13.7 (CH₃), 16.4 (CH₂), 22.0 (CH₃), 42.2 (CH₂), 50.5 (CH₂), 51.8 (CH₃), 52.0 (CH₃), 84.0 (C), 97.7 (C), 104.7 (C), 122.3 (CH), 127.2 (CH), 128.5 (CH), 130.4 (C), 133.7 (CH), 144.4 (C), 187.2 (C), 202.4 (C). Satisfactory elemental analysis was not obtained. The enantiomeric excess was determined by HPLC analysis (DAICEL Chiralpak AD-H, 1 : 99 *i*-PrOH/hexane, flow 0.5 mL/min, 35° C) t_R = 20.8 min (major), 27.1 min (minor).

4.4.21. 1-Butanoyl-7-butoxy-7-(t-butyldimethylsilyl)oxy-5-methoxy-8-oxabenzo[c]bicyclo[3.2.1]octan-2-one (45): 74 : 26 Mixture of diastereomer; Yellow viscous oil; IR (neat) 3047, 2958, 2873, 1944, 1732, 1651, 1604, 1462, 1284, 1180, 1072, 1018 cm⁻¹; ¹H NMR (CDCl₃) Major: δ -0.28 (3H, s), 0.11 (3H, s), 0.63 (9H, s), 0.91 (3H, t, J = 7.3 Hz), 1.00 (3H, t, J = 7.3 Hz), 1.30-1.39 (2H, m), 1.47-1.54 (2H, m), 1.63-1.70 (1H, m), 1.77-1.87 (1H, m), 2.10 (1H, d, J = 13.4 Hz), 2.82 (1H, ddd, J = 5.6, J)9.8, 17.8 Hz), 2.95 (1H, d, J = 13.4 Hz), 3.08 (1H, ddd, J = 5.6, 9.5, 17.8 Hz), 3.40 (1H, dt, J = 6.3, 9.0Hz), 3.56 (3H, s), 3.52-3.59 (1H, m), 7.40-7.47 (2H, m), 7.58-7.60 (1H, m), 7.97-7.99 (1H, m); Minor: δ 0.14 (3H, s), 0.20 (3H, s), 0.75 (3H, t, J = 7.3 Hz), 0.89 (9H, s), 0.94 (3H, t, J = 7.3 Hz), 1.04-1.10 (2H, m), 1.18-1.25 (2H, m), 1.60-1.69 (2H, m), 2.44 (1H, d, J = 12.7 Hz), 2.62 (1H, ddd, J = 6.6, 8.5, 1.5)18.5 Hz), 2.72 (1H, ddd, J = 6.6, 8.3, 18.5 Hz), 2.74 (1H, d, J = 12.7 Hz), 3.43 (1H, dt, J = 6.3, 9.5 Hz), 3.55 (3H, s), 3.79 (1H, dt, J = 6.3, 9.5 Hz), 7.38-7.46 (2H, m), 7.57-7.61 (1H, m), 7.97-7.99 (1H, m);¹³C NMR (CDCl₃) Major: δ -4.4 (CH₃), -2.6 (CH₃), 14.0 (CH₃), 14.1 (CH₃), 17.0 (CH₂), 17.8 (C), 19.3 (CH₂), 25.2 (CH₃), 32.0 (CH₂), 43.5 (CH₂), 46.4 (CH₂), 52.2 (CH₃), 64.4 (CH₂), 98.2 (C), 105.2 (C), 107.0 (C), 122.3 (CH), 127.4 (CH), 128.7 (CH), 130.7 (C), 133.8 (CH), 144.3 (C), 187.6 (C), 201.2 (C); MS (EI) m/z 476 (M⁺), 461, 405, 387, 330, 317, 287, 261, 247, 230, 217, 202, 186, 173, 160, 147, 129, 105, 89, 73, 57, 43, 29. Anal. Calcd for C₂₆H₄₀O₆Si: C, 65.51; H, 8.46%. Found: C, 65.41; H, 8.47%. The enantiomeric excess of major adduct was determined by HPLC analysis (DAICEL Chiralpak OD-3, 1 : 200 EtOH/hexane, flow 0.5 mL/min, 35° C) t_R = 10.2 min (major), 13.5 min (minor).

4.4.22. **1-Butanoyl-7-butoxy-5-methoxy-7-phenyl-8-oxabenzo**[*c*]bicyclo[3.2.1]octan-2-one (46): 74 : 26 Mixture of diastereomer; Colorless viscous oil; $[\alpha]_D^{25}$ +77.8 (*c* 1.00, CHCl₃) (74 : 26 Mixture of diastereomer, 44% ee (major), 44% ee (minor)); IR (neat) 3066, 2958, 2877, 1736, 1601, 1454, 1369, 1273, 1153, 1072, 1018, 818 cm⁻¹; ¹H NMR (CDCl₃) Major: δ 0.64 (3H, t, *J* = 7.3 Hz), 0.67 (3H, t, *J* = 7.3 Hz), 0.79-1.40 (6H, m), 2.16 (1H, ddd, *J* = 5.6, 9.0, 17.8 Hz), 2.41 (1H, ddd, *J* = 6.3, 9.0, 17.8 Hz), 2.83 (1H, d, J = 14.4 Hz), 2.90 (1H, d, J = 14.4 Hz), 2.95 (1H, ddd, J = 6.1, 7.6, 9.5 Hz), 3.48 (1H, ddd, J = 5.6, 6.3, 9.5 Hz), 3.66 (3H, s), 7.22-7.67 (8H, m), 8.05-8.07 (1H, m); Minor: $\delta 0.88$ (3H, t, J = 7.3Hz), 0.96 (3H, t, J = 7.3 Hz), 0.79-1.40 (2H, m), 1.48-1.54 (2H, m), 1.61-1.72 (2H, m), 2.59 (1H, ddd, J = 6.6, 7.3, 18.1 Hz, 2.82-2.98 (1H, m), 2.84 (1H, m), 2.93 (1H, d, J = 13.7 Hz), 3.10 (2H, m), 3.64 (3H, s), 6.92-7.17 (5H, m), 7.22-7.67 (4H, m); ¹³C NMR (CDCl₃) Major: δ 13.6 (CH₃), 13.7 (CH₃), 16.3 (CH₂), 19.0 (CH₂), 31.8 (CH₂), 42.7 (CH₂), 48.3 (CH₂), 52.7 (CH₃), 66.0 (CH₂), 88.2 (C), 99.0 (C), 105.8 (C), 122.3 (CH), 126.3 (CH), 127.5 (CH), 128.1 (CH), 128.6 (CH), 131.0 (C), 133.4 (CH), 141.1 (C), 144.3 (C), 186.6 (C); Minor: 13.9 (CH₃), 14.0 (CH₃), 16.4 (CH₂), 19.5 (CH₂), 31.9 (CH₂), 42.5 (CH₂), 45.4 (CH₂), 52.0 (CH₃), 63.7 (CH₂), 89.8 (C), 97.0 (C), 106.6 (C), 122.6 (CH), 126.3 (CH), 127.6 (CH), 128.1 (CH), 128.9 (CH), 131.1 (C), 134.0 (CH), 136.0 (C), 143.9 (C), 185.6 (C); MS (EI) m/z 422 (M⁺), 390, 363, 348, 333, 317, 289, 263, 246, 231, 218, 203, 189, 175, 161, 147, 129, 117, 105, 91, 71, 57, 41, 27, 15. Anal. Calcd for C₂₆H₃₀O₅: C, 73.91; H, 7.16%. Found: C, 73.79; H, 7.16%. The enantiomeric excess of major adduct was determined by HPLC analysis (DAICEL Chiralpak AD-H, 2 : 98 *i*-PrOH/hexane, flow 0.5 mL/min, 35°C) $t_R = 33.3 \text{ min (minor)}$, 38.6 min (major). The enantiomeric excess of minor adduct was determined by HPLC analysis (DAICEL Chiralpak AD-H, 2 : 98 i-PrOH/hexane, flow 0.5 mL/min, 35° C) t_R = 27.5 min (minor), 52.2 min (major).

4.5. General Procedure for the Reaction of Diazo diketones 47 – 52 with Olefins Was Exemplified the Reaction of 1-Diazo-2,5-hexandione (47) with Butyl Vinyl Ether (2a) Catalyzed by (4*S*,5*S*)-Pybox-Ph₂-Lu(III) Complex: A solution of 2,6-bis[(4*S*,5*S*)-4,5-diphenyl-2-oxazolin-2-yl]pyridine ((4*S*,5*S*)-Pybox-Ph₂, 26.1 mg, 0.05 mmol) in THF (1.5 mL) was added to a solution of Lu(OTf)₃ (30.0 mg, 0.05 mmol) in THF (1 mL). After stirring the mixture for 2 h, the solvent was removed under reduced pressure and resulting solid was dried *in vacuo* at room temperature for 5 h. A solution of Lu(III)–Pybox complex in CH₂Cl₂ (3 mL, purified by distillation with CaH) was transferred to a Schlenk tube (20 mL). After added MS 4Å (0.5 g), Rh₂(OAc)₄ (4.4 mg, 0.01 mmol), MeOH (2.0 μ L) and CH₂Cl₂ (1 mL, purified by distillation with CaH), successively, a solution of diazo compound **1** (102

mg, 0.50 mmol) and butyl vinyl ether (100 mg, 1.00 mmol), in CH₂Cl₂ (5 mL, without purification) was added over a period of 1 h using a syringe pump at 23 °C. The syringe was washed with CH₂Cl₂ (1 mL, purified by distillation with CaH). After removal of MS 4Å through celite, the reaction mixture was filtered through a plug of silica gel (3 cm) with AcOEt/hexane (1 : 1, 60 mL) as an eluent. The solvent was removed *in vacuo*, and the residue was purified by column chromatography (94 : 6 hexane/AcOEt) to provide 67.7 mg (64%) of *endo*-**53a** and *exo*-**53a**. Relative stereochmistry (*endo/exo*) of the products **53a** – **c**, **53e** – **f**, **54a** – **58a**, **59**, and **62** could be determined by ¹H NMR analysis on the basis of a coupling constant between H-1 and H-7 which reported previously (*exo*: 0 Hz).¹⁹

4.5.1. **7-exo-Butoxy-5-methyl-8-oxabicyclo[3.2.1]octan-2-one** (*exo*-**53a**): Colorless viscous oil; $[\alpha]_{D}^{26}$ +21.2 (*c* 0.20, CHCl₃) (*exo* : *endo* = 92 : 8, 82% ee (*exo*)), IR (CHCl₃) 4216, 3447, 3020, 2934, 2402, 2350, 1730, 1682, 1633, 1520, 1454, 1217, 1093, 929, 772, 669 cm⁻¹; ¹H NMR (CDCl₃) δ 0.91 (3H, t, *J* = 7.3 Hz), 1.35 (2H, sext, *J* = 7.3 Hz), 1.51 (2H, m), 1.53 (3H, s), 1.81 (1H, ddd, *J* =2.2, 8.0, 13.4 Hz), 1.87 (1H, m), 2.08 (1H, m), 2.25 (1H, ddd, *J* = 8.3. 9.8, 17.6 Hz), 2.38 (1H, dd, *J* = 7.6, 13.9 Hz), 2.49 (1H, ddt, *J* = 7.8, 17.5, 2.0 Hz), 3.35 (1H, dt, *J* = 6.8, 9.3 Hz), 3.45 (1H, dt, *J* = 6.8, 9.3 Hz), 3.95 (1H, dd, *J* = 2.7, 7.6 Hz), 4.29 (1H, s); ¹³C NMR (CDCl₃) δ 14.0 (CH₃), 19.2 (CH₂), 26.1 (CH₃), 31.7 (CH₂), 34.0 (CH₂), 36.3 (CH₂), 44.0 (CH₂), 69.6 (CH₂), 80.8 (C), 82.8 (CH), 87.4 (CH), 206.2 (C); MS (EI) m/z 212 (M⁺), 184, 156, 140, 127, 121, 112, 109, 99, 93, 82, 75, 69, 62, 56, 49, 41, 35, 24, 13. Anal. Calcd for C₁₂H₂₀O₃: C, 67.89; H 9.50. Found: C, 67.90, H 9.47. The enantiomeric excess was determined by ¹H NMR analysis (91 : 9) after conversion to the corresponding acetals by the reaction with (*R*,*R*)-hydrobenzoin.

4.5.2. **7-endo-Butoxy-5-methyl-8-oxabicyclo**[**3.2.1**]**octan-2-one** (*endo-53a*): Although *endo-53a* could not separate by chromatography from a mixture with major *exo-53a*, it could characterize by ¹H NMR. ¹H NMR (CDCl₃) δ 0.91 (3H, t, J = 7.6 Hz), 1.24–1.33 (2H, m), 1.40 (3H, s), 1.43–1.50 (2H, m), 1.95 – 2.01 (2H, m), 2.10 (1H, m), 2.23 (1H, dd, J = 9.2, 13.4 Hz), 2.44 (1H, ddt, J = 7.2, 17.5, 1.5 Hz), 2.65 (1H, ddd, J = 8.7, 11.7, 17.0 Hz), 3.35 (2H, dt, J = 6.4, 1.9 Hz), 4.31 (2H, m).

4.5.3. **7**-*exo*-Ethoxy-5-methyl-8-oxabicyclo[3.2.1]octan-2-one (*exo*-53b): Colorless viscous oil; $[\alpha]_D^{25}$ +40.8 (*c* 0.94, CHCl₃) (*exo* : *endo* = > 99 : 1, 71% ee (*exo*)), IR (CHCl₃) 3735, 3649, 3567, 2962, 2873, 2361, 1725, 1541, 1464, 1362, 1260, 1092, 1051, 901, 773, 760, 749 cm⁻¹; ¹H NMR (CDCl₃) δ 1.21 (3H, t, *J* = 7.0 Hz), 1.51 (3H, s), 1.81 (1H, ddd, *J* = 2.4, 8.4, 13.5 Hz), 1.88 (1H, m), 2.08 (1H, m), 2.25 (1H, ddd, *J* = 8.4, 9.6, 17.6 Hz), 2.39 (1H, dd, *J* = 7.4, 13.8 Hz), 2.49 (1H, ddt, *J* = 7.9, 17.4, 1.8 Hz), 3.42 (1H, dq, *J* = 7.0, 9.1 Hz), 3.52 (1H, dq, *J* = 7.0, 9.1 Hz), 4.00 (1H,dd, *J* = 2.6, 7.4 Hz), 4.30 (1H, s); ¹³C NMR (CDCl₃) δ 15.3 (CH₃), 26.2 (CH₃), 34.1 (CH₂), 36.2 (CH₂), 44.1 (CH₂), 65.1 (CH₂), 80.8 (C), 82.7 (CH), 87.4 (CH), 206.2 (C); MS (EI) m/z 184 (M⁺), 169, 156, 138, 127, 111, 93, 81, 70, 54, 38, 26, 15. Anal. Calcd for C₁₀H₁₆O₃: C, 65.19; H 8.75%. Found: C, 64.94, H 8.92%. The enantiomeric excess was determined by ¹H NMR analysis (85.7 : 14.3) after conversion to the corresponding acetals by the reaction with (*R*,*R*)-hydrobenzoin.

4.5.4. **7-exo-Benzyloxy-5-methyl-8-oxabicyclo[3.2.1]octan-2-one** (*exo*-53c): Colorless oil; $[\alpha]_{D}^{25}$ +36.3 (*c* 1.00, CHCl₃) (*exo* : *endo* = 95 : 5, 60% ee (*exo*)), IR (CHCl₃) 3031, 1724, 1453, 1096, 791, 774, 759, 748, 738, 713 cm⁻¹; ¹H NMR (CDCl₃) δ 1.54 (3H, s), 1.80 (1H, ddd, *J* = 2.5, 8.4, 13.4 Hz), 1.97 (1H, m), 2.08 (1H, m), 2.23 (1H, ddd, *J* = 8.4, 9.8, 18.0 Hz), 2.38 (1H, dd, *J* = 7.4, 13.9 Hz), 2.48 (1H, ddt, *J* = 7.9, 18.0, 2.5 Hz), 4.10 (1H, dd, *J* = 2.6, 7.4 Hz), 4.38 (1H, s), 4.44 (1H, d, *J* = 11.9 Hz), 4.57 (1H, d, *J* = 11.9 Hz), 7.24 - 7.40 (5H, m); MS (EI) m/z 246 (M⁺), 230, 156, 137, 122, 106, 78, 49, 27. Anal. Calcd for C₁₅H₁₈O₃: C, 73.15; H 7.37%. Found: C, 72.96, .H 7.47%. The enantiomeric excess was determined by ¹H NMR analysis (80 : 20) after conversion to the corresponding acetals by the reaction with (*R*,*R*)-hydrobenzoin.

4.5.5. **7-endo-Benzyloxy-5-methyl-8-oxabicyclo[3.2.1]octan-2-one** (*endo-53c*): Although *endo-53c* could not separate by chromatography from a mixture with major *exo-53c*, it could characterize by ¹H NMR. ¹H NMR (CDCl₃) δ 1.40 (3H, s), 1.95-2.16 (3H, m), 2.23 (1H, ddd, *J* = 1.4, 10.4, 13.7 Hz), 2.48 (1H, ddt, *J* = 7.4, 17.6, 1.4 Hz), 2.70 (1H, ddd, *J* = 8.7, 11.5, 17.6 Hz), 4.37 (1H, dd, *J* = 1.2, 7.4 Hz),

4.40 (1H, d, *J* = 11.4 Hz), 4.45 (1H, ddd, *J* = 4.0, 7.4, 10.7 Hz), 4.52 (1H, d, *J* = 11.9 Hz), 7.22 - 7.38 (5H, m).

4.5.6. **7-***exo-t*-**Butoxy-5-methyl-8-oxabicyclo[3.2.1]octan-2-one** (*exo*-**53e**): Colorless viscous oil; $[\alpha]_{D}^{25}$ +50.7 (*c* 1.00, CHCl₃) (*exo* : *endo* = 95 : 5, 74% ee (*exo*)), IR (CHCl₃) 3426, 2971, 2333, 1720, 1452, 1421, 1366, 1232, 1191, 1145, 1098, 1066, 1039, 861, 843, 776, 721, 706 cm⁻¹; ¹H NMR (CDCl₃) δ 1.19 (9H, s), 1.52 (3H, s), 1.78 (1H, ddd, *J* = 2.5, 8.0, 13.4Hz), 1.84 (1H, m), 2.05 (1H, m), 2.29 (1H, ddd, *J* = 8.5, 9.5, 17.8 Hz), 2.40 (1H, dd, *J* = 8.0, 13.4 Hz), 2.46 (1H, ddt, *J* = 7.8, 17.5, 2.0 Hz), 4.15 (1H, s), 4.17 (1H, dd, *J* = 3.2, 7.8 Hz); ¹³C NMR (CDCl₃) δ 26.1 (CH₃), 28.29 (CH₃), 33.9 (CH₂), 36.1 (CH₂), 46.6 (CH₂), 74.6 (C), 75.1 (CH), 80.7 (C), 90.6 (CH), 206.2 (C); MS (EI) m/z 212 (M⁺), 167, 157, 149, 138, 127, 121, 112, 109, 97, 91, 84, 77, 69, 57, 37, 26, 13. Anal. Calcd for C₁₂H₂₀O₃: C, 67.89; H, 9.50. Found: C, 67.63; H, 9.74. The enantiomeric excess was determined by ¹H NMR analysis (87 : 13) after conversion to the corresponding esters by the reduction with NaBH₄ followed by the reaction with (*R*)-methoxyphenylacetic acid.

4.5.7. **7**-*endo-t*-**Butoxy-5**-methyl-8-oxabicyclo[3.2.1]octan-2-one (*endo*-53e): Although *endo*-53e could not separate by chromatography from a mixture with major *exo*-53e, it could characterize by ¹H NMR. ¹H NMR (CDCl₃) δ 1.13 (9H, s), 1.38 (3H, s), 1.91 (1H, dd, J = 3.9, 13.2 Hz), 1.97 (1H, m), 2.07 (1H, m), 2.22 (1H, ddd, J = 1.2, 10.4, 13.2 Hz), 2.40 (1H, ddt, J = 7.0, 17.0, 1.7 Hz), 2.68 (1H, ddd, J = 8.5, 11.7, 17.1 Hz), 4.11 (1H, dd, J = 1.2, 7.1 Hz), 4.48 (1H, ddd, J = 3.9, 7.1, 10.4 Hz).

4.5.8. **7**-*exo*-Cyclohexyloxy-5-methyl-8-oxabicyclo[3.2.1]octan-2-one (*exo*-53f): Pale yellow oil; $[\alpha]_D^{25}$ +28.3 (*c* 1.00, CHCl₃) (*exo* : *endo* = 89 : 11, 73% ee (*exo*)), IR (CHCl₃) 3424, 3030, 2928, 2362, 1728, 1496, 1453, 1371, 1256, 1200, 1103, 1030, 924, 891, 701 cm⁻¹; ¹H NMR (CDCl₃) δ 1.10 - 1.93 (10H, m), 1.53 (3H, s), 1.80 (1H, ddd, J = 2.4, 8.3, 13.4 Hz), 1.88 (1H, m), 2.07 (1H, m), 2.25 (1H, ddd, J = 8.3, 9.7, 18.0 Hz), 2.38 (1H, dd, J = 7.6, 13.7 Hz), 2.47 (1H, ddt, J = 7.8, 17.6, 2.2 Hz), 3.26 (1H, m), 4.15 (1H, dd, J = 2.9, 7.5 Hz), 4.25 (1H, s); ¹³C NMR (CDCl₃) δ 24.1 (CH₂), 24.2 (CH₂), 25.6 (CH₂), 26.0 (CH₃), 32.1 (CH₂), 32.8 (CH₂), 34.0 (CH₂), 36.2 (CH₂), 44.7 (CH₂), 76.9 (CH), 79.8 (CH), 80.6 (C), 88.8 (CH), 206.2 (C); MS (EI) m/z 238 (M⁺), 225, 211, 197, 173, 157, 141, 127, 114, 83, 70, 57, 41, 26, 13. Anal. Calcd for $C_{14}H_{22}O_3$: C, 70.56; H 9.30%. Found: C, 70.55, .H 9.33%. The enantiomeric excess was determined by ¹H NMR analysis (86.6 : 13.4) after conversion to the corresponding acetals by the reaction with (*R*,*R*)-hydrobenzoin.

4.5.9. **7**-*endo*-Cyclohexyloxy-5-methyl-8-oxabicyclo[3.2.1]octan-2-one (*endo*-53f): Although *endo*-53f could not separate by chromatography from a mixture with major *exo*-53f, it could characterize by ¹H NMR. ¹H NMR (CDCl₃) δ 1.09 - 1.98 (10H, m), 1.38 (3H, s), 1.98 (2H, m), 2.08 (1H, m), 2.23 (1H, ddd, J = 1.5, 13.4, 10.5 Hz), 2.43 (1H, ddt, J = 7.3, 17.0, 1.5 Hz), 2.68 (1H, ddd, J = 8.5, 11.7, 17.0 Hz), 3.25 (1H, m), 4.24 (1H, dd, J = 1.5, 6.8 Hz), 4.48 (1H, ddd, J = 4.1, 6.8, 10.5 Hz).

4.5.10. **7-exo-(t-Butyldimethylsilyl)oxy-5-methyl-8-oxabicyclo[3.2.1]octan-2-one** (*exo-59*): Colorless oil; $[\alpha]_D^{25}$ +28.1 (*c* 1.00, CHCl₃) (*exo* : *endo* = > 99 : 1, 82% ee (*exo*)), IR (CHCl₃) 3735, 3649, 2932, 2361, 1717, 1541, 1457, 1215, 1082, 837, 791, 775, 760, 747, 738, 721 cm⁻¹; ¹H NMR (CDCl₃) δ 0.07 (3H, s), 0.08 (3H, s), 0.88 (9H, s), 1.53 (3H, s), 1.78 (1H, ddd, *J* = 2.2, 8.3, 13.4 Hz), 1.82 (1H, m), 2.05 (1H, m), 2.24 (1H, ddd, *J* = 8.3, 9.8, 18.8 Hz), 2.40 (1H, dd, *J* = 7.3, 13.6 Hz), 2.47 (1H, ddt, *J* = 7.8, 17.6, 2.1 Hz), 4.12 (1H, s), 4.38 (1H, dd, *J* = 2.4, 7,3 Hz); ¹³C NMR (CDCl₃) δ -4.6 (CH₃), -4.5 (CH₃), 18.2 (C), 25.9 (CH₃), 26.2 (CH₃), 34.1 (CH₂), 36.3 (CH₂), 47.4 (CH₂), 75.9 (CH), 81.3 (C), 91.3 (CH), 206.2 (C); MS (EI) m/z 270 (M⁺), 255, 237, 213, 195, 165, 149, 131, 117, 97, 75, 57, 41, 27. Anal. Calcd for C₁₄H₂₆O₃Si: C, 62.18; H 9.69%. Found: C, 62.16, H 9.87%. The enantiomeric excess was determined by ¹H NMR analysis (91 : 9) after conversion to the corresponding esters by the reduction with NaBH₄ followed by the reaction with (*R*)-methoxyphenylacetic acid.

4.5.11. **7-exo-Butoxy-5-ethyl-8-oxabicyclo[3.2.1]octan-2-one** (*exo-54a*): Colorless viscous oil; $[\alpha]_D^{20}$ -16.6 (*c* 1.00, CHCl₃) (*exo* : *endo* = > 99 : 1, 79% ee (*exo*)), IR (CHCl₃) 3735, 3649, 3567, 2962, 2873, 2361, 1725, 1541, 1464, 1362, 1260, 1092, 1051, 901, 773, 760, 749 cm⁻¹; ¹H NMR (CDCl₃) δ 0.91 (3H, t, *J* = 7.5 Hz), 1.36 (2H, sext, *J* = 7.5 Hz), 1.55 (2H, m), 1.75-1.91 (4H, m), 2.04 (1H, m), 2.23 (1H, dd, *J* = 7.5, 13.6 Hz), 2.26 (1H, m), 2.51 (1H, ddt, J = 8.1, 17.6, 2.2 Hz), 3.36 (1H, m), 3.44 (1H, m), 3.98 (1H, dd, J = 2.4, 7.3 Hz), 4.28 (1H, s); ¹³C NMR (CDCl₃) δ 9.0 (CH₃), 14.0 (CH₃), 19.4 (CH₂), 31.7 (CH₂), 32.3 (CH₂), 33.6 (CH₂), 33,9 (CH₂), 41.8 (CH₂), 69.4 (CH₂), 82.3 (CH), 83.5 (C), 87.2 (CH), 206.2 (C); MS (EI) m/z 226 (M⁺), 223, 213, 185, 171, 154, 141, 126, 113, 85, 69, 54, 41, 27. Anal. Calcd for C₁₃H₂₂O₃: C, 68.99; H 9.80%. Found: C, 68.73, H 9.73%. The enantiomeric excess was determined by ¹H NMR analysis (89.5 : 10.5) after conversion to the corresponding acetals by the reaction with (*R*,*R*)-hydrobenzoin.

4.5.12. 7-*exo*-Butoxy-5-isopropyl-8-oxabicyclo[3.2.1]octan-2-one (*exo*-55a): Colorless viscous oil; $[\alpha]_D^{25}$ +5.62 (*c* 1.00, CHCl₃) (*exo* : *endo* = > 99 : 1, 84% ee (*exo*)), IR (CHCl₃) 2963, 2875, 1724, 1468, 1370, 1232, 1094, 1055, 904, 789, 759, 752, 741, 717 cm⁻¹; ¹H NMR (CDCl₃) δ 0.91 (3H, t, *J* = 7.6 Hz), 0.98 (3H, d, *J* = 7.1 Hz), 1.08 (3H, d, *J* = 6.8 Hz), 1.36 (2H, m), 1.54 (2H, m), 1.73 (1H, ddd, *J* = 3.5, 8.0, 13.2 Hz), 1.87 (1H, m), 2.06 (2H, m), 2.22 (2H, m), 2.51 (1H, dddd, *J* = 1.5, 3.5, 8.3, 17.4 Hz), 3.35 (1H, m), 3.43 (1H, m), 3.96 (1H, dd, *J* = 2.4, 7.3 Hz), 4.30 (1H, s); ¹³C NMR (CDCl₃) δ 13.9 (CH₃), 17.7 (CH₃), 17.8 (CH₃), 19.3 (CH₂), 30.1 (CH₂), 31.7 (CH₂), 33.9 (CH₂), 36,4 (CH), 40.9 (CH₂), 69.3 (CH₂), 82.1 (CH), 85.7 (C), 87.1 (CH), 207.5 (C); MS (EI) m/z 240 (M⁺), 227, 213, 197, 184, 171, 157, 141, 125, 113, 96, 82, 67, 53, 40, 26, 13. Anal. Calcd for C₁₄H₂₄O₃: C, 69.96; H 10.07%. Found: C, 69.79, H 10.19%. The enantiomeric excess was determined by ¹H NMR analysis (92 : 8) after conversion to the corresponding acetals by the reaction with (*R*,*R*)-hydrobenzoin.

4.5.13. **7-exo-Butoxy-5-t-butyl-8-oxabicyclo**[**3.2.1**]**octan-2-one** (*exo-***56a**): Colorless viscous oil; $[\alpha]_D^{20}$ -13.6 (*c* 0.31, CHCl₃) (*exo* : *endo* = > 99 : 1, 82% ee (*exo*)), IR (CHCl₃) 2963, 2874, 1726, 1474, 1368, 1119, 790, 775, 760, 746, 722 cm⁻¹; ¹H NMR (CDCl₃) δ 0.91 (3H, t, *J* = 7.6 Hz), 1.03 (9H, s), 1.36 (2H, sext, *J* = 7.6 Hz), 1.54 (2H, m), 1.69 (1H, m), 2.02 (1H, dd, *J* = 7.3, 13.9 Hz), 2.14 (1H, dd, *J* = 2.2, 13.9 Hz), 2.28 (2H, m), 2.51 (1H, m), 3.35 (1H, m), 3.41 (1H, m), 3.93 (1H, dd, *J* = 2.2, 7.3 Hz), 4.28 (1H, s); ¹³C NMR (CDCl₃) δ 14.0 (CH₃), 19.4 (CH₂), 25.7 (CH₃), 29.7 (CH₂), 31.8 (CH₂), 34.3 (CH₂), 36,0 (C), 38.8 (CH₂), 69.1 (CH₂), 82.0 (CH), 87.2 (CH), 87.6 (C), 208.1 (C); MS (EI) m/z 254 (M⁺), 239, 221, 197, 183, 169, 152, 141, 137, 123, 109, 97, 83, 71, 55, 37, 24, 12. Anal. Calcd for $C_{15}H_{26}O_3$: C, 70.83; H 10.30%. Found: C, 70.58, H 10.49%. The enantiomeric excess was determined by ¹H NMR analysis (91 : 9) after conversion to the corresponding acetals by the reaction with (*R*,*R*)hydrobenzoin.

4.5.14. **7**-*exo*-Butoxy-5-benzyl-8-oxabicyclo[3.2.1]octan-2-one (*exo*-57a): Colorless viscous oil; $[\alpha]_{D}^{20}$ -4.00 (*c* 0.30, CHCl₃) (*exo* : *endo* = 98 : 2, 75% ee (*exo*)), IR (CHCl₃) 3424, 3030, 2928, 2362, 1728, 1496, 1453, 1371, 1256, 1200, 1103, 1030, 924, 891, 701 cm⁻¹; ¹H NMR (CDCl₃) δ 0.91 (3H, t, *J* = 6.8 Hz), 1.33 (2H, m), 1.53 (2H, m), 1.70 (1H, ddd, *J* = 2.2, 8.1, 12.9 Hz), 2.02 (2H, m), 2.18 (1H, ddd, *J* = 7.9, 9.6, 17.6 Hz), 2.27 (1H, dd, *J* = 7.6, 13.9 Hz), 2.43 (1H, ddt, *J* = 2.2, 8.1, 17.6 Hz), 3.10 (1H, d, *J* = 13.7 Hz), 3.13 (1H, d, *J* = 13.7 Hz), 3.32 (1H, m), 3.41 (1H, m), 3.97 (1H, dd, *J* = 2.7, 7.6 Hz), 4.34 (1H, s), 7.21 - 7.32 (5H, m); ¹³C NMR (CDCl₃) δ 14.0 (CH₃), 19.4 (CH₂), 31.8 (CH₂), 33.8 (CH₂), 33.9 (CH₂), 42.7 (CH₂), 45.7 (CH₂), 69.8 (CH₂), 82.3 (C), 83.2 (CH), 87.4 (CH), 126.6 (CH), 128.1 (CH), 130.0 (CH), 136.7 (C), 206.2 (C); MS (EI) m/z 280 (M⁺) 270, 231, 216, 205, 197, 186, 169, 157, 142, 131, 123, 115, 105, 91, 81, 67, 53, 37, 26, 16. Anal. Calcd for C₁₈H₂₄O₃: C, 74.97; H 8.39%. Found: C, 74.80, H 8.40%. The enantiomeric excess the adduct was determined by HPLC analysis (DAICEL Chiralpak OD-H, 1 : 99 *i*-PrOH/hexane, flow 0.5 mL/min, 35°C) t_R = 27.0 min (major), 36.0 min (minor).

4.5.15. **7-exo-Butoxy-5-phenyl-8-oxabicyclo[3.2.1]octan-2-one** (*exo-58a*): Colorless viscous oil; $[\alpha]_D^{20}$ -9.00 (*c* 0.52, CHCl₃) (*exo* : *endo* = > 99 : 1, 78% ee (*exo*)), IR (CHCl₃) 3010, 2960, 2873, 1727, 1496, 1449, 1361, 1233, 1119, 1090, 1046, 909, 773, 759 cm⁻¹; ¹H NMR (CDCl₃) δ 0.89 (3H, t, *J* = 7.3 Hz), 1.34 (2H, sext, *J* = 7.3 Hz), 1.52 (2H, m), 2.16-2.34 (4H, m), 2.41 (1H, ddd, *J* = 8.5, 9.5, 17.5 Hz), 2.58 (1H, ddt, *J* = 2.4, 7.3, 17.5 Hz), 2.79 (1H, dd, *J* = 7.1, 13.7 Hz), 3.36 (1H, m), 3.45 (1H, m), 4.10 (1H, dd, *J* = 2.4, 7.5 Hz), 4.49 (1H, s); ¹³C NMR (CDCl₃) δ 13.9 (CH₃), 19.4 (CH₂), 31.6 (CH₂), 34.2 (CH₂), 37.6 (CH₂), 44.7 (CH₂), 69.5 (CH₂), 82.1 (C), 84.0 (CH), 87.5 (CH), 124.4 (CH), 127.0 (CH), 128.2 (CH), 144.2 (C),205.6 (C); MS (EI) m/z 274 (M⁺), 245, 203, 174, 146, 118, 109, 77, 60, 39. Anal. Calcd for C₁₇H₂O₃: C, 74.42; H 8.08%. Found: C, 74.33, H 8.15%. The enantiomeric excess the adduct was determined by HPLC analysis (DAICEL Chiralpak AD-H, 1 : 99 *i*-PrOH/hexane, flow 0.5 mL/min, 35° C) t_R = 96.0 min (minor), 185.0 min (major).

4.5.16. **5,7-Dimethyl-7-methoxy-8-oxabicyclo[3.2.1]octan-2-one (60):** Colorless viscous oil; $[\alpha]_{D}^{25}$ +26.7 (*c* 0.10, CHCl₃) (81 : 19 Mixture of diastereomer, 22% ee (major)), IR (CHCl₃) 3735, 2976, 1727, 1455, 1380, 1313, 1259, 1233, 1194, 1147, 1072, 858, 772, 758, 748, 722 cm⁻¹; ¹H NMR (CDCl₃) Major: δ 1.41 (3H, s), 1.48 (3H, s), 1.81 (1H, d, *J* = 13.1 Hz), 1.94 (1H, dd, *J* = 8.7, 13.3 Hz), 2.07 (1H, m), 2.27 (1H, d, *J* = 13.1 Hz), 2.44 (1H, ddt, *J* = 7.3, 17.3, 2.9 Hz), 2.69 (1H, ddd, *J* = 8.5, 11.4, 17.3 Hz), 3.22 (3H, s), 3.87 (1H, s); ¹³C NMR (CDCl₃) Major: δ 24.8 (CH₃), 26.9 (CH₃), 34.1 (CH₂), 37.6 (CH₂), 47.7 (CH₂), 52.4 (CH₃), 81.0 (C), 85.2 (C), 89.9 (CH), 205.6 (C); MS (EI) m/z 184 (M⁺), 155, 143, 124, 113, 99, 85, 73, 55, 43, 27, 15. Anal. Calcd for C₁₀H₁₆O₃: C, 65.19; H 8.75%. Found: C, 65.15, .H 8.73%. The enantiomeric excess was determined by ¹H NMR analysis (61 : 39) after conversion to the corresponding acetals by the reaction with (*R*,*R*)-hydrobenzoin.

4.5.17. **7-Butoxy-7-(***t***-butyldimethylsilyl)oxy-5-methyl-8-oxabicyclo[3.2.1]octan-2-one (61):** Colorless viscous oil; $[\alpha]_D^{25}$ +2.75 (*c* 1.00, CHCl₃) (63 : 37 , Mixture of diastereomer), IR (CHCl₃) 2959, 2933, 2860, 1727, 1464, 1412, 1381, 1362, 1308, 1254, 1173, 1135, 1045, 790, 749, 728 cm⁻¹; ¹H NMR (CDCl₃) δ 0.14 (3H x 63/100, s, Major), 0.16 (3H x 63/100, s, Major), 0.18 (3H x 37/100, s, Minor), 0.19 (3H x 37/100, s, Minor), 0.84 (9H, s), 0.92 (3H, t, *J* = 7.3 Hz), 1.21 - 1.60 (6H, m), 1.44 (3H x 37/100, s, Minor), 1.45 (3H x 63/100, s, Major), 1.92 (1H, m), 2.09 (1H, m), 2.43 (1H, m), 2.60 (1H, m), 3.48 (2H, m), 4.05 (1H x 37/100, s), 4.19 (1H x 63/100, s); ¹³C NMR (CDCl₃) Major: δ -3.3 (CH₃), -3.0 (CH₃), 14.1 (CH₃), 18.1 (C), 19.4 (CH₂), 25.8 (CH₃), 26.5 (CH₃), 32.1 (CH₂), 33.6 (CH₂), 37.3 (CH₂), 49.7 (CH₂), 63.1 (CH₂), 80.4 (C), 85.5 (CH), 108.6 (C), 203.7 (C); Minor: δ -3.0 (CH₃), -2.8 (CH₃), 14.1 (CH₃), 18.4 (C), 19.4 (CH₂), 25.8 (CH₃), 26.7 (CH₃), 31.9 (CH₂), 33.6 (CH₂), 37.7 (CH₂), 49.2 (CH₂), 63.7 (CH₂), 80.7 (C), 90.1 (CH), 109.1 (C), 203.9 (C); MS (EI) m/z 342 (M⁺), 287, 269, 243, 213, 184, 154, 131, 113, 93, 74, 46, 27. Anal. Calcd for C₁₈H₃₄O₄Si: C, 63.11; H 10.00%. Found: C, 62.91, .H 10.14%. 4.5.18. **5-Methyl-7***exo*-**phenyl-8**-**oxabicyclo**[**3.2.1**]**octan-2**-**one** (*exo*-**62**): Colorless viscous oil; $[\alpha]_D^{20}$ +29.9 (*c* 0.23, CHCl₃) (*exo* : *endo* = > 99 : 1, 80% ee (*exo*)), IR (CHCl₃) 2970, 1724, 1034, 856, 540 cm⁻¹; ¹H NMR (CDCl₃) δ 1.56 (3H, s), 1.97 (1H, dd, *J* = 4.4, 13.4 Hz), 1.98 (1H, m), 2.15 (1H, m), 2.48 (1H, ddt, *J* = 8.1, 17.5, 2.0 Hz), 2.63 (1H, dd, *J* = 9.8, 13.4 Hz), 3.35 (1H, dd, *J* = 4.4, 9.8 Hz), 4.23 (1H, s), 7.19 - 7.32 (5H, m); ¹³C NMR (CDCl₃) δ 25.9 (CH₃), 32.9 (CH₂), 37.1 (CH₂), 45.7 (CH₂), 48.9 (CH), 81.4 (C), 89.7 (CH), 126.5 (CH), 126.6 (CH), 128.6 (CH), 145.2 (C), 206.3 (C); MS (EI) m/z 216 (M⁺), 188, 167, 149, 131, 104, 79, 65, 42, 27. Anal. Calcd for C₁₄H₁₆O₂: C, 77.75; H 7.46%. Found: C, 77.77, H 7.38%. The enantiomeric excess the adduct was determined by HPLC analysis (DAICEL Chiralpak AD-H, 1 : 99 *i*-PrOH/hexane, flow 0.5 mL/min, 35°C) t_R = 80.0 min (minor), 157.0 min (major).

Acknowledgments

This work was supported in part by a Grant-in-Aid for Scientific Research (nos. 17550097, 20550094, and 20200052) from the Ministry of Education, Science and Culture, Japan.

Supplementary data

General methods and materials for additional experimental section, additional experimental procedures, and ¹H and ¹³C NMR spectra of the products (PDF). Supplementary data associated with this article can be found in online version, at doi:

References and notes

[†] Shinshu University

[‡] Tokyo Institute of Technology

(1) For books and reviewes, see: (a) Padwa, A.; Weingarten, M. D. Chem. Rev. **1996**, *96*, 223. (b) *Synthetic Applications of 1,3-Dipolar Cycloaddition Chemistry toward Heterocycles and Natural Products*; Padwa, A., Pearson, W. H., Eds.; John Wiley and Sons: Hoboken, NJ, 2003.

(2) Padwa, A.; Fryxell, G. E.; Zhi, L. J. Am. Chem. Soc. 1990, 112, 3100.

(3) For representative examples, see: (a) Hodgson, D. M.; Bailey, J. M.; Villalonga-Barber, C.; Drew,
M. G. B.; Harrison, T. J. Chem. Soc., Perkin Trans. 1 2000, 3432. (b) Nakamura, S.; Hirata, Y.;
Kurosaki, T.; Anada, M.; Kataoka, O.; Kitagaki, S.; Hashimoto, S. Angew. Chem., Int. Ed. 2003, 42, 5351. (c) Hirata, Y.; Nakamura, S.; Watanabe, N.; Kataoka, O.; Kurosaki, T.; Anada, M.; Kitagaki, S.;
Shiro, M.; Hashimoto, S. Chem. Eur. J. 2006, 12, 8898.

(4) Padwa, A.; Boonsombat, J.; Rashatasakhon, P.; Willis, J. Org. Lett. 2005, 7, 3725.

(5) Nakamura, S.; Sugano, Y.; Kikuchi, F.; Hashimoto, S. Angew. Chem., Int. Ed. 2006, 45, 6532.

(6) Geng, Z.; Chen, B.; Chiu, P. Angew. Chem., Int. Ed. 2006, 45, 6197.

(7) (a) Mejía-Oneto, J. M.; Padwa, A. Org. Lett. 2006, 8, 3275. (b) Mejía-Oneto, J. M.; Padwa, A. Helvetica Chemica Acta 2008, 91, 285.

(8) (a) Hodgson, D. M.; Stupple, P. A.; Johnstone, C. *Tetrahedron Lett.* 1997, *38*, 6471. (b) Hodgson,
D. M.; Stupple, P. A.; Johnstone, C. *J. Chem. Soc., Chem. Commun.* 1999, 2185. (c) Hodgson, D. M.;
Stupple, P. A.; Pierard, F. Y. T. M.; Labande, A. H.; Johnstone, C. *Chem. Eur. J.* 2001, *7*, 4465. (d)
Hodgson, D. M.; Labande, A. H.; Glen, R.; Redgrave, A. J. *Tetrahedron: Asymmetry* 2003, *14*, 921. (e)
Hodgson, D. M.; Glen, R.; Grant, G. H.; Redgrave, A. J. *J. Org. Chem.* 2003, *68*, 581. (f) Hodgson, D.
M.; Labande, A. H.; Pierard, F. Y. T. M.; Castro, M. Á. E. *J. Org. Chem.* 2003, *68*, 6153. (g) Hodgson,
D. M.; Brückl, T.; Glen, R.; Labande, A. H.; Selden, D. A.; Dossetter, A. G.; Redgrave, A. J. *Proc. Natl.*

Acad. Sci. U.S.A. 2004, 101, 5450. (h) Hodgson, D. M.; Glen, R.; Redgrave, A. J. Tetrahedron: Asymmetry 2009, 20, 754.

(9) (a) Kitagaki, S.; Anada, M.; Kataoka, O.; Matsuno, K.; Umeda, C.; Watanabe, N.; Hashimoto, S. J. Am. Chem. Soc. 1999, 121, 1417. (b) Kitagaki, S.; Yasugahira, M.; Anada, M.; Nakajima, M.; Hashimoto, S. Tetrahedron Lett. 2000, 41, 5931. (c) Tsutsui, H.; Shimada, N.; Abe, T.; Anada, M.; Nakajima, M.; Nakamura, S.; Nambu, H.; Hashimoto, S. Adv. Synth. Catal. 2007, 349, 521. (d) Shimada, N.; Anada, M.; Nakamura, S.; Nambu, H.; Tsutsuki, H.; Hashimoto, S. Org. Lett. 2008, 10, 3603. (e) Nambu, H.; Hikime, M.; Krishnamurthi, J.; Kamiya, M.; Shimada, N.; Hashimoto, S. Tetrahedron Lett. 2009, 50, 3675.

(10) (a) Suga, H.; Inoue, K.; Inoue, S.; Kakehi, A. J. Am. Chem. Soc. 2002, 124, 14836. (b) Suga, H.;
Inoue, K.; Inoue, S.; Kakehi, A.; Shiro, M. J. Org. Chem. 2005, 70, 47. (c) Suga, H.; Suzuki, T.; Inoue,
K.; Kakehi, A. Tetrahedron 2006, 62, 9218.

(11) Suga, H.; Ishimoto, D.; Higuchi, S.; Ohtsuka, M.; Arikawa, T.; Tsuchida, T.; Kakehi, A.; Baba, T. Org. Lett. 2007, 9, 4359.

(12) Absolute configuration of the cycloadduct was not determined.

(13) The *endo*-adduct is defined as the product in which the more important substituent is on the opposite side of the epoxy bridge, whereas the *exo*-adduct indicates the product in which the more important substituent is on the same side as the epoxy bridge.

(14) La(OTf)₃: quant yield, 52% ee; Sm(OTf)₃: 86% yield, 55% ee; Gd(OTf)₃: 69% yield, 60% ee; Tb(OTf)₃: 60% yield, 61% ee; Er(OTf)₃: 74% yield, 59% ee; Tm(OTf)₃: quant yield, 64% ee; Lu(OTf)₃: 88% yield, 55% ee.

(15) (4*S*,5*S*)-Pybox-Ph₂-Eu(OTf)₃ (10 mol %), CH₂Cl₂, reflux: 89% yield, 44% ee; (4*S*,5*S*)-Pybox-Ph₂-Yb(OTf)₃ (10 mol %), CHCl₃, reflux: 71% yield, 45% ee.

(16) (a) Suga, H.; Kakehi, A.; Mitsuda, M. Bull. Chem. Soc. Jpn. 2004, 77, 561. (b) Suga, H.;
Kitamura, T.; Kakehi, A.; Baba, T. Chem. Commun. 2004, 1414. (c) Suga, H.; Nakajima, T.; Itoh, K.;
Kakehi, A. Org. Lett. 2005, 7, 1431. (d) Suga, H.; Funyu, A.; Kakehi, A. Org. Lett. 2007, 9, 97.

(17) Although the reason for the switch of the diastereoselectivity in this reaction is not clear at this point, flat structure of the carbonyl ylide for 2-benzopyryrium-4-olates may be influence the *endo/exo* selectivity by inhibition of steric hindrance with vinyl esters. PM3 calculations (heat of formation) of **3f** and **28f** show that *exo*-cycloadducts are thermodynamically more stable than *endo*-cycloadducts, and *endo*-**53a** is slightly more stable (0.81 kcal/mol) than the corresponding *exo*- adduct.

(18) Desimoni, G.; Faita, G.; Filippone, S.; Mella, M.; Zampori, M. G.; Zema, M. *Tetrahedron*, 2001, 57, 10203.

(19) Ibata, T.; Jitsuhiro, K.; Tsubokura, Y. Bull. Chem. Soc. Jpn., 1981, 54, 240.

(20) Ueda, K.; Ibata, T.; Takebayashi, M. Bull. Chem. Soc. Jpn. 1972, 45, 2779.

(21) (a) Padwa, A.; Fryxell, G. E.; Zhi, L. J. Am. Chem. Soc. **1990**, 112, 3100. (b) Barberis, M.; Pérez-Prieto, J. Tetrahedron Lett. **2003**, 44, 6683.

(22) Denmark, S. E.; Bui, T. J. Org. Chem. 2005, 70, 10190.

(23) Krompiec, S.; Kuźnik, N.; Urbala, M.; Rzepa, J. Mol. Cat. A. Chem. 2006, 248, 198.

(24) Wenzel, A. G.; Jacobsen, E. N. J. Am. Chem. Soc. 2002, 124, 12964.

(25) Smith, III, A. B.; Simov, V. Org. Lett. 2006, 8, 3315.

(26) (a) Totleben, M. J.; Prasad, J. S.; Simpson, J. H.; Chan, S. H.; Vanyo, D. J.; Kuehner, D. E.; Deshpande, R.; Kodersha, G. A. *J. Org. Chem.* 2001, *66*, 1057. (b) Desimoni, G.; Faita, G.; Filippone, S.; Mella, M.; Zampori, M. G.; Zema, M. *Tetrahedron*, 2001, *57*, 10203. (c) Davies, I. W.; Gerena, L.; Lu, N.; Larsen, R. D.; Reider, P. J. *J. Org. Chem.* 1996, *61*, 9629.

(27) (a) Suga, H.; Kakehi, A.; Mitsuda, M. Bull. Chem. Soc. Jpn. 2004, 77, 561. (b) Suga, H.;
Kitamura, T.; Kakehi, A.; Baba, T. Chem. Commun. 2004, 1414. (c) Suga, H.; Nakajima, T.; Itoh, K.;
Kakehi, A. Org. Lett. 2005, 7, 1431. (d) Suga, H.; Funyu, A. Kakehi, A. Org. Lett. 2007, 9, 97. (e) Suga,
H.; Adachi, Y.; Fujimoto, K.; Furihata, Y.; Tsuchida, T.; Kakehi, A.; Baba, T. J. Org. Chem. 2009, 74, 1099.

(28) The reason for the improvement of enantioselectivity by the addition of basic inorganic salts is not clear at this point. Considering the reactivity of allyl alcohol compared with allyl butyl ether in the presence of (4S,5S)-Pybox-Ph₂-lanthanoid metal complexes, however, the role of the catalyst is probably not only activation of the carbonyl ylide by coordination but also bring the reactants including allyl alcohol close together to achieve the appropriate transition state. The addition of basic inorganic salts may be attributed to the favored coordination of allyl alcohol to the catalyst by hydrogen bonding of allyl alcohol.

Graphic Abstract

Inverse Electron Demand Asymmetric Cycloadditions of Cyclic Carbonyl Ylides Catalyzed by Chiral Lewis Acids—Scope and Limitations of Diazo and Olefinic Substrates

Hiroyuki Suga,* Satoshi Higuchi, Motoo Ohtsuka, Daisuke Ishimoto, Tadashi Arikawa, Yuta Hashimoto, Shunta Misawa, Teruko Tsuchida, Akikazu Kakehi, and Toshihide Baba

