
IEICE TRANS. INF. & SYST., VOL.E88–D, NO.6 JUNE 2005
1117

PAPER Special Section on Software Engineering for Embedded Systems

Practical and Incremental Maintenance of Software Resources in
Consumer Electronics Products

Kazuma AIZAWA†,††, Haruhiko KAIYA††a), Nonmembers, and Kenji KAIJIRI††, Member

SUMMARY We introduce a method, so called FC method, for main-
taining software resources, such as source codes and design documents, in
consumer electronics products. Because a consumer electronics product is
frequently and rapidly revised, software components in such product are
also revised in the same way. However, it is not so easy for software en-
gineers to follow the revision of the product because requirements changes
for the product, including the changes of its functionalities and its hard-
ware components, are largely independent of the structure of current soft-
ware resources. FC method lets software engineers to restructure software
resources, especially design documents, stepwise so as to follow the re-
quirements changes for the product easily. We report an application of this
method in our company to validate it. From the application, we can confirm
that the quality of software was improved about in twice, and that efficiency
of development process was also improved over four times.
key words: consumer electronics products, product revision, software
maintenance, software process improvement

1. Introduction

Traditionally, software components in a consumer electron-
ics product are designed so as to correspond to tasks in the
product, and the components are implemented by each soft-
ware engineer. The reasons are as follows. First, software
components should contribute to make full use of hardware
components, and the tasks normally correspond to hardware
components. Second, software design method based on the
tasks seems to be one of the best ways to do so. As a result,
existing software components can not be easily modified if
hardware components in the products are changed. Unfor-
tunately, such hardware components are frequently changed
along with the revision of the consumer electronics products
today. Therefore, software design method based on tasks be-
comes unfit for embedded software in consumer electronics
products today. If such method is used continuously, soft-
ware resources e.g., source codes and design documents, be-
come unmanageable. As a result, software engineers cannot
understand and update existing software components cor-
rectly and efficiently.

In this paper, we will propose a new design method, FC
(Functional Component) method, to overcome such prob-
lems, and report an experience to apply the method into a
real software project. In FC method, software requirements

Manuscript received September 24, 2004.
Manuscript revised January 4, 2005.
†The author is with EPSON AVASYS Corporation, Ueda-shi,

386–1214 Japan.
††The authors are with the Graduate School of Science and

Technology, Shinshu University, Nagano-shi, 380–8553 Japan.
a) E-mail: kaiya@cs.shinshu-u.ac.jp

DOI: 10.1093/ietisy/e88–d.6.1117

are decomposed into functional components, each of which
is independent to specific hardware components. FC method
also lets software engineers to make full use of existing soft-
ware resources. Through the experience, we found that FC
method helped software engineers to revise an existing soft-
ware product effectively and efficiently. We also found that
the number of defects decreased in about half, and that the
average effort for review was decreased in about one fourth.

The rest of this paper is organized as follows. In the
next section, we clarify usual practice for developing em-
bedded software in consumer electronics products, and its
problems. So as to resolve several parts of the problems,
we introduce FC method in Sect. 3. We applied FC method
into practice and compared the results with results of usual
practice. In Sect. 4, we report such practices and discuss the
differences to validate FC method. In Sect. 5, we discuss the
characteristics of our work related to the other research re-
sults. Finally, we summarize current results and show the
future works.

2. Current Practices and Their Problems

In this section, we explain how we develop embedded soft-
ware in our company today, and define some terminologies
in this paper. At least in Japan, our company is typical one
in the field of embedded software for consumer electron-
ics products [1]. So as to clarify the characteristics of soft-
ware development for revising a product, we first explain the
way of developing a brand-new product. Next we explain
the way of product revision by comparing with the previous
way, and clarify the problems of product revision. Because
of the economic and organizational reasons, we can not in-
herently solve all of the problems. We finally discuss which
problems can be technically solved or not.

2.1 Brand-New Product Development

A consumer electronics product consists of several hardware
components and the product performs functions by using the
components. For example of a graphic scanner system, a
CCD camera, motors and other hardware components work
cooperatively so as to preview a scanned image. From the
view point of software engineers, requirements for the prod-
uct are characterized according to the kinds of hardware
components and their structure, the kinds of functions and
their non-functional characteristics. For simplicity, we do
not handle non-functional characteristics after this.

Copyright c© 2005 The Institute of Electronics, Information and Communication Engineers

1118
IEICE TRANS. INF. & SYST., VOL.E88–D, NO.6 JUNE 2005

Fig. 1 Components in brand-new products.

By using Fig. 1, which is written in a simple class di-
agram, we explain how to develop software in a consumer
electronics product now. As already mentioned before, the
product can be regarded as both hardware components and
functions. In Fig. 1, we simply call ‘hardware components’
as ‘hardware’. Because software in the product normally
works on a real-time and multi-tasking operating system,
we should identify tasks on the operating system. Tradition-
ally, such tasks and their structure are defined according to
the kinds of hardware components and their structure, and
each task are normally related to one hardware component
as shown in Fig. 1. There are several reasons for such cir-
cumstances. First, software system should make full use of
hardware resources. Second, hardware is still more impor-
tant than software in consumer electronics products. Be-
cause the tasks and their structure are decided in advance,
design documents for software are written for each task.
According to each document, software components such as
source codes are developed along with waterfall model. Al-
though functions of the product are not simply related to
design documents as shown in Fig. 1, this kind of software
development processes has worked well.

2.2 Revised Product Development

Nowadays, brand-new consumer electronics products are
rarely developed [2] because we should release products
quickly and cheap. Instead of brand-new products, we re-
lease new products by revising existing products and by us-
ing their related resources. We call such products as ‘re-
vised products’, and their development as ‘product revision’
in this paper. So as to complete product revision success-
fully, we should efficiently reuse software assets as much
as possible. As a result, consumer electronics products are
repeatedly revised in general.

As shown in Fig. 1, a consumer electronics product
consists of hardware components and functions. Therefore,
software engineers face two kinds of requirements changes
in product revision; one is the changes of hardware com-
ponents and another is functional changes. Changes of
hardware components frequently occur because such com-
ponents are improved quickly and because cheaper and/or
more efficient components with the same functions are re-
leased. Changes of functions also occur frequently because
we normally develop several products in the same product
line [3] at the same time. There are various types of spe-

cialization of a product line that may be developed, and one
of the type is functional specialization, where different ver-
sions of software are created for customers with different
requirements.

In the case of our company, it takes about a year for
a project of a product revision, and about ten software en-
gineers engage in the project for the revision. Hardware
components and their structure are usually defined by an-
other company in advance. We cannot say the cycle time
of system revision exactly because several projects based on
the same product has progressed simultaneously and succes-
sively.

2.3 Problems in Product Revision

As mentioned above, we should efficiently reuse software
assets as much as possible in product revision. In addition,
we should of course assure the quality of software. For such
software quality, design documents will help software engi-
neers to identify the impacts of changes on software prod-
ucts and to follow the behavior of each function. Unfortu-
nately, such design documents cannot effectively support us
during software revision, and we cannot change our current
practice completely and immediately because of the eco-
nomic and organizational reasons. In the rest of this section,
we explain the problems in detail and explore what we can
do under our restriction.

We have already identified two kinds of changes fol-
lowing system revision; one is changes of hardware compo-
nents and another is functional changes.

When changes of hardware components occur, it is dif-
ficult for software engineers to reuse design documents effi-
ciently. If one hardware component is replaced with another
component and these two components are completely differ-
ent, engineers cannot reuse current design document com-
pletely. In addition, engineers cannot reuse source codes for
a task corresponding to the component. In most cases, engi-
neers may revise design documents and reuse several source
codes because replaced hardware component is similar to
old one. However, responsibility of a hardware component
for a function could be changed under such replacement,
and it becomes difficult to update design documents, so that
engineers can identify the impacts of such changes and can
follow the behavior of functions.

Because the structure of tasks depends on the hardware
structure and design documents are written for each task
as shown in Fig. 1, the structure of software is usually the
same as hardware structure in brand-new products as shown
in the top half of Fig. 2. When hardware components are
replaced, added and/or deleted, the whole structure of hard-
ware components is usually changed. Although software
structure should be changed in the same way as hardware
structure, software structure is not changed so, as shown in
the bottom half of Fig. 2. So as to reuse design documents
and source codes as much as possible, software structure
cannot be changed in the same way as hardware one. In ad-
dition, there are no enough budgets and time to reconstruct

AIZAWA et al.: MAINTENANCE IN CONSUMER ELECTRONICS PRODUCTS
1119

software products because the degree of software changes is
not directly related to the degree of hardware changes, and
the budget and time are decided according to the degree of
hardware changes. As a result, software engineers cannot
maintain design documents sufficiently, but several source
codes are reused without suitable design documents.

When functional changes occur, it is not so easy to
identify impacts of such changes because each function is
usually related to many tasks, and design documents are
written in each task as shown in Fig. 1. As a result, design
decisions for a function are distributed to many design doc-
uments for tasks, and it is not so easy to follow the behavior
of each function too.

Even if there are no significant changes of both hard-
ware components and functions, it is not so easy for engi-
neers with documents of each task to identify change im-
pacts and to follow functions’ behaviors. One reason is that
such design documents are usually too large to be reviewed
at once, and another reason is that such documents do not
correspond to each function directly as shown in Fig. 1. In
addition, the sizes of design documents are not uniform be-
cause the ability and the role of a hardware component are
intrinsically different from others. When impacts of changes
can fall into one task, we do not mind inconsistencies as
shown in Fig. 2. However, the related design document be-
comes fat and it becomes hard for software engineers to re-
view such fat document.

The sizes of design documents for each function would
not be also uniform because the ability and the role of a
function are also different from other functions. Thus, we
should intentionally decompose design issues into relatively
small documents so that engineers can easily review them.
In addition, each document should have the references to
others as few as possible. In other words, design documents
should be coupled loosely. If there are many references in
a document, it will take a lot of time to review it. One of
the criteria for the number of references in a document is
the limited size of short-term memory. In a classic experi-
ment Miller [4] found that the short-term memory can store
about seven quanta of information, and our experiences also

Fig. 2 Inconsistency between hardware and software structures.

support this criterion. Consequently, the sizes of design doc-
uments become uniform during our experiences.

Whenever changes of hardware components and func-
tions occur, it is better to reconstruct design documents
so as to match new hardware components and functions.
However, we cannot do so because the degree of software
changes is not directly related to the degree of hardware
changes and, the budget and time are decided according to
the degree of hardware changes.

It is better to develop software components and their
structure independent to the hardware structure. However,
we cannot survive without assets of existing software re-
sources and they strongly depend on tasks and each task de-
pends on hardware components. In addition, software engi-
neers should take hardware components and their structure
into account for performance requirements.

As a result, software engineers should stepwise revise
software assets so as to meet requirements changes. At the
same time, software engineers improve design documents
so that they can easily identify impacts of such changes and
follow the behavior of functions.

3. FC Method

3.1 Goal of FC Method

So as to improve our software process, we hold up the fol-
lowing goals.

1. Change the relationship among components in Fig. 1
to one in Fig. 3. In other words, maintain design docu-
ments not for each task but for each function.

2. Reduce the size of design documents as small as possi-
ble.

3. Unify the size of design documents as much as possi-
ble.

We should achieve the goals not at once but stepwise be-
cause we have revised a family of products repeatedly, and
we do not have enough budgets and time in each revision so
as to achieve the goals at once.

We call a pair of a function and its design document in
Fig. 3 as a Functional Component (FC) in this paper. Above
goals can be regarded as the requirements for good FCs.

If these goals are achieved, software engineers can sat-
isfy requirements for embedded software reasonably. Ex-
pected consequences and effects by achieving the goals are
as follows.

Fig. 3 Relationship among components in FC method.

1120
IEICE TRANS. INF. & SYST., VOL.E88–D, NO.6 JUNE 2005

1. Engineers can easily follow the behavior of functions.
2. Engineers can clearly separate the concern about de-

sign from the concern about implementation because
design documents are written in each function. When
the documents were written in each task, engineers
tended to take implementation issues into account too
much during design phase.

3. Engineers can perform incremental development [5]
and can make each increment to be relatively small.
When increments are small, engineers can satisfy un-
expected changes of requirements with small loss of
work.

4. Engineers can estimate their efforts because the size of
design documents are unified.
From our experiences, the size of a document is cor-
related with the effort with which design issues writ-
ten in the document are implemented. If the size of
documents are unified, we can estimate such efforts by
counting the number of documents.

5. Engineers can explore alternatives of a design issue
easily because each design document is small enough
to be rejected. Even if such rejection will occur, there
is not so large impacts for progress and for the other
products.

6. Engineers can decrease the number of tasks related to
a design document, and they do not mind the mutual
relationships among tasks and functions so much. FC
method intrinsically makes the number of documents
increase because documents are written in each func-
tion and a function is related to many tasks in general as
shown in Fig. 4. In addition, several documents could
be related to the same task, e.g. task5 in Fig. 4.
So as to mitigate the impacts followed by the situa-
tion in Fig. 4, the size of documents for each function
should be reduced as small as possible as shown in
Fig. 5. For example, engineers should take most tasks

Fig. 4 Task structure with large documents.

Fig. 5 Task structure with small documents.

and documents into account when they review docu-
ment1 in Fig. 4. On the other hand, they only take into
account task2 and 3 into account when they review doc-
ument1a in Fig. 5.

3.2 Procedure

3.2.1 Overall

As we mentioned above, software engineers should step-
wise change their software development process because of
the economic and organizational reasons. Here we show the
overall way of FC method.

1. Get the requirements for embedded software in a con-
sumer electronics product. There are two kinds of re-
quirements; one is changes for hardware components
and another is changes of functions. These require-
ments normally do not take resources of an existing
product to be revised into account.

2. Find an existing product and its resources to be revised
for the requirements. Build a development team us-
ing engineers who belonged to the team of the existing
product if possible.

3. Put members of the team in charge of each design doc-
ument. Basically, an engineer should take charge of
documents that were taken by him before. If the ex-
isting product was developed in usual way, the docu-
ments correspond to each task as shown in Fig. 1. If FC
method was already introduced in its development, the
documents correspond to each task or each function.

4. Identify FCs that satisfy the requirements. We will
mention how to identify them in later part of this sec-
tion.

5. Identify the relationships between existing tasks and
FCs. As shown in Figs. 3 and 4, the relationships are
normally many to many mapping.

6. Put members in charge of each FC. If a FC is related
to several tasks, decide a member who takes charge of
the FC by referring the skill of each member and/or by
checking which task is most related to the FC.

7. Complete each design issue so that design issues can
be implemented. This part is also mentioned in the fol-
lowing part separately.

3.2.2 Identify Functional Components

The core of FC method is how to identify better FCs (func-
tional components) as many as possible. According to the
discussion in Sect. 2.3 and our experiences, we define the
concrete requirements for good FCs as follows.

• Each FC may have the references to other FCs, and the
number of references shall be about seven.
• The number of pages of each FC shall be about five in

A4 sized paper except the cover and reference pages.
• Each FC shall be enough small to be reviewed within

about one hour.

AIZAWA et al.: MAINTENANCE IN CONSUMER ELECTRONICS PRODUCTS
1121

In general, the inspection itself should be relatively short
(no more than two hours) [3]. The review meetings in FC
method do not have to follow the formal inspection process,
but the role of these meetings is the same as the role of in-
spections.

We divide design issues into FCs in two steps. First, we
use Cleanroom approach [6], [7]. In Cleanroom approach,
requirements are refined into black box specifications at
first. A black box specification is refined into state box spec-
ifications, each of which encapsulates state data and ser-
vices, if the black box cannot be refined into other black
boxes. Finally, a state box specification is refined into clear
box specifications if the state box cannot be refined into
other state boxes. We regard such clear boxes as the can-
didate of FCs first.

Second, we continue to decompose clear boxes if the
boxes do not satisfy the concrete requirements above. The
way how to continue to decompose them depends on the
ability of the project leader, but the leader especially takes
into account for the first requirement above, the limitation
of the number of references in each FCs. Note that we never
omit details of each clear box, but we divide a clear box
into several small clear boxes intentionally. This division
is sometimes against the good logical structure of software
itself, but we give priority to facility for engineers to review
design documents.

Significant difference between FC method and Clean-
room approach is that engineers do not strictly obey formal
verifications. For example, we do not verify formal cor-
rectness and do not apply stepwise refinement rules strictly.
There are several reasons about this. One is that engineers
normally do not have skills enough to verify specifications
formally. In the same case of other kinds of software, re-
quirements for embedded software are continually requested
during a development process. Another reason is that strict
application of formal verification seems to be harmful for
such development process.

Instead of formal verifications, informal reviews for
FCs are performed so as to minimized the impacts among
FCs and so as to minimized the charge of each engineer.

When a new requirement is requested during the pro-
cess, engineers sometimes have to identify FCs again or to
modify them. Because engineers structurally decompose re-
quirements into FCs, engineers can easily identify FCs that
they have to modify.

3.2.3 Implement Functional Components

Another important point is how to implement design doc-
uments for each FC, and how to utilize (old) design docu-
ments for each task. As mentioned above, design documents
are developed for each function. After the design phase,
each task is implemented by an engineer according to wa-
terfall model in the same way as current practice.

Because each design document is taken charge by an
engineer, one document is maintained and updated only one
engineer. We call such engineer as a responsible engineer.

When an engineer finds a part in a design document which
should be changed or be transferred into another document
after design phase, the engineer should not modify the doc-
ument by himself but should request it to an engineer who
takes charge of its design. The engineer may sometimes
modify it by himself because the engineer himself takes
charge of its design.

Because each design document does not correspond
to a task directly, the engineer should refer several design
documents at the same time. However, this fact does not
become a disadvantage of FC method. First, there are ex-
plicit references to other documents in each FC document,
thus the engineer can immediately identify which FC doc-
uments should be referred. Second, there is a responsible
engineer for each FC document, thus engineers can ask the
responsible engineer about the design issues maintained by
the responsible engineer. If engineers in a team are geo-
graphically distributed, some kinds of CSCW support will
be needed. Engineers put what they have communicated not
into design documents directly but into other documents,
and the other documents were not reviewed in the review
meetings. We try to keep the design documents small so as
to shorten the length of review meetings. Thus there is no
contradiction even if the engineers communicate with each
other frequently.

As already mentioned in the first paragraph in Sect. 2.3,
we cannot change our current practice completely and im-
mediately. Thus, we have to use both design documents
based on FC method and design documents written for each
task together. Here we show how to do so. Figure 6 shows
the outline. In the figure, ‘FC Document’ means design doc-
uments by FC method and ‘Old Document’ means design
documents written for each task. Because each engineer still
takes charge of tasks, he also takes charge of documents of
such tasks. At the same time, he takes charge of FC docu-
ments. Therefore, he has the responsibility to cope design
documents by FC method with old documents.

The way of decreasing the ratio of old documents and
its outcome deeply depend on the ability of each engineer.
Thus, each engineer can achieve the way at his/her best ef-
fort, and he/she can incrementally improve his/her ability
during his/her job. Currently, simple web based tool is used
to identify the relationships among FC and old documents
in our company.

Fig. 6 Relationship among components in FC method (version 2).

1122
IEICE TRANS. INF. & SYST., VOL.E88–D, NO.6 JUNE 2005

4. Using FC Method into Practice

We applied FC method into a real project, say Project FC,
in our company. So as to confirm the effectiveness of
FC method, we report Project FC and another project, say
Project TC (Task based Components), which was carried out
in usual way, and compare these projects.

4.1 Project TC

In Project TC, embedded software was revised by extending
existing software. Requirements for the revised software are
as follows;

• Several functions should be added because of market
trends.
• Several hardware components should be replaced be-

cause new and good hardware components can be
available.

When the existing software was developed, there was no
plan for such revision. Therefore, the existing software and
its related resources were not ready for such revision. Be-
cause the existing software was developed in usual manner
as mentioned in Sect. 2, design documents for software were
written in each task, and each engineer maintained each de-
sign document and implemented source codes correspond-
ing to each document.

4.2 Project FC

In Project FC, other embedded software were revised by ex-
tending existing software, that was different from the exist-
ing software for Project TC. However, requirements for re-
vision and the characteristics of the existing software were
almost the same as the case of Project TC. The most sig-
nificant difference between Project TC and FC was that two
different products were revised at the same time in Project
FC, but only one product was revised in Project TC. There-
fore, the size of software products, such as source codes and
design documents, in Project FC were intrinsically different
from the size in Project TC. However, the size of require-
ments changes for a system in Project FC was almost the
same as the size for a system in Project TC.

Project TC and FC were performed by almost the same
members and terms in average. The differences are as fol-
lows.

• Project FC was started after Project TC was finished.
• About 30% of project members were changed between

two projects.

We don’t have to take into account of the learning ef-
fect of the members because all the members have enough
experiences to develop this kind of software. In other words,
we cannot say that some improvements in Project FC was
due to the experience in Project TC because the members
were already familiar with this kind of software before both

Project TC and FC in this paper. Concretely, they have about
5.9 years experience in this kind of software on average,
and they had already participated in more than five similar
projects on average before Project TC and FC. Even the
least experienced members have two years experiences.

4.3 Comparison and Discussion

We want to confirm that FC method will contribute to im-
prove the quality of software products and efficiency of
work. We measure the following two metrics for this pur-
pose.

4.3.1 Defect Density

The quality of software is basically characterized by the de-
fect density. Therefore, we compare defect densities of two
projects. Because these two projects were performed by al-
most the same engineers of the same company, we simply
use kilo lines of codes (KLOC) as the product size. As the
result, we calculate defect density as the following equation.

Defect density =
Number of defects

KLOC

Table 1 shows the results. Clearly, the quality of software
seems to be improved in Project FC.

We may regard that the software quality was improved
about in twice because the defect density of Project TC is
7.3 and the density of Project FC is 3.5 (7.3/3.5 = 2.08).

4.3.2 Number of Reviews and Design Documents, Length
of Reviews

We have already argued that inefficient tasks were per-
formed in our current practice. Especially, we reviewed one
design document redundantly because such documents were
written in each task and it was necessary to review one doc-
ument many times so as to follow the behaviors of functions.
Table 2 shows the number of documents and reviews, an av-
erage length of review meetings and their derived data.

First, we discuss the difference about the average
length of review meetings. As shown in Table 2, the av-
erage length of reviews in Project FC (1 hour) was clearly
shorter than the length in Project TC (8 hours). Thus we
may conclude two things. First, design documents in Project
FC satisfied the last requirement in Sect. 3.2.2. Second, the
requirement was not satisfied while we did not impose FC
method on the members in Project TC. Thus we may con-
clude that the review activities became better by FC method.
FC documents would contribute to shorten the length of re-
views because FC documents are relatively smaller than de-
sign documents in Project TC, and FC is designed so that

Table 1 Defect density of each project.

Project KLOC # of Defects Density
TC 34.410 252 7.3
FC 62.858 221 3.5

AIZAWA et al.: MAINTENANCE IN CONSUMER ELECTRONICS PRODUCTS
1123

Table 2 Number of reviews and design documents, average length of reviews.

Project
of
Doc.

of
Review

Average Length
of Review (Hours)

Total Hours
for Review (Hours)

of Review
of Doc.

TC 40 89 8 712 2.26
FC 480 318 1 318 0.66

the coupling among FC becomes low.
Second, we discuss the productivity. As shown in Ta-

ble 2, total spending hours for review meetings in Project FC
was clearly smaller than the hours in the Project TC, even
though two different products were revised at the same time
in Project FC. Thus, the productivity was improved about in
four times (712/(318/2)=4.5). This result also supports the
advantages of FC method.

Finally, we discuss the redundancy. As mentioned in
the first paragraph in Sect. 4.3.2, design documents are re-
viewed redundantly and that’s one of the reasons for ineffi-
ciency. Average review numbers for each design document
will show the extent of such redundancy. Table 2 shows that
how often one design document was reviewed in average.
In the case of TC, one document was reviewed in more than
two review meetings (2.26). On the other hand, one docu-
ment was reviewed in less than one review meeting (0.66)
in the case of FC. In other words, several FC documents
were reviewed at the same time in a meeting. As a result,
we may infer that we could avoid redundant review tasks by
FC method, because design documents were reviewed less
frequently in FC than those in TC.

5. Related Work

There are many kinds of products with embedded software,
and a consumer electronics product is one of the important
product today. The characteristics of the product were sum-
marized in [8] about ten years ago, and they are still true
now. In this section, we discuss related works with respect
to several viewpoints.

5.1 Applicability to Actual Organization

We have already known many methods [9], [10] that seem
to be effective for developing embedded software. How-
ever, most companies for embedded software cannot intro-
duce such methods immediately because they cannot invest
money and time in educating their engineers. Because FC
method does not include difficult and advanced idea, e.g.
object-oriented methods and formal methods, most engi-
neers can easily shift the way of developing software. FC
method can be regarded as a relay point to more difficult
methods. For example, engineers can easily and intuitively
identify an abstract data type by grouping several functional
components.

In an article [11], the necessity for software process
improvement (SPI) in embedded software was argued, and
there already exist several proposals and practices in this
area [12], [13]. By using FC method, engineers can use both
legacy and FC documents simultaneously. By measuring the

ratio of FC documents to all documents and by tracing the
changes of the rate, we can provide another SPI method by
using FC method.

5.2 Reusability of Legacy Resources

For some kinds of embedded software, issues in real-time
processing are very important and formal methods are suit-
able for resolving these problems [14], [15]. However, is-
sues about predictability and lead-time reduction [8] are
more important than those about real-time processing in the
field of consumer electronics products.

For the issues in lead-time reduction, a family of tech-
niques for reusing software components seems to one of the
effective way. For example, patterns for embedded software
are proposed [16]. UML notations are used to write design
and specification for embedded software [17]. An imple-
mentation independent design notation and its refinement
method are proposed [15]. Design issues are divided into
several aspects each of which can be easily certified with re-
spect to a certain characteristic in requirements [18]. These
techniques are effective, but they do not mind to reuse ex-
isting legacy software resources. Practically, we never scrap
documents and source codes that worked well in previous
release even if they are mal-formed. FC method allows en-
gineers to reuse and to modify such legacy resources.

5.3 Capability to Improve Organization and Each Engi-
neer

As mentioned before, each engineer can easily monitor
his/her improvement simply by monitoring the ratio of FC
documents to all design documents. On the other hand, it
is not so easy for engineers to identify their improvement
when they use object-oriented and/or formal methods. So as
to encourage each engineer to use more sophisticated meth-
ods, we need SPI method to persuade engineers to under-
stand/feel their advantages in addition to teach such meth-
ods.

One of the ways is to provide metrics and measurement
to know his/her own improvement [19]. We can find sev-
eral researches how to teach different concepts in embedded
software [20]. However, we cannot find researches how to
persuade engineers/students to feel advantages of advanced
concepts and techniques.

5.4 Modeling Process and Products

One of the characteristics of this research is to model a con-
sumer electronics product with respect to its embedded soft-
ware as shown in Fig. 6. We can specify how to cope with

1124
IEICE TRANS. INF. & SYST., VOL.E88–D, NO.6 JUNE 2005

legacy software resources and requirements changes when
we revise the product within limited budgets and time. We
can also know how many current software resources are im-
proved with respect to independency of hardware compo-
nents.

We can find models for embedded software, and they
are designed for different purpose. For example, a model
is designed for traceability and evolution of embedded sys-
tems [21], and it also provides the way to analyze impacts by
requirements changes. Our model also supports traceability
among requirements, design and implementation, but there
is not explicit way to analyze such impacts.

Cost estimation model is provided in [22]. Our model
also handles the cost estimation by using the number of FC
components. Because we do not validate our cost estima-
tion way, we cannot decide our way is enough or not. If
our model is too simple to estimate costs, we will refer the
model in [22].

More general, rigorous and formal model is also pro-
vided [23]. Such model will contribute to compare and com-
bine various kinds of models including ours.

6. Conclusion and Discussion

In this paper, we introduce a software design method,
namely FC method, for revising consumer electronics prod-
ucts with embedded software. For validating FC method
partially, we applied FC method into practice in our com-
pany.

At least in Japan, companies of embedded software are
not so large enough to introduce state of the art methods im-
mediately. To introduce such methods, a company should
have sufficient education systems. However, small compa-
nies have no enough money for education systems in gen-
eral. We found one kind of data in a report [1]. In the report,
they investigated what is the most important policy for em-
bedded software industries (Figure 27 in [1]). The results
were different according to the scale of companies. Large
companies thought that it was import to build skill standards
and qualification systems for skills. On the other hand, small
companies needed support for education systems.

FC method can be applied into companies like ours,
because FC method can be coped with our current practice.
By using FC method, we can also improve our practice step-
wise because FC method allows us to use both legacy and
FC design documents at the same time.

In Sect. 3.1, we listed six expected consequences and
effects of FC method. We finally discuss which conse-
quences could be substantiated or not through the analysis
in Sect. 4.

1. One of the main activities in the review meetings is to
follow the behavior of each function. As shown in Ta-
ble 2, the average length of reviews became shorter.
After Project TC and FC, we interviewed members of
these projects, and confirmed that they could easily fol-
low the behavior in Project FC.

2. We don’t have data directly supporting this effect.
However, we also confirmed that engineers could focus
on the design issues in Project FC. Especially, meeting
facilitator said that they could avoid arguing subjects
that were not related to software design.

3. We don’t have data supporting this effect too because
incremental development was not achieved. Fortu-
nately, there were few unexpected changes of require-
ments in Project TC and FC.

4. In the Project FC and TC, we didn’t explicitly intro-
duce an estimation method like function points [24].
However, most engineers said that each of them could
intuitively identify the progress of his/her works sim-
ply by counting the number of documents correspond-
ing functions were completed. Thus they could agilely
managed their own software development processes.

5. We don’t have data supporting this effect too. However,
the impact by rejecting a design document would not be
strong in the case of Project FC. As shown in Table 2,
the number of documents for a system in Project TC
was six times as many as the number for a system in
Project FC ((480/2)/40=6). Thus, the impact would be
six times stronger when a document was replaced with
an alternative in Project TC.

6. We don’t have data directly supporting this effect too.
However, most documents in Project FC were referred
in only one review meeting but those in Project TC
were referred in more than two review meetings as
shown in the last columns in Table 2. If a docu-
ment related to many functions and/or tasks, it would
be referred frequently. Thus, the members in Project
FC would be able to decrease the number of inter-
relationships among functions and tasks.

References

[1] Commerce and Information Policy Bureau. Report on the Actual
Conditions of Embedded Software Industry in Japan. Technical re-
port, Ministry of Economy, Trade and Industry, Japan, 2004. (In
Japanese), abstract is available via http://www.meti.go.jp/policy/
it policy/technology/softjittaityousa-gaiyou.pdf

[2] B. Graaf, M. Lormans, and H. Toetenel, “Embedded software engi-
neering: The state of the practice,” Software, vol.20, no.6, pp.61–69,
Nov./Dec. 2003.

[3] I. Sommerville, Software engineering, International computer sci-
ence series, 6th ed., Addison-Wesley, 2001.

[4] G.A. Miller, “The magical number seven, plus or minus two: Some
limits on our capacity for processing information,” The Psychologi-
cal Review, vol.63, pp.81–97, 1956.

[5] J. McDermid and P. Rook, Software Engineering Reference Book,
pp.15/26–15/28, CRC Press, 1993. Software Development Process
Models.

[6] H.D. Mills, M. Dyer, and R. Lnger, “Cleanroom software engineer-
ing,” Software, vol.4, no.5, pp.19–24, Sept. 1987.

[7] J.H. Poore and C.J. Trammell, Cleanroom Software Engineering,
Blackwell Publisher, Oxford, England, 1996.

[8] J. Rooijmans, H. Aerts, and M. van Genuchten, “Software quality in
consumer electronics products,” Software, vol.13, no.1, pp.55–64,
Jan. 1996.

[9] M. Awad, J. Kuusela, and J. Ziegler, Object-Oriented Technology

AIZAWA et al.: MAINTENANCE IN CONSUMER ELECTRONICS PRODUCTS
1125

for Real-Time Systems, Prentice Hall, 1996.
[10] B. Selic, G. Gullekson, and P. Ward, Real-Time Object-Oriented

Modeling, John Wiley & Sons, 1994.
[11] A.C. Lear, “Shedding light on embedded systems,” Software, vol.16,

no.1, pp.122–125, Jan./Feb. 1999.
[12] R.S. Oshana and R.C. Linger, “Capability maturity model software

development using cleanroom software engineering principles —
Results of an industry project,” Thirty-second Annual Hawaii Inter-
national Conference on System Sciences, vol.7, p.7042, Jan. 1999.

[13] J. Taramaa, M. Khurana, P. Kuvaja, J. Lehtonen, M. Oivo, and V.
Seppanen, “Product-based software process improvement for em-
bedded systems,” 24th EUROMICRO Conference, vol.2, pp.20905–
20912, Aug. 1998.

[14] M. Jersak, K. Richter, R. Ernst, J.-C. Braam, Z.-Y. Jiang, and F.
Wolf, “Formal methods for integration of automotive software,” De-
sign, Automation and Test in Europe Conference and Exhibition,
pp.20045–20050, March 2003.

[15] J.W. Rozenblit and S. Schulz, “Refinement of model specifications
in embedded systems design,” Ninth Annual IEEE International
Conference and Workshop on the Engineering of Computer-Based
Systems, pp.159–166, April 2002.

[16] S. Konrad and B.H.C. Cheng, “Requirements patterns for embedded
systems,” IEEE Joint International Conference on Requirements En-
gineering, pp.127–136, Sept. 2002.

[17] G. de Jong, “A UML-based design methodology for real-time and
embedded sytems,” Design, Automation and Test in Europe Confer-
ence and Exhibition, pp.776–778, March 2002.

[18] S. Kim, F.B. Bastani, I.-L. Yen, and I.-R. Chen, “Systematic relia-
bility analysis of a class of application-specific embedded software
frameworks,” IEEE Trans. Softw. Eng., vol.30, no.4, pp.218–230,
April 2004.

[19] H. Suzumori, H. Kaiya, and K. Kaijiri, “VDM over PSP: A pilot
course for VDM beginners to confirm its suitability for their devel-
opment,” Proc. COMPSAC2003, pp.327–334, Dallas, Texas, IEEE,
Nov. 2003.

[20] L. Motus, “Teaching software-intensive embedded systems at
Tallinn Technical University,” Third IEEE Real-Time Systems Edu-
cation Workshop, pp.30–35, Nov. 1998.

[21] A. von Knethen, “Change-oriented requirements traceability: Sup-
port for evolution of embedded systems,” International Conference
on Software Maintenance, pp.482–485, Oct. 2002.

[22] J. Axelsson, “Cost models for electronic architecture trade studies,”
6th IEEE International Conference on Complex Computer Systems,
pp.229–239, Sept. 2000.

[23] M. Broy, “Modular hierarchies of models for embedded systems,”
First ACM and IEEE International Conference on Formal Methods
and Models for Co-Design, pp.183–198, June 2003.

[24] A.J. Albrecht and J.E. Gaffney, “Software function, source lines of
code, and development effort predicition: A software science valida-
tion,” IEEE Trans. Softw. Eng., vol.9, no.6, pp.639–648, Nov. 1983.

Kazuma Aizawa is a PHD candidate at
Shinshu University, Japan. He is also an engi-
neer in EPSON AVASYS Corporation.

Haruhiko Kaiya is an associate professor
of Software Engineering at Shinshu University,
Japan.
http://www.cs.shinshu-u.ac.jp/˜kaiya/

Kenji Kaijiri is a professor of Software
Engineering at Shinshu University, Japan.

