
722
IEICE TRANS. INF. & SYST., VOL.E83–D, NO.4 APRIL 2000

PAPER Special Issue on Knowledge-Based Software Engineering

A Diagnosis System of Programming Styles

Using Program Patterns

Rika SEKIMOTO† and Kenji KAIJIRI†, Members

SUMMARY Programming styles play an important role to
promote maintainability of programs. The authors aim at de-
veloping a system for assisting a task that programmers rewrite
programs in order to improve their readability, understandabil-
ity and maintainability. This system detects program fragments
which infringe programming styles in a C program and makes di-
agnosis on the programming style. This system has the following
features: 1) It can detect various patterns, for example, con-
text dependent patterns and dispersed patterns extending two or
more functions. It is difficult to detect these patterns by charac-
ter based pattern matching; and 2) Each style guideline is defined
as program patterns. This system uses them as search data, so
it becomes easy to add or change style guidelines which are to be
checked. The authors validated that inspection of various style
guidelines is possible through this system. Moreover, to evalu-
ate the effectiveness of this system, they made experiments of
inspecting a program for some style guidelines on 86 novice pro-
grammers. This result indicates that the system is effective in
assisting a work that novice programmers check and/or correct
programming styles.
key words: programming style, program pattern, program recog-
nition, programming course

1. Introduction

Programs must be not only valid but also readable and
understandable. The guideline to produce good style
code is called programming style. There are various
metrics in programming style, such as reliability, effi-
ciency, testability, readability, understandability, mod-
ifiability, portability, and so on.

Compilers can’t produce an executable code if a
program includes some syntactic errors, and a program
doesn’t work correctly to programmer’s intention if it
includes some semantic errors. However a program in-
fringing programming styles may be true to program-
mer’s intention, so programmers are not in trouble at
that time. As the result, maintenance problem will
arise later. In programming courses, to learn pro-
gramming styles as well as grammars and algorithms is
very important. However, little time is spent on learn-
ing programming styles in introductory programming
courses. One reason for this is the lack of supporting
systems about programming style education.

We aim at developing a diagnosis system of pro-
gramming style. It assists programmers to obey the

Manuscript received August 9, 1999.
Manuscript revised October 31, 1999.

†The authors are with the Faculty of Engineering,
Shinshu University, Nagano-shi, 380–8553 Japan.

programming style. Our system detects program frag-
ments which infringe the programming style, and out-
puts the diagnosis message. The target language is
the ANSI C. In this paper, we focus our discussion on
the readability and understandability in programming
styles.

We call the pattern which infringes programming
styles as “bad pattern.” We proposed a new repre-
sentation method for various bad patterns, and imple-
mented a diagnosis system that detects program frag-
ments which match certain pattern [1], [2]. We vali-
dated that detection of various bad patterns is possible
through this system. For example, it can detect con-
text dependent patterns and dispersed patterns span-
ning multiple functions in C programs. In this system,
each style guideline is defined as program patterns. The
input is a target program and these patterns, so it is
easy to add or change style guidelines which are to be
checked. Moreover, to evaluate the effectiveness of this
system, we made experiments of detecting bad patterns
on 86 novice programmers. This result indicates that
the system is effective in assisting novice programmer’s
task to check and/or correct programming styles.

This system detects bad patterns in C programs
and makes diagnosis on programming styles. This de-
tection is effective to improve the quality of programs.
Moreover, it may be effective to learn good coding style.

In this paper, we describe the diagnosis system of
programming styles using program patterns. Section 2
discusses programming styles. Section 3 discusses the
representation method of program patterns for search.
In Sect. 4, we outline the diagnosis system of program-
ming styles. Section 5 describes the description experi-
ment of various kinds of bad patterns and the recogni-
tion experiments for programs of the GNU text utility
library. In Sect. 6, we compare our system with related
works. In Sect. 7, we describe the experiment of detect-
ing bad patterns using our system on novice program-
mers. Finally, in Sect. 8, we present our conclusions
and plans for future works.

2. Programming Style

There are various guidelines in readability and under-
standability. For example, there are the following two
kinds of guidelines: 1) Guidelines that do not reflect
on the behavior of programs directly, such as, inden-

SEKIMOTO and KAIJIRI: DIAGNOSIS SYSTEM
723

tation, naming, and commenting. 2) Guidelines about
structure, such as, usage of statements and expressions.
For the former class, indentation problem is solved us-
ing formatting tools and naming/commenting problems
depend on semantics, so they are out of scope. In the
conventional case, guidelines are described with natural
languages, so novice programmers can not understand
guidelines precisely. Consequently, it is difficult work to
detect bad patterns for the guidelines about structure.
Therefore in our research, we focus on the guidelines
about structure and propose their recognition system.

Now two examples of the guidelines about struc-
ture are given.
[Guideline about side effect within conditional
expressions]: The expression that has side effect, such
as a conditional expression including assignment state-
ment, is unfavorable.
[Guideline about file processing]: Files should be
closed explicitly when the corresponding operation fin-
ished.

We will consider the detecting process of bad pat-
terns. In the pattern infringing the first guideline, the
system must detect the conditional expression which in-
cludes assignment statements. In order to detect such a
pattern, the system should recognize a conditional ex-
pression within an if-statement or a while-statement, so
it becomes necessary to parse programs. In the pattern
infringing the later guideline, the system must detect
the location where a file is opened and that file is not
closed explicitly. This is the pattern that lacks the part
of searching patterns. The location of “fclose” function
calls may be apart from the location of “fopen” func-
tion calls. Sometimes those may appear in different
functions/files in C programs. It is difficult to recog-
nize these various bad patterns by traditional source
code search tools based on string pattern matching, for
example the grep family in UNIX.

We examined manually whether programs written
by novice programmers have bad patterns. The ob-
jects are 30 programs which are the answer programs
for the following problem: To merge two sorted data se-
quences. In this examination, we found 7 kinds of bad
patterns about structure. One bad pattern was found
in 90% of programs. The [guideline about side effects]
was found in 80% of programs. The [guideline about
file processing] was found in 30% of programs. This
result indicates that there are many bad patterns in
programs written by novice programmers. Therefore,
the supporting tool for education of programming style
is necessary.

3. Program Pattern

3.1 Program Pattern Representation

We examined some programming guidelines and de-
duced some specific characteristics about these guide-

lines:

1. Occurrence context of a pattern. A pattern is pro-
blematic in a certain context (context dependent
pattern).

2. Nonexistence of one component for a pair of pat-
tern. A pair of pattern is necessary, but one pat-
tern is missing.

3. A set of pattern dispersed over several functions.

4. A kind of bad patterns, especially for educational
use, are not closed, so the system must be exten-
sible.

Considering these characteristics, we designed our
program pattern representation.

We call a description for specific program frag-
ments as a program pattern. In this system, a program
pattern is used to represent a style guideline. Figure 1
shows our proposed description form of a program pat-
tern. A program pattern consists of pattern name, pa-
rameter list, body part, and constraint part. In body
part, the pattern to be matched is described, which we
call the template. In constraint part, the context con-
dition which is concerned with the template (e.g. con-
dition about syntax and static analysis information) is
described. By the separation of body part and con-
straint part, the system has the following features: 1)
Flexibility of pattern representation: Using program
patterns we are able to represent easily the context de-
pendent patterns. Moreover, addition of a new condi-
tion becomes easy; and 2) The system becomes exten-
sible to use some external informations, for example,
static analysis informations.

For the flexibility and the extensibility, we divided
the program pattern into two types: fundamental pat-
terns and compound patterns. A fundamental pattern
is a basic pattern for searching and uses sentential forms
of the C grammar. The template consists of program
fragments of the C language parameterized with regu-
lar expressions. A compound pattern consists of sets
of instances of fundamental patterns. In description
of compound patterns, a high level concept can be ex-
pressed using fundamental patterns. This is also useful
for defining the following patterns: 1) Patterns span-
ning multiple functions; and 2) Patterns which could

Fig. 1 Description form of a program pattern.

724
IEICE TRANS. INF. & SYST., VOL.E83–D, NO.4 APRIL 2000

appear in any order. These patterns are indispensable
for programming style description.

3.2 Fundamental Pattern

In body part of fundamental patterns, the expanded
C language is used. The extension includes a set of
symbols that can be used as the substitution for syn-
tactic entities of C. Some regular expressions can be
used instead of the structure element of C. The tem-
plate consists of the following elements;

• Program fragment based on the C grammar

• Pattern variable: Wild-cards for syntactic entities
(@: statement, #: expression, $: variable)

• Special wild-cards: categorical representation (@if,
@while, @do, @for, @switch, @assign), class rep-
resentation (@alternate, @loop)

In constraints part of fundamental patterns, each
condition indicates constraints about syntax structure,
character string, data/control flow, and so on. Some
examples of the constraints are shown below; pattern
variables (p) and constants (c) may be used as param-
eters of constraint predicates.

• type constraint
type(p, c), type equal(p, p)

• syntax structure constraint
equality exp(p), assign exp(p), not break(p)

• character string constraint
literal equal(p, c), constant(p), integer large(p, c)

• flow constraint
reaching def(p, p), cflow(p, p)

For example, “reaching def(p1, p2)” means that
the definition in the program fragment matched with
p1 reaches the program fragment matched with p2, and
“literal equal(p, 10)” means that the program fragment
matched with p is a constant “10.”

3.3 Compound Pattern

In body part, a sequence of fundamental patterns with
optional labels is used. We call this as a component
pattern. A component pattern is described as follows;

label: pattern_name (parameter);
Labels are used to identify program fragments that

match the corresponding component patterns.
The constraints which may be used in fundamental

patterns and positional constrains may be used. The re-
lation between the program fragments, which matched
each component pattern, is indicated by positional con-
straints. Some examples of the constraint specific to

compound patterns are as follows; In addition to pat-
tern variables and constants, labels of component pat-
tern (l) can be used as a parameter of constraint pred-
icates.

• character string constraint
node literal equal(p, p)

• positional constraint
node equal(p, p), condition part(l), loop body(l),
with in(l, l), before(l, l)

• others
not found(l), same variable(p, p)

For example, “with in(l1, l2)” means that the pro-
gram fragment matched with the fundamental pattern
labeled with l1 is included in the program fragment
matched with the fundamental pattern labeled with l2.

3.4 Sample Program Patterns

We show two examples.
[Guideline about side effect within conditional
expression]:

BEGIN BEGIN
side_effect1_pattern; assignment_pattern;
BODY COMPLEX BODY
l1:assignment_pattern() @assign

CONSTRAINTS END
condition_part(l1)

END

This pattern will match an assignment statement in a
conditional expression. [side effect1 pattern] said that
an assignment statement binded with l1 is included
within some conditional statement.
[Guideline about file processing]:

BEGIN
file_not_close_pattern;
$v1,$v2
BODY COMPLEX

l1:file_open_pattern($v1);
l2:file_close_pattern($v2)

CONSTRAINTS
found(l1),
not_found(l2)

END

BEGIN BEGIN
file_open_pattern; file_close_pattern;
$v1 $v1
BODY BODY

$v1 = fopen(#); fclose($v1);
END END

This pattern said that a file open statement exists
and no file close statements exist. This is not a suf-
ficient description for this pattern. This pattern does
not warn for the case that the close statement is miss-
ing which corresponds to some open statement, but it
only warns for the case that open statements exist but
no close statement exists. More precise description is a
open problem for our system.

SEKIMOTO and KAIJIRI: DIAGNOSIS SYSTEM
725

4. Program Pattern Recognition

4.1 Outline of the System

In this system, users select the program and the style
guideline, and the system detects program fragments
which infringe the given style guideline. Each program
pattern was enrolled in the pattern database in ad-
vance, and user selects a program pattern from it. The
system identifies all program fragments which match
with the specified program pattern. Finally, the sys-
tem shows the number of matched elements and their
locations. A sample message by the system is as fol-
lows;

Pattern[1]: Guideline about file processing

There is 1 match list.

There is a file which is opened, and is not closed.
In file processing, file is opened when it is used, and it
should be closed explicitly.

——(1) list of matching——
1st pattern - - - - - line 41

input = fopen (FileName, “r”) ;
2nd pattern == unmatched ==

In Fig. 2, we show the architecture of the sys-
tem. This system consists of a parser and two sub-
modules: base pattern search module and compound
pattern search module.

4.2 Base Pattern Recognition

In base pattern recognition, the system produces a tree
automaton based on templates of body part and iden-
tifies all program fragments which match with the pat-
tern. In this template matching, it uses the technique
based on the finite state automaton proposed by [3].

Figure 3 shows the flow of the base pattern search
module. The automaton generator gets a template as
an input and produces an automaton called a pattern
automaton. After an AST (Attributed Syntax Tree)
and a pattern automaton have been generated, the base
pattern template matching module drives a pattern au-
tomaton on an AST and produces a template match
list.

The template match list is checked by the base
pattern constraint check module and the base pattern
match list which fulfills all restrictions is selected.

4.3 Compound Pattern Recognition

In the compound pattern search module, at first, the

Fig. 2 The architecture of the system.

Fig. 3 Base pattern recognition flow.

template of an inputted pattern is divided to some com-
ponent patterns. Each component pattern is searched
using the base pattern search module. After the base
pattern match list of all component patterns is ob-
tained, all combinations of the base pattern match list
were checked in the component pattern constraint check
module. The compound pattern matched list is a set of
program fragments that fulfill all conditions.

For example, we supposed that a compound pat-
tern consists of three fundamental pattern (a, b, c), and
the system finds l program fragments for a, m for b, and
n for c. We make all combinations of these patterns. In
this case, l × m × n combinations are to be generated,
and for all of these combinations, we try to check the
constraints.

5. Performance: Detection of Bad Pattern

In order to evaluate whether our system is useful as a

726
IEICE TRANS. INF. & SYST., VOL.E83–D, NO.4 APRIL 2000

diagnosis system of programming styles, we made the
following two experiments;

1. Description experiment: The aim of this experi-
ment is to evaluate description capability of pro-
gram patterns. We investigate whether we can de-
fine various kinds of style guidelines with program
patterns.

2. Recognition experiment: The aim of this experi-
ment is to investigate whether this system can find
the intended program fragments in practical pro-
grams.

5.1 Description Experiment

As a target of the style guideline, the following guide-
lines were used:

• Six syntactic guidelines and seven semantic guide-
lines in [4].

• Nine guidelines that are used in a programming
course at our university.

In the description of the syntactic guidelines, we
can define five guidelines out of six using 12 program
patterns which are concerned with the following guide-
lines: priority between operators, missing or extra semi-
colon, case label without break statement, function
call without parameter list, and dangling else. We
have not yet prepared pattern recognition about dec-
laration, so our system can’t deal with the guidelines
about function definition. However the expansion of
the system is easy.

In the description of the semantic guidelines, we
can define four kinds of guidelines out of seven us-
ing seven program patterns which are concerned with
the following concepts: use of pointer variables, bound-
ary usage, check of return variables, and evaluation or-
der. There are three guidelines which we can’t describe.
These guidelines are also concerned with declaration.

In our style guideline, we described nine kinds of
guidelines using 19 program patterns.

As the result, we can define 18 guidelines using 38
program patterns within the 22 guidelines,

5.2 Recognition Experiment

As a target of recognition, a program set of the GNU
text utility library (for example, cat, head, wc, and
so on) is selected and 38 program patterns which were
described in the description experiment were used.

We tried on 22 programs using 38 program pat-
terns. The average number of program pattern found
for one program is 45.7 (the maximum is 162, the min-
imum is 7). The number of program fragments found
per one program pattern is 26.5 on the average (the

maximum is 195, the minimum is 0). Besides, the av-
erage number of line of source code without comment
is 497 (the maximum is 1354, the minimum is 107).

In order to evaluate description capability of pro-
gram pattern, we investigated whether the system rec-
ognizes all program fragments which experts can rec-
ognize manually. The result of this investigation shows
that system’s match list agrees with the program frag-
ments which experts recognized. From this, we as-
certained that the system can recognize all guidelines
correctly. This result indicated that our description
method can describe a guideline of programming styles
correctly. This result also shows that the system can
recognize various patterns, for example, context depen-
dent patterns and dispersed patterns spanning multiple
functions. It is difficult to recognize these patterns by
conventional character based pattern matching meth-
ods.

In the first try of recognition experiment, there
were guidelines that don’t match all the intended ele-
ments. We solved this problem by revising conditions or
adding new constraints. We can do this easily as local
improvement. This shows our system’s extensibility.

6. Related Work

The source code search tool SCRUPLE [3] uses an orig-
inal pattern languages. In SCRUPLE, the pattern lan-
guage supports a rich set of features including named
and unnamed wild-cards, matching of high-level data
types such as sets and sequences, etc. It uses a pat-
tern recognizer based on a finite state machine. We use
this technique in template matching of base patterns,
because it can detect pattern in data driven manner.
SCRUPLE introduces concept of constraints, but it
does not have generality because it only uses string con-
straints. In our system, the framework of constraints
was expanded to use structured constraints and flow
constraints.

On the other hand, there are some programming
style analyzers, for example, Code Analyzer for Pas-
cal (CAP) [5] and STYLE [6]. CAP is an automated
self-assessment tool to aid novice student programmers.
STYLE outputs messages about programming styles
based on six quality metrics: economy, modularity, sim-
plicity, structure, documentation, and layout. These
systems center on statistics quantity, indentation and
comment style, and they don’t deal with structural pat-
terns and context dependent patterns. These systems
realized each recognition techniques as procedures, so
expansion of systems is not so easy. In our method, the
system becomes to detect the new guideline by adding
only a program pattern.

There is a software tool Fall-in C which detects
pitfalls in C programs [7]. We compare the description
in Fall-in C and the description in our system. The
example of “case label without break” in our system

SEKIMOTO and KAIJIRI: DIAGNOSIS SYSTEM
727

Fig. 4 Sample pattern used in fall-in C.

is as shown below.

BEGIN
case_pattern;
@v1
BODY
@v1
case # : @
@ \ast

CONSTRAINTS
not_jump_st(@v1)

END

The description of the same example in Fall-in C is
shown in Fig. 4. In Fall-in C, a pitfall pattern for pat-
tern matching is tree structure whose nodes are either
C program elements or special symbols. In the case of
tree structure, a teacher who describes a pattern needs
to understand a grammatical structure neatly, so it is
difficult to describe a pattern. In our system, a pattern
is described using expanded C statements. For this, it is
easy to describe a pattern. Moreover, because of intro-
duction of constraints, description of patterns becomes
simple and it is easy to write/understand a guideline by
a teacher who describes a pattern. This is important to
use our system generally. In Fall-in C, a pattern of code
spanning multiple functions and a pattern that specifies
lack of some program fragments cannot be described.
In our system, as shown in the description of [guideline
about file processing], we can describe the patterns of
code spanning multiple functions using compound pat-
terns. Also, we can describe the patterns that specify
lack of some program fragments using the not found
constraint.

7. Experiment: Use by Novice Programmers

In programming style analyzers [5]–[7], some resear-
chers have evaluated the performance but have not ex-

Fig. 5 Results of the experiment about style inspection.

amined in real situation. In order to evaluate whether
novice programmers were assisted by our system, we
made experiment of bad patterns detection.

7.1 Overview

Testees were 86 sophomore students in Shinshu Univer-
sity and they have one year programming experience.
First, to divide testees between two groups properly
(that is, A and B group), we give testees a test in
programming. Next, we conducted the following ex-
periment. Testees are requested to detect/correct the
following five bad patterns in a target program.

1. Guideline about constants

2. Guideline about side effects within conditional ex-
pressions

3. Guideline about increment/decrement operators

4. Guideline about file processing

5. Guideline about conditional expressions

The objective program has about 100 lines and it’s
function is to merge two sorted data sequences. In ad-
dition, this program has the above mentioned five kinds
of bad patterns. Group A does this experiment using
this system and group B without using it.

7.2 Results and Discussions

We graded the results out of 10 according to the fol-
lowing two points. 1) Detection: Do students detect
bad program fragments correctly? 2) Correction: Do
students modify bad program fragments correctly? In
Fig. 5, we show the average mark. From this result,
in both detection and correction, the average mark of
group A that uses the system is higher than the average
mark of group B that doesn’t use it. By the two-tailed
test at a 0.01 level of significance, we confirmed that
the above hypothesis is highly significant. In addition,

728
IEICE TRANS. INF. & SYST., VOL.E83–D, NO.4 APRIL 2000

the average time to do this experiment is 15.3 minute
(in A group) and 17.5 minute (in B group). The re-
sult shows that the time to detect/correct bad patterns
became short.

In conventional programming courses, teachers
need to check the student’s programs and to teach the
programming style interactively. By this experiment,
the following assumption was confirmed: Novice pro-
grammers can check programming styles efficiently by
themselves using our diagnosis system.

8. Conclusion

We have proposed a diagnosis system that detects pro-
gram fragments which infringe the programming style
in C programs. In this system, style guidelines were de-
scribed using the proposed program pattern. The input
is a target program and this pattern.

The following was confirmed experimentally: 1)
This system can recognize various guidelines correctly;
2) This system is effective for assisting novice program-
mers to detect/correct of bad patterns. By using this
system, performance (average mark and average time)
is improved.

We have treated the programming styles of some
literatures. In order to improve the performance of our
system, it is important to grasp stereotypical kinds of
bad patterns. In the future, we will analyze the bad
pattern in C programs written by novice programmers
and will improve the pattern database. Moreover, we
need to strengthen the description capability of our sys-
tem.

References

[1] R. Sekimoto and K. Kaijiri, “Plan representation and
its recognition approach for program recognition,” Proc.
JCKBSE’96, pp.198–201, Sept. 1996.

[2] R. Sekimoto and K. Kaijiri, “A detection of ill-formed pat-
terns about programming style,” Proc. JCKBSE’98, IOS
Press, pp.165–168, Sept. 1998.

[3] S. Paul and A. Prakash, “A framework for source code search
using programming patterns,” IEEE Trans. Software Eng.,
vol.20, no.6, pp.463–475, June 1994.

[4] A. Koenig, C traps and pitfalls, Addison-Wesley, 1989.
[5] T. Schorsch, “CAP: An automated self-assessment tool to

check pascal programs for syntax, logic and style errors,”
Proc. SIGCSE’95, pp.168–172, March 1995.

[6] A. Lake and C. Cook, “STYLE — An automated program
style analyzer for Pascal,” SIGCSE Bulletin, vol.22, no.3,
Sept. 1990.

[7] M. Oda and T. Kakeshita, “Pitfall detection of C programs
using pattern matching,” Trans. IPS Japan, vol.35, no.11,
Nov. 1994.

Rika Sekimoto received the Mas-
ter of Engineering at Tokyo Denki Univer-
sity in 1992. She research now at Shinshu
University as a research associate. Her
current interests include program recogni-
tion and programming education support
environment. She is member of IPS of
Japan.

Kenji Kaijiri received the Ph.D. de-
grees in Communication Engineering from
Osaka University in 1977. In 1977, he was
a Research Associate of Information En-
gineering, Shinshu University, and in 1978
he was an Associate Professor, and in
1995 he was a Professor. His research area
is software engineering, programming lan-
guages, and distance learning. He is a
member of the IPS and JSISE of Japan,
and IEEE, ACM.

