Vol. 18 No. 3

SLR (k) パーザにおける誤り訂正, 回復について*

海 尻 賢 二** 打 浪 清 一** 手 塚 慶 一**

Abstract

We have proposed practical error correcting and recovering algorithms for the SLR (k) parsers. First we define the *i*-order valid pair for a LR (0) table T and a k-terminal string w. Let $(T_0 \cdots T_n, a_1 \cdots a_m)$ be an error configuration. If $(T_i, a_h \cdots a_{h+k-1})$ is the *i*-order valid pair for some $\beta \in V_T^i$, we correct above configuration to $(T_0 \cdots T_i, \beta a_h \cdots a_m)$.

If we extend β in the definition above to $\beta \in (V_T \cup V_N)^i$, then we can make error recovery in the same way. Most useful is the case i=0 or 1. In these cases the *i*-order valid pairs can be stored in the SLR (k) parsing table. The SLR (k) parser with these algorithms can parse and correct an input with length n within O(n) times.

We have shown by simulation that these algorithms correct $60 \sim 80\%$ of the programs with errors.

1. まえがき

パーザの重要な機能の一つに誤り処理がある. 誤り 処理に関する研究は理論的な面からは種々の研究が行 われ,最小誤り訂正のアルゴリズムもいくつか提案さ れている¹⁾. しかしそれらはいずれも O(n²) 以上また はある程度の backtrack を必要として実用上問題があ る. またユーザサイドから考えると必ずしも最小訂正 されたプログラムがユーザの意図していたものとは限 らない. そこで誤りを構文誤りに限定するならば,パ ーザの行うべき処理としては次のもので十分であると 考える. ①パーザが発見した誤りを訂正し,ユーザの デバッキングに要する労力を軽減する. ②最小の読み とばしで後の処理を進めることにより,できるだけ多 くの誤りをみつける.

以上の点より本論文ではパーザの発見した誤りを, backtrack なしに訂正するシステムを作成することを 目的とし,このための SLR (k) パーザに対する誤り 訂正アルゴリズム,及び誤り回復アルゴリズムを示

** 大阪大学工学部通信工学科

す. この2つのアルゴリズムの特徴は、①時間的にも 空間的にもパーザに余分な負担をかけないこと、②誤 り訂正,回復を含めて全体の処理時間は入力の長さ*n* に対して O(*n*) であること、③誤り訂正,回復のため の読み飛ばしがないこと、の3点にある.

さらにこれらのアルゴリズムの有効性を示すために シミュレーションにより擬似的に誤りを持つプログラ ムを発生させ、それをこれら2つのアルゴリズムに通 すことにより誤り処理能力の評価を行い、誤り訂正に ついては 70~80% の訂正率、誤り回復についてはほ ぼ 100% の回復率を得た.

用語及び諸定義

本章では SLR (k) パーザの概要及び誤り訂正,回 復機能について述べる.なお本論文での記法は文献 2) の記法に従い,またパーザの詳細は上記に準ずるもの とする.

〔定義 2-1〕

文法Gの任意の生成規則 $A \rightarrow \alpha\beta$ に対して $[A \rightarrow \alpha \cdot \beta]$ を LR (0) 項目と呼ぶ. LR (0) 項目 $[A \rightarrow \alpha \cdot \beta]$ が Gのある文型 $\gamma_1\gamma_2$ の prefix γ_1 に対して valid である とは $\gamma_1 = \gamma_1'\alpha$ となることである. ある γ_1 に対して valid な LR (0) 項目の集合を γ_1 に対する LR (0)

NII-Electronic Library Service

^{*} A Study of Error Correction and Recovery for SLR (k) parsers by Kenji KAIJIRI, Seiichi UCHINAMI and Yoshikazu TEZUKA (Department of Communication Engineering, Faculty of Engineering, Osaka University).

ഹ	4
1.5	

Vol. 18 No. 3	SLR (k) パーザにおけ	る誤り訂正,回復について
表と呼び, T であらわす.また	T の集合,即ち文法	LR (0) 表と入力記
Gの各文型の prefix に対して v	alid な LR (0) 表の集	T_0 T_1
合を分であらわす. 7及び分の個	固数は有限である. ⊠	が正当であるとは、め
〔 定義 2-2〕 SLR (k) パーザ	π	ある.
文脈自由文法 G=(Σ, N, P, S)	に対する SLR (k) パ	$(1) T_0 T_1 \cdots T_n$
ーザは次の7つ組で定義する.		$(2) [T_0 \cdots T_n,$
$\pi = (\Sigma_1, Z, O, T_0, S)$	\$, f, g)	<i>T</i> ,', <i>a</i> ,w\$ ^K]⊢(エラ-
ここで Σ_1 は入力記号の集合 $^-$	で $\Sigma_1 = \Sigma \cup \{\$\}, Z$ は	誤り訂正には種々の
スタック記号の集合で LR(0) ま	長の集合 <i>3</i> ,0 は Ac-	使用者にどのような値
tion 集合で {shift, reduce i, err	or, accept}, T_0 , \$ 12	がどのように誤り個別
それぞれスタックの初期記号,ス	入力の最終記号,ƒ,g	訂正の一方法を与える
は次のような関数である.		誤り訂正アルゴリズム
f:動作関数 Z×Σı ^κ →O		しいプログラムの解析
g: 行先関数 $Z \times (\Sigma \cup N) \rightarrow Z$	\boxtimes	にする. そのような目
SLR (k) パーザは各 LR (0) リ	項目集合 T ごとに,	見する誤りのみに注目
T より次のようにして求められ	る.	track は行わないこと
(1) 動作関数		正当な列を使って正当
$f(T, u) = \text{shift} \longleftrightarrow [A \rightarrow \alpha \cdot \beta]$	$\in T$	を次のように定義する
$u \in EFF_K$	$(\beta \operatorname{Follow}_{\kappa}(A))$	〔 定義 2-5 〕 正当な
$f(T, u) = \text{reduce } i \longleftrightarrow [A \rightarrow \alpha]$	\cdot] \in <i>T</i>	誤り姿態* [To T ₁
A→α が i 番目の生成規則	かつ $u \in Follow_{\kappa}(A)$	ザπの正当な誤り訂
$f(T, S^{\kappa}) = \operatorname{accept} \longleftrightarrow [S' \rightarrow S]$	\cdot] \in <i>T</i>	am]なる姿態への復知
f(T,u)=error↔その他の場	局合	V_T * であり、 T_0 T_1
(2) 行先関数		定義からも明らかな
$g(T, X) = T' \longleftrightarrow [A \to \alpha \cdot X\beta]$	$\in T$	った姿態の局所的な言
かつ [A→α]	$X \cdot \beta] \in T'$	置換により訂正を行う
ここでFollow _K (β)= { $w \mid S \Rightarrow \alpha$	$\beta \gamma $ かつ $w \in F_{irst_{\kappa}}(\gamma)$ }	しない. それゆえこの
$EFF_{K}(\alpha) = \{w \mid w \in F_{irst_{K}}(\alpha) \not \Rightarrow$	つ $\alpha \Rightarrow \beta \Rightarrow wx$ なる最	(定義 2-6) 正当な
右導出があり,β はいかなる非約	rm rm	誤り姿態 [To T ₁
$\beta = Awx$ citatio}, First _K (α)	*	ザ π の正当な誤り回
w <k td="" α⇒wx="" かつ<="" もしくは=""><td></td><td>$\cdots T_{p'}, \alpha a_K \cdots a_m]$</td></k>		$\cdots T_{p'}, \alpha a_K \cdots a_m]$
A々は Follow 関数, ε-free fir		$T_1 \cdots T_q T'_{q+1} \cdots$

呼ばれる. パーザの姿態は表列 $\alpha \in \mathcal{S}^+$ と終端語列 $w \in \Sigma_1^+$ に より [a, w] と表わす.

〔定義 2-3〕 正当な表列 (Valid table sequence) LR (0) 表の列 To T1 … Tn が正当であるとは, $[T_0, w_1w_2$ ^K] 上 [T₀ T₁ … T_n, w₂^K] なる遷移が 存在するような終端語列 w1 が存在することをいう. \boxtimes 但し To は初期 LR (0) 表である.

[定義 2-4] 正当な列 (Valid sequence)

LR (0) 表と入力記号の次のような列,

 $T_0 T_1 \cdots T_n, a_i \cdots a_m$

が正当であるとは、次の2つの条件が成立することで ある.

(1) To T1 … T. が正当な表列である.

(2) $[T_0 \cdots T_n, a_1 \cdots a_m w \$^K] | + [T_0 T_1' \cdots$

誤り訂正には種々の考え方があるが本論文では主に 使用者にどのような個所が間違っており、かつパーザ がどのように誤り個所を処理し解析を進めたか、更に 訂正の一方法を与えることを目的とする、そのために 誤り訂正アルゴリズムは誤り発見時のみに動作し、正 しいプログラムの解析には何の影響も及ぼさないよう にする、そのような目的から誤りとしてはパーザが発 見する誤りのみに注目し、誤り訂正のための backtrack は行わないこととする. そこで正当な表列と, 正当な列を使って正当な誤り訂正と、正当な誤り回復 を次のように定義する.

(定義 2-5) 正当な誤り訂正

誤り姿態* [To T1 ··· Tn, a1 ··· am] におけるパー ザπの正当な誤り訂正とは [To T1 … T, αακ … a_m] なる姿態への復帰という. ここで $l \leq K \leq m \alpha \in$ V_T^* であり、 T_0 T_1 … $T_n \alpha a_K$ は正当な列である. 🛛 定義からも明らかなように本論文での誤り訂正は誤 った姿態の局所的な訂正であり、 $a_1 \cdots a_{K-1} \ge \alpha o$ 置換により訂正を行う. a1 から a1-1 については訂正 しない. それゆえこの訂正は最適訂正ではない.

(定義 2-6) 正当な誤り回復

誤り姿態 [To T1 … Tn, a1 … am] におけるパー ザ π の正当な誤り回復とは、[To T1 ··· Te T'e+1 … T,', αax … am] なる姿態への復帰をいう. ここ で $l \leq K \leq m, a \in V_T^*$ で 0 < q < n であり, かつ T_0 $T_1 \cdots T_q T'_{q+1} \cdots T_{p'} \alpha a_k$ は正当な列である. 🛛

以下では実用的見地より SLR (1) パーザに 対する 誤り訂正,回復について考察する. k≥2 の場合でも 方法は全くかわらない.

3. valid pair に基づく誤り訂正

本章では終端語による valid pair と strictly valid pair の定義を行い、それぞれに基づく誤り訂正法に ついて述べ、合わせてその正当性をも証明する.

(定義 3-1) *i*-order valid pair

(T, a) に対して次の条件を満足する α 及び γ が存 在するとき, (T, a)をパーザ π における *i*-order valid

^{*} To … T_# が正当な表列で, f(T_#, a_e)=error のとき, [To … Tn, a, …am]を誤り姿態と呼ぶ.

pair と呼ぶ. 但し $T \in \mathcal{I}, a \in V_T \cup \{\$\}, \alpha, \gamma \in V_T^*,$ $|\gamma| = i$ である.

任意の $\delta \in V_T^*$ に対して

 $[T_0, \alpha\gamma a\delta] \mid_{\overline{\pi}}^{+} [T_0 \ T_1 \ \cdots \ T_n, \gamma a\delta] \mid_{\overline{\pi}}^{*} [T_0 \ T_1' \cdots T_n, \gamma a\delta] \mid_{\overline{\pi}}^{*} [T_0 \ T_1' \cdots T_n', a\delta] \mid_{\overline{\pi}}^{+} (\mathfrak{I} \neg - \mathfrak{C} \mathfrak{t} \mathfrak{t} \mathfrak{t})$ 但し $T_n = T$

(T, a) が γ に対して *i*-order valid pair であれば, $T_0 \cdots T_n \gamma a$ が正当な列となるような正当な表列 $T_0 \cdots T_n(T_n=T)$ が存在する.即ち *i*-order valid pair とはテーブルTと終端語 a の対に対して,その 間に入っても矛盾しない終端語列 γ , $|\gamma|=i$ が存在す ることを保証したものである.これを使うことにより 次のような訂正法が可能である.

(アルゴリズム 1)

i-order valid pair に基づく誤り訂正法

(入力) 誤り姿態 [To … T_n, a₁ … a_m]

(出力) 局所的に訂正された姿態 [T₀ … T_n, γa,
 … a_m] 但し p=l もしくは l+1*

(方法) ① k=l or $l+1, i=0 \sim i_n$ の各 k, i につい て次のことを調べる. すべて No であれば訂正できな い. 但し i_n は適宜前もって決定しておく. ② (T_n, a_n) が i-order valid pair かどうか調べる. Yes ならば③ へ, No ならば新しい k, i について調べる. ③ T_0 … $T_n \gamma a_k$ を正当な列とするような長さ i の終端語列 γ が 存在するか,存在すれば④へ,存在しなければ別の k, i について調べる. ④ [T_0 … $T_n, \gamma a_k$ … a_m] に 訂正する. ⊠

i-order valid pair ではある正当な表列 $T_0 \cdots T_n$ に対して $T_0 \cdots T_n \gamma a$ が正当な列となるのであるか ら、単に (T_n, a) が γ に対して正当であるといっても ステップ③でそれが現在の $T_0 \cdots T_n$ に対して正当 かどうかのテストを行う必要がある. ③のステップは ①~④の中でも最も時間のかかるものであり、その回 数を減らすのがステップ②の役割である. またこのア ルゴリズムは *i* が大きくなるに従い指数的に計算量が 増大するので、ここでは *i*=0 or 1 の場合について本 アルゴリズムのステップ②及び③を詳述する. *i*>1 の場合はこれに準ずる.

(アルゴリズム 1-1) (*T*, *a*) が *i*-order valid pair かどうかのテスト (ステップ②)

I. *i*=0 の場合.

 $f(T, a) \neq \text{error } cbd "Yes", f(T, a) = \text{error } c$

らば "No" である.

理

Ⅱ. *i*=1 の場合

①すべての終端語 b について以下の②~⑥を実行す る. すべての終端語について"No"ならば"No", "Yes"となるものが1つでもあれば"Yes"をそれぞ れ出力する. ②NEXT*(*T*, *b*)を求め、*S*とする. ③ *S*が空ならば"No"である. ④*S*のすべての要素 *T*" について以下の⑤, ⑥を実行する. すべての要素につ いて"No"であれば"No"を, "Yes"となるものが 1つでもあれば"Yes"をそれぞれ出力する. ⑤*T*"= g(T', b)とする. ⑥f(T'', a)=error ならば"Yes"を, f(T'', a)=error ならば"No"をそれぞれ出力する.

③NEXT*(T, b)の計算法

① $S = \phi$ (空) とする. ② f(T, b) = shift tsoid S= {T} として stop, error tsoidそのまま stop, それ 以外は③へ行く. ③NEXT (T, b) を求め S_1 とする. 但し NEXT (T, b) = {T' | $f(T, b) = \text{reduce } i \text{ boo } P_i$: $A \to \alpha \ c = b$, $b \in T''$ に対して GOTO (T'', α)**= T boo GOTO (T'', A) = T' }, ④ S_1 のすべての要素 について次の⑤, ⑥を実行する. ⑤ f(T', b) = errortsoid S = S, $f(T', b) = \text{shift tsoid } S = S \cup \{T'\}$, $f(T', b) = \text{reduce } i \ t \in t \in t$ ⑥ $S = S \cup$ NEXT*(T', b), 但し S_1 b T を要素 として持つと きには T について⑤, ⑥は行わない.

一般に (T, a) が valid であるような終端語は複数 個存在する. そのためアルゴリズム1ではステップ② で valid かどうかを判定した後に, ステップ③であら ためてそのための終端語を捜し, 正当な列になるかど うかのテストを行う. (T, a) が valid かどうかの判 定は上記のように前もって計算できるので表として記 憶しておくことができる.

(アルゴリズム 1-2) (ステップ③)

①Tに対して (T, b) が 0-order valid pair となる ような終端語 b を求め, S とする. S のすべての要素 について以下の手続き (②~③)を実行する. "Yes" となるものがあればそれが求める語である. すべて "No"であれば "No"である. ② T_0 … T_* と先読み 記号b に対するパーザの動作をシミュレートする. bをシフトする前にエラーとなれば "No", シフトにな るとそのときの表を T' とする. ③f(T', a)=error な らば "Yes" を, f(T', a)=error ならば "No"を出 力する. 🛛

アルゴリズム1では *i*-order valid pair に基づく誤 り訂正法を与えたが, *i*-order valid pair の性質から

読み飛しを最小にし、かつアルゴリズムをコンパクトにするために pを1もしくは1+1 に限る。

^{**} 行先関数の次のような拡張である. Z×(VN ∪ VT)+→Z

Vol. 18 No. 3

ステップ③が必要となり,時間も長くかかる.そこで 次にこのステップ③の操作が必要でないような訂正法 を与えるための valid pair を導入する.

(定義 3-2) *i*-order strictly valid pair

(T, a)を*i*-order valid pair とするような長さ*i* の終端語列の集合の中に次の条件を満たすものが少な くとも1つ (たとえば α) あれば (T, a)を*i*-order strictly valid pair という. $T_0 \ge T$ を両端とする任意 の正しい表列を T_0 T_1 … T_* $(T=T_*)$ とするとき,

 $[T_0 \cdots T_n, \alpha a\beta] \mid_{\overline{\pi}}^{+} [T_0 \ T_1' \cdots T_{p'}, a\beta] \\\mid_{\overline{\pi}} (x = -\overline{c} t_k v) \qquad \boxtimes$

(T, a) が α に対して *i*-order strictly valid Pair であるとは, $T_0 \cdots T_n (T_n = T)$ が正当な表列である 限り, $T_1 \cdots T_{n-1}$ には関係なく $T_0 T_1 \cdots T_n \alpha a$ が 正当な列であることを示している. 即ちテーブルの先 頭だけで valid であることがきまる. そのため訂正ア ルゴリズムが次のように簡単になる.

〔アルゴリズム 2〕 *i*-order strictly valid pair に 基づく誤り訂正法

入力,出力はアルゴリズム1と同じである.

(方法) ① $k=l \text{ or } l+1, i=0~i_n$ の各 k,i につい て次のことを調べる. すべて "No" であれば訂正でき ない. "Yes" となるものが 1 つでもあればそれにより 訂正を行う. 但し i_n は前もってきめておく. ②(T_n , a_k) が *i*-order strictly valid pair かどうかを調べる. "No" ならばくりかえし, "Yes" ならば長さ *i* の終端 語列 α を出す.

アルゴリズム2では任意の表と終端語の対(T, a)が strictly valid pair であるかどうかを次のアルゴリズ ム3で前もって計算しておく. するとステップ②は表 のルックアップのみでよい. ここでもアルゴリズム1 の場合と同様に i=0 or 1 の場合についてのみ述べる. i>1 の場合はこれに準ずる.

(**アルゴリズム 3**) (**T**,*a*) が*i*-order strictly valid pair かどうかの判定.

アルゴリズム3はアルゴリズム1-1とほぼ同じであ るのでここでは異なる個所のみを述べる.

ステップ④ S のすべての要素 T' に対して以下の 手続き(⑤,⑥)を実行する. "No"となるものが1つ でもあれば "No"を, すべて "Yes" ならば "Yes" とbを出力する. 図

i-order valid pair 及び *i*-order strictly valid pair の定義より次の定理が導かれる.

(定理1) i-order valid pair による誤り訂正は局

所的に正当である.

(定理2) *i*-order strictly valid pair による誤り 訂正は局所的に正当である.

アルゴリズム 1,2 ともに (T, a) が valid pair か, また strictly valid pair かどうかは, i=1 の場合は f 関数に貯えることができる. 即ち 0-order valid pair を優先し, 0-order valid でない 1-order valid pair のみ記憶するとすれば, f 関数のエラーエント リに貯えることが可能である. 次にそのようにして表 わした parsing table の例を示す.

例 1. 誤り訂正のための情報を貯えた SLR (1) parsing table

 $G_{1} = \langle \{E, T, F\}, \{a, +, *, (,)\}, P, E \rangle$ $P: E \to E + T^{(1)} \qquad E \to T^{(2)}$ $T \to T * F^{(3)} \qquad T \to F^{(4)}$ $F \to (E)^{(5)} \qquad F \to a^{(6)}$

 G_1 の SLR (1) parsing table を **Fig. 1** に示す. Fig. 1 において、数字はシフト動作とその行先の表、 R_i は reduce *i*, *A* は accept を表わす. また終端語は その行の表と列の終端語に対して 1-order (strictly) valid pair となることを表わす. 空白は valid pair と ならない部分である. なお G_1 では valid pair と strictly valid pair が一致するので区別しない.

例えば (Ts, *) について調べると,

NEXT* $(T_5, a) = \{T_4\}$ NEXT* $(T_5, ()) = \{T_5\}$ $q(T_5, a) = T_4$ $q(T_5, ()) = T_5$

かつ $f(T_4, *)$ =reduce 6, $f(T_5, *)$ =error である. 故に $(T_5, *)$ は 'a' に対して 1-order strictly valid pair である. しかし '(' に対しては valid でない. また $(T_1, *)$ と $(T_1,)$) は Fig. 1 よりわかるよう に 0-order valid でもないし, 1-order valid でもな い. そこで 2-order valid pair かどうか調べると

	E	Т	F	a	+	*	()	\$
0	1	2	3	4	а	a	5	a	a
1				+	6		+		Α
2				*	R 2	7	*	R 2	R 2
3				+	R4	R 4	*	R 4	R 4
4				+	R 6	R 6	*	R 6	R 6
5	8	2	3	4	a	a	5	a	a
6		9	3	4	a	a	5	a	a
7			10	4	a	а	5	a	а
8				+	6)	+	11)
9				*	R 1	7	*	R 1	R 1
10				+	R 3	R 3	*	R3	R 3
11				+	R 5	R 5	*	R 5	R 5

Fig. 1 SLR (1) parsing table with error correct entries

情

 \mathbf{X}

"+a" なる終端語列に対して valid である. □ 🛛

4. valid pair に基づく誤り回復

3. では終端語列を対象とした valid pair を定義し, それに基づく誤り訂正法を示した.本章では更に非終 端語まで含めた valid pair を定義し,それに基づく 誤り回復法について述べる.

(定義 4-1) *i*-order valid pair

(T, a)に対して次の条件を満足する γ が存在するとき, (T, a)をパーザπにおける*i*-order valid pair と 呼ぶ. 但し T \in T, $a \in V_T \cup \{\$\}$, $\gamma = (V_N \cup V_T)^i$ で ある. T を先頭とする任意の正しい表列 T₀ T₁ … T_n (T_N = T) に対して,

 $\begin{bmatrix} T_0 \ T_1 \ \cdots \ T_n, \gamma a \delta \end{bmatrix} \stackrel{*}{\underset{\pi}{\longrightarrow}} \begin{bmatrix} T_0 \ T_1' \ \cdots \ T_{p'}, a \delta \end{bmatrix}$ $\stackrel{|\frac{\pi}{\pi}}{\underset{\pi}{\longrightarrow}} (\pi p - \tau c t s v) \qquad \boxtimes$

この一般化した valid pair に基づく誤り処理は非 終端語を使うために誤り訂正とはならない。ここで特 に有用なのは $\gamma \in V_N$ の場合である。 $\gamma \in V_N$ の場合 には valid pair と strictly valid pair が一致する。

(アルゴリズム 4) 非終端語に対する 1-order valid pair の計算

(方法) ① T に対して g(T, A) が値を持つような 非終端語 A が存在すれば②へいく,存在しなければ "No"である. ②g(T, A) = T'として, f(T', a) = errorならば "No"であり、 \neq error であれば③へ行く. ③ ①, ②で求めた非終端語に対して (T, a) は 1-order valid pair である.

次にこの valid pair に基づく誤り回復アルゴリズ ムを述べる. これは文献 2)の練習問題 7-4-28 での回 復法を SLR (K) パーザ用に変更したものになってい る.

(アルゴリズム 5) valid pair に基づく誤り回復

(入力) 誤り姿態 [To T₁ … T_n, a₁ … a_m]

(出力) 局所的に正当な姿態[To … T, T, a, … a_m]

(方法) ① $i=l \sim m$ まで以下の手続きをくりかえ す. ② $j=n\sim0$ まで以下の手続きをくりかえす. ③ [T_{j}, a_{i}]が 1-order valid pair か, "Yes"ならば④ へ. "No"ならば新たなi, jについてくり返す. ④ [T_{j}, a_{i}]を valid とするような非終端語をAとす る. ⑤ $g(T_{j}, A)=T$ として [$T_{0} \cdots T_{j} T, a_{i} \cdots a_{m}$] に回復する.

次の定理の成立は明らかである.

(定理3) アルゴリズム5に基づく誤り回復は正当

である.

アルゴリズム4によって求めた 1-order valid pair による誤り回復では場合により誤り回復がループに陥 る. 即ち [To T1 … Tn, a1 … am] ー error としたと き, (Tn-1, a1) で回復するとする. (Tn-1, a1) が A に 対して valid で g(Tn-1, A) = Tかつ f(T, a1) = reduce *i*, P1: B→A g(Tn-1, B) = Tn となるなら同じ回復を くり返し,解析は前へ進まない. この点を改善するた めにアルゴリズム4を一部変更する. ①, ②はそのま まで③のみ次のように変更する.

- ③' $f(T', a) = \text{shift } \text{ $ x \in I_i, (T, a) $ it 1$-order valid}$ pair である. $f(T', a) = \text{reduce } i \text{ $ x \in I $ it is is is is is in a $ a \in I_i: A $ a_i \geq j = 0. $ a_i > a_i > j = 0. $ a_i > j$
- ③'-1 |a_i|=1 このときには NEXT (T', a) を求め、その各要素について③'を再び実行する.そしてすべて "Yes" ならば "Yes" である.

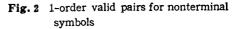
③'-2 $|\alpha_i| \neq 1$ このときは "Yes" である.

③'-1の場合にはアルゴリズム4の①,②を満す項目 が複数個あり、 $[A_i \rightarrow \cdot A_{i-1}]$ なる形をしていると考え られる. この場合には最上位の A_i 、即ち $(A_n \rightarrow A_{n-1}$ $\rightarrow \dots \rightarrow A_1$) なる A_n を選んでおけばよい. これを行っ ているのが③'である.

例 2. G₁ の SLR (1) パーザにおける,非終端語 に対する 1-order valid pair

 $(T_0, +)$ について考える. Fig. 1 より $g(T_0, A)$ が値 を持つ非終端語 A は E, T, F であり, それぞれ値は T_1, T_2, T_3 である. $f(T_1, +)=$ shift, $f(T_2, +)=$ reduce 2, $f(T_3, +)=$ reduce 4 であるので E を選ぶ. また $(T_5, \$)$ についてみるとやはり E, T, F に対して値を 持ち, それぞれ T₈, T₂, T₃ である. $f(T_8, s)=$ error より E はだめ, $f(T_2, \$)=$ reduce 2 であるので NEXT* $(T_2, \$)=$ $\{T_1, T_8\}, f(T_1, \$)=$ Accept であるが

	а	+	*	()	\$
0		Е	Т			E
1						
2						l.
3						i i
4						
5		Ε	Т		Ε	
6		Т	Т		Т	T
6 7 8		F	F		F	F
8						
9						Ì
10						
11						



Vol. 18 No. 3

 $f(T_{8}, \$) = \text{error}$ であるから T もだめである. T_{3} に ついても同様にだめなことがわかる. よって $(T_{5}, \$)$ は 1-order valid pair とならない.

シミュレーションによるアルゴリズムの 評価

本章では誤り処理アルゴリズムの評価のために行っ たシミュレーションについて述べ、それによりアルゴ リズムの評価を行う.誤り処理アルゴリズムの評価に は多くの誤りプログラムが必要であるが、例題として 遅んだ文法が小さいので非常に困難である.そこで擬 似的にエラープログラムを Fig.3 の方式で発生させ ることとした.Fig.3 において誤りの個数,誤りの種 類,誤りの位置及び誤った終端語はそれぞれ乱数によ り決定した.実際の誤りは文脈にある程度依存するが ここでは簡単のため文脈は考えずに,誤りの終端語の 発生確率のみいろいろ変えて実験を行った.また誤り の個数はプログラムの長さによる上限(1/5,1/10,1/20) を設け、その範囲内で一様に分布させた.一番最初の プログラムは正しいプログラムとし,誤りの種類は単 一の終端語の消去、挿入、置換の3つとし、それぞれ

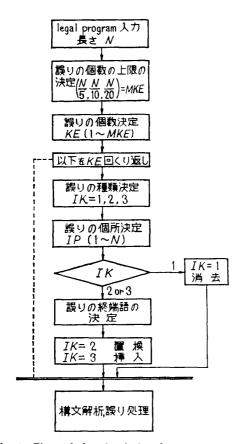


Fig. 3 Flow of the simulation for error correction

```
G2: <Program>
              +<Block>
   <Block>
               +Blockhead><Blockbody>END
   <Blockhead> + BEGIN <Blockhead><Decl.>;
   <Decl.>
              + TYPE id Decl.>,id
   <Blockbody> +<Statement>|<Blockbody>;<Statement>
   <Statement> +<Simplestate.>|<Ifstate.>
   <Simplestate.>+id=<Exp.>|<Block>
   <Ifstate.> + If<Exp.>then<Simplestate.>else<Statement>
   <Ifstate.> + If<Exp.>then<Statement>
  <Exp.>
               +<Term>|<Term>+<Exp.>
  <Term>
              + id (<Exp.>)
                Fig. 4 Test grammar
  PROGRAM 1.
```

```
Begin Type a,a; a=a;
If a+a then Begin a=a+a; a=a End
else a=a+a
End
PROGRAM 3.
```

```
Begin Type a,a; a=a+a;
    If a then Begin Type a; a=a+a; a=a+(a+a) End
        else Begin a=a+a+(a+a); a=a End;
        a=a
```

```
PROGRAM 2.
Begin Type a,a; Type a; a=(a+a);
Begin Type a; a=a+a End;
If a then a=a else a=a+a; a=a
End
```

End

```
PROGRAM 4.
Begin Type a,a; a=a+(a+a);
    If a+a then Begin a=a; a=(a+a) End
        else Begin a=(a+a); a=a End;
    Begin Type a;
        If a then a=a else a=a+a;
        a=a+a
        End
End
```

Fig. 5 Four test programs

 Table 1
 Error probabilities for each terminal symbol

			-		Type										
1.	1	2	2	5	2 2 1	6	5	5	2	2	2	5	6	6	ł
2.	0	1	1	5	2	6	5	5	2	2	2	5	5	6	i
3.	1	1	1	10	1	10	10	10	1	1	1	10	10	10	
															1

元のプログラムを次のように変更する.

消去 (a1 ··· a1-1 a1 a1+1 ··· am)→

 $(a_1 \cdots a_{l-1} a_{l+1} \cdots a_m)$

 $(a_1 \cdots a_{l-1} a_{l-1} a a_{l+1} \cdots a_m) a_l \neq a$ 挿入 $(a_1 \cdots a_{l-1} a_l a_{l+1} \cdots a_m) \rightarrow$

 $(a_1 \cdots a_{l-1} a a_l a_{l+1} \cdots a_m)$

但し置換及び挿入における a の決定は Table 1 の 3 種 類の確率分布を想定して実験を行った.例として用い た文法及びその文法に 基づく 4 つの プログラムを Fig. 4, Fig. 5 に示す.

報

情

Table 2 Simulation result for error correction

誤り確率		I			Ц		ш			
上限 プログラム	$\frac{1}{5}$	$\frac{1}{10}$	$\frac{1}{20}$	$\frac{1}{5}$	$\frac{1}{10}$	$\frac{1}{20}$	$\frac{1}{5}$	$\frac{1}{10}$	$\frac{1}{20}$	
1	56	82 -	86	65	77	90.	67	79	89	
2	59	80	85	53	75	83	56	77	83	
3	57	69	82	53	77	80	55	75	85	
4	41	65	80	5 2	65	78	46	62	81	

実験での誤り訂正アルゴリズムは次のような優先度 で valid pair を SLR(1) parsing table に記憶させ た.

① 0-order valid pair, ② 1-order valid pair,
 ③ 1-order valid pair (非終端語)

③は誤り回復のためのものである. parsing table の大きさは 36×15 , その内上記 3 つのどの pair にも なっていない要素は 295 個であり,約半数である. 誤 り訂正は次の 3 つの形でのみ行った.

誤り姿態 (T_0 T_1 … T_n , a_i a_{i+1} … a_m)

- 1. 消去による訂正 $(T_0 T_1 \cdots T_n, a_{i+1} \cdots a_m)$
- 2. 置換による訂正 (To T1 … Tn, a a1+1 … am)
- 3. 挿入による訂正 (T_0 T_1 … T_n , $a a_i a_{i+1}$ … a_m)

Fig. 5 の4 種類のプログラム, Table 1 の 3 種の誤 り確率についてそれぞれ 100 個の誤りプログラムを発 生させ, 誤り訂正を試みた結果を **Table 2** に示す.

Table 2 はプログラムの長さが長くなるにつれて, また誤りの個数の上限を上げるにつれて訂正率が下が る傾向を示している. この一つの原因は実験方法にあ ると考えられる. 即ち誤りの発生をランダムに文脈を 無視して行うために誤りの絶対数の増大に伴い, 訂正 不可な誤りがふえてくる. たとえば Begin の消去, End の挿入等によるブロック構造の完結がある. ま た文脈を考慮していないために誤り確率の相違は訂正 率にさほど影響を与えていない. 現実のプログラムで の誤りを 100 ステートメント中, 10 個程度と考える と, 上限は 1/20 で十分である. この場合には訂正率 も 80~90% になり, またプログラムの長さに伴う訂 正率の低下もわずかである. このことから誤り訂正に 処理

関してはアルゴリズムは満足のゆくものである.本例 はすべて100個のプログラムについての値であるが 1,000個について行っても大きく値は変わらない.

訂正不能な 20% については誤り回復を合せて行う ことで解析を進めることができる. 誤り回復のために 非終端語に対する 1-order valid pair を組み込んで実 験を行った結果 100% 回復可能であった. また回復の ための読み飛ばしは,最後まで読み飛ばす場合 (73 回 中 22 回)を除くと平均2.7 語であった.

実験で用いた文法は小さいものであるがアルゴルの 基本的な構造は持っている. このことから上記の結果 は実用の文法に対してもあてはまるものと考える.

6. む す び

本論文では LR(0) 表と終端語の対に対して valid pair を定義し, それを利用した SLR(k) パーザにお ける誤り訂正及び回復のアルゴリズムを示した. パー ザが実用可能な SLR(k) パーザであること, 余分な 空間を必要としないこと, また誤り処理を含めた処理 時間が入力に対して線型であることから十分実用にな るものと考える.

本論文での実験では 1-order valid pair までしか使 用しなかったが、2以上の valid pair を使用するな らば更に訂正率は改善できる.しかしその際には記憶 量の増大はさけられない.

参考文献

- A. V. Aho, T. G. Peterson: A Minimum Distance Error Correcting Parsing for Context-Free Languages, SIAM J. Computer, Vol. 1, No. 4, pp. 305~312 (1972).
- 2) A. V. Aho, J. D. Ullman: The Theory of Parsing, Translation, and Compiling, Prentice-Hall ch 5, 7 (1972).
- 3) 海尻, 打浪, 手塚: LR (k) パーザにおける誤 り回復について, 49 年度情報処理全大 15.

(昭和51年4月12日受付) (昭和51年7月22日再受付)