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1 Introduction

Markov fields play an important role in classical probability, in physics, in biological and
neurological models and in an increasing number of technological problems such as image
recognition.

It is quite natural to forecast that the quantum analogue of these models will also play a
relevant role.

The papers [13], [3], [4],[7] are a first attempts to construct a quantum analogue of classical
Markov fields. These papers extend to fields the notion of quantum Markov state introduced
in [6] as a sub–class of the quantum Markov chains introduced in [1]. As remarked in [13],
the peculiarity of the former class of states with respect to the latter consists in the fact that
they admit a Umegaki conditional expectation into rather than onto their range.

This small difference allows, when applied to states on infinite tensor products of C∗–
algebras, to obtain nontrivial (i.e. non product) states while maintaining most of the simple
algebraic properties related to classical Markovianity.

The prize one has to pay for this simplification is that the resulting class of states, although
non trivial, has very poor entanglement properties so that they cannot exhibit some of the
most interesting properties which distinguish the quantum from the classical world.
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On the contrary the quantum Markov chains or, more generally, the generalized quantum
Markov states in the sense of [15] may exhibit very strong entanglement properties. In
particular the paper [14] shows that this is indeed the case for the entangled Markov chains
constructed in [2]. A degree of entanglement of entangled Markov chains is considered in [8].

The above considerations naturally suggest the study of following two problems:

(i) the extension to fields of the notion of generalized Markov state (or Markov chain)

(ii) the extension to fields of the construction of entangled Markov chains produced in [2]

The present paper is a first step towards the solution of these problems. We introduce
a hierarchy of notions of Markovianity for states on discrete infinite tensor products of C∗–
algebras (Section 4) and for each of these notions we construct some explicit examples. We
show that the construction of [2] can be generalized to trees (Section 5). It is interesting to
notice that, in a different context and for quite different purposes, the special role of trees
was already emphasized in [13]. Note that in [11] finitely correlated states are constructed as
ground states of VBS-model on Cayley tree. As well as, such shift invariant d-Markov chains
can be also considered as an extension of C∗-finitely correlated states defined in [12] to the
Cayley trees. In the classical case, Markov fields on trees are also considered in [16]-[20].

A comment on the notion of generalized quantum Markov state introduced in Definition
4.1 may help understanding the logic leading to this definition and in particular condition
(4.8) which otherwise might, at first sight, seem artificial.

The point is that, as we know from Dobrushin’s seminal work [10], the natural localization
for fields on a discrete set L is given by the finite subsets of L and their complements.
This localization, when restricted to the 1–dimensional case, does not lead to the usual
probabilistic localization but, in a certain sense to its dual (or time reversal), corresponding
to the conditioning of the past on the future rather than conversely. This leads to different
structures of the Markov chains in the two cases, a fact already noted in [1] where these two
types were called Markov chains and inverse Markov chains respectively.

In particular the role played by the time zero algebra in the usual Markov processes is
played by the algebra at infinity in the multi–dimensional case.

But, while the time zero algebra has a meaning independent of the state, the algebra
at infinity can be (meaningfully) defined only in the GNS representation of the given state.
Therefore, if one wants to give a constructive and local definition of a state one cannot make
use of a global notion such as the algebra at infinity.

In the ergodic cases, corresponding physically to the pure phases in Dobrushin’s theory,
one expects that the algebra at infinity is trivial and that the sequence of conditional expec-
tations appearing in (4.8) converges weakly to a single state (asymptotic independence of the
boundary) so that the resulting state is in fact independent of the sequence of states (φ̂Λc

n
)

which plays the role of the single “state” φ̂Lc = φ̂∞, not available at a C∗–level.
Let us briefly mention about the organization of the paper. In Sections 2 and 3, we

introduce definition of graphs and bundles of graphs, and in Section 4 generalized quantum
Markov states and d-Markov chains on graphs are defined. In the further Sections 5 we
provide examples of generalized quantum Markov chains which extend the entangled Markov
chains, defined in [2], to tree graphs and general graphs. In Section 6, we consider a particular
case of tree, so called Cayley tree. Over such a tree we give a construction of d-Markov chains,
in next sections 7 and 8 we provide some more concrete examples of such chains, which are
shift invariant and have the clustering property.
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2 Graphs

Let G = (L,E) be a (non-oriented simple) graph, that is, L is a non-empty at most countable
set and

E ⊂ {{x, y} : x, y ∈ L, x ̸= y}.

Elements of L and of E are called vertices and edges, respectively. Two vertices x, y ∈ L are
called adjacent, or nearest neighbors, if {x, y} ∈ E, and in that case we also write x ∼ y.

For each x ∈ L, the set of nearest neighbors of x will be denoted by

N(x) := {y ∈ L : y ∼ x}.

The degree of x ∈ L, denoted by κ(x), is the number of vertices adjacent to x, namely,

κ(x) := |N(x)| = |{y ∈ L : y ∼ x}|,

where | · | is the cardinality.
A graph can be equivalently assigned by giving the pair

(L,∼)

of its vertices and the binary symmetric relation ∼.
A path or a trajectory or a walk connecting two points x, y ∈ L is a finite sequence of

vertices such that x = x1 ∼ x2 ∼ · · · ∼ xn = y. In this case n− 1 is called the length of the
walk. For two distinct vertices x, y ∈ L, the distance dist(x, y) is defined to be the shortest
length of a walk connecting x and y. By definition dist(x, x) = 0.

Throughout the paper we always assume that a graph is locally finite, i.e., κ(x) <∞ for
all x ∈ L, and is connected, i.e., for any pair of vertices, there exists a walk connecting them.
We will write

Λ ⊆fin L, Λ ⊆fin,c L

to mean that Λ is a finite subset and a finite connected subset of L, respectively. Given
Λ ⊆fin L we define the external boundary of Λ by

∂⃗Λ := {x ∈ Λc : y ∼ x , ∃y ∈ Λ}

and the closure of Λ by
Λ := Λ ∪ ∂⃗Λ.

We will write
Λ ⊂⊂ Λ1

to mean that Λ ⊂ Λ1. Notice that, by definition

Λ ∩ ∂⃗Λ = ∅,

∂⃗{x} =: ∂⃗x = N(x).
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3 Bundles on graphs

To each x ∈ L it is associated an Hilbert space Hx of dimension dH(x) ∈ N. In the present
paper we will assume that

d := dH(x) = dH < +∞ (independent of x).

Given Λ ⊆fin L we define
HΛ :=

⊗
x∈Λ

Hx.

For each x in L, we fix an orthonormal basis of Hx:

{ej(x)} ; j ∈ S(x) := {1, . . . , d}.

When we consider S as a total space, πS : S → L is the bundle whose fibers are the finite
sets π−1

S (x) := S(x) and the sections of this bundle are the maps:

F(Λ, S) := {ωΛ : x ∈ Λ 7→ ωΛ(x) ∈ S(x)}.

A section ωΛ is also called a configuration in the volume Λ. For ωΛ ∈ F(Λ, S), the vector eωΛ

is defined by

eωΛ :=
⊗
x∈Λ

eωΛ(x)(x) ∈ HΛ (3.1)

and we will use the symbol PωΛ for the corresponding rank one projection:

PωΛ := |eωΛ⟩⟨eωΛ | = eωΛe
∗
ωΛ
. (3.2)

Then the set
{eωΛ : ωΛ ∈ F(Λ, S)} (3.3)

is an orthonormal basis of HΛ. Thus the generic vector of HΛ has the form∑
ωΛ∈F(Λ,S)

λωΛeωΛ .

We will use the notation
BΛ := B(HΛ)

for each Λ ⊆fin L and BL is the inductive C∗-algebra, that is,

BL := lim
−→

BΛ

for Λ ↑ L. As a C∗-algebra BL is isomorphic to the (unique) infinite C∗-tensor product⊗
x∈L Bx, the natural embedding of Bx into BL will be denoted by

jx : b ∈ Bx 7→ jx(b) = b⊗ I{x}c ∈ BL. (3.4)

Similarly, for Λ ⊆fin L, we define

jΛ :=
⊗
x∈Λ

jx.
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To simplify the notations, in the following we will often identify each BΛ to the subalgebra
jΛ(BΛ) of BL, through the identification

BΛ ≡ BΛ ⊗ IΛc = jΛ(BΛ).

With these notations the elements of the ∗-subalgebra of BL defined by

BL,loc :=
∪

Λ⊆finL

BΛ

will be called a local algebra or local operators (observables if self–adjoint).
In what follows, by S(BΛ) we will denote the set of all states defined on the algebra BΛ.

4 Definition of generalized quantum Markov state

Consider a triplet C ⊂ B ⊂ A of unital C∗-algebras. Recall that a quasi-conditional expecta-
tion with respect to the given triplet is a completely positive identity preserving linear (CP1)
map E : A → B such that

E(ca) = cE(a), a ∈ A, c ∈ C. (4.5)

Notice that, as the quasi-conditional expectation E is a real map, one has

E(ac) = E(a)c, a ∈ A, c ∈ C.

as well.

Definition 4.1. A state φ on BL is called a generalized quantum Markov state on BL if
there exist an increasing sequence of finite sets Λn ↑ L with Λn ⊂⊂ Λn+1 and, for each Λn,
a quasi-conditional expectation EΛc

n
with respect to the triplet

BΛ
c
n
⊆ BΛc

n
⊆ BΛc

n−1
(4.6)

and a state
φ̂Λc

n
∈ S(BΛc

n
)

such that for any n ∈ N one has

φ̂Λc
n
|BΛn+1\Λn

= φ̂Λc
n+1

◦ EΛc
n+1

|BΛn+1\Λn
(4.7)

and
φ = lim

n→∞
φ̂Λc

n
◦ EΛc

n
◦ EΛc

n−1
◦ · · · ◦ EΛc

1
(4.8)

in the weak-* topology.

In this definition, a generalized quantum Markov state φ generated by EΛc
n
and φΛc

n
is

well-defined. Indeed, we have

φ̂Λc
n
◦ EΛc

n
|BΛn = φ̂Λc

n+1
◦ EΛc

n+1
◦ EΛc

n
|BΛn

by (4.7) and a following remark so that, for Λ ⊂⊂ Λk and a ∈ BΛ,

lim
n→∞

φ̂Λc
n
◦ EΛc

n
◦ EΛc

n−1
◦ · · · ◦ EΛc

1
(a) = φ̂Λc

k
◦ EΛc

k
◦ EΛc

k−1
◦ · · · ◦ EΛc

1
(a).
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Remark. Markov states on multi-dimensional lattice Zν introduced in [3] are generalized
quantum Markov states. Indeed, define an increasing sequence of finite sets Λn ↑ L. Then
for any Λn, there is a conditional expectation EΛc

n
from BL to BΛc

n
with EΛc

n
(BL) ⊂ BΛ

c
n
and

φ ◦ EΛc
n
= φ.

Let φ̂Λc
n
= φ|BΛc

n
. Then the Markov state φ is a generalized quantum Markov state generated

by EΛc
n
and φΛc

n
.

Remark. In the case of infinite tensor products (the only one considered here) one has, for
any subset, I ⊆ L:

BIc = B′
I the commutant of BI . (4.9)

¿From (4.5) for the quasi–conditional expectation EΛc
n
: BL → BΛc

n
with respect to the triplet

(4.6) one has
EΛc

n
(aΛc

n
aΛn) = aΛc

n
EΛc

n
(aΛn). (4.10)

Because of (4.9) the last equality implies that EΛc
n
(BΛn) ⊆ (BΛ

c
n
)′ = B(Λ

c
n)

c = BΛn
.

Consequently,
EΛc

n
(BΛn) ⊆ BΛc

n
∩ BΛn

= B
∂⃗Λn

which is the natural quantum generalization of the multidimensional (discrete) Markov prop-
erty as originally formulated by Dobrushin [10].

The above argument shows that, whenever (4.9) holds (e.g. in the case of infinite tensor
products) the Markov property

EΛc
n
(BΛn) ⊆ B

∂⃗Λ

follows from the basic property (4.10) of the quasi–conditional expectations. This is not true
in general when (4.9) does not hold (e.g. in the abelian case or in the case of CAR algebras,
see [5]). In all these cases the Markov property should be included in the definition of the
various notions of Markov states as an additional requirement [5].

Next, we introduce the definition of d-Markov chains extending the definition in [1] to the
graph case. Assume {Λn}∞n=1 is an increasing sequence of finite sets of L such that Λn = Λn+1

then Λn ↑ L.

Definition 4.2. A state φ on BL is called a d-Markov chain associated to {Λn} if there exist
a quasi-conditional expectation En with respect to the triple BΛn−1 ⊂ BΛn ⊂ BΛn+1 for each
n ∈ N and an initial state ρ on BΛ1 such that

φ = lim
n→∞

ρ ◦ E1 ◦ E2 ◦ · · · ◦ En

in the weak-∗ topology.

In this definition, the state φ is well-defined. Indeed, since Ek(a) = a for any a ∈ BΛn and
k ≥ n+ 1, we have

lim
k→∞

ρ ◦ E1 ◦ E2 ◦ · · · ◦ Ek(a) = ρ ◦ E1 ◦ E2 ◦ · · · ◦ En(a).
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5 Entangled Markov fields on trees

In this section we prove that, for a very special class of graphs, i.e. the trees, the construction
of entangled Markov chains proposed in [2] can be generalized. The simplification coming
from considering trees rather than general graphs manifests itself in the fact that the analogue
of the basic isometries, used in the construction of [2], in this case commute.

Recall that a tree is a connected graph without loops. This definition implies that any
finite connected subset Λ ⊆fin,c L enjoys the following fundamental property:

Tree Property
For any Λ ⊆fin,c L and for arbitrary x ∈ ∂⃗Λ, there exists a unique point y ∈ Λ such that

x ∼ y.

N, Z and Cayley trees are examples of tree graphs and general tree graphs have a form
as in Fig 1.

Fig 1: example of tree graphs

The fact that Tree Property is the main ingredient used in the proofs of the results below
justifies the expectation that our results could be generalized to any graph such that there
exists a sequence of Λn ⊆fin,c L such that Λn ↑ L and each Λn enjoys Tree Property (maybe
with the exception of a small set of points).

The trouble with Tree Property is that, if Λ has Tree Property and x ∈ ∂⃗Λ, unfortunately
it is not true that also Λ ∪ x has Tree Property. However trees have a very special property
given by the following Lemma.

Lemma 5.1. In a tree every finite connected subset Λ ⊆fin,c L enjoys Tree Property.

Proof. Let Λ ⊆fin,c L be a finite connected subset and let x ∈ ∂⃗Λ. If there exist y, z ∈ Λ such
that y ∼ x , z ∼ x, then since a tree is connected, there is a path between y and z and this
would give a loop. Against the definition of tree.

We keep the notations and assumptions of Section 2. Let (L,E) be a graph and let, for
each {x, y} ∈ E, be given a complex d×d matrix (ψxy(i, j)) such that the matrix (|ψxy(i, j)|2)
is bi–stochastic, i.e.

d∑
i=1

|ψxy(i, j)|2 =
d∑

j=1

|ψxy(i, j)|2 = 1.

(ψxy(i, j)) will be called an amplitude matrix: notice that unitarity of the matrices (ψxy(i, j))i,j
is not required. Define the vector

ψxy =
d∑

i,j=1

ψxy(i, j) · ei(x)⊗ ej(y) ∈ Hx ⊗Hy. (5.11)
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Moreover, in the notation
EΛ := {{x, y} |x, y ∈ Λ, x ∼ y}

for any Λ ⊆fin L, define the vector ψΛ ∈ HΛ by

ψΛ :=
∑
ωΛ

ψΛ(ωΛ)eωΛ , (5.12)

ψΛ(ωΛ) :=
∏

{x,y}∈EΛ

ψxy(ωΛ(x), ωΛ(y)). (5.13)

Lemma 5.2. If Λ ⊆fin,c L enjoys Tree Property then for all x ∈ ∂⃗Λ,

∥ψΛ∪{x}∥2 = ∥ψΛ∥2.

Proof. Tree Property implies that, for arbitrary x ∈ ∂⃗Λ, there exists a unique point y ∈ Λ
such that x ∼ y. Then

∥ψΛ∪{x}∥2 =
∑
ωΛ,ωx

|ψΛ∪{x}((ωΛ, ωx))|2 =
∑

ωΛ\{y},ωy ,ωx

|ψΛ∪{x}((ωΛ\{y}, ωy, ωx))|2

=
∑

ωΛ\{y},ωy

d∑
ωx=1

|ψΛ((ωΛ\{y}, ωy))|2 · |ψxy(ωy, ωx)|2

=
∑
ωΛ

|ψΛ(ωΛ)|2 = ∥ψΛ∥2

which proves the assertion.

Proposition 5.3. Suppose that Λ enjoys Tree Property and let

Λ′ ⊂⊂ Λ ⊆fin,c L.

Then for any a ∈ BΛ′ and x ∈ ∂⃗Λ one has:

⟨ψΛ, aψΛ⟩ = ⟨ψΛ∪{x}, aψΛ∪{x}⟩.

Proof. Because of Tree Property, given x ∈ ∂⃗Λ, there exists a unique point y ∈ Λ such that
x ∼ y. Then we have

⟨ψΛ∪{x}, aψΛ∪{x}⟩ =

=
∑

ωΛ′ ,ω′
Λ′

∑
ωΛ\{Λ′∪{y}}

∑
ωx,ωy

ψΛ∪{x}((ωΛ′ , ωΛ\{Λ′∪{y}}, ωx, ωy))
∗

·aωΛ′ω′
Λ′
ψΛ∪{x}((ω

′
Λ′ , ωΛ\{Λ′∪{y}}, ωx, ωy))

=
∑

ωΛ′ ,ω′
Λ′

∑
ωΛ\{Λ′∪{y}}

∑
ωx,ωy

ψΛ((ωΛ′ , ωΛ\{Λ′∪{y}}, ωy))
∗

aωΛ′ω′
Λ′
ψΛ((ω

′
Λ′ , ωΛ\{Λ′∪{y}}, ωy))|ψxy(ωx, ωy)|2

=
∑

ωΛ′ ,ω′
Λ′

∑
ωΛ\Λ′

ψΛ((ωΛ′ , ωΛ\Λ′))∗aωΛ′ω′
Λ′
ψΛ((ω

′
Λ′ , ωΛ\Λ′))

= ⟨ψΛ, aψΛ⟩,

where aωΛ′ω′
Λ′

= ⟨eωΛ′ , aeω′
Λ′
⟩.
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Corollary 5.4. If (L,E) is a tree, and the vector ψΛ is defined by (5.12), (5.13), then, for
any Λ ⊆fin,c L of cardinality ≥ 2, one has:

∥ψΛ∥2 = d (5.14)

and the limit

φ(a) =
1

d
lim
Λ↑L

⟨ψΛ, aψΛ⟩

exists for any a in the local algebra BL,loc and defines a state φ on BL.

Proof. The first statement follows by induction from Proposition 5.2 and Lemma 5.1 because,
if Λ = {x, y}, then we get

∥ψxy∥2 =
∑
i,j

|ψxy(i, j)|2 = d.

The second statement follows from the first one and Proposition 5.3.

The obtained state in Corollary 5.4 is called entangled Markov filed on BL. When L = Z
such a state was introduced and studied in [2, 14]. We will see that the state φ is a d-Markov
chain and, in special case, it is a generalized quantum Markov state.

For Λ ⊆fin,c L, x ∈ ∂⃗Λ and z ∈ Λ, with z ∼ x, define V(z|x) : Hz → Hz ⊗Hx by

V(z|x)eiz =
∑
ix

ψxz(ix, iz)eix ⊗ eiz . (5.15)

Then V(z|x) is naturally extended to an operator from H⊗Hx to H⊗Hx⊗Hz for any Hilbert
space H by IH ⊗ V(z|x). We will also write V(z|x) for IH ⊗ V(z|x).

Proposition 5.5. For any Λ ⊆fin,c L, x, y ∈ ∂⃗Λ and z ∈ Λ with x ∼ z, y ∼ z, V(z|x) and
V(z|y) are isometries satisfying:

V(z|x)ψΛ = ψΛ∪{x},

V(z|x)V(z|y) = V(z|y)V(z|x).

Proof. ¿From a simple calculation, we have

⟨V(z|x)eiz , V(z|x)ejz⟩ = δiz ,jz
∑
ix,jx

⟨ψxz(ix, iz)eix , ψxz(jx, iz)ejx⟩

= δiz ,jz
∑
ix

|ψxz(iz, ix)|2 = δiz ,jz = ⟨eiz , ejz⟩.

Therefore any V(z|x) is an isometry. Next, we get V(z|x)ψΛ = ψΛ∪{x}. Indeed,

V(z|x)ψΛ = V(z|x)(
∑

ωΛ\{z},iz

ψΛ((ωΛ\{z}, iz))eωΛ\{z} ⊗ eiz)

=
∑

ωΛ\{z},iz

ψΛ((ωΛ\{z}, iz))(
∑
ix

ψxz(ix, iz)eωΛ\{z} ⊗ eix ⊗ eiz)

=
∑

ωΛ\{z},ix,iz

ψΛ∪{x}((ωΛ\{z}, ix, iz))eωΛ\{z} ⊗ eix ⊗ eiz

= ψΛ∪{x}.
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Finally, we obtain the commutation relation:

V(z|x)V(z|y)eiz = V(z|x)(
∑
iy

ψyz(iy, iz)eiy ⊗ eiz)

=
∑
ix,iy

ψxz(ix, iz)ψyz(iy, iz)eix ⊗ eiy ⊗ eiz

= V(z|y)(
∑
ix

ψxz(ix, iz)eix ⊗ eiz)

= V(z|y)V(z|x)eiz .

For an initial point x1 ∈ L, we define inductively Λ1 = {x1} and

Λn = Λ̄n−1. (5.16)

Then we have the following proposition.

Proposition 5.6. Let φ be a state defined in Corollary 5.4, then it is a d-Markov chain
associated to {Λn}.

Proof. Let Vn be the isometry defined by

Vn =
∏

{V(x|y) : x ∈ Λn , y ∈ ∂⃗Λn , x ∼ y}

where the product is well-defined because, due to Proposition 5.5, the factors commute. We
define the quasi-conditional expectation with respect to the triple BΛn−1 ⊂ BΛn ⊂ BΛn+1 by

En(aΛn+1) = V ∗
n (aΛn+1)Vn

for aΛn+1 ∈ BΛn+1 . Denote

ρ =
1

d
⟨

d∑
ix1=1

eix1 , ·
d∑

jx1=1

ejx1 ⟩.

Then from Proposition 5.5, we have

ρ ◦ E1 ◦ · · · ◦ En(aΛn)

=
1

d
⟨

d∑
ix1=1

∏
x∈Λ2

V(x1|x)eix1 , E2 ◦ · · · ◦ En(aΛn)
∏
x∈Λ2

V(x1|x)

d∑
jx1=1

ejx1 ⟩

=
1

d
⟨ψΛ2 , E2 ◦ · · · ◦ En(aΛn)ψΛ2⟩

...

=
1

d
⟨ψΛn+1 , aΛnψΛn+1⟩

= φ(aΛn)

which implies the assertion.
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We don’t know if entangled Markov fields are generalized quantum Markov states or not.
But if we assume that

|ψxy(i, j)|2 =
1

d

for any x ∼ y and 1 ≤ i, j ≤ d, we can see the next proposition.

Proposition 5.7. If |ψxy(i, j)|2 = 1
d for any x ∼ y and 1 ≤ i, j ≤ d, a state φ defined in

Corollary 5.4 is a generalized quantum Markov state.

Proof. Let Λn be as in (5.16). Define an isometry Vn from HΛn+2\Λn
to HΛn+2\Λn−1

as follows:

For y ∈ Λn−1, assume Λn ∩ ∂⃗{y} = {x1, . . . , xm}. We define

Vn(ei1(x1)⊗ ei2(x2)⊗ · · · ⊗ eik(xm))

= d
m−1

2

d∑
j=1

m∏
l=1

ψxiy(il, j)ej(y)⊗ ei1(x1)⊗ ei2(x2)⊗ · · · ⊗ eik(xm).

Furthermore, we will extend Vn naturally, if it is needed.
Then Vn is an isometry from the definition. Moreover, Vn satisfies that , for k ≥ n+ 2,

Vn(d
−|Λn+1|/2ψΛk\Λn

) = d−|Λn|/2ψΛk\Λn−1
,

where V0 = ∅ and | · | is the cardinal number. Indeed, since Λk\Λn is a union of |Λn+1|
connected sets, we have

∥ψΛk\Λn
∥2 = d|Λn+1|

by Corollary 5.4.
For y ∈ Λn and k ≥ n+1, let Vn(y, k) =

∪
{x ∈ Λl | dist(x, y) = l−n, n+1 ≤ l ≤ k}∪{y},

all vertices in Λk\Λn−1 which connect to y in Λk\Λn−1. Let y ∈ Λn and Λn+1 ∩ ∂⃗{y} =
{x1, . . . , xm}. Then one can see that

Vn

(
m⊗
i=1

ψVn+1(xi,k)

)
= d

m−1
2 ψVn(y,k)

and

Vn

(
d−|Λn+1|/2ψΛk\Λn

)
= Vn

d−|Λn+1|/2
⊗

x∈Λn+1

ψVn+1(x,k)


= Vn

d−|Λn|/2
⊗
y∈Λn

ψVn(y,k)

 = d−|Λn|/2ψΛk\Λn−1
.

Therefore, we have

V1 · V2 · · ·Vn
(
d−|Λn+1|/2ψΛk\Λn

)
= d−1/2ψΛk

.

Now we define that

φ̂Λc
n

= d−|Λn+1|⟨ψΛn+2\Λn
, ·ψΛn+2\Λn

⟩ ⊗ φ|BΛc
n+2

EΛc
n

= V ∗
n · Vn

11



Then since
⟨ψΛn+2\Λn

, aψΛn+2\Λn
⟩ = ⟨ψΛn+3\Λn

, aψΛn+3\Λn
⟩

for all a ∈ BΛn+1\Λn
from a similar proof of Proposition 5.3, we have

φ̂Λc
n
|BΛn+1\Λn

= φ̂Λc
n+1

◦ EΛc
n+1

|BΛn+1\Λn

and for a ∈ BΛn ,

φ̂Λc
n
◦ EΛc

n
◦ EΛc

n−1
◦ · · · ◦ EΛc

1
(a)

= ⟨V1 · V2 · · ·Vn
(
d−|Λn+1|/2ψΛk\Λn

)
, aV1 · V2 · · ·Vn

(
d−|Λn+1|/2ψΛk\Λn

)
⟩

= d−1⟨ψΛn+2 , aψΛn+2⟩
= φ(a).

This says that φ is a generalized quantum Markov state.

Remark. It is not easy to extend the construction of entangled Markov fields to more general
graphs, because Corollary 5.4 does not hold in general. If we want to make a entangled Markov
field on a general graph, we need the condition that, for each Λ ⊆ ∂⃗x,∑

ix

∏
y∈Λ,y∼x

|ψxy(ix, iy)|2

is constant, i.e. independent of the choice of the iy’s, as in Proposition 5.7. Note that the
last condition is not true in general.

Remark. From the proved Propositions there arises a natural question: would the entangled
Markov field be a Markov state. Such a question was not considered in [2, 14]. Now we are
going to provide an example of the entangled Markov field, which is not a Markov state.

Example. For the sake of simplicity, we consider the simplest tree graph Z and Bx = M2

for all x ∈ Z.
Before we see the example, we recall some basic notations about Markov states on BZ. A

shift γ on BZ is an automorphism on BZ defined by

γ(X) = IM2 ⊗X

for any X ∈ BΛ and Λ ⊆fin,c Z. A shift-invariant Markov state, i.e., φ◦γ = φ, is generated by
a conditional expectation E : M2 ⊗M2 → M2 such that ϕ ◦ E(A⊗ I) = ϕ(A) for all A ∈ M2

by the formulation

φ(A1 ⊗A2 ⊗ · · · ⊗An) = φ ◦ E(A1 ⊗ E(A2 ⊗ · · · E(An−1 ⊗An) · · · )).

Then there are three possible cases of the range of E . Namely,

(i)– case: ranE = Bx.

In this case, φ is a product state.

(ii)– case: ranE = CI.
In this case, φ is also a product state.

12



(iii)– case: ranE = C⊕ C.
In this case, we can make a classical shift-invariant Markov chain on

⊗
ranE =

⊗
C⊕C

and φ is a canonical extension of this Markov chain (see [7]).

Now we construct an entangled Markov field which does not belong to the above three
cases.

Put

ψx,y(1, 1) = ψx,y(2, 2) =
1√
3

ψx,y(1, 2) = ψx,y(2, 1) =

√
2√
3

for all x ∼ y. Let φ be a entangled Markov field generated by the above ψ (see Corollary
5.4). Then one can see that φ is shift-invariant. Moreover, φ is not a product state, since

ϕ(e11) =
1

2
, ϕ(e11 ⊗ e11) =

1

6
.

Finally, φ is not a canonical extension of classical Markov chain. Indeed, since φ[1,n] is written
as a restriction of vector state on B[0,n+1], the density matrix of φ[1,n] is a linear combination
of at most 4 one-rank projections. From the direct calculation, one can get that the density
matrix of φ[1,2] is a linear combination of just 4 one-rank projections whose vectors are linearly
independent. Moreover, let αn be a number of combinations of density matrix of a classical
Markov chain. Then αn → ∞ or αn = 1 or αn = 2. Therefore, φ is not a canonical extension
of classical Markov chain.

Remark. Let us first recall a definition of entangled state. Consider Aj (j ∈ L), C∗

algebras, here L is a tree. Denote

Sprod = Conv
{⊗
j∈L

ωj ; ωj ∈ S(Aj), j ∈ L
}
,

SΛ,prod = Conv
{
ωΛ ⊗ ωΛc ; ωΛ ∈ S(⊗j∈ΛAj), ωΛc ∈ S(⊗j∈ΛcAj)

}
,

SZ =
∪
Λ⊂L:
Λ∼Z

SΛ,prod,

here by Λ ∼ Z we mean an isomorphism (i.e. a 1-1 mapping which preserves edges and
connected components) of a subgraph Λ ⊂ L to the integer lattice Z.

A state ω ∈ S(⊗j∈LAj) is said to be entangled (see [8] (resp. Z-entangled) if ω /∈ Sprod

(resp. ω /∈ SZ). One can see that any Z-entangled state is entangled, but the converse is not
true. In [8] it has been established that entangled quantum Markov states on Z are entangled.

¿From the definition given above we can prove

Theorem 5.8. Let φ be a state on BL. The following assertions hold:

(i) If for some Λ with Λ ∼ Z the restriction of φ to the C∗-subalgebra BΛ is entangled,
then φ is also entangled on BL;

(ii) If for any Λ with Λ ∼ Z the restriction of φ to the C∗-subalgebra BΛ is Z-entangled,
then φ is Z-entangled on BL.
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6 d-Markov chains on Cayley trees

In this section, we consider a particular case of tree, so called Cayley tree. Over such a tree
we are going give a construction of d-Markov chains.

Recall that a Cayley tree Γk of order k ≥ 1 is an infinite tree whose each vertices have
exactly k + 1 edges. If we cut away an edge {x, y} of the tree Γk, then Γk splits into
connected components, called semi-infinite trees with roots x and y, which will be denoted
respectively by Γk(x) and Γk(y). If we cut away from Γk the origin O together with all
k + 1 nearest neighbor vertices, in the result we obtain k + 1 semi-infinite Γk(x) trees with
x ∈ S0 = {y ∈ Γk : dist(O, y) = 1}, where dist is a distance of vertices introduced in Sect.
2. Hence we have

Γk =
∪
x∈S0

Γk(x) ∪ {O}.

Therefore, in the sequel we will consider semi-infinite Cayley tree Γk(x0) = (L,E) with
the root x0. Let us set

Wn = {x ∈ L : dist(x, x0) = n}, Λn =

n∪
k=0

Wk, En = {{x, y} ∈ E : x, y ∈ Λn}.

In the following, we will construct examples of d-Markov chains on semi-infinite Cayley
trees, that is, we construct a sequence of quasi-conditional expectations En with respect to
BΛn−1 ⊂ BΛn ⊂ BΛn+1 and an initial state ρ, and define

φ = lim ρ ◦ E0 ◦ E1 ◦ · · · ◦ En.

For this, we use some operators Vn ∈ BΛn+1\Λn−1
and define En = TrΛn(Vn · V ∗

n ), where TrΛn

is a normalized trace from BL to BΛn .
Denote

S(x) = {y ∈Wn+1 : x ∼ y}, x ∈Wn,

this set is called a set of direct successors of x.
¿From these one can see that

Λm = Λm−2 ∪
( ∪

x∈Wm−1

{x ∪ S(x)}
)

(6.17)

Em \ Em−1 =
∪

x∈Wm−1

∪
y∈S(x)

{{x, y}} (6.18)

Now we are going to introduce a coordinate structure in Γk(x0). Every vertex x (except
for x0) of Γk(x0) has coordinates (i1, . . . , in), here im ∈ {1, . . . , k}, 1 ≤ m ≤ n and for the
vertex x0 we put ∅. Namely, the symbol ∅ constitutes level 0 and the sites (i1, . . . , in) form
level n of the lattice. In this notation for x ∈ Γk(x0), x = (i1, . . . , in) we have

S(x) = {(x, i) : 1 ≤ i ≤ k},

here (x, i) means that (i1, . . . , in, i).
Then for 1 ≤ i ≤ k, we define a shift γi by

γi(x) = (i, x) = (i, i1, . . . , in).
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Now we can consider this shift as a shift homomorphism on BL, that is, for any ax ∈ Bx, we
consider γi(ax) ∈ B(i,x).

Let be given a positive operator w0 ∈ Bx0,+ and two family of operators {K<x,y> ∈
B{x,y}}{x,y}∈E , {hx ∈ Bx,+}x∈L such that

Tr(w0h0) = 1 (6.19)

Trx

( k∏
i=1

K<x,(x,i)>

k∏
i=1

h(x,i)

k∏
i=1

K∗
<x,(x,k+1−i)>

)
= hx, for every x ∈ L, (6.20)

where TrΛ : BL → BΛ is a normalized partial trace for any Λ ⊆fin L and Tr is a normalized
trace on BL.

Note that if k = 1 and hx = I for all x ∈ V , then we get conditional amplitudes introduced
by L.Accardi [6].

Denote

Kn = w
1/2
0

∏
{x,y}∈E1

K<x,y>

∏
{x,y}∈E2\E1

K<x,y> · · ·
∏

{x,y}∈En\En−1

K<x,y>

∏
x∈Wn

h1/2x , (6.21)

where by definition we put∏
{x,y}∈Em\Em−1

K<x,y> :=
∏

x∈Wm−1

k∏
i=1

K<x,(x,i)> (6.22)

Now define
Wn] = KnK

∗
n. (6.23)

It is clear that Wn] is positive.
Recall that a sequence {Wn]} is projective with respect to Trn] = TrΛn if

Trn−1](Wn]) = Wn−1] (6.24)

is valid for all n ∈ N.

Theorem 6.1. Let (6.20) be satisfied. Then {Wn]} is a projective sequences of density
operators.

Proof. Let us check the equality (6.24). From (6.21) one has

Wn] = w
1/2
0

n−1∏
m=1

( ∏
{x,y}∈Em\Em−1

K<x,y>

) ∏
{x,y}∈En\En−1

K<x,y>

∏
x∈Wn

hx

×
( ∏

{x,y}∈En\En−1

K<x,y>

)∗ n−1∏
m=1

( ∏
{x,y}∈En−m\En−m−1

K<x,y>

)∗
w

1/2
0 .

We know that for different x and x′ taken from Wn−1 the algebras Bx∪S(x) and Bx′∪S(x′)

commute, therefore from (6.22) one finds∏
{x,y}∈En\En−1

K<x,y>

∏
x∈Wn

hx

( ∏
{x,y}∈En\En−1

K<x,y>

)∗

=
∏

x∈Wm−1

k∏
i=1

K<x,(x,i)>

k∏
i=1

h(x,i)

k∏
i=1

K∗
<x,(x,k+1−i)>.
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Hence from the condition (6.20) we find

Trn−1](Wn]) = w
1/2
0

n−1∏
m=1

( ∏
{x,y}∈Em\Em−1

K<x,y>

)

×
∏

x∈Wn−1

Trx

( k∏
i=1

K<x,(x,i)>

k∏
i=1

h(x,i)

k∏
i=1

K∗
<x,(x,k+1−i)>

)

×
n−1∏
m=1

( ∏
{x,y}∈En−m\En−m−1

K<x,y>

)∗
w

1/2
0

= w
1/2
0

n−1∏
m=1

( ∏
{x,y}∈Em\Em−1

K<x,y>

)

×
∏

x∈Wn−1

hx

n−1∏
m=1

( ∏
{x,y}∈En−m\En−m−1

K<x,y>

)∗
w

1/2
0

= Wn−1]

¿From the above argument and (6.19), one can show that Wn] is density operator, i.e.
Tr(Wn]) = 1.

Define a state on BΛn by

φn(x) = Tr(Wn+1]x), x ∈ BΛn .

Assume that hx is invertible for all x ∈ L and define

En(a) = Trn]

( ∏
x∈Wn

h−1/2
x

∏
{x,y}∈En+1\En

K<x,y>

∏
x∈Wn+1

h1/2x a (6.25)

×
∏

x∈Wn+1

h1/2x

( ∏
{x,y}∈En+1\En

K<x,y>

)∗ ∏
x∈Wn

h−1/2
x

)
(6.26)

for each n ≥ 0 and a ∈ BΛn+1 . Similar to the above proof, we get that En is a quasi-conditional
expectation with respect to the triple BΛn−1 ⊂ BΛn ⊂ BΛn+1 . One can see that

φn(a) = Tr(h
1/2
0 w0h

1/2
0 E0 ◦ E1 ◦ · · · ◦ En−1 ◦ En(a)). (6.27)

Therefore, according to Theorem 6.1 we can define a d-Markov chain on BL by φ = limφn

in the weak-∗ topology. Note that, in classical setting, similar construction were considered
in [17].

If hx = h and K<x,y> = K, for all x ∈ L and {x, y} ∈ E, and w0 satisfies the initial
condition

Tr(i)

w0

k∏
j=1

K<0,j>

k∏
j=1

hj(

k∏
j=1

K<0,j>)
∗

 = h
1/2
i w0h

1/2
i , (6.28)

where K<0,j> means K<x0,(j)>, φ is shift-invariant for γi. Indeed, since (6.28) means

Tr(h
1/2
0 w0h

1/2
0 E0( · )) = Tr(h

1/2
i w0h

1/2
i · )
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on Bi, we have

φn(γ
i(a)) = Tr(h

1/2
0 w0h

1/2
0 E0 ◦ E1 ◦ · · · ◦ En−1 ◦ En(γi(a)))

= Tr(h
1/2
i w0h

1/2
i E1 ◦ E2 ◦ · · · ◦ En−1 ◦ En(γj(a)))

= Tr(h
1/2
0 w0h

1/2
0 E0 ◦ E1 ◦ · · · ◦ En−2 ◦ En−1(a)) = φ(a)

for all a ∈ BΛn−1 . In the third equation, we use h0 = hi = h and K<x,y> = K.

7 Example of d-Markov chain on Cayley tree

In this and next sections, we provide more concrete examples of d-Markov chains on Cayley
tree. For the sake of simplicity we consider a semi-infinite Cayley tree Γ2(x0) = (L,E) of
order 2 so that d = 2. Our starting C∗-algebra is the same BL but with Bx = M2(C) for

x ∈ L. By e
(x)
ij we denote the standard matrix units of Bx =M2(C).

For every edge {x, y} ∈ E put

K<x,y> = exp{βH<x,y>}, β ∈ R (7.29)

where
H<x,y> = e

(x)
12 ⊗ e

(y)
21 + e

(x)
21 ⊗ e

(y)
12 . (7.30)

Now we are going to find a solution {hx} and w0 of equations (6.19), (6.20) for the defined
{K<x,y>}. Note that from (7.29),(7.30) for every K<x,y> one can see that

K<x,y> = K∗
<x,y> (7.31)

for all {x, y} ∈ E.
Assume that hx = αI for every x ∈ V . Hence, thanks to (7.31), the equations (6.19),(6.20)

can be rewritten as follows

αTr0(w0) = 1 (7.32)

α2Trx

(
K<x,(x,1)>K

2
<x,(x,2)>K<x,(x,1)>

)
= αI, for every x ∈ L. (7.33)

One can see that

H2n
<x,y> = H2

<x,y> = e
(x)
11 ⊗ e

(y)
22 + e

(x)
22 ⊗ e

(y)
11 (7.34)

H2n−1
<x,y> = H<x,y> (7.35)

for every n ∈ N. Then we get

K2
<x,y> = I + (sinh 2β)H<x,y> + (cosh 2β − 1)H2

<x,y> (7.36)

Trx(K
2
<x,y>) =

cosh 2β + 1

2
I = cosh2 βI

for every {x, y} ∈ E. Hence, for x ∈ L and y, z ∈ S(x), one finds

Trx
(
K<x,y>K

2
<x,z>K<x,y>

)
= Trx

(
K<x,y>Trxy(K

2
<x,z>)K<x,y>

)
= (cosh2 β)Trx

(
K2

<x,y>

)
= (cosh4 β)I.
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Therefore we obtain α = cosh−4 β and Tr(w0) = cosh4 β.
Next, consider the initial condition (6.28). For convenience, we will write K<0,1> for

K<x0,(1)>, for example. Since

Tr1
(
w0K<0,1>K

2
<0,2>K<0,1>

)
= Tr1

(
w0K<0,1>Tr0,1(K

2
<0,2>)K<0,1>

)
= (cosh2 β)Tr1

(
w0K

2
<0,1>

)
,

by putting w0 =
∑

i,j=1,2 aije
0
ij , thanks to (7.36) we have

Tr1
(
w0K<0,1>K

2
<0,2>K<0,1>

)
=

cosh2 β

2
((a11 + a22)I + (cosh 2β − 1)(a11e22 + a22e11) + (sinh 2β)(a12e12 + a21e21)) .

This is equal to (cosh4 β)w0 from (6.28). Therefore we have the solution w0 = I. Hence, φ
generated by the above notations is γ1-invariant d-Markov chain. Similarly, it is easily seen
that φ is also γ2-invariant.

Finally we show the clustering property. Recall that a state φ on BL satisfies the clustering
property w.r.t. γi if and only if

lim
n→∞

φ(γni (a)b) = φ(a)φ(b)

.

Theorem 7.1. A state φ generated by the above notations is γ1 and γ2-invariant and satisfies
clustering property w.r.t. γi, i = 1, 2.

Proof. The first assertion is already proven in above.
To show the clustering property, it is enough to prove for any a ∈ B0 =M2(C)

lim
n→∞

E0 ◦ E1 ◦ · · · ◦ En−1 ◦ En(γn+1
1 (a)) = φ(a)I.

Indeed, for a, b ∈ B0, we have

lim
n→∞

φ(γn1 (a)b) = lim
n→∞

Tr
(
h
1/2
0 w0h

1/2
0 E0(E1 ◦ · · · ◦ En−1 ◦ En(γn+1

1 (a))b)
)

= φ(a)Tr
(
h
1/2
0 w0h

1/2
0 E0(b)

)
= φ(a)φ(b).

Assume γn+1
1 (a) ∈ By and y, z ∈ S(x), then essentially, we can restrict En to En|Bx,y,z.

From a simple calculation, we have

Trx(K<x,y>K<x,z>e
(y)
11 K<x,z>K<x,y>) = Trx(K<x,y>e

(y)
11 Trxy(K

2
<x,z>)K<x,y>)

= (cosh2 β)Trx(K<x,y>e
(y)
11 K<x,y>)

=
cosh4 β

2
I.

Similarly, we get

Trx(K<x,y>K<x,z>e
(y)
22 K<x,z>K<x,y>) =

cosh4 β

2
I,

Trx(K<x,y>K<x,z>e
(y)
12 K<x,z>K<x,y>) = cosh2 β sinh 2βe

(x)
12 ,

Trx(K<x,y>K<x,z>e
(y)
21 K<x,z>K<x,y>) = cosh2 β sinh 2βe

(x)
21 .
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Therefore, we obtain that

lim
n→∞

E0 ◦ E1 ◦ · · · ◦ En−1 ◦ En(γn+1
1 (a)) = Tr(a) = φ(a)I

which implies the assertion.
Similarly, one can prove that φ satisfies clustering property w.r.t. γ2.

8 Another example of d-Markov chain on Cayley tree

Now consider the next example. For every edge {x, y} ∈ E put

K<x,y> = exp{βP<x,y>}, β ∈ C

where
P<x,y> = e

(x)
11 ⊗ e

(y)
11 + e

(x)
22 ⊗ e

(y)
22 .

Explicitly, we can write
K<x,y> = I + (eβ − 1)P<x,y>. (8.37)

Now we are going to find a solution {hx} and w0 of equations (6.19), (6.20) for the defined
{K<x,y>}. Note that for every K<x,y> and K<x,z>, one can see that

K<x,y> = K∗
<x,y>,

K<x,y>K<x,z> = K<x,z>K<x,y>.

Assume that hx = αI for every x ∈ V . Hence, thanks to the above equations, the
equations (6.19),(6.20) can be rewritten as follows

αTr0(w0) = 1 (8.38)

α2Trx

(
K2

<x,(x,1)>K
2
<x,(x,2)>

)
= αI, for every x ∈ L. (8.39)

¿From Trxy(K
2
<x,z>) =

e2β+1
2 I, we have

Trx

(
K2

<x,(x,1)>K
2
<x,(x,2)>

)
=

(e2β + 1)2

4
I.

Hence we obtain

α =
4

(e2β + 1)2

and Tr(w0) = (e2β + 1)2/4.
Next, consider the initial condition (6.28). Since

Tr1
(
w0K

2
<0,1>K

2
<0,2>

)
= Tr1

(
w0K

2
<0,1>Tr0,1(K

2
<0,2>)

)
=

e2β + 1

2
Tr1

(
w0K

2
<0,1>

)
,

by putting w0 =
∑

i,j=1,2 aije
0
ij , thanks to (8.37) we have

Tr1
(
w0K

2
<0,1>K

2
<0,2>

)
=

e2β + 1

4

(
(e2βa11 + a22)e11 + (a11e

2β + a22)e22)
)
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This is equal to (e2β+1)2

4 w0 from (6.28). Threrfore we have the solution w0 = I. Therefore, φ
generated by the above notations is γ1-invariant d-Markov chain. Similarly, it is easily seen
that φ is also γ2-invariant.

Finally, we show the clustering property.

Theorem 8.1. The above φ is γ1 and γ2-invariant and satisfies clustering property w.r.t.
γi, i = 1, 2.

Proof. The first assertion is already proven in above.
This proof is similar to Theorem 7.1, and we need to show

lim
n→∞

E0 ◦ E1 ◦ · · · ◦ En−1 ◦ En(γn+1
1 (a)) = φ(a)I.

for a ∈ B0. To see this, we make following lists for x ∈ L and y, z ∈ S(x):

Trx(K<x,y>K<x,z>e
(z)
11 K<x,z>K<x,y>) =

e2β(e2β + 1)

4
e
(x)
11 +

e2β + 1

4
e
(x)
22 ,

Trx(K<x,y>K<x,z>e
(z)
22 K<x,z>K<x,y>) =

e2β + 1

4
e
(x)
11 +

e2β(e2β + 1)

4
e
(x)
22 .

Trx(K<x,y>K<x,z>e
(z)
12 K<x,z>K<x,y>) = 0

Trx(K<x,y>K<x,z>e
(z)
21 K<x,z>K<x,y>) = 0.

As in the classical Markov chain case, we can prove that

lim
n→∞

E0 ◦ E1 ◦ · · · ◦ En−1 ◦ En(γn+1
1 (a)) = Tr(a) = φ(a)I.

which proves the theorem.
Similarly, we can prove that φ satisfies clustering property w.r.t. γ2.

9 Conclusions

Let us note that a first attempt of consideration of quantum Markov fields began in [3, 4]
for the regular lattices (namely for Z). But there, concrete examples of such fields were not
given. In the present paper we have extended a notion of generalized quantum Markov states
to fields, i.e. to graphs with an hierarchy property. Here such states have been considered on
discrete infinite tensor products of C∗–algebras over trees. A tree structure of graphs allowed
us to give a construction an entangled Markov field, which generalizes the construction of [2]
to trees. It has been shown that such states are d-Markov chains and, in special cases, they
are generalized quantum Markov states.

As well as, we have considered a particular case of tree, so called Cayley tree. Over such
a tree we gave a construction of d-Markov chains, and some more concrete examples of such
chains were provided, which are shift invariant and have the clustering property. Note that
d-Markov chains describe ground states of quantum systems over trees. Certain particular
examples of such systems were considered in [9],[11]. As well as, such shift invariant d-Markov
chains can be also considered as an extension of C∗-finitely correlated states defined in [12]
to the Cayley trees.
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